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The Minimax Distortion Redundancy
in Empirical Quantizer Design

Peter L. Bartlett,Member, IEEE, Taḿas Linder,Member, IEEE, and Ǵabor Lugosi

Abstract—We obtain minimax lower and upper bounds for the
expected distortion redundancy of empirically designed vector
quantizers. We show that the mean-squared distortion of a
vector quantizer designed from n independent and identically
distributed (i.i.d.) data points using any design algorithm is
at least 
(n�1=2) away from the optimal distortion for some
distribution on a bounded subset ofRd. Together with existing
upper bounds this result shows that the minimax distortion
redundancy for empirical quantizer design, as a function of the
size of the training data, is asymptotically on the order ofn�1=2.
We also derive a new upper bound for the performance of the
empirically optimal quantizer.

Index Terms—Distortion redundancy, empirical quantizer de-
sign, lower bounds, minimax convergence rate, vector quantiza-
tion.

I. INTRODUCTION

ONE basic problem of data compression is the design of
a vector quantizer without the knowledge of the source

statistics. In this situation, a collection of sample vectors
(called the training data) is given and the objective is to find
a vector quantizer of a given rate whose average distortion
on the source is as close as possible to the distortion of the
optimal (i.e., minimum distortion) quantizer of the same rate.

Most existing design algorithms (see, e.g., [7], [9], [19],
and [23]) attempt to implement, in various ways, the principle
of empirical error minimization in the vector quantization
context. According to this principle, a good quantizer can
be found by searching for one that minimizes the distortion
over the training data. If the training data represents the
source well, this empirically optimal quantizer will hopefully
perform near optimally also on the real source. The problem
of quantifying how good empirically designed quantizers are
compared to the truly optimal ones has been extensively
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studied for the case when the training data consists of
vectors independently drawn from the source distribution. It
was shown by Pollard [16], [18] under general conditions that
the method of empirical error minimization is consistent in
the following sense. Let be mean-squared error (MSE)
of the empirically optimal quantizer, when measured on the
real source, and let be the minimum MSE achieved by
an optimal quantizer. An empirically designed quantizer is
consistent if the quantity (called the distortion
redundancy) converges to zero astends to infinity.

Of course mere consistency does not give any indication of
how large the training data should be so that the distortion of
the designed quantizer is close to the optimum. This question
can only be answered by analyzing the finite sample behavior
of . In this direction, it was shown in [10] and [15] that
there exists a such that for all
sources over a bounded region. This result has since been
extended to empirical quantizer design for vector quantizers
operating on “noisy” sources and for vector quantizers for
noisy channels [11]. An extension to unbounded sources is
given in [13].

A deeper analysis of the method used to obtain the above
upper bound shows that at the price of considerable technical
difficulties, the factor can be eliminated. Indeed, using
a result of Alexander [1] the above upper bound can be
sharpened to .

Two basic questions relating to the finite sample behavior of
quantizer design algorithms have remained unanswered. The
first is whether the upper bound on thedistortion
redundancy is actually tight. The second, more
general question is whether there exist methods, other than
empirical error minimization, which provide smaller distortion
redundancy (and thus use less training data to achieve the same
distortion). The results of this paper answer both questions in
a minimax sense.

There are indications that the upper bound can be tightened
to . Indeed, for the special case of a one-codepoint
scalar quantizer one can define the codepoint to be the average
of the independent and identically distributed (i.i.d.) training
samples, a choice which actually minimizes the squared error
on the training data. It is easy to see that ,
where is the variance of the source. Another indication that
an rate might be achieved comes from a result of
Pollard [17]. He showed that for sources with some specially
smooth and regular densities, the difference between the
codepoints of the empirically designed quantizers and the
codepoints of the optimal quantizer obeys a multidimensional
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central limit theorem. As Chou [3] pointed out, this implies
that within the class of sources in the scope of this result,
the distortion redundancy decreases at a rate in
probability.

In the main result of this paper (Theorem 1) we show
that despite these suggestive facts, the conjectured
distortion redundancy ratedoes nothold in the minimax sense.
Let and consider the class of -dimensional source
distributions such that if is distributed according to ,
then with probability one. We show that for
any -dimensional -codepoint quantizer which is
designed byanymethod from independent training samples,
there exists a distribution in for which the per-dimension
MSE of is bounded away from the optimal distortion by

a constant times . Thus the gap between this lower
bound and the existing upper bound is reduced to a constant
factor, if the parameters and are kept constant.

In addition to this general lower bound, a new minimax
upper bound for the empirically optimal quantizer is derived in

Theorem 2. The bound is a constant times . The
main merit of this bound is that it partially explains the curious
dependence of the lower bound on: the bounddecreases
in for very small values of . Also, for realistic values of
quantizer dimension and rate, it is tighter than the
bound obtained via Alexander’s inequality, and yet its proof
is rather elementary and accessible.

II. M AIN RESULTS

A -dimensional -point quantizer is a mapping

if

where form a measurable partition of , and
, . The ’s are called codepoints, and the

collection of codepoints is the codebook. If is
a probability measure on , the distortion of with respect
to is

where is the Euclidean distance betweenand
.

An empirically designed -point quantizer is a measurable
function : such that for each fixed

, is a -point quantizer.
Thus an “empirically designed quantizer” consists of a family
of quantizers and an “algorithm” which chooses one of them
for each value of the training data .

In our investigation, are i.i.d. random vari-
ables in distributed according to some probability measure

with , where denotes
the closed ball of radius centered at . In
other words, we assume that the normalized squared norm

of is bounded by one with probability one.
(By straightforward scaling one can generalize our results to
cases with for some fixed .) The

distortion of is the random variable

Let be the minimum distortion achievable by the
best -point quantizer under the source distribution. That is,

where the minimum is taken over all-dimensional, -point
quantizers. The following quantity is in the focus of our
attention:

that is, the expected excess distortion of over the optimal
quantizer for . In particular, we are interested in theminimax
expected distortion redundancy, defined by

(1)

where the infimum is taken over all-dimensional, -point
empirical quantizers trained on samples, and the supremum
is taken over all distributions over the ball in

. The minimax expected distortion redundancy expresses
the minimal worst case excess distortion that an empirical
quantizer can have.

A quantizer is a nearest neighbor quantizerif for all ,
for all codepoints of . It is well

known that for each quantizer and distribution there exists
a nearest neighbor quantizer which has the same codebook
as but less than or equal distortion. Therefore, when
investigating the minimax distortion redundancy, it suffices
to consider nearest neighbor quantizers.

The empirically optimal quantizer, denoted , is an em-
pirically designed quantizer which minimizes the empirical
error

over all -point nearest neighbor quantizers.
The first result upper-bounding the minimax distortion re-

dundancy was given in [10], where it was proved that for the
empirically optimal quantizer

(2)

for all , where is a universal constant. The main message of
the above inequality is that there exists a sequence of empirical
quantizers such that for all distributions supported on a given

-dimensional sphere the expected distortion redundancy de-
creases as . Another application of this result,
which uses the dependence of this bound on, was pointed
out in [13] (see the discussion after Theorem 2).

With analysis based on sophisticated uniform large-
deviation inequalities of Alexander [1] or Talagrand [21]
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it is possible to get rid of the factor. More precisely,
one can prove that

(3)

for all , where is another universal constant (see the
discussion in [10] and [6, Problem 12.10]).

The theorem below—the main result of this paper—shows
that for any empirical quantizer (i.e., for any design method
whose input is and output is a -dimensional, -
codepoint quantizer ) the excess distortion is as large as a

constant times for some distribution. Let denote
the distribution function of a standard normal random variable.

Theorem 1: For any dimension , number of codepoints
, and sample size , and for any

empirically designed -point quantizer , there exists a
distribution on such that

(4)

where is a universal constant which may be taken to be
.

The proof of the theorem is given in the next section.

Remarks:
i) In the proof of the theorem, for the sake of simplicity, we

consider a family of distributions concentrated on a finite set
of points in . It is then demonstrated that for each
there exists a in this family for which (4) holds. Since these
distributions can be arbitrarily well approximated (for our
purposes) by distributions with smooth (say infinitely many
times differentiable) densities, essentially the same argument
shows that for each there exists a with a smooth density
such that (4) holds.

ii) The constant of the theorem is rather small (note that
), and it can probably be improved upon at

the expense of a more complicated analysis.

The above theorem, together with (3), essentially describes
the convergence rate of the minimax expected distortion
redundancy in terms of the sample size. Using definition
(1) we obtain that

and

for some constants depending on and . However,
there is still a gap if the bounds are viewed in terms of the
number of codepoints. For large the difference is small. In
fact, if, according to the usual information-theoretic asymptotic
view, the number of codepoints is set as for some
constant rate , then the difference between the upper and
lower bounds is asymptotically negligible in an exponential
sense. Indeed, (3) and Theorem 1 imply that for large, the
per-dimension minimax distortion redundancy is sandwiched

as

The difference is more essential for small, not only because
of the difference in the exponents ofin the two bounds, but
also because the constantin (3) is large (it is of the order of

), a price paid for eliminating the factor in (2). For
this reason, we now present a new minimax upper bound on
the distortion redundancy of empirically optimal quantizers.

Theorem 2: For the class of sources considered in Theorem
1, if , , , , and

, then

where is the empirically optimal quantizer.

Just like the lower bound of Theorem 1, the new upper
bound is also a decreasing function of the number of code-
points if . Comparing the two bounds leads to the
conjecture that for very small values of(i.e., for and
perhaps for ) the minimax distortion redundancy
is a decreasing function of, while for large values of it is
an increasing function of . We cannot prove this conclusion
because of the gap between the upper and lower bounds,
but for it is possible to show values of
and such that the minimax distortion redundancy for
codepoints is larger than that for codepoints. Intuitively, one
might expect the minimax distortion redundancy to increase
with since the number of unknown parameters (i.e.,)
is increasing with . On the other hand, the distortion of an
optimal quantizer becomes small asincreases, and “smaller”
quantities can be estimated with smaller variance. (The effect
is the same as encountered in estimating the parameterbased
on Bernoulli random variables, where the MSE of the
best unbiased estimate is .) Since the distortion of
a vector quantizer decreases withtypically as ,
this effect becomes negligible for large. This might explain
why our upper bound is decreasing in for but
is increasing in for . The proof of Theorem 2
provides further insight. The exact dependence of the minimax
distortion redundancy on and is still a challenging open
problem.

The relatively simple proof of this result is given in Section
III-B. Note that this upper bound is always better than (3) if

or

where is the rate of the quantizer defined by
. For practical values of the training set size,

this condition is satisfied for medium bit rates. For example,
for , the new upper bound is smaller than (3) if

.
In recent work, Merhav and Ziv [13] studied a problem

closely related to quantizer design. In their setup, the “de-
sign algorithm” is given bits of information (called side
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information bits) about the source. The question is how many
side information bits are necessary and sufficient to obtain
a -dimensional rate quantizer ( , where

is the number of codepoints) whose distortion is close
to the optimum. Their main result gives the answer

in an exponential sense, if is large. The sufficiency
part of this statement was proved using (2). Note that this
problem is more general than the problem we consider. The

information bits are allowed to represent an arbitrary
description of the source, of which discretized independent
training samples are a special case. While the necessity part
of this result does not translate directly to a lower bound
on the convergence rate we study, it does have implications
on how the minimax bounds can depend on the rateand
dimension . For example, it is not hard to see that the fact that

side information bits are not enough implies that
the minimax distortion redundancy convergence rate cannot be
upper-bounded in the form for any constants

.
Our setting is slightly different from that studied in [13].

While Merhav and Ziv concentrated on stationary and ergodic
sources, we only restrict the distribution to have support in a
bounded subset of . It is not hard to see that in general there
does not exist a real stationary process whose-dimensional
marginals have exactly our counterexample distribution. We
presently do not see a way of constructing stationary and
ergodic sources (as was done in [13] for determining the num-
ber of necessary side information bits) whose-dimensional
marginals approximate the counterexample distributions well
enough so that the rather fine analysis of the lower bound
carries over without destroying the rate.

Finally, we would like to point out that our formulation
of minimax redundancy has close connections with universal
lossy coding. In particular, following Davisson’s [5] defi-
nitions of various types of universality for lossless coding,
Neuhoff et al. [14] defined three main types of universality in
fixed-rate universal lossy coding. Of these three definitions, the
one called strong minimax universality parallels our minimax
redundancy formulation. A sequence of fixed-rate block codes
is called strongly minimax universalwith respect to a given
class of sources if the distortion and rate of the codes converge
with increasing blocklength to their respective OPTA (optimal
performance theoretically attainable) functionsuniformly over
the source class. Thus by choosing sufficiently large block-
length for a strongly minimax universal code, one can achieve
a preassigned level of performance regardless of which source
in the class is encoded. In our case, the minimax distortion
redundancy converges to zero with increasing
if and only if there exists a sequence of empirically designed
quantizers such that converges to zero uniformly
over all in the given source class. The implication is similar
to the universal coding case; by choosing the number of
training samples large enough, the distortion redundancy of
the empirically designed quantizer will be arbitrarily small for
all sources in the class.

Neuhoff et al. [14] also defined a weaker notion of univer-
sality. In this definition, a sequence of codes with increasing
blocklength isweakly minimax universalwith respect to a class

of sources if the rate and distortion converge (not necessarily
uniformly) to their OPTA functions for each source in the
class. Refining this definition, Shields [20] defined the notion
of weak minimax convergence rates in universal coding. Using
Shield’s formulation, we can define weak minimax conver-
gence rates in empirical quantizer design in the following way.

A nondecreasing positive function is called
a weak rate for empirical quantizer design for a class of

-dimensional sources if the following simultaneously hold.

i) There exists a sequence of-point empirical quantizers
such that for each there is a finite number
for which

for all (5)

ii) For any sequence of-point empirical quantizers
and function , there exists a source

such that is unbounded as
.

Note that the constant in (5) can depend on the source
distribution . For this reason, the minimax lower bound in
Theorem 1does notimply that the weak rate for the class
of sources over cannot be less than . It is an
interesting and challenging problem to find the weak rate for
this source class.

III. PROOFS

A. Proof of Theorem 1

The basic idea of the proof may be illustrated by the
following simple example: let , , and assume that

is concentrated on four points: , and , such that
either and ,
or and .
Then if is sufficiently small, the codepoints of the optimal
quantizer are in the first case, and
in the second case. Therefore, an empirical quantizer should
“learn” from the data which of the two distributions generates
the data. This leads to a hypothesis testing problem, whose
error may be estimated by appropriate inequalities for the
binomial distribution. Proper choice of the parameters
yields the desired lower bound for the minimax
expected distortion redundancy. The general, , ,
case is more complicated, but the basic idea is the same.

We present the proof in several steps. Some of the technical
details are given in the Appendix.

Step 1: First observe that we can restrict our attention to
nearest neighbor quantizers, that is, to’s with the property
that for all , the corresponding quantizer is a
nearest neighbor quantizer. This follows from the fact that for
any not satisfying this property, we can find a nearest
neighbor quantizer such that for all ,

.

Step 2: Clearly,
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where is any restricted class of distributions on .
We define as follows: each member of is concentrated on
the set of fixed points : ,
where is a fixed -vector, and is a
small positive number to be determined later. The positions of

satisfy the property that the distance
between any two of them is greater than , where the value
of is determined in Step 5 below. For the sake of simplicity,
we assume that is divisible by . (This assumption is clearly
insignificant.) Let be a positive number. For each

, set

either

or

such that exactly half of the pairs have mass
, and the other half of the pairs have mass ,

so that the total mass adds up to one. Letcontain all such
distributions. The cardinality of is . Denote the
members of by .

Step 3: Let denote the collection of -point quantizers
such that for values of ,

has codepoints at both and , and for the remaining
values of , has a single codepoint at . If

, then for any -point quantizer there
exists a in such that, for all in , . The
proof of this is given in the Appendix.

Step 4: Consider a distribution and the corre-
sponding optimal quantizer . Clearly, from Step 3, if

, then for the values of in
that have ,

has codepoints at both and . For the remaining
values of there is a single codepoint at .

For any distribution in and any quantizer in , it is easy to
see that the distortion of the quantizer is between
and .

Step 5: Let denote the family of empirically designed
quantizers such that for every fixed , we have

. Since , the property of the
optimal quantizer described in Step 4 is always satisfied if we
take . In particular, if , we have

and it suffices to lower-bound the quantity on the right-hand
side.

Step 6: Let be a random variable which is uniformly
distributed on the set of integers . Then, for
any , we obviously have

Step 7:

(6)

where is the “empirically optimal” (or “maximum-
likelihood”) quantizer from , that is, if denotes the
number of ’s falling in , then has a
codepoint at both and if the corresponding
is one of the largest values. For the other’s (i.e., those
with the smallest ’s) has a codepoint at .

The proof is given in the Appendix.

Step 8: By symmetry, we have

The rest of the proof involves bounding from
below, where is the empirically optimal quantizer.

Step 9: Recall that the vector of random integers
is multinomially distributed with parameters
, where

and

Let be a reordering of the ’s such that
. (In case of equal values, break

ties according to indices.) Let be the
probability of the event that among , there
are exactly of the ’s with (i.e., the “maximum-
likelihood” estimate makes mistakes). Then it is easy to see
that

since one “mistake” increases the distortion by .

Step 10: From now on, we investigate the quantity

that is, the expected number of mistakes. First we use the
trivial bound

with to be chosen later. is the probability that the
maximum-likelihood decision makes at leastmistakes. The
key observation is that this probability may be bounded below
by the probability that at least of the events
hold, where

In other words,
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Proof: Define the following sets of indices:

Then the maximum-likelihood decision makes mistakes.
If and , then . Thus the
number of indices for which is bounded from
above by , since .

Step 11: Thus we need a lower bound on the tail of the
distribution of the random variable . First we obtain
a suitable lower bound for its expected value.

(7)

Now, bounding conservatively, we have

and

and

The last inequality follows by Mallows’ inequality (see Mal-
lows [12]) which states that if are multinomi-
ally distributed, then

Finally, we approximate the last two binomial probabilities by
normals. To this end, we use the Berry–Esséen inequality (see,
e.g., Chow and Teicher [4]), which states that if
are i.i.d. random variables with , , and

, then

where is the distribution function of a standard normal
random variable. Choose . Observe that is the
sum of i.i.d. Bernoulli random variables. Then
the Berry–Esśeen inequality implies that if ,
then

and similarly

.
Therefore, by (7) we get

(8)

Step 12: To obtain the desired lower bound for

we use the following elementary inequality: if the random
variable satisfies , then

(9)

To see this, notice that for in

and substitute .

Step 13: To apply this inequality, choose
. Then (8) implies that

and, therefore,

where the second inequality follows from (9) and the last
inequality follows from (8).

Step 14: Collecting everything, we have that

where is any positive number with the property thatpairs
of points can be placed in such that
the distance between any two of the’s is at least . In
other words, to make large, we need find a (desirably large)

such that points can be packed into the ball
. (We decrease the radius of the ball byto

make sure that the ’s also fall in the ball .)
Thus we need a good lower bound for the cardinality of the
maximal -packing of . It is well known (see
Kolmogorov and Tikhomirov [8]) that the cardinality of the
maximal packing is lower-bounded by the cardinality of the
minimal covering, that is, by the minimal number of balls of
radius whose union covers . But this number
is clearly bounded from below by the ratio of the volume of

, and that of . Therefore, points can
certainly be packed in as long as
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If (which is satisfied by our choice of below),
the above inequality holds if

Thus the choice

satisfies the required property. Resubstitution of this value
proves the theorem.

B. Proof of Theorem 2

The first step in the analysis of the performance of the
empirical quantizer is the following lemma.

Lemma 1: Let denote the closed -dimensional
sphere of radius centered at . Let and let
denote the cardinality of the minimumcovering of ,
that is, is the smallest integer such that there exist
points with the property

(10)

Then, for all we have

Proof: By a classical observation of Kolmogorov and
Tikhomirov [8] the covering (10) exists if it is impossible
to construct another set which is

-separated, that is,

(11)

Let us now consider an arbitrary-separated set of cardi-
nality . Then the open balls of radius centered at the

are disjoint and their union is included in .
Also, if , then . Thus such
a separating set cannot exist as long as is greater than
the ratio of the volumes of and , that is,

Since there exists an integer which satisfies the
above inequality, the lemma is proved.

Corollary 1: Let . There exists a finite collec-
tion of -point quantizers such that

i) the cardinality of is bounded as

ii) all quantizers in have their codepoints inside

iii) for any -point nearest neighbor quantizer whose
codepoints are contained in , there exists a

such that for all ,

Proof: Let . Then ,
and by Lemma 1 there exists a-covering set of points

if . Define as
the collection of all -point nearest neighbor quantizers whose
codepoints are from the covering set . Then

If are the codepoints of , then there exists a
quantizer with codepoints such that

for all . If , we have by the nearest
neighbor property that

The inequality may be proved
similarly.

Corollary 2: For all distributions such that
, there exists a -point quantizer whose

codepoints are contained in and whose distortion
satisfies

Proof: If , then the statement trivially holds for
the quantizer having one codepoint at the origin. Otherwise,
let . Then and by Lemma 1 there
exists a set of points that -covers

. Letting be the nearest neighbor quantizer with
these codepoints, we get .

Let , and let be a set of quantizers satisfying
properties i), ii), and iii) of Corollary 1. Let denote a
quantizer whose distortion is minimal in , that is,

for all

Then it is clear that , where denotes the
minimum distortion achievable by any quantizer. Let be a
quantizer in such that for all

Such a quantizer exists by Corollary 1. Then clearly, by the
definition of the empirically optimal quantizer

for all

The next lemma is based on ideas of Vapnik and Chervo-
nenkis [22].



BARTLETT et al.: MINIMAX DISTORTION REDUNDANCY IN EMPIRICAL QUANTIZER DESIGN 1809

Lemma 2: For all , we have

Proof: If

then for each

If, in addition, is such that , then by the
monotonicity of the function (for and )

Therefore,

But if , then there exists an such
that and . Thus

Lemma 3: Let . Then for all

Proof: The probability is clearly zero if .
For , we may use Bernstein’s inequality [2]

where . But observe that

with probability one, and, therefore, , and the
statement follows.

Corollary 3: For all

Proof: By Lemma 3 we have

On the other hand, by Bernstein’s inequality

and applying Lemma 2 finishes the proof.

Proof of Theorem 2:Since the distribution of is sup-
ported on , we have that with probability one,

, hence for every

Thus it follows from Corollary 3 that for any

If , then with

we have . In such a case

On the other hand, if , then
take
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Then , and, therefore,

Noting that and ,
we obtain

Take , and also recall that by Corollary 2

whenever . Substituting these values into the above
inequality, we obtain the inequalities shown at the bottom of
this page, if , , and . In
particular, if , then

IV. CONCLUDING REMARKS

The main results of the paper are new upper and lower
bounds for the minimax expected distortion redundancy of
empirical quantizers. Combining these with previously known
bounds we see that for some universal constants

For most practical values of the dimension, the number of
codepoints , and the number of training vectors, the two
bounds are fairly close to each other, essentially describing the
behavior of the minimax distortion. For example, it follows
that the minimax distortion redundancy, as a function of the
number of training samples, is on the order of . Also,

if for a constant rate , we obtain that theper-
dimensionminimax distortion redundancy is approximately

for large and .
However, some interesting questions remain unanswered.

We conjecture that the factor of in the upper bound
of Theorem 2 might be eliminated, and the minimax expected
distortion redundancy is some constant times

for some values of and .
Another challenging problem is to find (or give bounds on)

the weak minimax convergence rate defined at the end of
Section II. In particular, Pollard’s result [16] suggests that the
weak minimax rate can still be for a class of sources
with sufficiently regular and smooth densities. We have no
conjecture at present, however, as to what the weak rate might
be for the class of all sources concentrated on .

APPENDIX

Proof of Step 3:Let be the codebook
of . Consider the Voronoi partition of induced by the
set of points ; and for each define

as the union of the two Voronoi cells belonging toand
. Furthermore, let be the cardinality of . A new

nearest neighbor quantizer with codebook is constructed
as follows. Start with empty. For all

• if , put and into ,
• if or , put into .

Note that may contain more than codepoints, but this
will be fixed later. Define

Then we have the following:

• if , then so that ;
• if , then there are two cases:

1) . Then
since is the optimal
choice with the condition that both and are
mapped into the same codepoint;
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2) either or is mapped by to a codepoint
outside . Say . Then

where the second inequality follows by the triangle
inequality. (Here means if puts mass

on , and otherwise.) On the
other hand, so that

if ;

• if , then both and are outside
. Thus

which implies

(12)

so that if .

Thus we conclude that , and we are done
if has no more than codepoints. If contains
codepoints, pick arbitrary pairs
and replace them with the corresponding codepoint .
We thus obtain a nearest neighbor quantizer. Each such
replacement increases the distortion by no more than

, so that

On the other hand, there must be indices for which
. For each of these (12) holds, so that

Therefore,

and this is no more than if .

Proof of Step 7:Let be jointly distributed
as the mixture

where is the -fold product of . Then for any

Since are exchangeable random variables, the
distribution of given depends only on the
empirical counts . It follows that the empirical

quantizer achieving the minimum in (6) chooses its
codebook as a function of the vector . Thus
it suffices to restrict our attention to empirical quantizers that
choose their codebook only as a function of .
Recall that each quantizer in is such that for eachit either
has one codepoint at or has codepoints at both
and . Since , there must be codepoints
of the first kind, and of the second.

We will represent the distribution as an -vector,
, with

where

We write to denote the probability of the event
under the multinomial distribution with parameters

where

We will represent a quantizer’s choice of the codebook as
a vector , with indicating
one codepoint at and indicating codepoints
at both and .

Represent the quantizer by

for the corresponding values of . Define similarly in terms
of . Then it suffices to show that (with suitable abuse of
notation)

for all -tuples of nonnegative integers that
sum to and for all functions .

For the numbers , let
and . Define by

. Note that . It is easy to see that

hence the difference is some positive constant
times , and so it suffices to show that

To prove this inequality, we shall split the outer sum into
several parts, and show that each part is nonnegative. Each part
corresponds to a set of distributions that satisfy a convenient
symmetry property. First, divide the components ofinto
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pairs , with . Without loss of generality,
suppose

and for all (13)

Then for , let denote the set of all
permuted versions of obtained by swapping the components

and , for all in some subset of .
Clearly, it suffices to show that for all

But we have

We can ignore the nonnegative constant factor, and the other
probabilities are of independent events, so we can write

So it suffices to show that for all , all
summing to , and all

satisfying (13), we have

(14)

Without loss of generality, we can assume that for all
. Indeed, suppose that for some . Then

we can split the sum over in (14) into a sum over the pair
and a sum over the other components of, and the

corresponding factors in the product can be taken outside the
outermost sum, since is identical for both values
of the pair .

Now, and imply that .
So to show that (14) holds for the cases of interest, it suffices
to show that for all even , for all satisfying

, and all , we have

where

First suppose . If , the expression is clearly
zero. Otherwise, it is equal to

which is clearly nonnegative, since . Next, suppose
the expression is nonnegative up to some even number. Let

. Then

and both of these terms are nonnegative, since the expressions
in parentheses are nonnegative by the inductive hypothesis.
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