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Signature segmented with function FI(z)(Omax = 3 r / 8 ,  K = 3) .  
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Fig. 7. Signature segmented with function FI(z)(Omax = 3 ~ / 8 ,  I< = 3) .  

the next one after #1) of Fig. 7 as well as the small and acute vertex 
#4. A drawback of the method (and perhaps of every method?) is its 
difficulty to segment an almost complete circle, as in the one shown 
after point #5 in Fig. 7. Indeed, function F l ( i )  of Fig. 7(b) appears 
with two local maxima without the function passing through zero. 
The segmenting point indicated by an arrow on Fig. 7(a) was added 
manually afterwards for the sake of the discussion. To overcome this 
problem, it is necessary to diminish the value of Omax, allowing F Z (  i )  
to reach zero between the two peaks. 

IV. CONCLUSION 
We have presented an algorithm that makes it possible to estimate 

the perceptual importance of each of the points of a signature (or 
other types of continuous cursive handwriting) as a basis for its 
segmentation. The main idea of the algorithm is that for each point 
i of the signature, it tries to iteratively construct a vertex centred on 
that point with the help of neighboring points to either sides of it until 
certain geometric conditions are met. The method has been applied 
successfully to a signature database, and the location and relative 
importance of the segmentation points are generally in agreement 
with human perception. Moreover, they are also in accordance with 
our most recent segmentation theory [ll]. An interesting application 
of the algorithm is to use it to quantify one of the difficulties (at the 
perception level) that could be experienced by a typical imitator in 
reproducing a signature [2], [4]. This difficulty index, together with 
an intrapersonal variation index, could be used to identify problematic 
signers in a particular signature database and adapt the thresholds of 
the ASV system to improve its overall performance. 

One object of our continuing research effort is to implement the 
algorithm on a neural network and automatically fix the optimal 
thresholds of the only two parameters of the method. 
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Fast Nearest-Neighbor Search in Dissimilarity Spaces 

Andris Farag6, Tamis Linder, and Gibor Lugosi 

Abstract-A fast nearest-neighbor algorithm is presented. It works in 
general spaces where the known cell (bucketing) techniques cannot be im- 
plemented for various reasons, such as the absence of coordinate structure 
andor high dimensionality. The central idea has alreody appeared several 
times in the literature with extensive computer simulation results. This 
paper provides an exact probabilistic analysis of this family of algorithms, 
proving its O( 1 )  asymptotic average complexity measured in the nnmber 
of dissimilarity calculations. 

Indcx Tenns- Average complexity, dissimilarity spaces, fast nearest- 
neighbor search, pattern recognition, probabilistic analysis of algorithms. 

I. INTRODUCTION 
Finding a nearest neighbor of a point among several others is a task 

one often encounters in a number of practical situations such as vector 
quantization of signals, pattem recognition, etc. In a Euclidean space, 
this is one of the so-called closest-point problems of computational 

Manuscript received June 25,1991; revised January 6,1992. Recommended 
for acceptance by Editor-in-Chief A. K. Jain. 

The authors are with the Technical University of Budapest, Budapest, 
Hungary. 

IEEE Log Number 9209991. 

0162-8828/93$03.00 0 1993 IEEE 



958 lEEE TRANSACTIONS ON PAmRN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 15, NO. 9, SEF’TEMBER 1993 

geometry, and efficient algorithms are known both in the worst- 
case sense [ l ]  and expected-time sense [2], [3]. However, there is 
a demand for nearest-neighbor algorithms that work well under more 
general conditions. In some practical applications, the underlying 
metric may be different from the Euclidean metric (possibly the 
measure of similarity between two points is not even a metric), and/or 
no direct coordinate structure may be given for the sample space. In 
trying to find efficient algorithms in these harder situations, several 
authors seem to have arrived at similar versions of an idea of nearest- 
neighbor search [4]-[8]. These algorithms make use of some geomet- 
ric properties induced by the triangle inequality and seem to show 
the following behavior, which is most explicitly stated in Wdal [5]: 

“The algorithm finds the nearest neighbor using an asymptotically 
constant number of distance calculations on the average.” 

Moreover, they are easily implementable even in high dimensional 
spaces, whereas, an optimal algorithm in a Euclidean d space in 
expected time sense (see, e.g., [3]) becomes impractical very rapidly 
as the dimension increases, which is typical for the cell technique or 
“bucketing” methods [9]. Wdal’s quoted conclusion was drawn on the 
basis of extensive computer simulations and subsequently supported 
by practical experiments [lo], but no theoretical justification has been 
published thus far. In this paper, we make an attempt to grasp the 
basic idea behind these more general algorithms and carry out an 
exact probabilistic analysis of the performance in a rather general 
framework. 

To this end, in Section 11, we introduce the notion of dissimilarity 
space, which can be considered to be a generalization of a metric 
space, give some examples, and describe our algorithm for fast 
nearest-neighbor search in such spaces. The algorithm has O( n ) 
preprocessing and storage cost, where n is the number of points. 
In Section 111, we introduce a probabilistic model and show that the 
algorithm performs O( 1) dissimilarity calculations on average, that is, 
it has a constant expected complexity in the number of dissimilarity 
calculations. In Section IV, some practical remarks and comparisons 
are made. 

11. THE ALGORITHM 

The standard problem of nearest-neighbor searching in a Euclidean 
space is to find, among n points, the nearest to a query point as 
quickly as possible. In a number of problems, however, we are 
given n sample points from a more general space (possibly with 
no direct coordinate structure), and the task is to determine which is 
closest to the query point in a certain (not necessarily metric) sense. 
In this case, the most efficient bucketing methods for closest point 
problems cannot be applied since typically, we can only calculate the 
“distances” between points. This model applies in all cases when the 
distance (or dissimilarity) measure is computationally or conceptually 
complex; thus, a “black box” model for the distance calculation is the 
only feasible assumption. A relevant practical example is the so-called 
dynamic time warping (DTW) distance used in speech recognition, 
when a distance calculation involves a dynamic programming shortest 
path search in a trellis [lo]. DTW is a good example for a “distance” 
measure that is not a metric, but in some sense, it behaves like a 
metric. In order to describe problems of this kind, we introduce the 
notion of dissimilarity space, which is, in some sense, a generalization 
of the concept of metric space. 

Definition 1: A nonempty set D with a function p : D x D + R 
is called a dissimilarity space if for any r , y  E D the following 
conditions are satisfied: 

d x c ,  Y) 2 0, 

P ( Z ? Y )  = P ( Y , z ) .  

p ( i , y )  = 0 iff z = y, 

A dissimilarity space in which the triangle inequality holds is a 
metric space. Just as in metric spaces, a subset H of a dissimilarity 
space is called bounded if sup{p(x, y) : I, y E H} < 03. The notion 
of the metric is relaxed here, but (obviously), one needs to impose 
some geometric structure and dimensionality on a dissimilarity space. 

Definition 2: Let D be a dissimilarity space, and let (Y 2 ,O > 0. 
The points t1,22, . . . , Zk E D are said to form a basis at level (a, p)  
for a set H c D if for any x , y  E H 

(1) 4 G Y )  2 I P b ,  2,) - P ( Y ,  & ) I ,  i = 1,. . . , k 
and 

Moreover, a dissimilarity space D is called finite dimensional if there 
exist cy 2 p > 0 and a positive integer k (depending on D only) 
such that for any bounded subset H c D, there are k points in D 
that form a basis at level (alp) for H. 

Example 1: It is not hard to see that Rd with the Euclidean metric 
is a finite (e.g., d+l)  dimensional dissimilarity space. A possible basis 
for a bounded set H C Rd is formed, for example, by the vertices 
of a sufficiently large regular d-dimensional simplex containing H. 
Elementary geometric calculations show that level values (Y = 1 and 
/3 = 112 can be chosen. 

Example 2: Let P be a full dimensional bounded polytope in Rd 
with vertices 31 22, .  . . , Zk. Denote by cy,(z, y) the angle subtended 
by ??jj at 2,. Set 

p ( x , y )  = m y a , ( x . , y ) .  

It is left to the reader that the points of P with dissimilarity measure 
p is a finite dimensional dissimilarity space. Another infinite family 
of examples is given by the following result, which is proven in 
Appendix A. 

Theorem 1: Every finite-dimensional normed vector space is 
a finite-dimensional dissimilarity space with dissimilarity measure 

The nearest neighbor searching problem in a dissimilarity space is 
the following: We are given a set of n points X I , .  . . , X,, which 
are elements of a bounded set H c D. A nearest-neighbor algorithm 
should determine in an efficient way, using some preprocessing of 
the points, the closest of these points to a new query point X coming 
from H. Here, closeness means similarity, that is, the nearest neighbor 
of X is X ,  if p ( X , X , )  5 p ( X , X , ) ,  j = 1,. . . ,n. The common 
idea of the (coordinate free) algorithms [4]-[8] is that they restrict 
the search to some appropriately chosen neighborhood of the query 
point with the following crucial properties: 

The neighborhood is large enough to contain the nearest neigh- 
bor with certainty. 
The neighborhood is small enough to ensure that the aver- 
age number of sample points contained remains asymptotically 
bounded. 
The neighborhood is defined constructively in terms of distances 
to points known during the preprocessing stage. 

To grasp and analyze this common idea, we describe an algorithm 
that contains it in a pure form and is isolated from additional factors. 

Let D be a finite dimensional dissimilarity space, and let the points 
2 1 , .  . . , zk form a basis for the bounded set H at level (a, p). Our 
proposed algorithm is the following. 

Preprocessing Compute and store all the values 
p ( X z , z J ) ,  i = 1,. . . ,n; j = 1,. .. ,k. As k is fixed, this means 
O ( n )  preprocessing time and storage cost. 

P(S9Y) = I I I  - YII. 

Algorithm 1: 

Nearest neighbor searching 
INITIALIZATION: Set 7 c { X I , .  . . , X , , } .  
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STEP 1: Compute the value of 

for each X ,  E 7. 

for which 
STEP 2: Set t o  t- mini ?(Xi ) .  Delete all the points X I  from 7 

holds. 

I by exhaustive search: 
STEP 3: Find the nearest neighbor of X in the remaining part of 

T” = arg min p(X,  U )  
U € 7  

STOP. T” is the result. 
The next theorem shows the correctness of the algorithm. 
Theorem 2: Algorithm 1 always finds the nearest neighbor. 

Proof: We have to show that the correct nearest neighbor, which 
we denote by X,””, is never deleted from 7 in Step 2. Set 

X i  = arg min y(X, ). 

In the definition of X,”” and Xi, in case of ambiguity, we choose 
a random index among the candidates. Suppose that r(-X,”’) > 
;-y(X:), that is, Step 2 excludes X,””. From this, using Definition 
2, we have 

t = l ,  ..., n 

which is a contradiction. 0 
It is quite clear that in the worst case, that is, when no exclusion 

is carried out in Step 2, the algorithm executes n dissimilarity 
calculations. However, the next section shows that in a rather general 
probabilistic setup, the average case is substantially different from 
the worst case. In particular, the number of dissimilarity calculations 
remains constant on the average as n increases. 

In a strict sense, the complexity of the algorithm is not only 
determined by the number of dissimilarity calculations but also by 
other computations in Steps 2 and 3. From a practical point of view, 
however, if p ( . ,  0 )  is a function of high complexity, then the running 
time of the algorithm is determined essentially by the number of 
dissimilarity calculations, as is shown by the simulation results cited 
above. We will address this question in Section IV. 

111. PROBABILISTIC ANALYSIS 

For the analysis of the average complexity, we have to set up a 
probabilistic model. Let ( D , S )  be a measurable space, where the 
family of sets S is termed the collection of measurable subsets of 
D. It is assumed that the measurable sets of the finite dimensional 
dissimilarity space D include the closed balls B(z ,  T )  = {y E D : 
p ( z , y )  5 r }  of radius T centered at I for all r > 0, P E D. We 
assume further that p : D x D + R is a Bore1 measurable function 
on the product measurable space (D x D, S x S). Note that in the 
examples mentioned above, these conditions are satisfied. 

Let X ,  X I ,  . . . , X ,  be independent identically distributed random 
elements taking their values from a bounded subset H of D. Introduce 
the notation 

P(Z,T) = Px(B(z,r)) = Pr{X E B ( z , r ) } .  

We assume that the following regularity condition holds for the 
common distribution of X ,  X I , .  . . , X,. 

Condition 1: There exists a d > 0 and a function f : D -+ R 
such that 

(3) 

uniformly for almost all I E D (mod Px). 
Remark: Note that for D 5 Rd with an arbitrary norm-based 

metric and for random variables with density, Condition 1 indicates 
the uniform convergence’in Lebesgue’s density theorem (see [ll]). 

Now, we can state the main result. 
Theorem 3 Let F, be the number of dissimilarity calculations 

executed by Algorithm 1 for n points. If Condition 1 holds, then 

lim sup E (  F,,) 5 k + 
“-00 

where E (  .) denotes expectation, and k, cy, P are as in the description 
of the algorithm. 

Remark The theorem asserts that E(F,) = O(1). It follows 
from Example 1 that in Rd, if the X ,  have well-behaved density in 
the sense of Condition 1, then lim sup, E( F,) I d + 1 + 4d. 

Before proving the theorem rigorously, it is worth mentioning 
that the main idea is the following: We show that a ball of radius 
cp(X,X,” )  (c > 0 fixed) centered at the query point X contains 
asymptotically only a constant number of sample points on the 
average. To present the exact proof, we have to explore first some 
properties of finite dimensional dissimilarity spaces and probability 
distributions defined on them. 

Definition 3: A set A c D is called discrete if there is a constant 
PO > 0 such that s,y  E A, P # y implies p (z ,y )  2 P O .  

Lemma 1: Let A be a bounded discrete set in a finite dimensional 
dissimilarity space D. Then, A is finite. 

The proof of the lemma is in Appendix B. The next lemma will 
be a useful technical tool in the proof of Theorem 3 and is proven 
in Appendix C. 

Lemma 2: Let X be a random element taking its values from 
a finite dimensional dissimilarity space D. Suppose that Pr{X E 
A} = 1 for some bounded measurable subset A of D. Then for any 
fixed r1 > 0 there exists an E > 0 such that 

Pr{p(X,rl) 2 E}  = 1. 

Now we are armed to prove Theorem 3. 
Proof of Theorem 3: Since the p(X,, zJ) values are given by the 

preprocessing, Step 1 of the algorithm requires only k dissimilarity 
calculations. Thus, it is enough to consider the number of points T, 
not deleted from 7 in Step 2 for F, = k + T,. Let X i  and X,“” 
be as in the proof of Theorem 2. Using Definition 2, for each X ,  
remaining in 7 after Step 2, we have 

(4) 

Put c = $ 2 1. Denoting by TL the number of X ,  with 
p ( X ,  X , )  I c p ( X ,  X,””), by (4), we have T, 5 TA, and thus, 
it suffices to show that 

lim E ( T L )  = cd .  (5) 
n-m 

From now on, in the proof, I g  will denote the indicator of the set 
B, and the abbreviation R, = p ( X ,  X,””) will be used. Now, using 
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the i.i.d. property of X, XI,. . . , X,, we can write 

Pr { p ( X ,  T )  _> E }  = 1 

yielding 

that is, Pr { R ,  > T }  tends to zero exponentially quickly. Since the 
second terms in both the numerator and the denominator of (7) are 
bounded above by this probability and since the denominator is 1/n 
and the numerator is greater, it follows that 

for arbitrary T > 0, provided that the limit on the right-hand side 
exists. However, by the uniform convergence in Condition 1, for any 
E > 0, an T > 0 can be chosen such that the following inequalities 
hold 

E[(1 - E)f(X)(cRn)dI{Rn<r}] 
E[(1+ ~)f(X)RiI{~t,<r)l 

After cancellations, we obtain 

Since E is arbitrary, (8) and (9) together imply 

lim E ( T A )  = cd ,  
n-m 

and the proof is completed. 

IV. CONCLUSION 
The algorithm and its analysis should be considered to be an at- 

tempt to find the mathematical foundations of a family of fast nearest- 
neighbor algorithms working well in practice in high dimensions, 
under general conditions, using no coordinates of the sample points. 
As a measure of complexity, the number of dissimilarity ("distance") 
calculations has been chosen, ignoring all the side computations. This 
point of view can be defended considering the following facts. First, 
the practical simulation results in the cited references show that when 
the dissimilarity measure is of high computational complexity, the 
running time of the algorithm is essentially determined by the number 
of dissimilarity computations. Second, the side computations in Step 2 
of the algorithm actually mean that one has to execute a full search in 
?transformed space where any Y E D is represented by the k-tuple 
I' = (p(Y, zl), . . . , p(Y, z k ) ) ,  and the distance is induced by the 
maximum norm. However, this problem is simpler than the original 
one, and it is possible to use the existing cell technique solutions 
of low complexity (for a survey, see [3]). Therefore, the number 
of dissimilarity calculations represents the additional complexity 
induced by the more general instance. Therefore, the results can be 
interpreted to mean that finding the nearest neighbor in these more 
general spaces is theoretically of the same complexity as doing so 
in Euclidean spaces. On the other hand, the new algorithmic idea 
is necessary because cellbucketing methods cannot be implemented 
efficiently for the general problem. 

Udal et al. [ 101 investigated a version of the algorithm analyzed in 
this paper that was implemented for an isolated word recognition sys- 
tem of a 200-word vocabulary. Their conclusion was that the number 
of executed dissimilarity calculations was reduced by 9696%.  Since 
the DTW dissimilarity measure is rather complex compared with, 
e.g., the Euclidean metric, this reduction in the number of D W  
calculations resulted in a one order of magnitude decrease in the 
running time. 

It is intuitively clear from the analysis that in practice, the algorithm 
works well if the data is "well clusterable" because Step 2 of the 
algorithm is likely to delete a large proportion of the points from 
further investigation. This type of data is typical in pattern recognition 
tasks. The increased efficiency of a version of the algorithm for 
well-clusterable data was pointed out in [13]. 

APPENDIX A 
Proof of Theorem 1: Let S be a finite dimensional normed space 

with norm 11 .  11. If we define the operations c(z, y)  = (cz,cy) and 
( . r l , y l )  + ( r z , y z )  = ( 2 1  + z 2 , y l  + YZ) on S2 = S x S and 
introduce the norm 11(r, y)II = 11z11+ llyll on S2 ,  then again, a finite 
dimensional normed vector space is obtained. Now, fix a real number 
0 < r < 1 and for each z E S, define the set A, c Sz by 

Furthermore, let H C S2 be the following set: 

H = {(Z,Y) : 114 I 2, I lY l l  5 1, 115 - 34 I 1/21. 

We will use the following properties of these sets: 
i) H is closed and bounded. 
ii) A, is open. 
iii) H c U r E S A f .  

Clearly, i) and ii) follow from the definition. To see iii), it is enough 
to observe that for any 2 # y E S, ( r , y )  E A, holds. 

Thus, the sets { A z ,  z E S} form an open cover of H. It follows 
from the Heine-Bore1 theorem that there exists a finite subcover, that 
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is, there are points z l , .  . . , z k  with H c 
for any ( z , ~ )  E H 

A,,. This means that as n + 00. On the other hand, Definition 2 and the boundedness 
of A yields 

holds for some 1 5 j I k. Now, take two points 2 # y E s with 
1 1 ~ 1 1  <_ 1, llyll 5 1, llz - y(I = A < 1/2. Set z’ = +(z - (I - X)y). 
Then, z = Ax‘+( 1-X)y holds, that is, z divides the line segment 5 
such that = &.As Ilz-yII = A, this implies ~ ~ r ’ - y ~ ~  = 1, 
which yields llz’ll 5 2 for 2 2 11%‘ - yII + llyll 2 11z’11. Collecting 
these facts, we have (z’, y) E H. However, by (lo), there is a z3 with 

Now, using the convexity of the norm, we can write 

which is a contradiction. Thus, G must be finite, which proves the 
finiteness of A. 

APPENDIX C 
Proof of Lemma 2: Set r2 = $TI, where a, P are the same as 

in Definition 2. If there is a point z1 E A with p ( z 1 , r ~ )  = 0, then 
set A1 = A - B ( z 1 , ~ 2 ) .  If there is a point z2 E A1 such that 
p ( z ~ , r ~ )  = 0, then again put A2 = A1 - B(z2,rz). Repeat this 
procedure as long as possible, each time deleting a ball of radius ~2 

and measure zero centered in the remaining subset of A. For two such 
centers z,, z3, i # j ,  we have p ( z l ,  z3) 2 T Z  by the construction; 
thus, these centers form a bounded discrete set that must be finite by 

IIY - 2311 - (Xllz‘ - z,ll + (1 - X)llY - 2311) Lemma 1. Therefore, after a finite number of steps, we arrive at a set 
A’ c A such that p (z , r2 )  > 0 holds for all z E A’. On the other 
hand, PX (A’) = 1 still remains true. Now, set 

2 x 
= IIY - 2311 - IIz’ - z3ll 

Thus, if z , y  E B = { U  E S : 1(u11 I l}, then there is a 
j E {l ,  ..., k} such that 

I Ilz - 2311 - IIY - 2311 I L 71Ir - YII (13) 

If a0 > 0, then the assertion of the lemma holds with E = UO; 

therefore, it remains to be seen that a0 = 0 is impossible. 
Assume indirectly that a0 = 0. Then, there exist sequences 

yn E A’, E,, > 0, n = 1,2  ,..., such that 

(14) 
holds. This follows from the definition of H and from (10) and (12). 

just proved (2) with /3 = 7, we obtain that the points 21, . . . , form 
a basis at level   CY,^) = ( 1 , ~ )  for the closed unit ball in S in the 

Now, let A be an arbitrary bounded subset of S with r = 
S U P , ~ A  11z11. Then, z , ~  E A implies ;z, $ Y  E B.  Then, we have 

p ( y n , r l )  < E,, and . lim E,, = 0. Since the triangle inequality guarantees (1) with o = 1 and we have n-w 

Now, pick a point u1 E A‘. If 

sense of Definition 2. l B ( ~ 1 . r ~ )  n {Yn}l < 00 

then put A; = A’ - B(u l , r2 ) ,  and pick a point u2 E A;. Again, if 

for some j E (1,. . . , k } ,  and we conclude that {rz l . .  . . , T z k }  is a 
basis for A at level ( l , ~ ) ,  which completes the proof. 

APPENDIX B 
Proof of Lemma 1: Construct a graph G such that the vertices 

are the points of A, and any two of them are connected by an 
undirected edge, i.e., G is complete. Color the edges of G with 
k colors C1, . . . , Ck, where k is the number of the basis points 
21,. . . , Zk according to Definition 2. The coloration is constructed 
as follows: An edge (zp, 2,) is colored by C, if 

I dzw Z J )  - P ( Z U ,  23  )I L Bp(z,, 2,) 

then put A& = A; - B ( u ~ , T ~ )  and so on, as long as possible. As 
above, the construction guarantees that the centers ut form a discrete 
bounded set; therefore, by Lemma 1, we must get stuck after a finite 
number of steps. Thus, there is a point U E A’ such that the ball 
B ( u , T z )  contains an infinite subsequence {y;} of {y,,}. We now 
show that 

holds. Pick a point z E B ( u , T ~ ) .  It suffices to be seen that 
p( r ,y ; )  I rl.  Indeed, by Definition 2, for an appropriate basis 
point z , ,  we have 

holds. By Definition 2, this must hold for some j ,  and in case of 
ambiguity, we chose the z3 with the smallest index. 

Now, if G is infinite, then by Ramsey’s theorem of graph theory 
[ 121, there exists an infinite complete monochromatic subgraph G’ 
of G. It means that there is an infinite sequence zl , 2 2 ,  . . . E A of 
points such that for some basis point z3 ,  we have 

PP(GY;) I IP(z, t , )  - P(Yh,Z,)l 

I I/J(z,z3) - P ( %  %)I + IP(UL, 2 3 )  - d Y h ,  %)I 
I w ( z ,  U )  + cup(yh, U )  I 2ar2 

that is ‘. 

for p = 1,2, .  . . , v = 1,2 , .  . . , p # v. Indexing the points So that which proves (15). From this and (14), we obtain 

with E ;  + 0 as n 4 00, which implies p(  U, r2) = 0. This contradicts 
the construction of A‘, and the lemma is proved. 

we have 

Idzn, 2 3 )  - P(Z1, z,)l 2 (n - 1)PPO -+ 03 



962 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 15, NO. 9, SEFTEMBER 1993 

[31 

[41 

151 

[71 

181 

191 

1101 

REFERENCES 

D. Dobkin and R. J. Lipton, “Multidimensional searching problems,” 
SIAM .I. Comput., vol. 5, no. 2, pp. 181-186, June 1976. 
J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm for 
finding best matches in logarithmic expected time,” ACM Trans. Math. 
Sofhyare, vol. 3, no. 3, pp. 209-226, Sept. 1977. 
1. L. Bentley, B. W. Weide, and A. C. Yao, “Optimal expected-Time 
algorithms for closest point problems,” ACM Trans. Math. Sofhvare, vol. 
6, no. 4, pp. 563-580, Dec. 1980. 
I. K. Sethi, “A fast algorithm for recognizing nearest neighbors,” IEEE 
Trans. Syst. Man Cyber.,, vol. SMC-11, pp. 245-248, Mar. 1981. 
E. Vidal, “An algorithm for finding nearest neighbors in (approximately) 
constant average time,” Patt. Recogn. Lett., vol. 4, no. 3, pp. 145-157, 
July 1986. 
A. Farag6, T. Linder, G. Lugosi, and T. Pikler, “On the algorithmic 
problems of the nearest neighbor method,” HiiaaUstechnika (Telecom- 
munication), vol. XXXIX, no. 8, 1988; in Hungarian. 
K. Motoishi and T. Misumi, “Fast vector quantization algorithm by using 
an adaptive search technique,” presented at IEEE Inr. Symp. Inform. 
Theory (San Diego, CA), Jan. 14-19, 1990. 
T. Linder and G. Lugosi, “Classification with a low complexity nearest 
neighbor algorithm,” presented at IEEE Int. Symp. Inform. Theory (San 
Diego, CA), Jan. 14-19, 1990. 
L. Devroye, Lecture Notes on Bucket Algorithms. Boston: Birkhauser, 
1986. 
E. Vidal, H. Rulot, F. Casacuberta, and J. Benedi, “On the use of 
metric-space search algorithm (AESA) for fast DTW-based recognition 
of isolated words,” IEEE Trans. Acoust. Speech. Signal Processing, vol. 

R. L. Wheeden and A. Z. Zygmund, Measure and Integral. New York 
Marcel Dekker, 1977. 
C. Berge, Graphs and Hypergraphs. Amsterdam: North Holland, 1973. 
E. Vidal and M. J. Lloret, “Recent results on the application of a 
metric-space seach algorithm (AESA) to multispeaker data,” in Recent 
Advances in Speech Understanding and Dialog Systems (H. Niemann, 
Ed.). 

ASSP-36, pp. 651-660, 1988. 

New York: Springer Verlag, 1988. 

Learning Bias in Neural Networks and an Approach to 
Controlling Its Effects in Monotonic Classification 

Norman P. Archer and Shouhong Wang 

Absfmct-As a learning machine, a neural network using the back- 
propagation training algorithm is subject to learning bias. This results in 
unpredictability of boundary generation behavior in pattern recognition 
applications, especially in the case of small training sample size. This 
research sugests that in a large class of pattern recognition problems, such 
as managerial and other problems possessing monotonicity properties, 
the effect of learning bias can be controlled by using multiarchitecture 
monotonic function neural networks. 

Index rem-Backpropagation, learning bias, monotonically separa- 
ble, monotonic boundary, monotonicity, neural network. 
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I. INTRODUCTION 
Despite a considerable amount of recent research directed towards 

pattern recognition applications of neural networks, the predictability 
of classification results from neural networks is still an open question 
[l]. Neural network researchers are painfully aware of this problem 
and have been trying to improve available algorithms to deal with sta- 
tistical data [2]-[4]. However, the major limitation of these methods is 
that assumptions are necessary about certain distribution parameters, 
and the selection of these parameters influences the results for a 
particular problem. 

Research has shown that information that is based only on limited 
training sample data is often not sufficient in classification. With 
standard backpropagation neural networks, it is impossible to control 
boundary functions unless some assumptions are made about their 
shapes, and it has been difficult to develop meaningful generaliza- 
tions in this area. However, problem domain knowledge may be 
very useful in developing the realistic assumptions needed for such 
generalizations in pattern recognition. 

There has been a substantial body of research using heuristics rather 
than statistical principles to improve the classification performance 
of neural networks. For example, Kawabata [5] used interpolation 
training to make such improvements, but using local information to 
regulate neural network behavior depends heavily on the training 
sample’s density [5]. Casasent and Barnard [6] suggested on adaptive 
clustering training method, but specific knowledge about classifica- 
tion prototypes is required when applying this method. Unlike the 
foregoing methods, we introduce a neural network model utilizing 
monotonicity, which is a generic characteristic of many decision- 
making situations, to improve the performance of backpropagation 
neural networks [7] in solving classification problems. 

11. LEARNING BIAS 
The behavior of the neural network learning process is relatively 

unpredictable (cf. e.g., [9]). This means that the classification bound- 
ary is determined not only by the statistical constitution of the training 
data, but it is also influenced by other factors, including the following: 

a) Architecture of the neural network model (e.g., number of 
hidden nodes) 

b) parameters (e.g., learning rate) of the learning algorithm 
c) initial state of the neural network 
d) sequence of training data points 
e) the stopping criteria of the learning procedure. 
These factors bring some inherent knowledge or leaming rules to 

bear on the machine learning process. These may or may not be 
pertinent to a particular task or a specific problem and are referred 
to as learning bias [lo], [ll].  

There is a close relationship between learning bias and “biased” 
classification boundary results. Neural networks with their individual 
learning bias do not generate identical classification boundaries 
from the same training data sets. Thus, the classification boundary 
generated by a standard neural network is most likely to be biased 
because we have no knowledge about how to control the learning 
bias in order to generate an “unbiased” classification boundary. 

In the BPLMS learning algorithm [7], the neural network weights 
are gradually modified according to the current training sample data, 
the current neural network state, and the currently adopted learning 
rate 9 .  With this algorithm, the learning procedure stops when a 
final training sample point is correctly classified, that is, the error 
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