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Abstract

Probabilistic ‘distances’ (also called divergences), which in some sense assess how
‘close’ two probability distributions are from one another, have been widely em-
ployed in probability, statistics, information theory, and related fields. Of par-
ticular importance due to their generality and applicability are the Rényi diver-
gence measures. This paper presents closed-form expressions for the Rényi and
Kullback-Leibler divergences for nineteen commonly used univariate continuous
distributions as well as those for multivariate Gaussian and Dirichlet distribu-
tions. In addition, a table summarizing four of the most important informa-
tion measure rates for zero-mean stationary Gaussian processes, namely Rényi
entropy, differential Shannon entropy, Rényi divergence, and Kullback-Leibler
divergence, is presented. Lastly, a connection between the Rényi divergence
and the variance of the log-likelihood ratio of two distributions is established,
thereby extending a previous result by Song [J. Stat. Plan. Infer. 93 (2001)]
on the relation between Rényi entropy and the log-likelihood function. A ta-
ble with the corresponding variance expressions for the univariate distributions
considered here is also included.

Keywords: Rényi divergence, Rényi divergence rate, Kullback divergence,
probabilistic distances, divergences, continuous distributions, log-likelihood
ratio.

1. Introduction

In his 1961 work [27], Rényi introduced generalized information and diver-
gence measures which naturally extend Shannon entropy [29] and Kullback-
Leibler divergence (KLD) [19]. For a probability density f on Rn the Rényi
entropy of order α is defined via the integral hα(f) := (1− α)−1 ln

(∫
f(x)

α
dx
)
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for α > 0 and α 6= 1. Under appropriate conditions, in the limit as α→ 1, hα(f)
converges to the differential Shannon entropy h(f) := −

∫
f(x) ln f(x) dx =

−Ef [ln f ] . If g is another probability density on Rn, the Rényi divergence of

order α between f and g is given by Dα(f ||g) := (α−1)−1 ln
(∫
f(x)

α
g(x)

1−α
dx
)

for α > 0 and α 6= 1. Under appropriate conditions, in the limit α→ 1, Dα(f ||g)
converges to the KLD between f and g, D(f ||g) :=

∫
f(x) log(f(x)/g(x)) dx =

Ef [log(f/g)].
While a significant number of other divergence measures have since been

introduced [1, 3, 9], Rényi divergences are especially important because of their
generality, applicability, and the fact that they posses operational definitions in
the context of hypothesis testing [7, 2] as well as coding [14]. Additional appli-
cations of Rényi divergences include the derivation of a family of test statistics
for the hypothesis that the coefficients of variation of k normal populations are
equal [23], their use in problems of classification, indexing and retrieval, for ex-
ample [15], and tests statistics for partially observed diffusion processes [28], to
name a few.

The ubiquity of Rényi divergences suggests the importance of establishing
their general mathematical properties as well as having a compilation of readily
available analytical expressions for commonly used distributions. The mathe-
matical properties of the Rényi information measures have been studied both di-
rectly, e.g., in [27, 32, 13], and indirectly through their relation to f -divergences
[6, 21]. On the other hand, a compilation of important Rényi divergence and
KLD expressions does not seem to be currently available in the literature. Some
isolated results can be found in separate works, e.g.: Rényi divergence for Dirich-
let distributions (via the Chernoff distance expression) [26]; Rényi divergence
for two multivariate Gaussian distributions [16, 15], a result that can be traced
back to [5] and [31]; Rényi divergence and KLD for a special case of univari-
ate Pareto distributions [4]; and KLD for multivariate normal and univariate
Gamma [25, 24], as well as Dirichlet and Wishart [24].

The need for an analogous compilation for Rényi and Shannon entropies has
already been addressed in the literature. Closed-form expressions for differential
Shannon and Rényi entropies for several univariate continuous distributions are
presented in the work by Song [30]. The author also introduces an ‘intrinsic
loglikelihood-based distribution measure,’ Gf , derived from the Rényi entropy.
Song’s work was followed by [22] where the differential Shannon and Rényi
entropy, as well as Song’s intrinsic measure for an additional 26 continuous
univariate distribution families are presented. The same authors then expanded
these results for several multivariate families in [34].

The main objective of this work is to extend these compilations to include
expressions for the KLD and Rényi divergence of commonly used univariate
continuous distributions. Since most of the applications revolve around two
distributions within the same family, this was the focus of the calculations as
well. The complete derivations can be found in [11], where it is also shown
that the independently derived expressions are in agreement with the afore-
mentioned existing results in the literature. We present tables containing these
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expressions for nineteen univariate continuous distributions as well as those for
Dirichlet and multivariate Gaussian distributions in Section 2.2. In Section 2.3
we provide a table summarizing the expressions for the Rényi entropy, Shannon
entropy, Rényi divergence, and KLD rates for zero-mean stationary Gaussian
sources. Finally, in Section 3 , we establish a relationship between the Rényi
divergence and the variance of the log-likelihood ratio and present a table of
the corresponding variance expressions for the various univariate distributions
considered in this paper.

2. Closed-Form Expressions for Rényi and Kullback Divergences of
Continuous Distributions

We consider commonly used families of univariate continuous distributions
and present Rényi and Kullback divergence expressions between two members
of a given family. While all the expressions given in this section have been
independently derived in [11], we note that in the cases of distributions belonging
to exponential families, the results can be computed via a closed-form formula
originally obtained by Liese and Vajda [20] presented below. This result seems
to be largely unknown in the literature. For example, the works [26, 4, 25, 24] do
not reference it, while similar work by Vajda and Darbellay [8] on differential
entropy for exponential families is cited in some of the works compiling the
corresponding expressions such as [22, 34], and even in the entropy section of
[4].

Some expressions for Rényi divergences and/or Kullback divergences for
cases where the formula by Liese and Vajda is not applicable are also derived
in [11], namely the Rényi and Kullback divergence for general univariate Lapla-
cian, general univariate Pareto, Cramér, and uniform distributions, as well as
the KLD for general univariate Gumbel and Weibull densities.

The integration calculations are carried out using standard techniques such
as substitution and the method of integration by parts, reparametrization of
some of the integrals so as to express the integrand as a known probability dis-
tribution scaled by some factor, and applying integral representations of special
functions, in particular the Gamma and related functions.

2.1. Rényi Divergence for Natural Exponential Families

In Chapter 2 of their 1987 book Convex Statistical Distances [20], Liese
and Vajda derive a closed-form expression for the Rényi divergence between
two members of a canonical exponential family. Note that their definition of
Rényi divergence, here denoted by Rα(fi||fj), differs by a factor of α from
the one considered in this work; that is Dα(fi||fj) = αRα(fi||fj). Also, the
authors allow the parameter α to be any real number as opposed to the more
standard definitions where α > 0. Consider a natural exponential family of
probability measures Pτ on Rn having densities pτ (x) = [C(τ )]−1 exp〈τ ,T (x)〉,
where T : Rn → Rk, τ is a k−dimensional parameter vector, and 〈·, ·〉 denotes
the standard inner product in Rk. Denote the natural parameter space by Θ.
Then Rα(fi||fj) is given by the following cases:
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• If α /∈ {0, 1} and ατi + (1− α)τj ∈ Θ,

Rα(fi||fj) =
1

α(α− 1)
ln
C(ατi + (1− α)τj)

C(τi)αC(τj)1−α ;

• If α /∈ {0, 1} and ατi + (1− α)τj /∈ Θ,

Rα(fi||fj) = +∞ ;

• If α = 0,

Rα(fi||fj) = ∆(τi, τj);

• If α = 1,

Rα(fi||fj) = ∆(τj , τi) ;

with ∆(τ , τj) := limα↓0
(
α−1 [αD(τi) + (1− α)D(τj)−D(ατi + (1− α)τj)]

)
,

and D(τ ) = lnC(τ ).

2.2. Tables

The results presented in the following tables are derived in [11], except for
the derivation of the KLD for Dirichlet distributions, which can be found in [24].
A few of these results can also be found in the references mentioned in Section 1.
Table 2 and Table 3 present the expressions for Rényi and Kullback divergences,
respectively. We follow the convention 0 ln 0 = 0, which is justified by continuity.
The densities associated with the distributions are given in Table 1.

The table of Rényi divergences includes a finiteness constraint for which the
given expression is valid. For all other cases (and α > 0), Dα(fi||fj) = ∞. In
the cases where the closed-form expression is a piecewise-defined function, the
conditions for each case are presented alongside the corresponding formula, and
it is implied that for all other cases Dα(fi||fj) = ∞. The expressions for the
Rényi divergence of Laplace and Cramer distributions are still continuous at
α = λi/(λi + λj) (where λ is the scale parameter in the Laplace distribution)
and α = 1/2, respectively (this can be easily verified using l’Hospital’s rule).

One important property of Rényi divergence is that Dα(T (X)||T (Y )) =
Dα(X||Y ) for any invertible transformation T . This follows from the more
general data processing inequality (see, e.g., [20, 21]). For example, the Rényi
divergence between two lognormal densities is the same as that between two
normal densities. Also, applying the appropriate T and reparametrizing, one can
find similar relationships between other distributions, such as between Weibull
and Gumbel, Gamma and Chi (or the relevant special cases), and the half-
normal and Lévy under equal supports.

Note that Γ(x), ψ(x), and B(x) denote the Gamma, Digamma, and the mul-
tivariate Beta functions, respectively. Also, γ ≈ 0.5772 is the Euler-Mascheroni
constant. Lastly, note the direction of the divergence: i 7→ j.
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Table 1: Common Continuous Distributions

Name Density Restrictions

Beta
xa−1(1− x)b−1

B(a, b)
a , b > 0 ; x ∈ (0, 1)

Chi
21−k/2xk−1e−x

2/2σ2

σkΓ
(
k
2

) σ > 0 , k ∈ N ; x > 0

χ2 xd/2−1e−x/2

2d/2Γ(d/2)
d ∈ N ; x > 0

Cramér
θ

2(1 + θ|x|)2
θ > 0 ; x ∈ R

Dirichlet
1

B(a)

d∏
k=1

x
ak−1

k a ∈ Rd, ak > 0, d ≥ 2 ;

x ∈ Rd,
∑
xk = 1

Exponential λe
−λx

λ > 0 ; x > 0

Gamma
xk−1e−x/θ

θkΓ(k)
θ > 0 , k > 0 ; x > 0

Multivariate Gaussian
e−

1
2

(x−µ)′Σ−1(x−µ)

(2π)n/2|Σ|1/2
µ ∈ Rn ;x ∈ Rn

Σ symmetric positive definite

Univariate Gaussian
e−(x−µ)2/2σ2

√
2πσ2

σ > 0 , µ ∈ R ; x ∈ R

Special Bivariate
e−

1
2
x′Φ−1x

2π(1− ρ2)1/2
ρ ∈ (−1, 1) ,Φ =

[
1 ρ
ρ 1

]
;

Gaussian x ∈ R2

Gumbel
e−(x−µ)/βe−e

−(x−µ)/β

β
µ ∈ R, β > 0 ; x ∈ R

Half-Normal

√
2

πσ2
e
−x2/(2σ2)

σ > 0 ; x > 0

Inverse Gaussian

(
λ

2πx3

)1/2

exp
−λ(x− µ)2

2µ2x
λ > 0, , µ > 0 ; x > 0

Laplace
1

2λ
e
−|x−θ|/λ

λ > 0 , θ ∈ R ; x ∈ R

Lévy

√
c

2π

e
− c

2(x−µ)

(x− µ)3/2
c > 0 , µ ∈ R ; x > µ

Log-normal
1

xσ
√

2π
e
− (ln x−µ)2

2σ2 σ > 0 , µ ∈ R ; x ∈ R

Maxwell-Boltzmann

√
2

π

x2e
− x2

2σ2

σ3
σ > 0 ; x > 0

Pareto am
a
x
−(a+1)

a ,m > 0 ; x > m

Rayleigh
x

σ2
e
−x2/(2σ2)

σ > 0 ; x > 0

Uniform
1

b− a
a < x < b

Weibull kλ
−k
x
k−1

e
−(x/λ)k

k , λ > 0 ; x > 0
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Table 2: Rényi Divergences for Common Continuous Distributions

Name Dα(fi||fj) Finiteness
Condition

Beta ln
B(aj , bj)

B(ai, bi)
+

1

α− 1
ln
B(aα, bα)

B(ai, bi)
aα, bα ≥ 0

aα = αai + (1− α)aj , bα = αbi + (1− α)bj

Chi ln

σkjj Γ(kj/2)

σ
ki
i Γ(ki/2)


+

1

α− 1
ln

 Γ(kα/2)

σ
ki
i Γ(ki/2)

(
σ2
i σ

2
j

(σ2)∗α

)kα/2
 (σ2)∗α > 0, kα > 0

(σ2)∗α = ασ2
j + (1− α)σ2

i , kα = αki + (1− α)kj

χ2 ln

(
Γ(dj/2)

Γ(di/2)

)
+

1

α− 1
ln

(
Γ(dα/2)

Γ(di/2)

)
dα > 0

dα = αdi + (1− α)dj

Cramér For α = 1/2

ln
θi

θj
+ 2 ln

(
θi

θi − θj
ln
θi

θj

)
For α 6= 1/2

ln
θi

θj
+

1

α− 1
ln

(
θi
[
1− (θj/θi)

2α−1
]

(θi − θj)(2α− 1)

)

Dirichlet ln
B(aj)

B(ai)
+

1

α− 1
ln

(
B(aα)

B(ai)

)
aαk > 0 ∀k

aα = αai + (1− a)aj

Exponential ln
λi

λj
+

1

α− 1
ln
λi

λα
λα > 0

λα = αλi + (1− α)λj

Gamma ln

Γ(kj)θ
kj
j

Γ(ki)θ
ki
i


+

1

α− 1
ln

(
Γ(kα)

θ
ki
i Γ(ki)

(
θiθj

θ∗α

)kα)
θ∗α > 0 and kα > 0

θ∗α = αθj + (1− a)θi, kα = αki + (1− α)kj

Multivariate
Gaussian

α

2
(µi − µj)

′
(Σα)

∗
(µi − µj)

−
1

2(α− 1)
ln

|(Σα)∗|
|Σi|1−α|Σj |α

αΣ−1
i + (1− α)Σ−1

j

positive definite

(Σα)∗ = αΣj + (1− α)Σi

Univariate
Gaussian

ln
σj

σi
+

1

2(α− 1)
ln

(
σ2
j

(σ2)∗α

)
+

1

2

α(µi − µj)2

(σ2)∗α
(σ2)∗α > 0

(σ2)∗α = ασ2
j + (1− α)σ2

i
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Name Dα(fi||fj) Finiteness
Condition

Special
Bivariate
Gaussian

1

2
ln

(
1− ρ2

j

1− ρ2
i

)
−

1

2(α− 1)
ln

(
1− (ρ∗α)2

(1− ρ2
j )

)
αΦ−1

i + (1− α)Φ−1
j

positive definite

ρ∗α = αρj + (1− α)ρi

Gumbel
Fixed Scale
(βi = βj)

µi − µj
β

+
1

α− 1
ln

eµi/β(
eµi/β

)
α

(
eµi/β

)
α
> 0

(
e
µi/β

)
α

= αe
µi/β + (1− α)e

µj/β

Half-Normal ln
σj

σi
+

1

α− 1
ln

(
σ2
j

(σ2)∗α

)1/2

(σ2)∗α > 0

(σ2)∗α = ασ2
j + (1− α)σ2

i

Inverse
Gaussian

1

2
ln

(
λi

λj

)
+

1

2(α− 1)
ln

(
λi

λα

) (
λ

µ2

)
α

≥ 0 and λα > 0

+
1

α− 1

{(
λ

µ

)
α

−
[(

λ

µ2

)
α

λα

]1/2
}

(
λ

µ2

)
α

= α
λi

µ2
i

+ (1− α)
λj

µ2
j

, λa = αλi + (1− α)λj

(
λ

µ

)
α

= α

(
λi

µi

)
+ (1− α)

(
λj

µj

)
.

Laplace For α = λi/(λi + λj)

ln
λj

λi
+
|θi − θj |
λj

+
λi + λj

λj
ln

(
2λi

λi + λj + |θi − θj |

)
For α 6= λi/(λi + λj) and αλj + (1− α)λi > 0

ln
λj

λi
+

1

α− 1
ln

(
λiλ

2
j g(α)

α2λ2
j − (1− α)2λ2

i

)

where g(α) =
α

λi
exp

(
−

(1− α)|θi − θj |
λj

)
−

1− α
λj

exp

(−α|θi − θj |
λi

)
Lévy
Equal
Supports
(µi = µj)

1

2
ln

(
ci

cj

)
+

1

2(α− 1)
ln

(
ci

cα

)
cα > 0

cα = αci + (1− α)cj

Log-normal ln
σj

σi
+

1

2(α− 1)
ln

(
σ2
j

(σ2)∗α

)
+

1

2

α(µi − µj)2

(σ2)∗α
(σ2)∗α > 0

(σ2)∗α = ασ2
j + (1− α)σ2

i

Maxwell
Boltzmann

3 ln
σj

σi
+

1

α− 1
ln

(
σ2
j

(σ2)∗α

)3/2

(σ2)∗α > 0

(σ2)∗α = ασ2
j + (1− α)σ2

i

Pareto For α ∈ (0, 1)

ln
m
ai
i

m
aj
j

+ ln
ai

aj
+

1

α− 1
ln

aim
ai
i

aαMaα
,
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Name Dα(fi||fj) Finiteness
Condition

M = max{mi,mj}

For α > 1,mi ≥ mj , and aα = αai + (1− α)aj > 0

ln

(
mi

mj

)aj
+ ln

ai

aj
+

1

α− 1
ln
ai

aα

Rayleigh 2 ln
σj

σi
+

1

α− 1
ln

(
σ2
j

(σ2)∗α

)
(σ2)∗α > 0

(σ2)∗α = ασ2
j + (1− α)σ2

i

Uniform For α ∈ (0, 1) and
bm = min{bi, bj} > aM = max{ai, aj}

ln
bj − aj
bi − ai

+
1

α− 1
ln
bm − aM
bi − ai

,

For α > 1 , (ai, bi) ⊂ (aj , bj)

ln
bj − aj
bi − ai

Weibull
Fixed Shape
(ki = kj)

ln

(
λj

λi

)k
+

1

α− 1
ln

λkj

(λk)∗α
(λk)∗α > 0

(λ
k
)
∗
α = αλ

k
j + (1− α)λ

k
i

Table 3: Kullback Divergences for Common Continuous Distributions

Name D(fi||fj)

Beta ln
B(aj , bj)

B(ai, bi)
+ ψ(ai)(ai − aj) + ψ(bi)(bi − bj)

+ [aj + bj − (ai + bi)]ψ(ai + bi)

Chi
1

2
ψ(ki/2) (ki − kj) + ln

[(
σj

σi

)kj Γ(kj/2)

Γ(ki/2)

]
+

ki

2σ2
j

(
σ

2
i − σ

2
j

)
χ2 ln

Γ(dj/2)

Γ(di/2)
+
di − dj

2
ψ(di/2)

Cramér
θi + θj

θi − θj
ln
θi

θj
− 2

Dirichlet log
B(aj)

B(ai)
+

d∑
k=1

[
aik − ajk

] [
ψ(aik )− ψ

(
d∑
k=1

aik

)]

Exponential ln
λi

λj
+
λj − λi
λi

Gamma

(
θi − θj
θj

)
ki + ln

Γ(kj)θ
kj
j

Γ(ki)θ
ki
i

+ (ki − kj) (ln θi + ψ(ki))

Multivariate
Gaussian

1

2

(
ln
|Σj |
|Σi|

+ tr
(

Σ
−1
j Σi

))
+

1

2

[(
µi − µj

)′
Σ
−1
j

(
µi − µj

)
− n

]
Univariate
Gaussian

1

2σ2
j

[
(µi − µj)2

+ σ
2
i − σ

2
j

]
+ ln

σj

σi
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Name D(fi||fj)

Special
Bivariate
Gaussian

1

2
ln

(
1− ρ2

j

1− ρ2
i

)
+
ρ2
j − ρjρi
1− ρ2

j

General
Gumbel

ln
βj

βi
+ γ

(
βi

βj
− 1

)
+ e

(µj−µi)/βjΓ

(
βi

βj
+ 1

)
− 1

Half-Normal ln

(
σj

σi

)
+
σ2
i − σ

2
j

2σ2
j

Inverse
Gaussian

1

2

(
λj

λi
+ ln

(
λi

λj

)
+
λj(µi − µj)2

µiµ2
j

− 1

)

Laplace ln
λj

λi
+
|θi − θj |
λj

+
λi

λj
exp (−|θi − θj |/λi)− 1

Lévy
Equal
Supports
(µi = µj)

1

2
ln

(
ci

cj

)
+
cj − ci

2ci

Log-normal
1

2σ2
j

[
(µi − µj)2

+ σ
2
i − σ

2
j

]
+ ln

σj

σi

Maxwell
Boltzmann

3 ln

(
σj

σi

)
+

3(σ2
i − σ

2
j )

2σ2
j

Pareto ln

(
mi

mj

)aj
+ ln

ai

aj
+
aj − ai
ai

, for mi ≥ mj and ∞ otherwise.

Rayleigh 2 ln

(
σj

σi

)
+
σ2
i − σ

2
j

σ2
j

Uniform ln
bj − aj
bi − ai

for (ai, bi) ⊆ (aj , bj) and ∞ otherwise.

General
Weibull

ln

(
ki

kj

[
λj

λi

]kj)
+ γ

kj − ki
ki

+

(
λi

λj

)kj
Γ

(
1 +

kj

ki

)
− 1

2.3. Information Rates for Stationary Gaussian Processes

It is also of interest to extend divergence measures to stochastic processes,
in which case one considers the rate of the given divergence measure. Given two
real-valued processes X = {Xn}n∈N, Y = {Yn}n∈N, the expression for the Rényi
divergence rate between X and Y is Dα(X||Y ) := limn→∞(1/n)Dα(fXn ||fY n),
whenever the limit exists, and where fXn and fY n are the densities of Xn =
(X1, ..., Xn) and Y n = (Y1, ..., Yn), respectively. The KLD, Rényi entropy, and
differential Shannon entropy rates are similarly defined. In Table 4 we sum-
marize these expressions for stationary zero-mean Gaussian processes with the
appropriate reference. Note that ϕ(λ) and ψ(λ) are the power spectral densities
of X and Y on [−π, π], respectively.
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Table 4: Information Rates for Stationary Zero-Mean Gaussian Processes

Information
Measure

Rate Conditions

Differential
Entropy

1

2
ln(2πe) +

1

4π

∫ π

−π
lnϕ(λ) dλ [18, 17]

lnϕ(λ) ∈ L1[−π, π]

Also valid for nonzero mean
stationary Gaussian processes.

Rényi
Entropy

1

2
ln 2πα

1
α−1 +

1

4π

∫ π

−π
ln 2πϕ(λ) dλ [12]

lnϕ(λ) ∈ L1[−π, π]

Also valid for nonzero mean
stationary Gaussian processes.

KLD
D(X||Y )

1

4π

∫ π

−π

(
ϕ(λ)

ψ(λ)
− 1− ln

ϕ(λ)

ψ(λ)

)
dλ [17]

ϕ(λ)/ψ(λ) is bounded or

ψ(λ) > a > 0 , ∀λ ∈ [−π, π]
and ϕ ∈ L2[−π, π].

Rényi
Divergence
Dα(X||Y )

1

4π(1− α)

∫ π

−π
ln

h(λ)

ϕ(λ)1−αψ(λ)α
dλ [31]

h(λ) := αψ(λ) + (1− α)ϕ(λ)

ψ(λ) and ϕ(λ) are essentially
bounded and essentially
bounded away from zero,
and α ∈ (0, 1).

3. Rényi Divergence and the Log-likelihood Ratio

Song [30] pointed out a relationship between the derivative of the Rényi
entropy with respect to the parameter α and the variance of the log-likelihood
function of a distribution. Let f be a probability density, then

lim
α→1

d

dα
hα(f) = −1

2
Var(ln f(X)) ,

assuming the integrals involved are well-defined and differentiation operations
are legitimate. Extending Song’s idea, we note that the variance of the log-
likelihood ratio (LLR) between two densities can be similarly derived from an
analytic formula of their Rényi divergence of order α. Let fi and fj be two
probability densities such that Dα(fi || fj) is n times continuously differentiable
with respect to α (n ≥ 2). Assuming differentiation and integration can be
interchanged, one obtains

lim
α→1

d

dα
Dα(fi||fj) =

1

2
Varfi

(
ln
fi(X)

fj(X)

)
.

Considering the integral G(α) :=
∫
fi(x)αf1−α

j (x) dx for α > 0, α 6= 1, we have

lim
α→1

dn

dαn
G(α) = Efi

[(
ln
fi(X)

fj(X)

)n]
.
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Hence, from the definition of Dα(fi||fj), we find

lim
α→1

d

dα
Dα(fi||fj) = lim

α→1

1

(α− 1)2

[
(α− 1)G(α)−1 dG(α)

dα
− lnG(α)

]
=

1

2

(
−Efi

[(
ln
fi(X)

fj(X)

)]2

+ Efi

[(
ln
fi(X)

fj(X)

)2
])

,

where we used l’Hospital’s rule to evaluate the limit. This connection between
the Rényi divergence and the LLR variance becomes practically useful in light
of the Rényi divergence expressions presented in Section 2.2. Table 5 presents
these quantities for the continuous univariate distributions considered in this
paper. Note that ψ(1)(x) refers to the polygamma function of order 1.

Table 5: Var(LLR) for Common Continuous Univariate Distributions

Name Varfi

(
ln

fi(X)

fj(X)

)
Beta (ai − aj)2

ψ
(1)

(ai) + (bi − bj)2
ψ

(1)
(bi)− (ai − aj + bi − bj)2

ψ
(1)

(ai + bi)

Chi
2
(
σ2
i − σ

2
j

)(
ki
(
σ2
i + σ2

j

)
− 2kjσ

2
j

)
+ σ4

j (ki − kj)2ψ(1)
(
ki
2

)
4σ4
j

χ2 1

4
(di − dj)2

ψ
(1)

(
di

2

)

Cramér
4
[
(θi − θj)2 − θiθj log2

(
θj
θi

)]
(θi − θj)2

Exponential
(λj − λi)2

λ2
i

Gamma
(θi − θj)(ki(θi + θj)− 2kjθj) + θ2

j (ki − kj)2ψ(1)(ki)

θ2
j

Univariate
Gaussian

2σ2
i (µi − µj)2 + (σ2

i − σ
2
j )2

2σ4
j

Gumbel
(Fixed Scale)

e
− 2µi

β

(
e
µi
β − e

µj
β

)2

Half-Normal
(σ2
j − σ

2
i )2

2σ4
j

Inverse
Gaussian

λiλ
2
jµ

4
i − 2λiλ

2
jµ

2
iµ

2
j + µ4

j

(
λiλ

2
j + 2µi(λi − λj)2

)
4λ2
iµiµ

4
j

Laplace
1

λ2
j

{
λ

2
i

(
2− e

−
2|θi−θj |

λi

)
− 2λiλje

−
|θi−θj |
λi

−2(λi + λj)|θi − θj |e
−
|θi−θj |
λi + λ

2
j

}
Lévy
Equal
Supports
(µi = µj)

(ci − cj)2

2c2i

Log-normal
2σ2
i (µi − µj)2 + (σ2

i − σ
2
j )2

2σ4
j

11



Name Varfi

(
ln

fi(X)

fj(X)

)
Maxwell
Boltzmann

3(σ2
j − σ

2
i )2

2σ4
j

Pareto
(ai − aj)2

a2
i

Rayleigh
(σ2
j − σ

2
i )2

σ4
j

Weibull
Fixed Scale

(
λki − λ

k
j

)2

λ2k
j

Song [30] also proposed a nonparametric estimate of Var(ln f(X)) based on
separately estimating ∆1 := E[ln f(X)] and ∆2 := E[(ln f(X))2] by the plug-in

estimates ∆̂l,n :=
∫
fn(x)

(
ln fn(x)

)l
dx, l = 1, 2, where fn is a kernel density

estimate of f from the independent and identically distributed (i.i.d.) samples
(X1, X2, . . . , Xn) that are drawn according to f . Theorem 3.1 in [30] establishes
precise conditions under which ∆̂2,n − ∆̂2

1,n converges with probability one to
Var(ln f(X)) as n→∞ (the estimate is strongly consistent).

Assuming one has access to i.i.d. samples (X1, . . . , Xn) and (Y1, . . . , Yn)
drawn according to fi and fj , respectively, we can propose a similar estimate

of Varfi

(
ln fi(X)

fj(X)

)
. Let

∆̃l,n :=

∫
fi,n(x)

(
ln
fi,n(x)

fj,n(x)

)l
dx, l = 1, 2,

where fi,n and fj,n are kernel density estimates of fi and fj based on (X1, . . . , Xn)
and (Y1, . . . , Yn), respectively. It is an interesting problem to find exact condi-
tions on fi and fj such that appropriate choices of fi,n and fj,n make ∆̃2,n−∆̃2

1,n

a strongly consistent estimate of Varfi

(
ln fi(X)

fj(X)

)
. Investigating this problem is

out of the scope of this paper, but it is likely that the consistency proof in [30]
can be extended to this case under appropriate restrictions on fi and fj . Alter-
natively, the partitioning, k(n) nearest-neighbor, and minimum spanning tree
based methods reviewed in [33] and the references therein should also provide
consistent estimates.

4. Conclusion

In this work we presented closed-form expressions for Rényi and Kullback-
Leibler divergences for nineteen commonly used univariate continuous distri-
butions, as well as those expressions for Dirichlet and multivariate Gaussian
distributions. We also presented a table summarizing four of the most impor-
tant information measure rates for zero-mean stationary Gaussian processes,
as well as the relevant references. Lastly, we established a connection between
the log-likelihood ratio between two distributions and their Rényi divergence,

12



extending the work of Song [30], who considers the log-likelihood function and
its relation to Rényi entropy. Following this connection, we have provided the
corresponding expressions for the nineteen univariate distributions considered
here. The present compilation is of course not complete. Particularly valuable
future additions would be the Rényi divergence expressions for Student-t and
Kumaraswamy distributions, as well as for the exponentiated and beta-normal
distributions [10].
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