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The Minimax Distortion Redundancy
In Empirical Quantizer Design

Peter L. Bartlett Member, IEEE Tamas Linder,Member, IEEE and Gabor Lugosi

Abstract—We obtain minimax lower and upper bounds for the studied for the case when the training data consists: of
expected distortion redundancy of empirically designed vector yvectors independently drawn from the source distribution. It
quantizers. We show that the mean-squared distortion of a \yaq shown by Pollard [16], [18] under general conditions that
vector quantizer designed from »n independent and identically . Lo . . .
distributed (i.i.d.) data points using any design algorithm is the methqd of empirical error minimization is consistent in
at least Q(n~'/%) away from the optimal distortion for some the following sense. LeD),, be mean-squared error (MSE)
distribution on a bounded subset of R¢. Together with existing of the empirically optimal quantizer, when measured on the
upper bounds this result shows that the minimax distortion real source, and leD* be the minimum MSE achieved by
redundancy for empirical quantizer design, as a function Ofl/t.']e an optimal quantizer. An empirically designed quantizer is
size of the training data, is asymptotically on the order ofn. * consistent if the quantityD, — D* (called the distortion

We also derive a new upper bound for the performance of the R
empirically optimal quantizer. redundancy) converges to zero-asends to infinity.

Index Terms—Distortion redundancy, empirical quantizer de- Of course mer(_e (_:onS|stency does not give any |n_d|cat_|on of
sign, lower bounds, minimax convergence rate, vector quantiza- how large the tralnlng dgta should be so t.hat the dI.StOI"[IOI’l.Of
tion. the designed quantizer is close to the optimum. This question

can only be answered by analyzing the finite sample behavior
of D,. In this direction, it was shown in [10] and [15] that
| INTRODUCTION there exists a such thatD, — D* < ¢y/log n/n for all
NE basic problem of data compression is the design sburces over a bounded region. This result has since been
Oa vector quantizer without the knowledge of the sourextended to empirical quantizer design for vector quantizers
statistics. In this situation, a collection of sample vectomperating on “noisy” sources and for vector quantizers for
(called the training data) is given and the objective is to finabisy channels [11]. An extension to unbounded sources is
a vector quantizer of a given rate whose average distortigiven in [13].
on the source is as close as possible to the distortion of theA deeper analysis of the method used to obtain the above
optimal (i.e., minimum distortion) quantizer of the same ratepper bound shows that at the price of considerable technical

Most existing design algorithms (see, e.g., [7], [9], [19Klifficulties, the /Tog n factor can be eliminated. Indeed, using
and [23]) attempt to implement, in various ways, the principla result of Alexander [1] the above upper bound can be
of empirical error minimization in the vector quantizatiorsharpened ta) (1//n).
context. According to this principle, a good quantizer can Two basic questions relating to the finite sample behavior of
be found by searching for one that minimizes the distortiauantizer design algorithms have remained unanswered. The
over the training data If the training data represents thefirst is whether theO (1/y/2) upper bound on thelistortion
source well, this empirically optimal quantizer will hopefullyredundancyD,, — D* is actually tight. The second, more
perform near optimally also on the real source. The problegeneral question is whether there exist methods, other than
of quantifying how good empirically designed quantizers agmpirical error minimization, which provide smaller distortion
compared to the truly optimal ones has been extensivelydundancy (and thus use less training data to achieve the same
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central limit theorem. As Chou [3] pointed out, this implieglistortion of @,, is the random variable
that within the class of sources in the scope of this result,
the distortion redundancy decreases at a m@tél/n) in  D(Q,) :/ |z — Qulz, X1, -, X,)||*n(dz)
probability. R

In the main result of this paper (Theorem 1) we show =E[|X — Qu(X, X1, -+, X)IP| X1, -+, Xl
that despite these suggestive facts, the conjectarétl/)
distortion redundancy ratoes nohold in the minimax sense.
Let B > 0 and consider the clad8 of d-dimensional source
distributions . such that if X is distributed according tqu, . ) 5
then (1/d)|| X ||? < B with probability one. We show that for Dk, 1) = Hgn/m |z — Q)" 1(d)
any d-dimensionak-codepointk > 2) quantizer@},, which is o ) _ ) )
designed byany method fromn. independent training sampleswhere the minimum is taken over alldimensional k-point
there exists a distribution it§ for which the per-dimension quantizers. The following quantity is in the focus of our
MSE of Q,, is bounded away from the optimal distortion byAttention:

Let D*(k, u) be the minimum distortion achievable by the
bestk-point quantizer under the source distributipnThat is,

a constant times/*~"*. Thus the gap between this lower Qs 1) = ED(Q,) — D*(k, 12)
bound and the existing upper bound is reduced to a constant
factor, if the parameters andd are kept constant. that is, the expected excess distortion(pf over the optimal

In addition to this general lower bound, a new minimaguantizer foru. In particular, we are interested in th@nimax
upper bound for the empirically optimal quantizer is derived iexpected distortion redundancgtefined by

n

main merit of this bound is that it partially explains the curious
dependence of the lower bound @én the bounddecreases
in & for very small values ofl. Also, for realistic values of
quantizer dimension and rate, it is tighter than &él1/./n)
bound obtained via Alexander’s inequality, and yet its pro
is rather elementary and accessible.

Theorem 2. The bound is a constant timyﬁm. The J*(n, b, d) = inf sup J(Qn, 1) )
) ) Qﬂ' u "oy

where the infimum is taken over adtdimensional,k-point
empirical quantizers trained on samples, and the supremum
67? taken over all distributions over the bafi(0, v/d) in

¢, The minimax expected distortion redundancy expresses
the minimal worst case excess distortion that an empirical
guantizer can have.
IIl. MAIN RESULTS A guantizer@ is a nearest neighbor quantizef for all z,
lz — Q(z)|| < ||z — | for all codepointsy; of Q. It is well

A d-dimensionalk-point quantizer is a mappin
: d & RRES known that for each quantiz€} and distributiory: there exists

Q) = i, if z € B; a nearest neighbor quantizer which has the same codebook
’ ’ as (Q but less than or equal distortion. Therefore, when
where By, ---, B, form a measurable partition d&<, and investigating the minimax distortion redundancy, it suffices
y; € R%, 1< i < k. They,’s are called codepoints, and the® consider nearest neighbor quantizers. _
collection of codepoint§y, - - -, yx} is the codebook. Ifsis ~ The empirically optimal quantizer, denotegf;, is an em-
a probability measure oR?, the distortion ofQ) with respect pirically designed quantizer which minimizes the empirical
to 1 is error
1 & )
DQ) = [ o= Q)P utd) D@ =1 2 lles = Qe
R4 =1

where|jz — Q(z)|| is the Euclidean distance betweerand ©VE' all k-point nearest neighbor quantizes
O(x). The first result upper-bounding the minimax distortion re-

An empirically designeds-point quantizer is a measurabledundancy was given in [10], where it was proved that for the
function Q.: (R4)™1 — R< such that for each fixed 8MPirically optimal quantizer

z1, -y &n € RY Qul(e, 21, -+ -, x,) IS @ak-point quantizer. los

Thus an “empirically designed quantizer” consists of a family J(Qr, p) < ed®?y rosn 2)

of quantizers and an “algorithm” which chooses one of them "

for each value of the training data, - - -, .. for all ., wherec is a universal constant. The main message of
In our investigation X, Xy, ---, X,, are i.i.d. random vari- the above inequality is that there exists a sequence of empirical

ables inR¢ distributed according to some probability measurguantizers such that for all distributions supported on a given

p with ;(S(0, v/d)) = 1, where S(z, r) ¢ R¢ denotes d-dimensional sphere the expected distortion redundancy de-

the closed ball of radiug > 0 centered atr € R% In creases a® (y/log n/n). Another application of this result,

other words, we assume that the normalized squared nowhich uses the dependence of this boundkiomwas pointed

(1/d)||X||* of X is bounded by one with probability one.out in [13] (see the discussion after Theorem 2).

(By straightforward scaling one can generalize our results toWith analysis based on sophisticated uniform large-

cases withu(S(0, vdB)) = 1 for some fixedB < oc.) The deviation inequalities of Alexander [1] or Talagrand [21]
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it is possible to get rid of the/log »n factor. More precisely, as

one can prove that 9d(R—O(d—1)) Sd(R+O(d—1 log d))
L <d'(n, k,d) < .
n n

(@, 1) < dd¥? kl%(kd) (3)  The difference is more essential for smalinot only because
of the difference in the exponents bfin the two bounds, but
for all 1, where ¢ is another universal constant (see thalso because the constahin (3) is large (it is of the order of
discussion in [10] and [6, Problem 12.10]). 10%), a price paid for eliminating th¢/log n factor in (2). For
The theorem below—the main result of this paper—showhis reason, we now present a new minimax upper bound on
that for any empirical quantiz&p,, (i.e., for any design method the distortion redundancy of empirically optimal quantizers.

nhose |_nput ISX%’ - Xn and outpu_t 'S a{-dlr_nensmnalk- Theorem 2: For the class of sources considered in Theorem
codepoint quantize®),,) the excess distortion is as large as 2 i o> A g2/ oz 1 > 15, kd > 8. n > 8d, and
constant timesly/£-*" for some distribution. Le denote ,,/log n > dk+2/, then = M=o =00

the distribution function of a standard normal random variable.

. _ _ . 32 | K1=2/4 log n
Theorem 1:For any dimensiond, number of codepoints J(Qn, ) < 32d —
k > 3, and sample size > 16k/(3®(—2)?), and for any

empirically designedk-point quantizer(,,, there exists a

where Q7 is the empirically optimal quantizer.

distribution z on S(0, v/d) such that Just like the lower bound of Theorem 1, the new upper
bound is also a decreasing function of the number of code-
kt—4/d points k if d = 1. Comparing the two bounds leads to the
J(Qny 1) 2 cod n (4) conjecture that for very small values dffi.e., ford = 1 and

perhaps ford = 2, 3, 4) the minimax distortion redundancy

where ¢y is a universal constant which may be taken 10 Bg 5 gecreasing function df, while for large values ofl it is

— 49—12 X i ) ! :
co = B(=2)*27/V6. . . ) an increasing function of. We cannot prove this conclusion

The proof of the theorem is given in the next section.  pocqise of the gap between the upper and lower bounds,

Remarks: but for d = 1 it is possible to show values of; < ko

i) In the proof of the theorem, for the sake of simplicity, wend n such that the minimax distortion redundancy for
consider a family of distributions concentrated on a finite sedepoints is larger than that fbs codepoints. Intuitively, one
of points inS(0, v/d). It is then demonstrated that for eagh might expect the minimax distortion redundancy to increase
there exists a in this family for which (4) holds. Since theseWith & since the number of unknown parameters (i)
distributions can be arbitrarily well approximated (for ouiS increasing withk. On the other hand, the distortion of an
purposes) by distributions with smooth (say infinitely mangptimal quantizer becomes small/agncreases, and “smaller”
times differentiable) densities, essentially the same arguméintities can be estimated with smaller variance. (The effect
shows that for eacty,, there exists @ with a smooth density iS the same as encountered in estimating the paramé@sed
such that (4) holds. on n Bernoulli (p) random variables, where the MSE of the
ii) The constanty of the theorem is rather small (note thapest unbiased estimate;igl — p)/n.) Since the distortion of
@(—2) ~ 0.0228), and it can probably be improved upon a@ vector quantizer decreases wihtypically as O (k=2/4),
the expense of a more Comp|icated ana|ysis_ this effect becomes negllglble for Iarg&e This mlght explain

) . ~why our upper bound is decreasing infor d = 1 but
The above theorem, together with (3), essentially descr'bigsincreasing ink for d > 2. The proof of Theorem 2

the convergence rate of the minimax expected distortiq,yides further insight. The exact dependence of the minimax
redundancy in terms of the sample size Using definition gistortion redundancy ok andd is still a challenging open
(1) we obtain that problem.

The relatively simple proof of this result is given in Section

limsup VnJ*(n, k, d) S I1-B. Note that this upper bound is always better than (3) if

n—oo

and K24 > log, n

liminf v/nJ*(n, k, d) > co

n—oo or

- 222R
for some constants , ¢; > 0 depending o and%. However, n<

there is still a gap if the bounds are viewed in terms of thehere R is the rate of the quantizer defined by =
number of codepoints. For larged the difference is small. In (1/d) log, k. For practical values of the training set size,
fact, if, according to the usual information-theoretic asymptottbis condition is satisfied for medium bit rates. For example,
view, the number of codepoints is set as= 27 for some for n = 109, the new upper bound is smaller than (3) if
constant raté? > 0, then the difference between the upper anf > 2.16.

lower bounds is asymptotically negligible in an exponential In recent work, Merhav and Ziv [13] studied a problem
sense. Indeed, (3) and Theorem 1 imply that for laigéhe closely related to quantizer design. In their setup, the “de-
per-dimension minimax distortion redundancy is sandwicheign algorithm” is givenN bits of information (called side
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information bits) about the source. The question is how mawy sources if the rate and distortion converge (not necessarily
side information bits are necessary and sufficient to obtaimiformly) to their OPTA functions for each source in the
a d-dimensional rateR quantizer = (1/d) log k, where class. Refining this definition, Shields [20] defined the notion
k is the number of codepoints) whose distortion is closgf weak minimax convergence rates in universal coding. Using
to the optimum. Their main result gives the answér—= Shield’'s formulation, we can define weak minimax conver-
2¢% in an exponential sense, if is large. The sufficiency gence rates in empirical quantizer design in the following way.
part of this statement was proved using (2). Note that thisA nondecreasing positive function — f(n) is called
problem is more general than the problem we consider. Taeweak rate for empirical quantizer design for a class of
N information bits are allowed to represent an arbitray-dimensional sourceB if the following simultaneously hold.
description of the source, of which discretized independent i) There exists a sequence fefpoint empirical quantizers
training samples are a special case. While the necessity part {Q,.} such that for each € P there is a finite number
of this result does not translate directly to a lower bound M () for which
on the convergence rate we study, it does have implications
on how the minimax bounds can depend on the fatand J(Qn, 1) < M(p)f(n), foraln>1. (5)
dimensiond. For example, it is not hard to see that the fact that
N = 24B-9) sjde information bits are not enough implies that
the minimax distortion redundancy convergence rate cannot be
upper-bounded in the form(24%=<) /n)? for any constants
c, 6,6 > 0. n — oo

Our setting is slightly different from that studied in [13]. .
While Merhav and Ziv concentrated on stationary and ergod(ijcsl:lrci);i ttig?wt thigﬂfﬁg%gg )ol: (t?])ecmrﬁfntfxn?oar;:hsoi%u drci(ra]
sources, we only restrict the distribution to have support inﬁ] ’(“j‘ imolv th t th K rate for the cl
bounded subset g8<. It is not hard to see that in general there eorem 1does no l;n_py a the weak ra ‘ij;r € class
does not exist a real stationary process whdskmensional pf sources oves (0, V) cannot be less _thaa‘n Itis an

. o interesting and challenging problem to find the weak rate for

marginals have exactly our counterexample distribution. V\%.S source class
presently do not see a way of constructing stationary and ’
ergodic sources (as was done in [13] for determining the num- lIl. PROOFS
ber of necessary side information bits) whaséimensional
marginals approximate the counterexample distributions wéy| Proof of Theorem 1
enough so that the rather fine analysis of the lower boundThe basic idea of the proof may be illustrated by the
carries over without destroying the /2 rate. following simple example: letl = 1, k = 3, and assume that

Finally, we would like to point out that our formulation is concentrated on four points; ¢, 1 — ¢, and1, such that
of minimax redundancy has close connections with universgither;:(0) = () = 1/4+6 andpu(1) = pu(1—¢€) = 1/4 -6,
lossy coding. In particular, following Davisson’s [5] defi-or ;1(0) = ju(¢) = 1/4 — 6 andpu(1) = p(1 — ¢) = 1/4 + 6.
nitions of various types of universality for lossless codingihen if ¢ is sufficiently small, the codepoints of the optimal
Neuhoffet al. [14] defined three main types of universality inquantizer are), ¢, 1 — ¢/2 in the first case, and/2, 1 — ¢, 1
fixed-rate universal lossy coding. Of these three definitions, tirethe second case. Therefore, an empirical quantizer should
one called strong minimax universality parallels our minimaearn” from the data which of the two distributions generates
redundancy formulation. A sequence of fixed-rate block codée data. This leads to a hypothesis testing problem, whose
is called strongly minimax universawith respect to a given error may be estimated by appropriate inequalities for the
class of sources if the distortion and rate of the codes convetgaomial distribution. Proper choice of the parameters
with increasing blocklength to their respective OPTA (optimalields the desired2(n~1/2) lower bound for the minimax
performance theoretically attainable) functiamsformly over expected distortion redundancy. The genedal; 1, k& > 3,
the source class. Thus by choosing sufficiently large blockase is more complicated, but the basic idea is the same.
length for a strongly minimax universal code, one can achieveWe present the proof in several steps. Some of the technical
a preassigned level of performance regardless of which soudggails are given in the Appendix.
in the class is encoded. In our case, the minimax distortionSte 1- First observe that we can restrict our attention to
redundancy/*(n, k, d) converges to zero with increasing pLF . . e
if and only if there exists a sequence of empirically desigm?ﬁearest neighbor quantizers, that is(Je's with the property

. . at for all x4, ---, z,,, the corresponding quantizer is a
quantizergy,, such that/(Q,,, 1) converges to zero uniformly LT e )
over all 2 in the given source class. The implication is similape"’“es't nelghbqr qganﬂzgr. This follows from the fact that for
y Q. not satisfying this property, we can find a nearest

. . . an
to the universal coding case; by choosing the number of’ . ; )
training samples large enough, the distortion redundancynj) ighbor quantizer?;, such that forall p, J(@,, u) <
the empirically designed quantizer will be arbitrarily small fof

ii) For any sequence df-point empirical quantizer§®,, }
and functiong(n) = o(f(n)), there exists a source
u € P such thatJ(Q,, u)/g(n) is unbounded as

Qn, ).

all sources in the class. Step 2: Clearly,

Neuhoff et al. [14] also defined a weaker notion of univer-
sality. In this definition, a sequence of codes with increasing sup J(Qn, 1) > sup J(Qn, 1)
blocklength isveakly minimax universavith respect to a class # neD
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whereD is any restricted class of distributions &tf0, v/d).
We defineD as follows: each member @ is concentrated on
the set o2m = 4k/3 fixed points{z;, z;+w:i =1, ---, m},
wherew = (A, 0, 0, ---, 0) is a fixedd-vector, andA is a
small positive number to be determined later. The positions
z1, -+, zm € S(0, Vd) satisfy the property that the distanc
between any two of them is greater thad, where the value
of A is determined in Step 5 below. For the sake of simplicit
we assume thadt is divisible by3. (This assumption is clearly
insignificant.) Leté < 1/2 be a positive number. For eac
1 < ¢ < m, set

) 1-46

either o

p{z}) = iz +w)) = o
or e

such that exactly half of the pairg;, z; + w) have mass
(1—68)/m, and the other half of the pairs have mé&ss-6)/m,
so that the total mass adds up to one. Detontain all such
distributions. The cardinality aP is M = (n:'/’Q). Denote the
members ofD by p1, pe, -+, pas-

Step 3: Let @ denote the collection ok-point quantizers
() € Q such that form/2 values ofi € {1,---,m}, Q
has codepoints at both and z; + w, and for the remaining
m/2 values ofi, () has a single codepoint at + w/2. If
A > /2/(1 - 6)+ 1, then for anyk-point quantizer) there
exists aQ in Q such that, for al in D, D(Q) < D(Q). The

proof of this is given in the Appendix.

Step 4: Consider a distributior;; € P and the corre-
sponding optimal quantizeQ’. Clearly, from Step 3, if
A > /2/(1-6) + 1, then for them/2 values ofi in
{1, -+, m} that havey;({z;, % + w}) = (1 + §)/m, QW
has codepoints at both andz; + w. For the remainingn/2
values ofi there is a single codepoint af + w/2.

For any distribution ir> and any quantizer i@, it is easy to
see that the distortion of the quantizer is betwéen §)A?/8
and (1 + 6§)A?/8.

Step 5: Let Q,, denote the family of empirically designed
guantizers such that for every fixed, ---, z,, we have
Q(, z1, -, z,) € Q. Sinceé < 1/2, the property of the

optimal quantizer described in Step 4 is always satisfied if we

take A = 3. In particular, if A = 3, we have

i f e J n = i d J ns
b e J(@ns p) = g max J(Cn, 1)
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Step 7:

in EJ(Q,, = EJ(Qr, 6
omn (Qn, pz) (@, 1z) (6)

where Q7 is the “empirically optimal” (or “maximum-
IﬂIeIihood”) guantizer from @, that is, if IV, denotes the

Shumber of X;’s falling in {z, » + w}, then Q has a

codepoint at bothz; and z; + w if the correspondingV;

¥s one of them,/2 largest values. For the othés (i.e., those

with the m /2 smallest;’s) Q¥ has a codepoint af; + w/2.

h The proof is given in the Appendix.

Step 8: By symmetry, we have

The rest of the proof involves bounding(@;, 1) from
below, where®? is the empirically optimal quantizer.

Step 9: Recall that the vector of random integers
(N1, -+, Np,) is multinomially distributed with parameters
(7’L, a1, =+ (Irn)v where

Q=q==qnp2=1-0/m
and

an/Q—l—l = =4m = (1 +6)/m

Let Ny, -+, No(m) b€ a reordering of theév;’s such that
Ny1y £ Ny2y < -+ < Ny (In case of equal values, break
ties according to indices.) Let; (j = 1, ---, m/2) be the
probability of the event that amony, (1), - - -, Ny(m/2), there
are exactly; of the N;’s with ¢ > m/2 (i.e., the “maximum-
likelihood” estimate makeg mistakes). Then it is easy to see
that

A2 m/2 b
=5 JDj

2m <
J=1

J(Q:u Nl)

since one “mistake” increases the distortion &5 /(2m).

Step 10: From now on, we investigate the quantity

m/2

Z Jp;
j=1

that is, the expected number of mistakes. First we use the
trivial bound

m/2 m/2
> dpiZdo > v
Jj=1 J=jo

with 5o to be chosen IateE;';/]2

., pj is the probability that the
maximum-likelihood decision makes at leggtmistakes. The

and it suffices to lower-bound the quantity on the right-hari®y observation is that this probability may be bounded below

side.

Step 6: Let Z be a random variable which is uniformly
distributed on the set of integefd, 2, ---, M}. Then, for
any @,,, we obviously have

M

— 3 2 Q)

=1

max J(Qn, p) 2 BEJ(Qn, 1t7)
neD

by the probability that at leagtj, of the events,, - - -
hold, where

) Arn/?

Ai = {Nz > Nrn/?—l—i}'

In other words,

m/2 m/2
> pi = P> L > 2jo
Jj=jo j=1
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Proof. Define the following sets of indices:
S1 ={i: o(i) < m/2, t>m/2+ 1},
Sy ={i: 0(d) < m/2, t < m/2}.
Then the maximume-likelihood decision makgs | mistakes.
If i € S, and N; > Ny, 244, thenm/2 + ¢ € S;. Thus the

number of indiceg for which N; > N,,, />1; is bounded from
above by|S;|+m/2—|S2|=2|54], since|Sz|=m/2—|51|.0

Step 11: Thus we need a lower bound on the tail of the

distribution of the random variab@j}”:/f 14, . First we obtain

a suitable lower bound for its expected value.
m/2

Z IAZ-]

Now, boundingP{A;} conservatively, we have
P{A;} =P{N; > N, 241}
>P{N; >n/m andN,, /211 < n/m}
=P{N, > n/m} — P{N, > n/m and Ny, /241
>n/m}
>P{N; >n/m} — P{N; > n/m}
-P{N,, /241 > n/m}
=P{Ny > n/m}P{Np, /241 < n/m}.

E % P{A;}. (7)

The last inequality follows by Mallows’ inequality (see Mal-

lows [12]) which states that ifVy, - - -
ally distributed, then

, Np,) are multinomi-

P{Ny > t1, Ny > tg, -+, Ny >t} < [[ P{N: > 1}
=1
Finally, we approximate the last two binomial probabilities b
normals. To this end, we use the Berry—&s inequality (see,
e.g., Chow and Teicher [4]), which states thatif, ---, Z,,
are i.i.d. random variables witkZ, = 0, E[Z?] = o?%, and
E[|Z1]*] = . then

‘P{zn: Z; < a:rf\/ﬁ} —¢(x)| < a?:z/ﬁ
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Step 12: To obtain the desired lower bound for
m/2

(o

> 14, > 2jo

j=1
we use the following elementary inequality: if the random
variable Z satisfiesP{Z € [0, B]} = 1, then

P{ EZ}>EZ

4> — —_—.
To see t IiS, 1otice that fas in [0, B]

2
EZ < a+ BP{Z > o}

and substitutex = EZ/2.

Step 13: To apply this inequality,
m®(—2)%/32. Then (8) implies that

choosejg

m/2

> L
j=1

2j0 < (1/2)E

e

>P
|
(-2

8

where the second inequality follows from (9) and the last
glnequality follows from (8).

and, therefore,

d

m/2

Z Ly, > 2jo

=1

2
Iy,
1

m/2
j=1
2

j=

3

2
2

Step 14: Collecting everything, we have that

_ A20(-2)* \/@

512
whereA is any positive number with the property thatpairs
of points {z;, z; +w} can be placed ir5(0, v/d) such that
the distance between any two of thgs is at least3A. In

inf sup J(Qn, 1)

n 1

where @ is the distribution function of a standard normaPther words, to make large, we need find a (desirably large)

random variable. Choose= /m/n. Observe thatV; is the
sum ofn i.i.d. Bernoulli{(1 — 6)/m) random variables. Then
the Berry—EsBen inequality implies that if > 8m/®(—2)?,
then

P{N1 >n/m} > ®(-2)/2
and similarly

P{N,. /21 < n/m} > ®(—2)/2.

Therefore, by (7) we get

|

m/2
m
=t

E

A such thatm pointszy, ---, z,, can be packed into the ball
5(0, v/d — A). (We decrease the radius of the ball byto
make sure that théz; + w)’s also fall in the ballS(0, v/d).)
Thus we need a good lower bound for the cardinality of the
maximal 3A-packing ofS(0, v/d — A). It is well known (see
Kolmogorov and Tikhomirov [8]) that the cardinality of the
maximal packing is lower-bounded by the cardinality of the
minimal covering, that is, by the minimal number of balls of
radius3A whose union cover§(0, v/d—A). But this number

is clearly bounded from below by the ratio of the volume of
5(0, vd—A), and that ofS(0, 3A). Thereforeyn points can
certainly be packed it§(0, v/d — A) as long as

)

m <

3A
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If A< \/8/4 (which is satisfied by our choice @k below), iii) for any k-point nearest neighbor quantiz€} whose
the above inequality holds if codepoints are contained ifi(0, v/d), there exists a
J Q' € Q. such that for allz € S(0, Vd),
m < @ / 2 2
=\an o |z = Q@) = [l = Q)" < e
Thus the choice Proof: Let p = e/(4ﬂ). Then 0 < p < 2/3,
and by Lemma 1 there exists acovering set of points
__Vd {y1, -+, un} C S(0,Vd) if N < (4v/d/p). Define Q, as
© 4ml/d the collection of allk-point nearest neighbor quantizers whose
satisfies the required property. Resubstitution of this val§@depoints are from the covering sk, -, yx}. Then
roves the theorem. O kd 4
P 4/d 164\ "
Q< | —] =[—]) -
B. Proof of Theorem 2 P ¢

The first step in the analysis of the performance of the {1

---, x3 + are the codepoints af, then there exists a
empirical quantize;, is the following lemma. ok} P o0

quantizer@ € Q. with codepoints{zi, ---, z},} such that
Lemma 1: Let S(z, r) denote the closedi-dimensional |lz: — ;| < p for all i. If Q(z) = x;, we have by the nearest
sphere of radius- centered at. Let p > 0 and let N(p) neighbor property that
denote the cardinality of the minimumcovering ofS(0, ), P 5 Jn2 5
that is, N(p) is the smallest integeiV such that there exist lz = @ (@)II” — llo = QEII" <l — 251 — [l — ]l
points {y1, -- -, yn } C S(0, ) with the property < 4Vd||; — x|
. <e.
max min -
zCS(0,r) 1<i<N

z— | < p. (10)
The inequalityl|z—Q(z)|]? — ||« —Q'(z)]|?> < ¢ may be proved

Then, for allp < 2r we have similarly. O
< 4r\? Corollary 2: For all distributions such that’{]|X| <
Np) = o) Vd} = 1, there exists &-point quantizer(k > 1) whose

_ _ codepoints are contained ifi(0, v/d) and whose distortion
Proof: By a classical observation of Kolmogorov andatisfies

Tikhomirov [8] the covering (10) exists if it is impossible
to construct another sdt:, ---, zy41}+ C S(0, ») which is D(Q) < 16dk=Y.
p-separated, that is,
Proof: If & < 2¢, then the statement trivially holds for

1?;2{1 2z = 2]l =z p. (11) the quantizer having one codepoint at the origin. Otherwise,
1<i, JEN+1 let p = 4v/dk~'/<. Thenp < 2v/d and by Lemma 1 there
exists a set of point$yy, ---, yx} C S(0, v/d) that p-covers

L.et us now consider an arbitrar,yseparated set of cardi—S(()’ \/E). Letting Q be the nearest neighbor quantizer with
nality N +1. Then the open balls of radiyg'2 centered at the these codepoints, we g&(Q) < p? = 16 dk—2/<. 0

z; are disjoint and their union is included (0, » + p/2).

Also, if p/2 < r, thenS(0, 7 + p/2) € S(0, 2r). Thus such  Let0 < e < 8d, and letQ, be a set of quantizers satisfying
a separating set cannot exist as long\as- 1 is greater than Properties i), ii), and iii) of Corollary 1. Lef) € Q. denote a
the ratio of the volumes af(0, 2r) and S(0, p/2), that is, ~ quantizer whose distortion is minimal i@, that is,

d
N> <477> 1 D@Q) < D@), forall Qe Q.

~

Then it is clear thatD(Q) < D* + ¢, where D* denotes the
Since there exists an integaf < (4r/p)¢ which satisfies the minimum distortion achievable by any quantizer. kgt be a

above inequality, the lemma is proved. O quantizer inQ, such that for allz € S(0, v/d)
Corollary 1: Let 0 < ¢ < 8d. There exists a finite collec- ||z — Qn($)||2 <|lz - QZ(UU)HQ +e.
tion of k-point quantizersQ. such that
i) the cardinality of Q. is bounded as Such a quantizer exists by Corollary 1. Then clearly, by the
definition of the empirically optimal quantizep;;
164\ "
ol () Du(Qu) £ Du@+c.  foral Qe Q.

i) all quantizers in Q. have their codepoints inside The next lemma is based on ideas of Vapnik and Chervo-
5(0, Vd); nenkis [22].
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Lemma 2: For all § > ¢, we have

P{D(Q,) — D(Q) > 265}
< P{D.(Q)—D(Q) > 6 —¢}

’ P{c‘ﬁaéi VD@
Proof: If

5
> = .
\/D(Q)—i—%}

D(@Q) - D(Q)
VD(Q)

max
QEQ.

§
<
\/D(Q) + 26

then for each@) € Q.

D(Q)

D, (Q) > D(Q) - m

If, in addition, ) is such thatD(Q) > D((Q)+ 24, then by the
monotonicity of the functiom:—c\/z (for ¢ > 0 andz > ¢2/4)

A D@ +26
D, (Q)>D(Q)+26—6 D&+ 3 D(Q) +6.
Therefore,
P{ min ~ D,(Q) < D(Q) +6}
Q: D(Q)>D(Q)+25
D(Q) - D,(Q) 6
< P{ ma > i
{ggg VP /(@) +2s }

But if D(Q.,.)—D(Q) > 26, then there exists aff € Q. such

that D(Q) > D(Q) + 26 and D,,(Q) < D,(Q) + ¢. Thus

P{D(Q,) - D(Q) > 26}

<P min
Q: D(Q)>D(Q)+2¢5

<P min
Q: D(Q)>D(Q)+26

~ ~

+P{D,(Q) > D(Q)+6— ¢}

< P{ max D(@Q) — Dn(Q) > 6
- QEQ, \/D(Q) /D(Q)+26
+ P{D(Q) - D(Q) > 6 — e}, O

Lemma 3: Let @ € Q.. Then for ally > 0

P _Dn(Q) > ’7} S e—3n"/2/(32d).
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Proof: The probability is clearly zero ify > /D(Q).
Forvy < /D(@), we may use Bernstein’s inequality [2]

P{D(Q) - D.(Q) > 1/D(@)}
< ¢ IY*D(Q)/20° +(2/3)4d v/ D(Q)]
wheres? = var (|| X — Q(X)]|?). But observe that
X = QO)|I* < 4d

with probability one, and, therefore;?> < 4dD(Q), and the
statement follows. O

Corollary 3: For all § > ¢

P{D(Q,)) — D(Q) > 26}
< (1Q| + 1)6—3n(6—e)2/(32d(D(Q)+2(@,E)))'

Proof: By Lemma 3 we have
P{ ma S 5
max
o D(Q)+26
<10 e Pl PQ D@ ¢
- D(Q) 426
< |QE|C—3n,62/(32d(D(Q)+25))

VD(Q)
< | Qu[e 3=/ (B2AD@)H2(6—N).

D(Q) = Dn(@Q)
V(@)

On the other hand, by Bernstein’s inequality
P{D,(Q) — D(Q) > § — ¢} < ™=/ (84D(Q)+8d(5-0)/3)
and applying Lemma 2 finishes the proof. O

Proof of Theorem 2:Since the distribution ofX is sup-
ported on S(0, v/d), we have that with probability one,

D(Q,) — D(Q)) < 4d, hence for every, > 0

ED(Q,) — D(Q) < u+4dP{D(Q,) — D(Q) > u}.
Thus it follows from Corollary 3 that for any > ¢
ED(Q,)-D(Q) < u+8d| Qe|e‘3"(“_€)2/(32‘1(’3(@)*2(“—6))).

If D(Q) > (32d log(8d|Q.|/n)/n), then with

Ve \/ 324D(Q) log(8A1 Q1Y) ,
n

~

we haveu — ¢ < D(Q). In such a case
ED(Q,) — D(Q) <u+ 8d|Q, | (#=)"/(324D(Q)

_ \/32dD(Q) 10g(8d|Q€|\/ﬁ)+ 1
n vn

On the other hand, iD(Q) < 32d log(8d|Q.|v/n)/n, then
take

+ €.

32d log(8d| Q.
32 log(8d|Quln)
n
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~

Then D(Q) < w« — ¢, and, therefore, if & = 2¢% for a constant rateR, we obtain that theper-
ED(Q,) D(Q) < 8]0 (ume)/(32d) dimensionminimax distortion redundancy is approximately
) — _u + . e—n U—¢€

. 2dR
_ 32d log(8d|Qc|n) + 1 L

n n

Noting that ED(Q%) < ED(Q,) + ¢ and D(Q) — D* < ¢, forlarged andn. . . _
we obtain However, some interesting questions remain unanswered.

We conjecture that the factor qflog » in the upper bound
32dD(Q) log(8d| Q. |v/n) of Theorem 2 might be eliminated, and the minimax expected
distortion redundancy is some constant times

ED(Q;)— D" < 3e+max \/
n

Ll—b/d
N da
_’_i 32d log(8d| Qc|n)+1 ' \/ -

NCX n

for some values of: € [1, 3/2] andb € [2, 4].
Another challenging problem is to find (or give bounds on)
the weak minimax convergence rate defined at the end of
A X _2/a , 16d —2/d Section Il. In particular, Pollard’s result [16] suggests that the
D(@) < D" +c <164k~ + N < 324k~ weak minimax rate can still b& (1/») for a class of sources
with sufficiently regular and smooth densities. We have no
whenevern > k*/¢. Substituting these values into the abovgpnjecture at present, however, as to what the weak rate might
inequality, we Obtain the inequalities ShOWI’] at the bOttom %% for the class of all sources ConCentratedﬁ]éﬁ7 \/8)
this page, if\/dk1=2/¢ logn > 15, kd > 8, andn > 8d. In
particular, if n/log n > dk't%/¢, then

Take e = 16dn—1/2, and also recall that by Corollary 2

APPENDIX
[k1=2/d Jog n Proof of Step 3:Let C = {41, ---, y} be the codebook
* < 3/2 ) > . ] YL, - y Yk -
J(@ny p) = 32d n - of Q. Consider the Voronoi partition oR¢ induced by the
set of points{ z;, » +w; 1 <4 < m} and for each define
IV. CONCLUDING REMARKS V; as the union of the two Voronoi cells belonging #pand

The main results of the paper are new upper and low&rw- Furthermore, let; be the cardinality o N V. A new
bounds for the minimax expected distortion redundancy Bf&rest neighbor quantizer with codebookC is constructed

empirical quantizers. Combining these with previously know@s follows. Start withC" empty. For all:

bounds we see that for some universal constapts; > 0 « if m; > 2, putz andz; +w into C, .
o if m; =10rm; =0, putz; +w/2into C.
cod /k1_4/d <J*(n, k, d) Note thatC' may contain more thak codepoints, but this
no will be fixed later. Define

<o [ DAQ) = ||z — Q) |Pulia))

+ 7+ w— &z + *u({z + .
~Inin< o e g 10g(kd)>. 2 + w — Q(z: + w)||>u({z +w})

Then we have the following:

For most practical values of the dimensidnthe number of ~ * if mi > 2, thenD;(Q) = 0 so thatD;(Q) = Di(Q);
codepointsk, and the number of training vectors the two  * if m; = 1, then there are two cases: )
bounds are fairly close to each other, essentially describing the 1) Q(z;) = Q(z +w) € V;. Then D;(Q) = D;(Q)

behavior of the minimax distortion. For example, it follows since(z;) = Q(z; +w) = z; +w/2 is the optimal
that the minimax distortion redundancy, as a function of the choice with the condition that both andz; +w are
number of training samples, is on the order of.~1/2, Also, mapped into the same codepoint;

16kd2D(Q) log n 4 16dD(Q) log n + 32dD(Q) log(8d) L1
n

48d
DY — a -
ED(Qn) = D" < 70 + max \/ +

16kd? log n + 32d log n + 32d log(8d) + 1
n

< max <32d3/2 /kli?/d log n 32kd” log ”)
- n ’ n
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2) eitherz; or z; + w is mapped by to a codepoint quantizer @},, achieving the minimum in (6) chooses its

outsideV;. SayQ(z;) ¢ V;. Then codebook as a function of the vectoéNy, ---, N, ). Thus
146 it suffices to restrict our attention to empirical quantizers that
D;(Q) > o 1Q(z) — z||? choose their codebook only as a function(df;, ---, N,,).
m 9 Recall that each quantizer @ is such that for eachit either
> 1+ <(A — 1)A> has one codepoint at; + w/2 or has codepoints at both
T 2m 2 and z; + w. Sincek = 3m/2, there must ben/2 codepoints

where the second inequality follows by the triangl@f the first kind, andm of the second.
inequality. (Here+ means— if ; puts mass(1 + We will represent the distribution:z as an m-vector,

8)/m on {z, z +w}, and — otherwise.) On the ¥ = (7, =5 ¥m) € ['ny C {1, 1}, with

~

Do) s DIy # Az aat e el 54 w) = (L )/
« if m; = 0, then bothQ(z;) and Q(z; + w) are outside Where

Vi. Thus { zm:
F,,=<~ve{-1,1}™ v =05.
2 )
Di(Q)zli(S((A_zl)A) P
m We write P, ,(E) to denote the probability of the event
which implies E under the multinomial distribution with parameters
(7’L, a1, =+ (Irn) where
o 16 (A-1DAN 1£6A2
D@z i@+ L (BPR ) - R,
12 m
42 S +0)
so thatD;(Q) > D;(Q) if A > 2. i=1
Thus we conclude thab(Q) > D(Q) and we are done e will represent a quantizer’s choice of the codebook as
if ¢’ has no more thark codepoints. IfC' containsk > & & Vectora = (au, -+, @) € L', with o; = —1 indicating

¢ one codepoint at; + w/2 and«; = 1 indicating codepoints
at both z; and z; + w.
Represent the quantiz€y; (-, Xy, ---, X,,) by

codepoints, pickl% — k arbitrary pairs{z, z + w} €
and replace them with the corresponding codepgint w/2.
We thus obtain a nearest neighbor quantigerEach such
replacement increases the distortion by no more thian a*(Ny, -+, N,,) €T,

§)A%/(4m), so that

for the corresponding values &f;. Define« similarly in terms

2
D(Q) < D(O)+ (k — k) M of @),. Then it suffices to show that (with suitable abuse of
4m notation)
On the other hand, there must be- k indices: for which Z (D(aln, -, nm))
m; = 0. For each of these (12) holds, so that 5 oo
~ o 1—8 A2 _ * ... i =) >
D(Q) S D(Q) _ (/{} _ k‘) 6 - ((A— 1)2 _ 1). D(a (nlv ) nm)))P"/,n(VLv Nz nz) - 0
m 4 . .
for all m-tuples of nonnegative integefs, -- -, n,,) that

Therefore, sum ton and for all functionsa.

2 For the numbersiy, -+, ny, let « = alng, -+, ny)

~ - A
D(Q) < D(Q)'i‘(k—k)ﬁ((1+5)—(1—5)((A—1)2—1)) and a* = a*(ny, ---, n,). Define g e {-1,0,1}™ by
B = (af — o;)/2. Note thaty_, 3; = 0. It is easy to see that
and this is no more tha(Q) if A> /2/(1-6)+1. O

Proof of Step 7:Let (Y, Y7, -- -, Y;,) be jointly distributed Dia)=|m—26 Z via,; | A?/(8m)
as the mixture

j=1
M
1 Z pntt hence the differenc®(«) — D(«*) is some positive constant
M="" times 3", 3;v;, and so it suffices to show that

m

> Py n(Vi, Ni=n;) > By, 2 0.

whereu?”L1 is the(n+1)-fold product ofu;. Then for any,,

1— 6)A2 YEL s, j=1
EJ(Qur nz) = E(IY - Qu(Y: Y, -+ X)) L2 D8 to _ .
To prove this inequality, we shall split the outer sum into
SinceY, Y1, ---, Y,, are exchangeable random variables, theeveral parts, and show that each part is nonnegative. Each part
distribution of Y~ given (Y1, ---, Y,,) depends only on the corresponds to a set of distributions that satisfy a convenient

empirical countg Ny, ---, Ni). It follows that the empirical symmetry property. First, divide the components /finto
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m/2 pairs (¢, 7), with 3; = —/#;. Without loss of generality, Without loss of generality, we can assume tHat# 0 for all

suppose j. Indeed, suppose thgk;, ; = (2; = 0 for somei. Then
we can split the sum ovey in (14) into a sum over the pair
Pri1 = — Pai, (v2i—1, 72:) and a sum over the other components gdnd the
B2_1 <0, and 3, forall 1 <i<m/2. (13) corresponding factors in the product can be taken outside the
By >0 outermost sum, sincg L, f;v; is identical for both values

of the pair (y2;—1, ¥2:)-
Then for 5 € {-1, 1}, let S(3) denote the set of all NoOw, ;1 = —1 and By = 1 imply thatng;; < ng;.
permuted versions of obtained by swapping the component0 10 show that (14) holds for the cases of interest, it suffices

Y2i—1 and 7y, for all ¢ in some subset of1, ---, m/2}. 1O show that for all evernn, for all ny, ---, n,, satisfying
Clearly, it suffices to show that for ait € I',,, n2i—1 < ng;, and allb € {-1, 1}™, we have
m m m/2
Z Pw7n(\V/i, .ZVZ ITLZ) Z /3j’}/j 2 0. Z Z(—l)]bj H -Pz Z 0
¥ES(H) j=1 beS() I=1 i=1
But we have where
Z Py o (Vi, N =n;) Z B Pi= Py, 10:),m0s14ne; (N2im1 = n2i—1, Nog = ng;).
veS(%) J=1 . = = L
B . B . B First supposen = 2. If by = by, the expression is clearly
= Z Po n(Vi, Ni = nilVi, Naioy + Noi = naiy zero. Otherwise, it is equal to
YESH) + n?i)

2(P(1,1), ny4n. (N1 =11, N2 = n2)
- P(1: —1), n1+n2 (Nl =ni, Ny = 712))
= 2(P(*171),n1+n2 (Nl =n1, Na = 712)

m

X Py n(Vi, Nog1 + Noj =i 1 +n2;) Z B

j=1
= P55 (Vi, Noj_1 4 Noj = noi_1 + 1) = Po1, 1), mne (N1 = m2, N = 1))
X Z P, .(Vi, N; = n;|V4, which is clearly nonnegative, sinee > n;. Next, suppose
¥CS(3) m the expression is nonnegative up to some even numbéret
Nai—1 + Naj = ngi—1 + n2) Z Bivi- b e {~1,1}™+2, Then
j=1
m—+2 "l/2+1
We can ignore the nonnegative constant factor, and the otheE Z (—1)jbj H P,
probabilities are of independent events, so we can write bes(h) =1 i1
m m—+2
Py Vi, Ni =ni|Vi, Noj1+ Noy =nog; i j j
L e D DR DR O GRS DD
vESA) . biy o b b1y bngs \i=1 j=m+1
j=1 ’ H -PZ Prn/?—l—l
rn/? i=1
= Z H P("/Zi—l;"/zi)ynzi—l'i'nzi m . m/2
vES(H) i=1 = Y Pupul| Y, DU ]I P
m bt 1, btz br, -, b g=1 i=1
(Na2i—1 = n2i—1, Noy = ng;) Z B354 m/2 a2
= + 2 12l X X CUbPapen
So it suffices to show that for alf e {-1,1}™, all Prorn b it N\, bz =i
ni, -+, oy SUMMIng ton, and all 3 € {-1,0,1}™

and both of these terms are nonnegative, since the expressions

satisfying (13), we have in parentheses are nonnegative by the inductive hypothésis.

m/2
Z H P(’Yzi—1772i):n2i—1+n2i REFERENCES
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