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Mismatch in High-Rate Entropy-Constrained Vector
Quantization

Robert M. Gray Fellow, IEEE,and Tamas LindetSenior Member, IEEE

Abstract—Bucklew’s high-rate vector quantizer mismatch applied instead to another “mismatched” source. Such mis-
result is extended from fixed-rate coding to variable-rate coding match results are important for theory and potentially important
using a Lagrangian formulation. It is shown that if an asymp- 4 practice as code designs are often based on source models
totically (high-rate) optimal sequence of variable rate codes is . . .

which are estimated based on data and hence which are often

designed for ak-dimensional probability density function (pdf) g | ) ‘ -
and then applied to another pdf £ for which f/g is bounded, then inaccurate. Mismatch results provide a means of quantifying

the resulting mismatch or loss of performance from the optimal such performance variations. Another potential application
possible is given by the relative entropy or Kullback-Leibler diver-  of mismatch performance results is in the design of “robust”
gencel(f|lg). It is also shown that under the same assumptions, gq\;rce codes. Sakrison [30] and Lapidoth [26] showed that for
an asymptotically optimal code sequence fog can be converted large dimensions, Gaussian sources provide a “worst case” or
to an asymptotically optimal code sequence for a mismatched | g , ' SEhb P ;

source f by modifying only the lossless component of the code. “Tobust” approach to code design in that the Gaussian source
Applications to quantizer design using uniform and Gaussian has the largest (worst) Shannon rate—distortion function and,
densities are described, including a high-rate analog to the more importantly, that a code designed for a Gaussian model
Shannon rate-distortion result of Sakrison and Lapidoth showing | yield approximately the same performance when applied

that the Gaussian is the “worst case” for lossy compression of a ¢ ith th d . See 1101 f
source with known covariance. By coupling the mismatch result 0 any source wi e same mean and covariance. (See [10] for

with Composite quantizersy the worst case properties of uniform a fixed-distortion analog of this reSUlt.) The Gaussian code W|”,
and Gaussian densities are extended to conditionally uniform and of course, be suboptimal for the non-Gaussian source, but it will
Gaussian densities, which provides a Lloyd clustering algorithm provide “robust” or reliable performance in the sense that the
for fitting mixtures to general densities. resulting rate and distortion will be the same whichever source
Index Terms—Entropy constrained, high rate, Kullback—Leibler  the code is applied to. The results of Sakrison and Lapidoth,
divergence, Lagrangian, mismatch, quantization, relative entropy, and related works on mismatch by Yang and Kieffer [33] and
variable rate. Zamir [37], are asymptotic in the typical Shannon fashion;
large dimensions are required in order to apply Shannon
|. INTRODUCTION source-coding arguments. In contrast, Bucklew's approach

considers fixed dimension and asymptotically large rate.

HE optimal performance of high-rate vector quantization Zador also developed the rate—distortion tradeoffs for en-

using fixed-rate codes was established in Zador’'s clas?}c

Bell Labs Technical Memo [35] and generalized and Simp“ﬁedopy—constramed vector q_uantlzers [35], bg.t these results have
only recently been generalized [20] to conditions of comparable

by Bucklew and Wise [2] and Graf and Luschgy [14]. These

. : . - nerality to the fixed-rate results of Bucklew and Wise [2] and
results characterized the optimal rate—distortion tradeoff . . i
. . . - raf and Luschgy [14]. No rigorous variable-rate mismatch
fixed-dimension vector quantization as the rate or codebog

results comparable to the fixed-rate results of Bucklew [3]

size grows asymptotically large, in contrast to the Shanncélrr]e known to the authors prior to those reported here. The

rate—distortion theory results characterizing the tradeoff for. ; . . .
rimary goal of this paper is to establish a general variable-rate

fixed rate when the dimension becomes asymptotically Iarq%ismatch result following the Lagrangian approach of [20].

The history and generality of the results may be found, e.g., in

X ) pplications to universal quantization, robust quantization,
[18]. Bucklew [3] developed further asymptotic properties Or:md clustering mixture densities are described. In the special

high-rate quantization, most notably providing a mismatch "&ase of scalar guantization, the results are related to the known

sult that quantified the performance resulting when a Sequer}a%%/mptotic optimality of uniform quantization followed by

of quantizers that is asymptotically optimal for one source bsptimal entropy coding.

The basic mismatch results derived here have been previously
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X is random vector with a distributioR;, which is absolutely paper,[t] denotes the smallest integer not less thaand | ¢
continuous with respect to the Lebesgue measuend hence denotes the largest integer not greater thahet 4 denote the
possesses a probability density function (pfi= dP¢/dV so collection of all admissible length functiords
that To summarize, a vector quantiz@ris completely described
by atriple(«, 8, ¢) consisting of encoder, decoder, and admis-
P(F) = / f(z)dV(z) = / f(z)dx sible length function. We will abbreviate the overall action of
F F producing a reproduction from an input, the cascade of decoder

for any F' € B. The volume of a seF’ € B is given by its and encoder, using a lower cage
Lebesgue measuiié(F) = [, dz. We assume that the differ-
ential entropy q(z) = B(a(x)). )

A quantizer of particular interest is the uniform quantizer with
_/ dz f(z)In f(2) side lengthA. For A > 0, let QA denote a quantizer db
i o ) i ) _into contiguous cubes of sid&. In other words QA can be
exists and is finite. The unit of entropy is nats or bits accordinge\wed as a uniform scalar quantizer with bin sixeppliedk
to whether the base of the logarithneisr 2. Usually, nats will - ¢,ccessive times. We assume the axes of the cubes align with
be assumed, but bits will be used when entropies appear iVg8 coordinate axes (and that points touched by corners of

P2

h(f)

exponentoR2. _ _ cubes). In particular), is a cubic lattice quantizer with unit
A vector quantizet) can be described by the following map~,q;yme cells.
pings and sets. The instantaneous rate of a quantizer is defined(by)) =

« An encoder: Q — 7, whereZ is a countable index set, £(a(z)). The average rate is
and an associated measurable partitos {S;; i € 7}
such thatu(z) = i if 2 € S;. If T is finite with N > 1 R(Q) = Ry(a, )
elements, we sef = {0, 1, ..., N — 1}, otherwise, we =Esr(a(X))

letZ = {0,1,2,...}. _ / def(e)(o(x)

» A decoderp: 7 — € and an associated reproduction

codebookC = {A3(i); i € I}. Without loss of gener- = Z pil(1)
ality, we assume that the codevectg(s); ¢ € Z are all i
distinct.

wherep; = Pr(a(X) =1i) = P¢(S;) forall i € 7.
¢ Anindex coder): T — {0, ..., D — 1}*, the space of  Given a quantize@), the entropy of the quantizer is defined
all finite-length D-ary strings, and the associated lengthn the usual fashion by
L:7T — {1, 2, ...} defined byL(7) = length(¢(4)). ¢ is
assumed to be uniquely decodable (a lossless or noiseless Hy(Q) = - Z pilnp;
code) and hence the resulting set of lengths must satisfy i
the Kraft inequality (e.g., [6]) for some channel code al

. Iénd we assume that > 0 for all . Note that we could also
phabet sizeD

write H¢(q) or H¢(a) since the entropy depends only on the
Z D-LG6) <1 (1) encoder or, since the reproduction words are assumed distinct,
: - on the cascade of encoder and decoder.
' For any admissible length functiof the divergence in-

It is convenient to measure channel codeword lengths ineguallty [6] implies that

normalized fashion and hence we define the length function of Ry (Q) > Hs(Q)
the code in nats a47) = L(i) In D so that Kraft's inequality ! =
becomes with equality if and only if
DT (2) (i) = —Inp;. (4)

A set of code lengthé(i) is said to beadmissibleif (2) holds. 'hus: in particular

Following Cover and Thomas [6] and [20] it is convenient to re- .

move the restriction of integdp-ary code lengths and hence we Hy(Q) = elgit Ry(e, 6). ®)
define any collection of nonnegative real numb&i$; i € 7 to ) ) )

be anadmissible length functioif it satisfies (2). The primary V& assume a distortion measufier, ) > 0 and measure
reason for dropping the constraint is to provide a useful tool fBErformance by average distortion

proving results, but the general definition can be interpreted as D _D 3

an approximation since i(7) is an admissible length function, 7(Q) =Dy(a, f)
then for a code alphabet of sizethe actual integer code lengths =Ed(X, ¢(X)
L(i) = (%1 will satisfy the Kraft inequality. (Throughout this =Fd(X, f(a(X)).



1206 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 5, MAY 2003

In particular, we initially assume squared-error distortion with « From (4), the optimal length function for the given encoder

average and decoder is

k

(i) = -1 i
A, &) = llo— a2 = 3 fos — af? (i) =~lp
=1
. The following asymptotic result is the primary result of [20].

forz = (21, ..., x;) andz = (&1, ..., &). In Section VIII, g asymp P y [20]
another type of distortion measure will be considered for the Theorem 1: Assume that the distributio®?; of X is abso-
guantization of signals into models. lutely continuous with respect to Lebesgue meas$tweith pdf

The traditional distortion—rate approach defines the optimal = dP;/dV, that the differential entrop¥(f) exists and is
performance as the minimum distortion achievable for a givédinite, and thati/;(Q;) < oc. Then

rate
. (p(fiN) |k )
. lnn( +-InX| =h(f)+ 0k 9
6¢(R) = f D 6 . ’
gy = ik D@ ©6) Ao\ A2
= st é?fa,f)gRDf(a’ B). (7)  where the finite constartk, is defined by
The traditional form of Zador’s theorem states that under suit- 0y, 2 inf (L”l? ) + Eln A) (10)
able assumptions of >0 A 2
lim 2% R (R) = b(2 k)Q%h(f) ©) and u; is the uniform pdf on thek-dimensional unit cube
R—oo 7 [0, 1)%.

whereb(2, k) is Zador's constant, which depends onlyloand | particular, the limiting constart, depends only on the di-
not f. Zador did not evaluate the constaiig, k) but he did mension and not on the pdf. It is also shown in [20] that under

provide upper and lower bounds that become tight for l&rge he stated assumptions, Zador's original result (8) and the La-
Zador’s basic results contained technical errors and restrict ingian formulation are equivalent and

conditions on the allowed densities. These problems were dis-

cussed and fixed and the results generalized recently [20] using k

2e
a Lagrangian approach, which we turn to next. O = 2 I & b(2, k). (11)

The Lagrangian formulation of variable-rate vector quantiza- In 1968, Gish and Pierce [13] claimed that for high rate,

t'ol? [5] def!nesdfotr e?ch value of a Lagrangian multiplier- 0 the optimal entropy-constrainestalar quantizer performance
a Lagrangian distortion wasé;(R) = (1/12)22¢()=F) where~ denotes asymptotic

pa(m, i) = d(z, B(i)) + AL(i) equality in the sense that the ratio of the two sides convergees to
' asR — oo, and that uniform quantization followed by optimal
and corresponding performance entropy coding achieved the optimal rate—distortion tradeoff in

the limit of asymptotically large rate. Gish and Pierce gave a
p(f, X Q) =Ed(X, q(X)) + ABl(a(X)) heuristic proof based on companding along with a rigorous one
=Ds(Q) + ARf(Q) for continuous densities that satisfy a tail condition. They also
claimed to have a proof for all uniformly continuous densi-
ties, but omitted it in the paper and it was not subsequently
p(f, N) =infp(f, A, Q) published. Since a uniform density is included in their con-
Q ditions, however, their results coupled with Zador’'s theorem
where the infimum is over all quantize€s = (o, 3, £) where imply thatb(2, 1) = 1/12. In the scalar case, it can be argued
¢ is assumed admissible. Unlike the traditional formulation, ttgat a sequence of increasing rate uniform quantizers followed
Lagrangian formulation yields Lloyd optimality conditions fody optimum entropy coders will be asymptotically optimal if
vector quantizers, that is, a necessary condition for optimal#fye assumptions of Theorem 1, which are more general than
is that each of the three components of the quantizer be optirifétse of Gish and Pierce, are met. This follows from a result
for the other two. of [28] which shows that under assumptions equivalent to those
of Theorem 1 a sequence bfdimensional lattice vector quan-
tizersQ g will have asymptotic (large entrop) distortion of

and an optimal performance

 For a given decodef and length functiorf, the optimal

encoder is D(QR) =~ G(A)2@/WR()=F) whereG/(A) is the normalized
a(z) = argmin (d(z, B(i)) + M(i)) moment of inertia of the basic Voronoi cell of the base lattice
i Fork = 1, G(A) = 1/12, and, hence, uniform scalar quantizers
(ties are broken arbitrarily). are indeed asymptotically optimal.

_ _ Analogous to the scalar case, if one can find the asymptoti-
* The optimal decoder for a given encoder and length fungally optimal performance for a sequence of vector quantizers
tion is the usual Lloyd centroid with increasing rate foany-dimensional density for which the
N . theorem is true (e.g., the uniform pdf on a hypercube), then this
B(i) = argmin E(d(X, y)|a(X) =1). would yield the value fob(2, k) as it does in the scalar case. To
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this day, howeven(2, k) is known only fork = 1 and the lim- In the special case where tf¥g, are disjoint, the mixture is said
iting case oft — oo. (The corresponding constant for high-ratéo be orthogonalor disjoint Thus, for example, given any pdf
fixed-rate coding is known fok = 2 as well.) f and a partitiorS = {S,, }, there is induced a disjoint mixture
In 1979, Gersho [12] provided a heuristic development dfw,,, fm} With w,, = [¢  f(z)dz, fin(z) = f(2)/wy, for
Zador’s results and demonstrated that based on a still unproved Sm, and0 otherwise.
conjecture regarding the asymptotically optimal quantizer cell Suppose thaf is a disjoint mixture and that for eagh, we
shapes, an optimal lattice or tessellating quantizer followed bgve a quantizey,, defined ort2,,, i.e., an encodex,,: 2,, —
an optimal lossless code provides an asymptotically optimal eh-a partition ofQ2,,,, {S,.+; ¢ = 1,2, ...}, and a decoder
tropy-constrained quantizer in the limit of high rate. This i8,, : Z — C,,. The component quantizefs,, } together imply
a natural generalization of the one-dimensional optimality ain overall composite quantizerwith an encoder: that maps
scalar quantization and optimal entropy coding, but the resulinto a pair(m, i) if z € Q,, anda,,(z) = 4, a partition of
has never been rigorously demonstrated and existing derivatiéns S,, ;; i =1, 2, ..., m =1, 2, ...}, and a decode$ that
depend strongly on Gersho’s conjecture. Itis widely conjecturasaps(m, i) into 5, (7)
that lattice or tessellating quantizers followed by optimal en-
tropy codes are asymptotically optimal, but this result has not Z am(2)1q,, (2 (18)
yet been proved.
In order to state two final preliminary results, we introduca,herelA(l;) denotes the indicator function of c Q. If each

the following notation: component quantizep,,, has a length functio#,, and if there
is then an admissible length functidnfor the component in-
0(f, A a, B, £) = lgf/ A Q) . dexesm; m = 1, 2, ..., then a valid length function for the
2 f)(\Q) + R (Q) + 3 In X — h(f) composite quantizefis given by

k The length function for coding the component in effect is opti-
T3 A —h(f) (12)  mized by choosind.(m) = —In P¢(£2,,).
Conversely to constructing an overall quantizer from a col-
lection of component quantizers, an overall quanti@ewith
lim inf §(f, A, Q) = by. (13) encodera: 2 — 7 can be applied to every component in the
A0 Q mixture. A little manipulation shows that (see, e.g., [20])
If one or more of the components is optimized, then it is
dropped from the argument éf e.g., W)=Y wnh(fm)+ H(Z) (20)

0(F, A o, B) = nf6(f, A, a, B, 6)

:MJer(aHglnA‘h(f) (14)

6(F, A) = inf 6(F, A o, B, 0). (15)

so that the theorem states that under suitable conditions

where the equality holds whenever at least two of the three quan-
tities h(f), H(Z), and}_, wxh(f~) are finite. Under these
conditions, [20, Lemma 2] shows that

0(f, X, B) =D wmb(fm, A, o, B) — H(Z|q(X)) (21)
With this notation, the theorem statement can be simplified to m

. _ whereH (Z|q(X)) denotes the conditional entropy #fgiven
fim 0(f, A) = O (16) " the quantizer outpuf(X).

The theorem guarantees that if a fdfatisfies the conditions
of the theorem, then there is asymptotically optimadequence
of quantizersy,, for f in the sense that for any decreasing se- Given two probability measurg3andG on(£2, B) for which
guence),, converging td) there exists a sequence of quantizerf < G (i.e., P is absolutely continuous with respectiyand a

Relative Entropy

g Such that finite measurable partitio = {S;}, define theelative entropy
of P with respect ta7 of the partitionS as
lim 6(f, An, qn) = Ok. 17)
e Hpo(8) = 3 P(S) In L5
P|G i 7 G(SL)

Disjoint Mixtures

A mixture source is a random pajtX, Z}, whereZ is a and therelative entropyof /> with respect ta+ as

discrete random variable with probability mass function (pmf) I(P||G) = sup Hp|c(S)
w, = P(Z = m),m = 1,2,..., and conditional pdfs I
[x|z(z|m)= fm(x) such thatPs, (Q,,)=1for some,, € B,

Jm where the supremum is over all finite measurable partitions. The
m = 1,2, .... The pdf forX is given by

relative entropy is also known as the Kullback—Leibler number
f(@) = fx(z) = Z Wi o (7). or Kullback—Leibler/-divergence or directed divergence or dis-
’ o crimination. The reader is referred to [25], [29], [7]-[9], and
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[15] for thorough treatments of relative entropy and its propeonly known example of Bucklew’s uniform integrability condi-
ties. If the two measures are induced by pfifandg it can be tions [3] for the fixed-rate analog result is the same—thaj

shown that be bounded. The derivation [17] based on Gersho’s conjecture
‘ suggests that the theorem should hold more generally, specif-

1(PAIP,) = I(fllg) = / dz () In f(z) ically, that/(f|lg) < oo should suffice, but thus far we have
g(x) not succeeded in proving this the case and it remains an inter-

esting open problem. In the particular case of a Gaussian model
where we have abbreviated the notation to emphasize the depgand an unknown pdf describing raster image intensities or
dence on the densities. We follow Csiszar’s notation and/usgpeech samples produced by physical sensors,thewill be
for relative entropy. (Another common symboliisfor diver- bounded due to the finite dynamic range of real sensors.

gence, but that might cause confusion with distortion.) The special role of uniform scalar quantizers provides an il-
lustration. If bothf andg meet the requirements of Theorem 1,
[1l. QUANTIZER MISMATCH then the results of [28] imply that a sequence of uniform

guantizers with an optimal entropy code fgwill yield the
Same average squared error when applied twith a rate
increase offl ;| ,(Sq), whereSy, is the partition corresponding

Theorem 2 (The Mismatch Theorenfuppose that a proba-to the uniform quantizer. If the relative entropgf||g) is finite,
bility measureP, on ®* satisfies the conditions of Theorem ithen H ,(S¢) will converge toI(f||g) as the rate? — oo.
and has pd§. Suppose tha®,, = (¢., £,) is an asymptotically Note that in this case, the conclusion of the mismatch theorem
optimal sequence of variable-rate quantizersifgr where/,, holds for a specific asymptotically optimal quantizer sequence
is the optimal length function faP, andg, . Suppose also that without the requirement of boundgd g.

P; <« P, and thadP;/dP, = f/g is bounded. Then The mismatch theorem provides the mismatched perfor-
mance of any asymptotically optimal quantizer sequence.
Even if lattice or tessellating quantizers were asymptotically
optimal as suggested by results based on Gersho’s conjecture,
that would only be one particular scheme. For example, for
=0k — / dzf(z)Ing(x) (22) gp f with unbounded support but sub-Gaussian tails, the
results of [4] imply that an optimal entropy-constrained vector
or, equivalently guantization (ECVQ) for any value of has &finite number of
codewords. Thus, there are asymptotically optimal sequences
lim 0(f, An, Qn) = 05 + I(f|l9)- (23) that are quite different from lattice quantizers.
n—oo The development of the mismatch result for ECVQ parallels
that of Bucklew’s fixed-rate result in that the beginning and core

The second form of the theorem provides a characterizatighthe proof of the lemma of the next section provides what can
of the mismatchresulting from applying an asymptotically op-be interpreted as a local form of Theorem 1, an entropy-con-
timal quantizer sequence for one pdf to another: the mismatffiained variation on Bucklew’s Lemma 2. Although the state-
is exactly the relative entropy of the mismatched pdf to the desent of the result is analogous, our proof bears little resem-
sign pdf, a continuous analog to the mismatch formula arisitgnce to Bucklew’s and is, in fact, considerably simpler. Our
in noiseless coding. The result provides a new interpretationugie of the result differs significantly from that of Bucklew. The
relative entropy as a measure of mismatch for high-rate fixed-gubsequent section is devoted to the proof of the theorem. The
mension lossy data compression. Relative entropy also ariseggfainder of the paper provides corollaries, examples, and an
a somewhat similar way in the Shannon-type regime of asynmgpplication.
totically high dimensions and random codebook selection [10]. The theorem is proved in a series of steps in the next three
In that case, the relative entropy of the mismatched codebogsctions.
distribution to the optimal codebook distribution is an upper
bound on the loss due to mismatch.

The mismatch theorem can be derived based on Gersho’s con-
jecture [17], that is, the result is consistent with that predicted The first step is an extension of Theorem 1 involving only
by Gersho's conjecture. Unfortunately, however, as with otharsingle density. Following the notation of that theorem we as-
implications of Gersho’s conjecture, this has not yet led tosume thaif is the source pdf and that an asymptotically optimal
proof of the theorem and the theorem is not an immediate caysantizer sequence is designed foand we investigate prop-
sequence of previously known results. erties of the sequence. More formally, recall that for any de-

The constraint thaf /g be bounded is admittedly strongercreasing sequencg, converging ta), Theorem 1 implies the
than one would like as it eliminates many interesting casesxistence of an asymptotically optimal sequence of encoders
For example, for a scalar case, a Gausgiamd a Laplaciarf and decoders,,, ,, and the corresponding optimized length
will not meet the conditions, nor will two Gaussians with misfunction
matched means. On the other hand, the corresponding results for
fixed-rate coding essentially require the same assumption. The (1) = —In Py(a,(X) =)

The principal result of this paper is the following high-rat
variable-rate quantizer mismatch theorem.

lim —Efd(X’ an(X))

n—oo ATL

+ Eply(an(X)) + gln An

IV. ASYMPTOTICALLY OPTIMAL QUANTIZATION
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for which

lim 6(f, Ans s Bn)

i [ g (A Balen)
= lim /w' dzf( )( + 25 (an ()

An

n—oo

+§ In )\, + lnf(x))
= 0.

Lemma 1: Suppose tha),, = (a,, G, £5) is an asymptot-
ically optimal sequence of variable-rate quantizersiipin the

(24)

sense of (24), wherg;, is the optimal length function foPy.

Then, for every measurable sBt

lim [ def(x) <w

n—oo F

+ £ (an(2))

n

Proof: If P;(F) = 0 or 1, the claim is immediate, so

(25)

otherwise, and similarly forn = 2. Let X have pdff and
defineZ =1if X € F and2 otherwise. Then

—wl/dxfl < ﬂ"(a"(:”))) + 0 (an ()

—|—g In A, +1n f; (:l:)w1>
and
M?(F) + M}?(FC)

= > [ o) (D 1 0o

=1
+g In A+ 1n fm(w)wm) .
Since
lim 0(f7 )"ru qn) = 9k (30)

[20, Lemma 6] shows that

assume that > P¢(F) > 0. The lemma can be stated simply lim H(Z|g.(X))=0

by adopting Bucklew’s notation. Define

/ dif (i < z, Bn ( n(7))) 2 (an(z))

n—oo

i.e., asymptotically, the quantized must determine which
component of the mixture is in effect. This and (21) imply that

+§ In A, +1n f(.]?)) (26) nll{l;o 9<f Ans y Oln,y ﬁn) = hnl Z Wiy 0 fm An, y Ony /Bn)
m 1
. , . = 0.
where/;, is the optimal length function fax,, andg,,
We now claim that each of the two component compression
(i) = —In Pr(a,(X) = 1) (27) functions must individually converge ., not just the overall
weighted average. Note that by Theorem 1 (see (13)) for
and m=1,2
so that the claim of the lemma becomes Now assume that
li O(f1, Ay Qny Br) > b5
lim M}(F) = My(F). (28) im Sup (11, An, @, ) > B
Then, there is a subsequencesuch that
Note: Unlike Bucklew's case, we cannot say; () is non-
negative for all events’ so that we cannot argue it is a measure. ,,h_lgoe(fl n's @ty Pnr) > O
We shall, however, find it useful in the next section to view it )
as asigned measureThe setwise limitM;(F) is, however, a BY assumption
measure. Wm O(f, A, s, Bur) = O
By construction and Theorem 1 as— co e
and
M} (F)+ MF(F®) = 0(f, Any v, Ba) = O (29)
H(fa )\n’-, (07N /Bn’) = wle(f17 )\n’; Qp’, [))n’)
It is convenient to rewrite these expressions in terms of +wab(fo, Anry nry Bur)

the disjoint mixture obtained by restricting to the par-

tition {F, F¢}, where F is a fixed measurable set. Letwhich implies that

{wm, fm; m = 1,2} be the induced disjoint mixture with

wy = Py(F), Q = F, fi(z) = f(z)/w, for z € F, and0 i 0(f2, Anrs cnrs fr) < O

n’—oo
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contradicting (31). Hencéim sup,, 6(f1, An, an, Bn) <8, and or, equivalently
by symmetry we also havBm sup,, 8(f2, A, an, Bn) < Ok. W B, (0 (0n (X)) + Inwyn — € (n(X)))

Thus, we have that fan = 1, 2
; =wn Y Pr(an(X) =i|Z = m)InPr(Z = m|an(X) = i)
lim / dx fm () (M —In Py, (S, a, (z)) i
n—ee An which is, obviously, negative for botm = 1 and2. Hence,
k these terms forn = 1 and2 will go to zero if and only if the
—lnA+Inf,(z) | =0 (32
+2 nA+lnf (l)) e (32) sum of the two terms

2
whereS,, = {S, i; i € I} denotes the encoder partition cor-z (wmEy,, (€(0n(X)) + Inwn, — £ (an (X))
responding tav,,. me "

m=1

To combine the two similar weighted sums, those/fj} and = —H(Z)|g.(X))
those fold( fin, An, qn), SUpPOSe tha;, ,, is the optimal length _
function fora,, andj3, using the pdff,., i.e., tends to zero a8 — oo, which has already been seen to be the
case. O
bin,n(8) = =10 Pp, (Sn.i)- (33) In Bucklew’s development, the analog to the previous lemma
We can write provides a key step in the proof of the mismatch theorem. Unfor-
. d(, Bu(an(x))) tl_JnateI_y, however, Bucklew’'s approach cr_:mnot be used directly
M§(F) = / dz f(z) ( : ”)\ - + £F () since, in our case, thi/;" are not nonnegative and hence the ar-
JE n gument of the integral defining these terms cannot be assumed
+§ In\, +In f(x)) to be nonnegative and hence a probability density.
:wl/ dz fi(z) (M + 0 (an(z)) V. SIGNED MEASURES

E We now change notation somewhat in order to reflect the fact
+§ In A, + 1n(f1(:v)w1)> that in the mismatch theorem there are two densities of interest,
_ . a densityg for which we have designed an optimal sequence of
a wl(e(fi’ Ay @, o) + By, (£ (n (X)) codes and a densitf to which we will apply the sequence of
— 41 (o (X)) +Inwr) (34)  codes. Toward this end, replace then Theorem 1 and Lemma
1 by g and define the set functiol/;' (F') for g as in (26). For

and similarly convenience, we make the additional definition
+Ey, (6 (0 (X)) = 65, (n(X))) +Inws).  (35) A d(z, Bulan(z)))
e | 2 [ gty (2P g )
Sincet;, ,, is the optimal length function fay,, F An
k
By, [ (an(X))] 2 Ef,, [€7, n(an(X)))] ty s + 1n9($)> : (38)
and, hence, The set function,, is a signed measure (see, e.g., Doob [11]).

n From Lemma 1 we know that, (F) converges tqu(F) =
M§(F) 2wif(f1, An; o, fu) +wrlnwy (36) M,(F) = 6, P,(F) for all measurable set8. We now explore
MF(F) 2 w2b(f2, Ay an, Bn) +w2lnws.  (37)  the consequences of this convergence.

Given a signed measune, for any measurable sdf de-

The leftmost term on the right-hand side of (34) has alreagme the positive variation* (F) = supgep 1(G), the nega-

been shown to converge t@ 6, asn — oo, so the lemma will

: g tive variationu ™ (F') = — infgcr u(G), and the total variation
be proved if the remaining term |u|(F) = u™(F) + p~(F). The spaceM of all finite-signed
w1 By, (6 (an(X)) = £ (an(X))) +wi Inw; measures is a normed space with norm
_ k
is shown to converge . As a first step toward this demonstra- [lell = |l (RF).
tion, observe that If u = pu™, theny is called apositive measure

A signed measure inite if ||u|| < co. The Jordan decom-

W B, (b (00 (X)) = L (0 (X)) + 0 In wi position states that = ™ — p~, which represents the signed

— w0, S Py (S0 0)In Py, (Sn,i) P () measure as the difference of two positive measures.
e Pg(Sn, i) For all measurable sefs, j,,(F) < oo, and
Pf(QmﬂSn_i) Pf(QmﬂSn_i) li F) =
—w,, i) : im pn(F) = Py(F)0 < 00
(DD (o B e ’

and hence also
Um |pn(F)| = Py(F)bk < .

n— o0

=W ¥ Pr(Sn,i|m) In Pp(Qn|Sn. i)
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Thus, from the discussion following Doob’s theorem [11, The=ombining the previous two inequalities we have that

orem 1X.9], it follows that

sup || gl < oo. (39)
From Lemma 1, it follows that for any simple functign
lim [ ¢dp, = / o dpu. (40)

We now show that this limit will also hold for any bounded
nonnegative function. Suppose tlgais such a function and for
simplicity assume thai < ¢ < 1. For a fixed positive integer

k define the measurable sets

Gi:{x:qﬁ(x)e [%%)} i=0. 1, .. k-1

From the Jordan decomposition we can wriig(F) =
wr(F) — u, (F) and hence,

[ o= [ sant = [ odu;

—Z/ At - Z/ Ay

k k—
1+ 1 1
SZ A N:(Gi)_z Eun(Gi)

i=0

1=0 =
k—1 i 1 k—1

_ 2 ) _ +

= Z 2 pin(Gi) + 2 tin (Gi)
=0 1=0
k—1 i 1

— -z . =, (pk

= 3 () R
k—1

[

7 1
7 Hn Gi ' n
> fnlG) il

k—1
1
S Z Ii} /l/n L 7 Sup ”/l/nH (41)

Since we know the I|m|t for S|mple functions

n—oo

. ; L1
lim sup /¢>dun < Z (G + 7 sup |-

In a similar manner

[ oau= [ saui~ [ oau;

=Y [ a3 [ 4w
i=0 7 Gi i=0 7 G
k—1 . k—1 .
7 1+1 _
>y Lt @)=Y ()
1=0 =0
k—1 . k—1
=3 LGy -1 Y w(Gy)
’ k ¢ k ¢
1=0 1=0
kol i 1
_ - - k
=2 (G = (R
kE—1 .
> S LG - S lull (42)
> 3 1(Gi) = el

limsup/ ¢ dp, < Z w(G SUP||/Ln|

n—oo

/ i+ ¢ il + 5 ol

Since the two rightmost terms can be made arbitrarily small by
choosingk sufficiently large

lim sup / ddu, < / ¢ du. (43)

Similarly, repeating the stepsin (41) and (42) but exchanging
the role ofu andyu,,, we obtain

; 1
[ pdun> Zkun ) = 5l

and
" 7 1
< _ . —
/s‘bdu = 3 1Gi) + ]
so that

L. 1 1
lgglogf/wunz/qﬁdu—gsupnunn—gllull.

Since k can be made arbitrarily large, indeed (40) holds as
claimed for all bounded nonnegative functions.

VI. PROOF OF THEMISMATCH THEOREM
Since the Radon—Nikodym derivatige= f/g is assumed to

be bounded

and the two sides of the equation evaluate as

dm [
= lim /da:g ( 'Bﬂ(an( ))) +Z;(an($))

n—oo A
k f(z)
+§ In A, + In g(x)) —g(x)

= lim /da:f( )<w+£’;(an($))

n—o0o )‘n

—I—S InA, +1In g(a:))

f / f(=@)
“dpu=10y | drg(x
/ g =0 | degle) s
=0
which completes the proof of the theorem. O

VII. HIGH-RATE UNIVERSAL CODES

The mismatch theorem shows the asymptotic performance
that is lost when an asymptotically optimal sequence of quan-
tizers ,, designed for a pdf is applied to a pdff and that
this loss is just the relative entrogdy f||g). In this section, we
see that this performance loss can be eliminated by modifying
only the length function to match the pdf This implies that
the asymptotically optimal sequence of reproduction codebooks
for the design pdfy remains asymptotically optimal for anfy
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meeting the conditions of the theorem. Thus, for example,iifiplies
f has bounded support, one could design an asymptotically op- __ ) 5
timal sequence of codes for a uniform pdf on the support set andnh_,ngo Dy(gn) = JLH;O / dz g(z)llz = ga(z))[7 =0 (49)

it would also be optimal foif. If f has unbounded support, ON§see [20, eq. (24) in the proof of Lemma 6]), i.g.(X) con-

could design an asymptotically optimal quantizer sequence fo\?é?ges toX in mean square (her& has pdfg). This implies

Gaussian pdf and its reproduction codebooks would be asynﬂpatP; — P, in the sense of weak convergence (see, e.g,, [31,

totically optimal for f. Theorem 4.2]).

Corollary 1: Suppose thaf, = (g, £») is a sequence of  Furthermore, since by assumption there is a firifesuch
variable-rate quantizers that is asymptotically optimal for a pmatf(il?)/g(ﬂf) <M

in the sense that . : [z
g lim Df(g,) = lim /da;g(x)ﬁnx—qn(x)m?
lim 6(g, A, Qu) = b noee ne, 9(x)
n—00 <M lim Dy(g,)
for some decreasing sequenggconverging td. Assume also 0 nTee

that f is a pdf that meets the condition of the mismatch the-
orem and thab(f) > —oc. Define’, to be the optimal length and, hence, by the same argumétit — P; (weak conver-
function forg,, andPy. ThenQ!, = (q., £,,) is asymptotically gence). From [9], relative entropy is lower semicontinuous with

optimal for P, i.e., respect to weak convergence of distributions so that
Tim 6(f, An, @) = Or. (45) liminf I(PF(|Pg") = I(fll9) (50)
Proof: Since®, andQ’, share the same encodey and Which with (47) yields
decoders,, and differ only in their length functions, we have limsup 8(f, \p, Q) < 0%
from (12) that which completes ?rreogroof. O

0(f. Ans Q) =0(f, Ans Qu) — (Epb(a(X)) — Eft'(a(X)))

Pr(S, ) The preceding proof contains an interesting property of
=0(f, A\, Qn) — (Z P(S,.:)In Pf(STL?%)) asymptotically optimal quantization. Since
i g n,1

I(PFNPg) = Hyjg(Sn)

where we have plugged in the definitions foand ¢’ as the gnqs — {S,.:} is a measurable partition

optimal length function fory and f, respectively, and where ’ N

{S.,:} is the partition corresponding te, I(Pf ”Pg ) < I(fllg)
which, with (50), implies that

Sn,i = {z: an(z) = i}.
Jim Hypyy(Sn) = I(£ll9)- (51)

We have immediately from Theorem 1

.. . This result would be immediate if the sequence of partitiSps

/
liminf6(f, A, @) 2 lim inf %fe(f’ An; Q) asymptotically generated the sigma figldsee, e.g., [29], [15]).
=0. (46) Thisresult shows that the partitions corresponding to an asymp-
o . . totically optimal sequence of quantizers have the same prop-
tl::;rtthe other direction we have, using the mismatch theore(renrty even though in general they do not generate the underlying
sigma field.

limsup 6(f, \n, Q) An additional observation on the corollary is that although

noee the length function (and, hence, the lossless component) of the

=0 + I(f|lg) — liminf Z P¢(S,.:)In L(S"v’i)_ (47) quantizer has been matched to the true source, the encoder has
el Py(Sn.4) not been optimized for the new length function. Thus, there re-

As a preliminary to considering the rightmost term, definBains a mismatch in the code sequence, which nonetheless is

the discrete distributiod®; by P (yn,;) = Py(Sn,:), where asymptotically optimal.
Yn.i = Pn(i), i.e., for any measurable s&t
PR(F)= Y Py

it Yn, i €EF

VIIl. EXAMPLES

As examples and applications, we first consider two impor-
tant special cases: a uniform pdf over a bounded subsgt of
and a Gaussian pdf over the entire sp&‘e The examples
provide both interesting similarities and important differences
which suggest specific applications and future exploration. Both
examples yield reasonably simple formulas when used as the
limsup 8(f, A\n, Q) = 0 + I(fl|lg) — liminf I(P}||P)). design pdfs for quantizers, but applied to a different pdf. Both

n—oo e (48) ©€xamples represent ‘worst cases” for quantization, so that the
It is easy to see that resulting design provides a robust quantizer sequence for other
pdfs satisfying the conditions of the mismatch theorem, where
nlij;o 0(9; Ay Qn) = Ok here “robust” is in the sense of Sakrison [30] and Lapidoth [26]:

and P} is the distribution for the random vectgy (X') when
X is described by the pdf. Similarly define the discrete dis-
tribution ;" by Py (yn,:) = P4(Sn,:). With this notation, (47)
becomes
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a code is robust if it yields predictable, if suboptimal, perforGaussian Codes

mance on a source with qnly_ partially known statist_ics. The consider a Gaussian pdf
single pdf worst case design is then extended to mixtures of Y ®
uniform or Gaussian by effectively quantizing the space of pdfs 9(z) =N(z, p, K)

using Lloyd clustering based on relative entropy as a measure _ : exp <_l($ — WKz — M)>
of distortion between models. (2m)3 |K |2 2
. wherey = EX, K = E[(X — EX)(X — EX)!] isthek x k
Uniform Codes covariance matrix, ani(| the determinant ok. Assume that
Suppose thaj is a uniform pdf on a bounded measurable s#ie covariance is nonsingular. In this case, the differential en-
G with positive Lebesgue measure so that tropy is well known to be
) — { ey wed o) = = [ daf()lnfe) = 5 zre) K] (56)
0, otherwise and it is well known that this differential entropy is the max-
and hence imum possible over all pdfs corresponding to random vectors
with covarianceK (see, e.g., [6]). This, in turn, implies that if
h(g) = InV(G). a sequencé),, @, } is asymptotically optimal foy, then for

) o any pdf f with covarianceK for which f/g is bounded, the
Of all pdfs having as a support set, it is well known that theasymptotic performance of this sequence is
uniform pdf results in the largest differential entropy (see, e.g.,

[6]). nlggo O(f, Ans Qn) =0k +I(fllg)
Since the uniform pdf maximizes the differential entropy, itis 1 k
the worst case in the sense of having the largest possible asymp- =0+ 2 n(2me)" K| = h(f). (57)
totically optimal high-rate performandg + h(g) for any pdfg  In this case, if all that is known about the pfifs its covariance,
with supportG. Any bounded pdff with supportG' meets the then, designing a code for a Gaussiangwith the same covari-
conditions of the mismatch theorem and, hence, if a sequerge will, providedf /¢ is bounded, result in a code whose per-
{An, Qn} is asymptotically optimal fop formance id ( f||g) worse than it would have been if the true pdf
lim 0(F, Ans Qn) =0x + I(f]lg) had been used to design the code. This code is robust since, as in
n—oo 07T k g the uniform example, (53)—(55) hold. This provides a high rate
=0, + InV(G) — h(f). (52) analog to the Shannon rate-distortion results of Sakrison [30]
and Lapidoth [26] that an approximately optimal code designed
for a large dimensional independent and identically distributed
(i.i.d.) Gaussian vector will yield roughly the same performance
on any other i.i.d. vector with the same mean and covariance.
r#—g-Fre, high rate replaces the assumptions of memorylessness and
arge dimension.
Wstead of knowing the full covariance

Thus, the code sequence designed for the uniformy puifl
have asymptotic performance when applied tihat is greater
than the optimal asymptotic performance foand this perfor-
mance mismatch i$(f|lg) = InV(G) — h(f). This implies
that the code is robust as we next illustrate using the traditio
Zador/Gersho non-Lagrangian argument.

The mismatch theorem and the correspondence (11) betwee
the Lagrangian and traditional formulations implies that given K = {K (i, j); i=0,...,k—1,j=0,..., k—1}
a fixed large ratd? and a quantizef) i that is optimized foy  one might know only a partial covariance

but used forf, the resulting average distortion is approximately Ky = {K(i, §); (i, j) € N}
D(Qr) = b(2, k)2~ G/WRE/MIIE/MITI, (583) ¢ g the covariance for small lags or in some band of the covari-
For a uniform pdfy ance matrix. In this case, the worst case pdf from a high-rate
quantization perspective will be the worst case Gaussian pdf
I(fllg) = h(g) = h(f) (54)  consistent with the known constraints, which is a Gaussian pdf
and hence, with the covariancerg maxa. A, =k, |A]ifsucha“maximum

N L (2/K)Roy(2/k)h(9) determinant” extension exists. This optimization problem is the
D(Qr) ~ b(2, k)2 2 (35)  well-known MAXDET problem for which much theory and ef-
which is the best asymptotic performance of an ECVQ at rdfigient algorithms exist [32]. This case is of particular interest
R for ¢g. So these are indeed robust quantizers in the Lapidoufien the covariance is being estimated based on observed data
sense. and one can only trust a limited number of the covariance values,
In the special case where the support@es the unitk-di-  €.9., those of nearby pixels in an image. This provides a robust
mensional cube, the mismatch is simplj(f) (the divergence high-rate coding result for the case of partially known covari-
inequality implies that the differential entrogy f) is neces- ance, provided the partial covariance has a maximum determi-
sarily nonpostive in this case). Here, the pdis exactly that nant (or “maximum entropy”) extension.
used in the definition of,.
One important aspect of pdfs with bounded support is that th@
optimal codes exist and require only a finite number of repro- A problem with choosing a worst case pdf to provide a robust
duction levels [4], [23]. guantizer sequence subject to some assumed constraint (e.g.,

mposite Codes
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known support or covariance structure) is that it can be too cdie assume the optimal choice bfm) = — In w,,, S0 that
servative. For example, fitting a single Gaussian pdfto a 100—r‘9(5;ﬂr A, Qn)
chunk of sampled speech for the purposes of code designiswell” =" "

hice an Dt ; " <Ef A(X, g (X))

known to produce an overly conservative code, one that does not=

perform as well as a code which fits codes more customized to A
local behavior. One might instead use a collection of Gaussian ;

models instead of a single model. Each model in the collection +§ InA- h(fm)>
could yield a code that was robust for some conditional behavior _ Z W8 Fons As Q)

of the source such as a conditional covariance structure. This ap- meAme Sy em,n

proach is implicit in traditional linear prediction coding (LPC)If fé/g mis bounded for each — 1 M, thenwe can apply

speech coders, which can be interpreted as fitting Gaussian F{He mismatch theorem to each component to obtain the asymp-
to local second-order behavior [21]. This idea provides an eXt%Bfic high-rate performance

sion of the uniform and Gaussian mismatch examples to piece
wise-uniform models and Gauss mixture models. lim 0(f, A\n, Qn) = 0k + Z Wi L(finllgm)- (58)
As before letf be the “true” pdf and suppose th@ is its e m
support (which might be all dR*). Assume thaf ={S,,,; m € This equation can be viewed as an extension of the mismatch
J},where7={1, ..., M},is afinite partition of2; and that theorem to composite quantizers. To extend the previous exam-
P;(S,,) >0 for all m. Assume also that we have a collection oples, recall that there the idea was to design a code for the “worst
model pdfs{g,,; m € 7} onR*. The two examples of interestcase” source given some constraintfoand then show that the
here will be uniform pdfs with bounded support and Gaussiaesulting code applied to an unknown source with the given con-
pdfs. We assume further that we have an asymptotically optinsataint would yield a known, if suboptimal, performance. Now
sequence of quantizers for each of the “design” pgifs that the strategy is to divide and conquer: suppose that instead of
is, for a common decreasing sequenge — 0 we have for a single uniform (or Gaussian) worst case, we are allowed to
eachm a quantizer sequena@,, »; » = 1, 2, ... for which find a collectionG = {g,,; m € J} of pdfs from an al-
limy, o0 0(Gm, Any Qm.n) = Ok. lowed collectionM of uniform (or Gaussian) pdfs and a parti-
Let @, = (am, Bn, £») be the composite quantizer contionS = {S,,; m € J} of R* for use in a composite quantizer.
structed from the,, ., = (., n, Bm,n, €m, =), the partition Whatis the best way to do so? Specifically, for a fixed paind
S, and a component length functidn that is, model classM, find a partitionS with M elements and model
codeboolkg which minimizes the mismatch

+ Ef, U, n(am,n(X))

an(z) =(m, am, n(z)), if v € Sy, N
/Bn(m-/ Z):ﬂm,n(z) If— énglf(57 g)
En(m, i) = L(m) + L, i(i)- where
Consider the performance resulting when the composite quan- _
tizer Q,, is applied to the pdff. Letting w,, = P¢(S,,) and 14(8.9) = Z Py (Sm)I(fmllgm)-
fm(z) = f(z)/wn, if x € S, and0 otherwise and using (12) m
and (20) yields This minimization can be solved by clustering and, in fact, posed
O(f, Ay Qn) as a quantization problem with an encoderé)?"'. — J de-
Epd(X, (X)) scribed by the partitio® = {S,,} by a(z) = mif z € S,

k
3 + Epln(an(X)) + sInA, —h(f) m e J,andadecoddr 7 — M defined byb(m) = gn.
By d(X, gn(X)) The Lloyd decoder optimization is obvious in this context,
= E Wy ( fm T2 On + Ef, Ly (an (X)) given an encoder index. corresponding to encoder cedl,,,

An the best possible,, is
k . .
=ln X, = h(fm)) - H(Z gm = argmin I(fmlg
+gld, = h(f)) - H(Z) rgmin (£, 1)
whereZ has distribution if the minimum exists, as will shortly be seen to be the case
Pr(Z = m) = wp, form=1,..., M for both uniform and Gaussian model spaces. If the optimum

) ~decoder is assumed, the minimum mismatch problem becomes
Also, by construction, from (19) the length function

ln(m, i) = L(m) + £, (i) and with the optimal choice of Iy =inf > Pr(Sm) min I(fmllg)-
L(m) = —Inw,,, the average code length of the composite _ m _ o
quantizer ISEL(Z) + Elu, n(ctm »(X)). With this choice, To describe a quantizer encoder requires a distortion measure
we have for the composite quantizgy, that which describes the distortion, sdy(z, m), between an input
vectorz € R* and an encoder output The average distortion

0(f: An, @n) with respect to the encoder should yield the mismatch, which

_ Z W, (Efm d(X, gm, (X)) + Ef (0 (X)) WEare attempting to minimize. A candidate distortion which

— An o " will be shown to accomplish the desired goal is
+§ In A, — h(fm)> + EL(Z) - H(Z). dy(z, m) = In qi(z’z) + L(m)
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where L is an admissible length function which can be opti&, its centroid inM is easily seen to be a uniform pdf 6h In
mized along with the encoder and decoder. The first term iparticular, suppose thatz € M has supporf’. Since we re-
volves only the shape of the model pdf and it has been usedjinire thatf < » andf/u is bounded for the mismatch theorem
clustering with the name of a “maximum-likelihood” (ML) dis-to hold, necessaril¢z C F and hencéd’(G) < V(F'). Then
tortion since minimizing this distortion over. for a givenx

is equivalent to choosing the ML estimate ferassuming the I(f||lur) = / dzf(z)In f(=)

vector was produced by one of the models [1], [22]. d; is up ()
not a distortion in the strict sense since it need not be nonneg-
ative, but its average with respect fas nonnegative from the - / dzf(z)In f(z)V (F)
divergence inequality.
Given such a distortion measure is specified, the optimal en- 2 / da f(z)In f(z)V(G)
coder is a minimum distortion encoder and hence for a given :j(GfIIuG)
decoder codeboo#
a(z) = argmin dr(z, m) \tI)Vith equality if ¥ = G. Thus, the centroid exists and is given
m y
- f(=z)
—a%?m<mgm@>+L“”) argmin 1(fllg) = ug. (59)
= argmin (L(m) — ln g (z)) 9EM

Thus, the robust uniform model fgris also the minimum rela-
where ties are broken in an arbitrary fashion. The correspondig entropy model forf from the space of all uniform models.

encoder partitios will then yield average distortion Consider the conditional relative entropy arising with a com-
posite quantizer. In order to fit uniform quantizers with finite
/ dzf(z)d(z, a(z)) conditional relative entropy, we allow only partitioishaving
only bounded cells in the support set ffThis will automati-
= Z / da f(z < f(z) + L(m)) cally be true, e.qg., if the support set pfis bounded. Also, we
m(2) allow only partitions with a fixed finite number of cells since the
fm (@)W, infimum of £ (SM) over all countable partitions can be seen to
= Z Wm (L( )+ /S dz fm(z) In Gm(2) ) be0. Since Jll(the p)artition cells,,, are assumed to be bounded,

the centroids then follow as before
where, as beforey,, = P;(S,,) and

fm(@) =15, (2) f(2) /Wi gm = arggelﬁin I(fmllg) = us,,- (60)

Observe that the single uniform model case considered earlier
/ dof(z) di(z, az)) can be considereq as an example of the. clustered case yvith only
] ’ a single reproduction vector corresponding to the centroid of the
_ Z I (fnllgm) + Z w,, In entire space. Since this adds a constraint to the optimization, the
L(m performance must be worse and hence

Z;ManJ 1(fllg) > szwm (61)

with equality if and only if we choose the optimal length func-
tion L(m) = —Inw,,. Thus, if we choose an optimal decodeif the partitions and models are chosen optimally. (In fact, it is
and length function for a partition, the average distortion aeasy to see that for uniform model densities, (61) holds for an
cording tod; is exactly the mismatch. Thus, iterating the Lloydarbitrary partition if the models are chosen optimally.) This im-
optimality properties of optimizing encoder, decoder, and lengiies that composite quantizers will indeed provide reduced mis-
function can only decrease average distortion and hence alsott@ch from the single “worst case,” confirming the motivation
mismatch. for considering them.

The Lloyd algorithm for minimizing mismatch produces a
collection of modelg,,, € M drawn from some se¥! together Gauss Mixture Codes

with a pmfw,,,. A collection of pdfs together with a pmf can be | et M consist of all nonsingular Gaussian pdfs. Again begin
viewed as anixtureand, hence, the proposed algorithm can by considering the centroig € M as the Gaussian pgfmini-
viewed as a means of fitting mixtures of specified families ahizing 1(f||g). This is accomplished by some algebraic manip-

densities to an arbitrary pdf. ulation using relative entropies for Gaussian pdfs as found, e.g.,
) . . in Kullback [25]. The centroid result is a minor variation on re-
Piecewise Uniform Codes sults derived in [1], [16], [22], but the derivation is provided for

Let M consist of all uniform pdfs on bounded sets with poszompleteness and is tailored to the specific version of the dis-
itive Lebesgue measure. For any gfdiaving bounded support tortion used here.
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Suppose that a Gaussigas meamn and covariancé&” and which, with (20), can be expressed as
that f has mean.; and covariancé(;. Then

Z wm[(fﬂl”!hn)
HfM)z—hu>—/lmf@nnmm "

= —h(f) + 3 In ((2n)*|K))

1 t -1 As with the Lagrangian formulation of variable-rate vector
+/ dzf () <5 (&= p) K (= M)) quantization, the average distortion forces a balance between
the rightmost term, which tries to match Gaussian models
to partition cells, and the entropy term, which puts a cost on

1 o1k partition cells.
T3 Trace Ep[(X — p)(X — p) 1K™ — ) When using individual Gaussian models with optimal code-
“h(f) + %1n(27re)k|K| n % Trace(Kfol) books and length functions, the the optimal encoder is

=—-h(f)+H(Z)+ %Zwm In(27e)*|Ky, . (63)

= —h(f) + 5 (2re)"|K]

1 k 1
+ 5 (- Mf)thl(u — puf) — 5 a(z) = argmin (— In wy, + 3 In ((27r)k|Kfm )
_ 1 k " 1
= =h(f) + 5 In(2re) | +§@_uﬁykgxx_Whg. (64)
1, |K| 1 k
+ |=In—— + = Trace(K; K1) — =
2 |Kyl 2 2 The rightmost term is a weighted quadratic distortion measure.
1 o1 Similar distortion measures have been used in pattern recog-
+ 5(# —pg) K7 (= pg)- nition with names such as the “local Mahalanobis” distortion

since it is a Mahalanobis distortion with respect to the covari-
The bracketed term is exactly the relative entropy betweerfC€ and mean of modet. The results developed here show
Gaussian pdf with meamand covariancé’ (e.g., see Kullback conditional relative entropy context. The model selection rule
[25, p. 189]). Thus, in particular, the quantity is nonnegative ary Minimizing d; in this case corresponds to “quadratic dis-
will, in fact, be zero with the choices; = ;. andK; = K, i.e., Crimination analysis (QDA)” to find the best of a collection of
if we choose the mean and covariance of the mgdelmatch Gaussian models for a given input vector [24]. Hence, for the
the mean and covariance AfThe rightmost term is nonnegativeGaussian casel; can be considered a QDA distortion as well

and will also be) if 15 = 1. With these choices we are left with@S an ML or log-likelihood distortion. _
This completes the description of the Lloyd algorithm for

minimizing mismatch using composite Gaussian quantizers
and, hence, provides an algorithm for designing Gauss mix-
tures. In practice, the pdf is not known and it must be
and the centroid is the Gaussian that has as mean and covagistimated from the data. Observe, however, that the encoder is
ance the mean and covariance with respegt to well defined given a decoder and length function without any
Again consider the conditional relative entropy arising with additional knowledge of . The decoder centroid requires only
composite quantizer. Given an encoder partiiothe centroids the conditional expectation and covariance with respedt, to
are given as above withreplaced byf,,, : define the conditional which can be estimated by sample means and covariances. The
meanyy, = Ey X and the conditional covariand€;, = length function requires only the;(S,,) = w,,, which can be
By, [(X — g, )((X — py,,)"] (conditioned onX € S,,,). Then estimated by the counts for each encoder index. Preliminary
results for Lloyd clustering using this and related approaches
b(m) = gm = argmin I(fmllg) = Nz, ps, , Kg,). (62) may be found in [1], [16], [22], [17].

geEM

1(llg) = ~h(f) + 5 In(2me) ||
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guantizers indeed yield smaller mismatch than would a sin
worst case. For a model quantizer with an optimal decoder, t

mismatch can be expressed simply as
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