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Mismatch in High-Rate Entropy-Constrained Vector
Quantization
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Abstract—Bucklew’s high-rate vector quantizer mismatch
result is extended from fixed-rate coding to variable-rate coding
using a Lagrangian formulation. It is shown that if an asymp-
totically (high-rate) optimal sequence of variable rate codes is
designed for a -dimensional probability density function (pdf)
and then applied to another pdf for which is bounded, then
the resulting mismatch or loss of performance from the optimal
possible is given by the relative entropy or Kullback–Leibler diver-
gence ( ). It is also shown that under the same assumptions,
an asymptotically optimal code sequence for can be converted
to an asymptotically optimal code sequence for a mismatched
source by modifying only the lossless component of the code.
Applications to quantizer design using uniform and Gaussian
densities are described, including a high-rate analog to the
Shannon rate-distortion result of Sakrison and Lapidoth showing
that the Gaussian is the “worst case” for lossy compression of a
source with known covariance. By coupling the mismatch result
with composite quantizers, the worst case properties of uniform
and Gaussian densities are extended to conditionally uniform and
Gaussian densities, which provides a Lloyd clustering algorithm
for fitting mixtures to general densities.

Index Terms—Entropy constrained, high rate, Kullback–Leibler
divergence, Lagrangian, mismatch, quantization, relative entropy,
variable rate.

I. INTRODUCTION

T HE optimal performance of high-rate vector quantization
using fixed-rate codes was established in Zador’s classic

Bell Labs Technical Memo [35] and generalized and simplified
by Bucklew and Wise [2] and Graf and Luschgy [14]. These
results characterized the optimal rate–distortion tradeoff of
fixed-dimension vector quantization as the rate or codebook
size grows asymptotically large, in contrast to the Shannon
rate–distortion theory results characterizing the tradeoff for
fixed rate when the dimension becomes asymptotically large.
The history and generality of the results may be found, e.g., in
[18]. Bucklew [3] developed further asymptotic properties of
high-rate quantization, most notably providing a mismatch re-
sult that quantified the performance resulting when a sequence
of quantizers that is asymptotically optimal for one source is

Manuscript received April 26, 2002; revised December 23, 2002. This work
was supported in part by the National Science Foundation under Grant 0073050,
by the Hewlett Packard Corporation, and by Natural Sciences and Engineering
Research Council (NSERC) of Canada. The material in this paper was presented
in part at the IEEE Data Compression Conference, Snowbird, UT, March 2003.

R. M. Gray is with the Information Systems Laboratory, Department of
Electrical Engineering, Stanford University, Stanford, CA 94305 USA (e-mail:
rmgray@stanford.edu).

T. Linder is with the Department of Mathematics and Statistics, Queen’s Uni-
versity, Kingston, ON K7L 3N6, Canada (e-mail: linder@mast.queensu.ca).

Communicated by M. Weinberger, Associate Editor for Source Coding.
Digital Object Identifier 10.1109/TIT.2003.810637

applied instead to another “mismatched” source. Such mis-
match results are important for theory and potentially important
for practice as code designs are often based on source models
which are estimated based on data and hence which are often
inaccurate. Mismatch results provide a means of quantifying
such performance variations. Another potential application
of mismatch performance results is in the design of “robust”
source codes. Sakrison [30] and Lapidoth [26] showed that for
large dimensions, Gaussian sources provide a “worst case” or
“robust” approach to code design in that the Gaussian source
has the largest (worst) Shannon rate–distortion function and,
more importantly, that a code designed for a Gaussian model
will yield approximately the same performance when applied
to any source with the same mean and covariance. (See [10] for
a fixed-distortion analog of this result.) The Gaussian code will,
of course, be suboptimal for the non-Gaussian source, but it will
provide “robust” or reliable performance in the sense that the
resulting rate and distortion will be the same whichever source
the code is applied to. The results of Sakrison and Lapidoth,
and related works on mismatch by Yang and Kieffer [33] and
Zamir [37], are asymptotic in the typical Shannon fashion;
large dimensions are required in order to apply Shannon
source-coding arguments. In contrast, Bucklew’s approach
considers fixed dimension and asymptotically large rate.

Zador also developed the rate–distortion tradeoffs for en-
tropy-constrained vector quantizers [35], but these results have
only recently been generalized [20] to conditions of comparable
generality to the fixed-rate results of Bucklew and Wise [2] and
Graf and Luschgy [14]. No rigorous variable-rate mismatch
results comparable to the fixed-rate results of Bucklew [3]
are known to the authors prior to those reported here. The
primary goal of this paper is to establish a general variable-rate
mismatch result following the Lagrangian approach of [20].
Applications to universal quantization, robust quantization,
and clustering mixture densities are described. In the special
case of scalar quantization, the results are related to the known
asymptotic optimality of uniform quantization followed by
optimal entropy coding.

The basic mismatch results derived here have been previously
reported, but only a heuristic derivation was given which was
based on Gersho’s hypothesis and the standard approximations
which follow from that hypothesis [16], [22], [17].

II. PRELIMINARIES

We begin with a review of the needed results from [20].
is the measurable space consisting of the-dimensional

Euclidean space and its Borel subsets. Assume that
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is random vector with a distribution , which is absolutely
continuous with respect to the Lebesgue measureand hence
possesses a probability density function (pdf) so
that

for any . The volume of a set is given by its
Lebesgue measure . We assume that the differ-
ential entropy

exists and is finite. The unit of entropy is nats or bits according
to whether the base of the logarithm isor . Usually, nats will
be assumed, but bits will be used when entropies appear in an
exponent of .

A vector quantizer can be described by the following map-
pings and sets.

• An encoder , where is a countable index set,
and an associated measurable partition
such that if . If is finite with
elements, we set ; otherwise, we
let .

• A decoder and an associated reproduction
codebook . Without loss of gener-
ality, we assume that the codevectors are all
distinct.

• An index coder , the space of
all finite-length -ary strings, and the associated length

defined by . is
assumed to be uniquely decodable (a lossless or noiseless
code) and hence the resulting set of lengths must satisfy
the Kraft inequality (e.g., [6]) for some channel code al-
phabet size

(1)

It is convenient to measure channel codeword lengths in a
normalized fashion and hence we define the length function of
the code in nats as so that Kraft’s inequality
becomes

(2)

A set of code lengths is said to beadmissibleif (2) holds.
Following Cover and Thomas [6] and [20] it is convenient to re-
move the restriction of integer-ary code lengths and hence we
define any collection of nonnegative real numbers to
be anadmissible length functionif it satisfies (2). The primary
reason for dropping the constraint is to provide a useful tool for
proving results, but the general definition can be interpreted as
an approximation since if is an admissible length function,
then for a code alphabet of sizethe actual integer code lengths

will satisfy the Kraft inequality. (Throughout this

paper, denotes the smallest integer not less than, and
denotes the largest integer not greater than.) Let denote the
collection of all admissible length functions.

To summarize, a vector quantizeris completely described
by a triple consisting of encoder, decoder, and admis-
sible length function. We will abbreviate the overall action of
producing a reproduction from an input, the cascade of decoder
and encoder, using a lower case

(3)

A quantizer of particular interest is the uniform quantizer with
side length . For , let denote a quantizer of
into contiguous cubes of side. In other words, can be
viewed as a uniform scalar quantizer with bin sizeapplied
successive times. We assume the axes of the cubes align with
the coordinate axes (and that pointis touched by corners of
cubes). In particular, is a cubic lattice quantizer with unit
volume cells.

The instantaneous rate of a quantizer is defined by
. The average rate is

where for all .
Given a quantizer , the entropy of the quantizer is defined

in the usual fashion by

and we assume that for all . Note that we could also
write or since the entropy depends only on the
encoder or, since the reproduction words are assumed distinct,
on the cascade of encoder and decoder.

For any admissible length function, the divergence in-
equality [6] implies that

with equality if and only if

(4)

Thus, in particular

(5)

We assume a distortion measure and measure
performance by average distortion
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In particular, we initially assume squared-error distortion with
average

for and . In Section VIII,
another type of distortion measure will be considered for the
quantization of signals into models.

The traditional distortion–rate approach defines the optimal
performance as the minimum distortion achievable for a given
rate

(6)

(7)

The traditional form of Zador’s theorem states that under suit-
able assumptions on

(8)

where is Zador’s constant, which depends only onand
not . Zador did not evaluate the constant but he did
provide upper and lower bounds that become tight for large.

Zador’s basic results contained technical errors and restrictive
conditions on the allowed densities. These problems were dis-
cussed and fixed and the results generalized recently [20] using
a Lagrangian approach, which we turn to next.

The Lagrangian formulation of variable-rate vector quantiza-
tion [5] defines for each value of a Lagrangian multiplier
a Lagrangian distortion

and corresponding performance

and an optimal performance

where the infimum is over all quantizers where
is assumed admissible. Unlike the traditional formulation, the

Lagrangian formulation yields Lloyd optimality conditions for
vector quantizers, that is, a necessary condition for optimality
is that each of the three components of the quantizer be optimal
for the other two.

• For a given decoder and length function, the optimal
encoder is

(ties are broken arbitrarily).

• The optimal decoder for a given encoder and length func-
tion is the usual Lloyd centroid

• From (4), the optimal length function for the given encoder
and decoder is

The following asymptotic result is the primary result of [20].

Theorem 1: Assume that the distribution of is abso-
lutely continuous with respect to Lebesgue measurewith pdf

, that the differential entropy exists and is
finite, and that . Then

(9)

where the finite constant is defined by

(10)

and is the uniform pdf on the -dimensional unit cube
.

In particular, the limiting constant depends only on the di-
mension and not on the pdf. It is also shown in [20] that under
the stated assumptions, Zador’s original result (8) and the La-
grangian formulation are equivalent and

(11)

In 1968, Gish and Pierce [13] claimed that for high rate,
the optimal entropy-constrainedscalar quantizer performance
was , where denotes asymptotic
equality in the sense that the ratio of the two sides converges to
as , and that uniform quantization followed by optimal
entropy coding achieved the optimal rate–distortion tradeoff in
the limit of asymptotically large rate. Gish and Pierce gave a
heuristic proof based on companding along with a rigorous one
for continuous densities that satisfy a tail condition. They also
claimed to have a proof for all uniformly continuous densi-
ties, but omitted it in the paper and it was not subsequently
published. Since a uniform density is included in their con-
ditions, however, their results coupled with Zador’s theorem
imply that . In the scalar case, it can be argued
that a sequence of increasing rate uniform quantizers followed
by optimum entropy coders will be asymptotically optimal if
the assumptions of Theorem 1, which are more general than
those of Gish and Pierce, are met. This follows from a result
of [28] which shows that under assumptions equivalent to those
of Theorem 1 a sequence of-dimensional lattice vector quan-
tizers will have asymptotic (large entropy) distortion of

, where is the normalized
moment of inertia of the basic Voronoi cell of the base lattice.
For , , and, hence, uniform scalar quantizers
are indeed asymptotically optimal.

Analogous to the scalar case, if one can find the asymptoti-
cally optimal performance for a sequence of vector quantizers
with increasing rate forany -dimensional density for which the
theorem is true (e.g., the uniform pdf on a hypercube), then this
would yield the value for as it does in the scalar case. To
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this day, however, is known only for and the lim-
iting case of . (The corresponding constant for high-rate
fixed-rate coding is known for as well.)

In 1979, Gersho [12] provided a heuristic development of
Zador’s results and demonstrated that based on a still unproved
conjecture regarding the asymptotically optimal quantizer cell
shapes, an optimal lattice or tessellating quantizer followed by
an optimal lossless code provides an asymptotically optimal en-
tropy-constrained quantizer in the limit of high rate. This is
a natural generalization of the one-dimensional optimality of
scalar quantization and optimal entropy coding, but the result
has never been rigorously demonstrated and existing derivations
depend strongly on Gersho’s conjecture. It is widely conjectured
that lattice or tessellating quantizers followed by optimal en-
tropy codes are asymptotically optimal, but this result has not
yet been proved.

In order to state two final preliminary results, we introduce
the following notation:

(12)

so that the theorem states that under suitable conditions

(13)

If one or more of the components is optimized, then it is
dropped from the argument of, e.g.,

(14)

(15)

With this notation, the theorem statement can be simplified to

(16)

The theorem guarantees that if a pdfsatisfies the conditions
of the theorem, then there is anasymptotically optimalsequence
of quantizers for in the sense that for any decreasing se-
quence converging to there exists a sequence of quantizers

such that

(17)

Disjoint Mixtures

A mixture source is a random pair , where is a
discrete random variable with probability mass function (pmf)

, , and conditional pdfs
such that for some ,

. The pdf for is given by

In the special case where the are disjoint, the mixture is said
to beorthogonalor disjoint. Thus, for example, given any pdf

and a partition , there is induced a disjoint mixture
with , for

, and otherwise.
Suppose that is a disjoint mixture and that for each we

have a quantizer defined on , i.e., an encoder
, a partition of , , and a decoder

. The component quantizers together imply
an overall composite quantizerwith an encoder that maps

into a pair if and , a partition of
, , and a decoder that

maps into

(18)

where denotes the indicator function of . If each
component quantizer has a length function and if there
is then an admissible length functionfor the component in-
dexes , then a valid length function for the
composite quantizer is given by

(19)

The length function for coding the component in effect is opti-
mized by choosing .

Conversely to constructing an overall quantizer from a col-
lection of component quantizers, an overall quantizerwith
encoder can be applied to every component in the
mixture. A little manipulation shows that (see, e.g., [20])

(20)

where the equality holds whenever at least two of the three quan-
tities , , and are finite. Under these
conditions, [20, Lemma 2] shows that

(21)

where denotes the conditional entropy ofgiven
the quantizer output .

Relative Entropy

Given two probability measuresand on for which
(i.e., is absolutely continuous with respect to) and a

finite measurable partition , define therelative entropy
of with respect to of the partition as

and therelative entropyof with respect to as

where the supremum is over all finite measurable partitions. The
relative entropy is also known as the Kullback–Leibler number
or Kullback–Leibler -divergence or directed divergence or dis-
crimination. The reader is referred to [25], [29], [7]–[9], and
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[15] for thorough treatments of relative entropy and its proper-
ties. If the two measures are induced by pdfsand it can be
shown that

where we have abbreviated the notation to emphasize the depen-
dence on the densities. We follow Csiszár’s notation and use
for relative entropy. (Another common symbol isfor diver-
gence, but that might cause confusion with distortion.)

III. QUANTIZER MISMATCH

The principal result of this paper is the following high-rate
variable-rate quantizer mismatch theorem.

Theorem 2 (The Mismatch Theorem):Suppose that a proba-
bility measure on satisfies the conditions of Theorem 1
and has pdf . Suppose that is an asymptotically
optimal sequence of variable-rate quantizers for, where
is the optimal length function for and . Suppose also that

and that is bounded. Then

(22)

or, equivalently

(23)

The second form of the theorem provides a characterization
of themismatchresulting from applying an asymptotically op-
timal quantizer sequence for one pdf to another: the mismatch
is exactly the relative entropy of the mismatched pdf to the de-
sign pdf, a continuous analog to the mismatch formula arising
in noiseless coding. The result provides a new interpretation of
relative entropy as a measure of mismatch for high-rate fixed-di-
mension lossy data compression. Relative entropy also arises in
a somewhat similar way in the Shannon-type regime of asymp-
totically high dimensions and random codebook selection [10].
In that case, the relative entropy of the mismatched codebook
distribution to the optimal codebook distribution is an upper
bound on the loss due to mismatch.

The mismatch theorem can be derived based on Gersho’s con-
jecture [17], that is, the result is consistent with that predicted
by Gersho’s conjecture. Unfortunately, however, as with other
implications of Gersho’s conjecture, this has not yet led to a
proof of the theorem and the theorem is not an immediate con-
sequence of previously known results.

The constraint that be bounded is admittedly stronger
than one would like as it eliminates many interesting cases.
For example, for a scalar case, a Gaussianand a Laplacian
will not meet the conditions, nor will two Gaussians with mis-
matched means. On the other hand, the corresponding results for
fixed-rate coding essentially require the same assumption. The

only known example of Bucklew’s uniform integrability condi-
tions [3] for the fixed-rate analog result is the same—that
be bounded. The derivation [17] based on Gersho’s conjecture
suggests that the theorem should hold more generally, specif-
ically, that should suffice, but thus far we have
not succeeded in proving this the case and it remains an inter-
esting open problem. In the particular case of a Gaussian model

and an unknown pdf describing raster image intensities or
speech samples produced by physical sensors, thenwill be
bounded due to the finite dynamic range of real sensors.

The special role of uniform scalar quantizers provides an il-
lustration. If both and meet the requirements of Theorem 1,
then the results of [28] imply that a sequence of uniform
quantizers with an optimal entropy code forwill yield the
same average squared error when applied towith a rate
increase of , where is the partition corresponding
to the uniform quantizer. If the relative entropy is finite,
then will converge to as the rate .
Note that in this case, the conclusion of the mismatch theorem
holds for a specific asymptotically optimal quantizer sequence
without the requirement of bounded .

The mismatch theorem provides the mismatched perfor-
mance of any asymptotically optimal quantizer sequence.
Even if lattice or tessellating quantizers were asymptotically
optimal as suggested by results based on Gersho’s conjecture,
that would only be one particular scheme. For example, for
an with unbounded support but sub-Gaussian tails, the
results of [4] imply that an optimal entropy-constrained vector
quantization (ECVQ) for any value of has afinite number of
codewords. Thus, there are asymptotically optimal sequences
that are quite different from lattice quantizers.

The development of the mismatch result for ECVQ parallels
that of Bucklew’s fixed-rate result in that the beginning and core
of the proof of the lemma of the next section provides what can
be interpreted as a local form of Theorem 1, an entropy-con-
strained variation on Bucklew’s Lemma 2. Although the state-
ment of the result is analogous, our proof bears little resem-
blance to Bucklew’s and is, in fact, considerably simpler. Our
use of the result differs significantly from that of Bucklew. The
subsequent section is devoted to the proof of the theorem. The
remainder of the paper provides corollaries, examples, and an
application.

The theorem is proved in a series of steps in the next three
sections.

IV. A SYMPTOTICALLY OPTIMAL QUANTIZATION

The first step is an extension of Theorem 1 involving only
a single density. Following the notation of that theorem we as-
sume that is the source pdf and that an asymptotically optimal
quantizer sequence is designed forand we investigate prop-
erties of the sequence. More formally, recall that for any de-
creasing sequence converging to , Theorem 1 implies the
existence of an asymptotically optimal sequence of encoders
and decoders , and the corresponding optimized length
function
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for which

(24)

Lemma 1: Suppose that is an asymptot-
ically optimal sequence of variable-rate quantizers forin the
sense of (24), where is the optimal length function for .
Then, for every measurable set

(25)

Proof: If or , the claim is immediate, so
assume that . The lemma can be stated simply
by adopting Bucklew’s notation. Define

(26)

where is the optimal length function for and

(27)

and

so that the claim of the lemma becomes

(28)

Note: Unlike Bucklew’s case, we cannot say is non-
negative for all events so that we cannot argue it is a measure.
We shall, however, find it useful in the next section to view it
as asigned measure. The setwise limit is, however, a
measure.

By construction and Theorem 1 as

(29)

It is convenient to rewrite these expressions in terms of
the disjoint mixture obtained by restricting to the par-
tition , where is a fixed measurable set. Let

be the induced disjoint mixture with
, , for , and

otherwise, and similarly for . Let have pdf and
define if and otherwise. Then

and

Since

(30)

[20, Lemma 6] shows that

i.e., asymptotically, the quantized must determine which
component of the mixture is in effect. This and (21) imply that

We now claim that each of the two component compression
functions must individually converge to , not just the overall
weighted average. Note that by Theorem 1 (see (13)) for

(31)

Now assume that

Then, there is a subsequencesuch that

By assumption

and

which implies that
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contradicting (31). Hence, , and
by symmetry we also have
Thus, we have that for

(32)

where denotes the encoder partition cor-
responding to .

To combine the two similar weighted sums, those for and
those for , suppose that is the optimal length
function for and using the pdf , i.e.,

(33)

We can write

(34)

and similarly

(35)

Since is the optimal length function for

and, hence,

(36)

(37)

The leftmost term on the right-hand side of (34) has already
been shown to converge to as , so the lemma will
be proved if the remaining term

is shown to converge to. As a first step toward this demonstra-
tion, observe that

or, equivalently

which is, obviously, negative for both and . Hence,
these terms for and will go to zero if and only if the
sum of the two terms

tends to zero as , which has already been seen to be the
case.

In Bucklew’s development, the analog to the previous lemma
provides a key step in the proof of the mismatch theorem. Unfor-
tunately, however, Bucklew’s approach cannot be used directly
since, in our case, the are not nonnegative and hence the ar-
gument of the integral defining these terms cannot be assumed
to be nonnegative and hence a probability density.

V. SIGNED MEASURES

We now change notation somewhat in order to reflect the fact
that in the mismatch theorem there are two densities of interest,
a density for which we have designed an optimal sequence of
codes and a density to which we will apply the sequence of
codes. Toward this end, replace thein Theorem 1 and Lemma
1 by and define the set function for as in (26). For
convenience, we make the additional definition

(38)

The set function is a signed measure (see, e.g., Doob [11]).
From Lemma 1 we know that converges to

for all measurable sets. We now explore
the consequences of this convergence.

Given a signed measure, for any measurable set de-
fine the positive variation , the nega-
tive variation , and the total variation

. The space of all finite-signed
measures is a normed space with norm

If , then is called apositive measure.
A signed measure isfinite if . The Jordan decom-

position states that , which represents the signed
measure as the difference of two positive measures.

For all measurable sets, , and

and hence also
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Thus, from the discussion following Doob’s theorem [11, The-
orem IX.9], it follows that

(39)

From Lemma 1, it follows that for any simple function

(40)

We now show that this limit will also hold for any bounded
nonnegative function. Suppose thatis such a function and for
simplicity assume that . For a fixed positive integer

define the measurable sets

From the Jordan decomposition we can write
and hence,

(41)

Since we know the limit for simple functions

In a similar manner

(42)

Combining the previous two inequalities we have that

Since the two rightmost terms can be made arbitrarily small by
choosing sufficiently large

(43)

Similarly, repeating the steps in (41) and (42) but exchanging
the role of and , we obtain

and

so that

Since can be made arbitrarily large, indeed (40) holds as
claimed for all bounded nonnegative functions.

VI. PROOF OF THEMISMATCH THEOREM

Since the Radon–Nikodym derivative is assumed to
be bounded

(44)

and the two sides of the equation evaluate as

which completes the proof of the theorem.

VII. H IGH-RATE UNIVERSAL CODES

The mismatch theorem shows the asymptotic performance
that is lost when an asymptotically optimal sequence of quan-
tizers designed for a pdf is applied to a pdf and that
this loss is just the relative entropy . In this section, we
see that this performance loss can be eliminated by modifying
only the length function to match the pdf. This implies that
the asymptotically optimal sequence of reproduction codebooks
for the design pdf remains asymptotically optimal for any
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meeting the conditions of the theorem. Thus, for example, if
has bounded support, one could design an asymptotically op-

timal sequence of codes for a uniform pdf on the support set and
it would also be optimal for . If has unbounded support, one
could design an asymptotically optimal quantizer sequence for a
Gaussian pdf and its reproduction codebooks would be asymp-
totically optimal for .

Corollary 1: Suppose that is a sequence of
variable-rate quantizers that is asymptotically optimal for a pdf

in the sense that

for some decreasing sequenceconverging to . Assume also
that is a pdf that meets the condition of the mismatch the-
orem and that . Define to be the optimal length
function for and . Then is asymptotically
optimal for , i.e.,

(45)

Proof: Since and share the same encoder and
decoder and differ only in their length functions, we have
from (12) that

where we have plugged in the definitions forand as the
optimal length function for and , respectively, and where

is the partition corresponding to

We have immediately from Theorem 1

(46)

For the other direction we have, using the mismatch theorem,
that

(47)

As a preliminary to considering the rightmost term, define
the discrete distribution by , where

, i.e., for any measurable set

and is the distribution for the random vector when
is described by the pdf. Similarly define the discrete dis-

tribution by . With this notation, (47)
becomes

(48)
It is easy to see that

implies

(49)

(see [20, eq. (24) in the proof of Lemma 6]), i.e., con-
verges to in mean square (here has pdf ). This implies
that in the sense of weak convergence (see, e.g,, [31,
Theorem 4.2]).

Furthermore, since by assumption there is a finitesuch
that

and, hence, by the same argument (weak conver-
gence). From [9], relative entropy is lower semicontinuous with
respect to weak convergence of distributions so that

(50)

which with (47) yields

which completes the proof.

The preceding proof contains an interesting property of
asymptotically optimal quantization. Since

and is a measurable partition

which, with (50), implies that

(51)

This result would be immediate if the sequence of partitions
asymptotically generated the sigma field(see, e.g., [29], [15]).
This result shows that the partitions corresponding to an asymp-
totically optimal sequence of quantizers have the same prop-
erty even though in general they do not generate the underlying
sigma field.

An additional observation on the corollary is that although
the length function (and, hence, the lossless component) of the
quantizer has been matched to the true source, the encoder has
not been optimized for the new length function. Thus, there re-
mains a mismatch in the code sequence, which nonetheless is
asymptotically optimal.

VIII. E XAMPLES

As examples and applications, we first consider two impor-
tant special cases: a uniform pdf over a bounded subset of
and a Gaussian pdf over the entire space. The examples
provide both interesting similarities and important differences
which suggest specific applications and future exploration. Both
examples yield reasonably simple formulas when used as the
design pdfs for quantizers, but applied to a different pdf. Both
examples represent “worst cases” for quantization, so that the
resulting design provides a robust quantizer sequence for other
pdfs satisfying the conditions of the mismatch theorem, where
here “robust” is in the sense of Sakrison [30] and Lapidoth [26]:
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a code is robust if it yields predictable, if suboptimal, perfor-
mance on a source with only partially known statistics. The
single pdf worst case design is then extended to mixtures of
uniform or Gaussian by effectively quantizing the space of pdfs
using Lloyd clustering based on relative entropy as a measure
of distortion between models.

Uniform Codes

Suppose that is a uniform pdf on a bounded measurable set
with positive Lebesgue measure so that

otherwise

and hence

Of all pdfs having as a support set, it is well known that the
uniform pdf results in the largest differential entropy (see, e.g.,
[6]).

Since the uniform pdf maximizes the differential entropy, it is
the worst case in the sense of having the largest possible asymp-
totically optimal high-rate performance for any pdf
with support . Any bounded pdf with support meets the
conditions of the mismatch theorem and, hence, if a sequence

is asymptotically optimal for

(52)

Thus, the code sequence designed for the uniform pdfwill
have asymptotic performance when applied tothat is greater
than the optimal asymptotic performance forand this perfor-
mance mismatch is . This implies
that the code is robust as we next illustrate using the traditional
Zador/Gersho non-Lagrangian argument.

The mismatch theorem and the correspondence (11) between
the Lagrangian and traditional formulations implies that given
a fixed large rate and a quantizer that is optimized for
but used for , the resulting average distortion is approximately

(53)

For a uniform pdf

(54)

and hence,

(55)

which is the best asymptotic performance of an ECVQ at rate
for . So these are indeed robust quantizers in the Lapidoth

sense.
In the special case where the support setis the unit -di-

mensional cube, the mismatch is simply (the divergence
inequality implies that the differential entropy is neces-
sarily nonpostive in this case). Here, the pdfis exactly that
used in the definition of .

One important aspect of pdfs with bounded support is that the
optimal codes exist and require only a finite number of repro-
duction levels [4], [23].

Gaussian Codes

Consider a Gaussian pdf

where , is the
covariance matrix, and the determinant of . Assume that
the covariance is nonsingular. In this case, the differential en-
tropy is well known to be

(56)

and it is well known that this differential entropy is the max-
imum possible over all pdfs corresponding to random vectors
with covariance (see, e.g., [6]). This, in turn, implies that if
a sequence is asymptotically optimal for , then for
any pdf with covariance for which is bounded, the
asymptotic performance of this sequence is

(57)

In this case, if all that is known about the pdfis its covariance,
then, designing a code for a Gaussian pdfwith the same covari-
ance will, provided is bounded, result in a code whose per-
formance is worse than it would have been if the true pdf
had been used to design the code. This code is robust since, as in
the uniform example, (53)–(55) hold. This provides a high rate
analog to the Shannon rate-distortion results of Sakrison [30]
and Lapidoth [26] that an approximately optimal code designed
for a large dimensional independent and identically distributed
(i.i.d.) Gaussian vector will yield roughly the same performance
on any other i.i.d. vector with the same mean and covariance.
Here, high rate replaces the assumptions of memorylessness and
large dimension.

Instead of knowing the full covariance

one might know only a partial covariance

e.g., the covariance for small lags or in some band of the covari-
ance matrix. In this case, the worst case pdf from a high-rate
quantization perspective will be the worst case Gaussian pdf
consistent with the known constraints, which is a Gaussian pdf
with the covariance if such a “maximum
determinant” extension exists. This optimization problem is the
well-known MAXDET problem for which much theory and ef-
ficient algorithms exist [32]. This case is of particular interest
when the covariance is being estimated based on observed data
and one can only trust a limited number of the covariance values,
e.g., those of nearby pixels in an image. This provides a robust
high-rate coding result for the case of partially known covari-
ance, provided the partial covariance has a maximum determi-
nant (or “maximum entropy”) extension.

Composite Codes

A problem with choosing a worst case pdf to provide a robust
quantizer sequence subject to some assumed constraint (e.g.,
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known support or covariance structure) is that it can be too con-
servative. For example, fitting a single Gaussian pdf to a 100-ms
chunk of sampled speech for the purposes of code design is well
known to produce an overly conservative code, one that does not
perform as well as a code which fits codes more customized to
local behavior. One might instead use a collection of Gaussian
models instead of a single model. Each model in the collection
could yield a code that was robust for some conditional behavior
of the source such as a conditional covariance structure. This ap-
proach is implicit in traditional linear prediction coding (LPC)
speech coders, which can be interpreted as fitting Gaussian pdfs
to local second-order behavior [21]. This idea provides an exten-
sion of the uniform and Gaussian mismatch examples to piece-
wise-uniform models and Gauss mixture models.

As before let be the “true” pdf and suppose that is its
support (which might be all of ). Assume that

, where , is a finite partition of and that
for all . Assume also that we have a collection of

model pdfs on . The two examples of interest
here will be uniform pdfs with bounded support and Gaussian
pdfs. We assume further that we have an asymptotically optimal
sequence of quantizers for each of the “design” pdfs, that
is, for a common decreasing sequence we have for
each a quantizer sequence for which

.
Let be the composite quantizer con-

structed from the , the partition
, and a component length function, that is,

if

Consider the performance resulting when the composite quan-
tizer is applied to the pdf . Letting and

if and otherwise and using (12)
and (20) yields

where has distribution

for

Also, by construction, from (19) the length function
and with the optimal choice of

, the average code length of the composite
quantizer is . With this choice,
we have for the composite quantizer that

We assume the optimal choice of so that

If is bounded for each , then we can apply
the mismatch theorem to each component to obtain the asymp-
totic high-rate performance

(58)

This equation can be viewed as an extension of the mismatch
theorem to composite quantizers. To extend the previous exam-
ples, recall that there the idea was to design a code for the “worst
case” source given some constraint onand then show that the
resulting code applied to an unknown source with the given con-
straint would yield a known, if suboptimal, performance. Now
the strategy is to divide and conquer: suppose that instead of
a single uniform (or Gaussian) worst case, we are allowed to
find a collection of pdfs from an al-
lowed collection of uniform (or Gaussian) pdfs and a parti-
tion of for use in a composite quantizer.
What is the best way to do so? Specifically, for a fixed pdfand
model class , find a partition with elements and model
codebook which minimizes the mismatch

where

This minimization can be solved by clustering and, in fact, posed
as a quantization problem with an encoder de-
scribed by the partition by if ,

, and a decoder defined by .
The Lloyd decoder optimization is obvious in this context,

given an encoder index corresponding to encoder cell ,
the best possible is

if the minimum exists, as will shortly be seen to be the case
for both uniform and Gaussian model spaces. If the optimum
decoder is assumed, the minimum mismatch problem becomes

To describe a quantizer encoder requires a distortion measure
which describes the distortion, say , between an input
vector and an encoder output The average distortion
with respect to the encoder should yield the mismatch, which
we are attempting to minimize. A candidate distortion which
will be shown to accomplish the desired goal is
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where is an admissible length function which can be opti-
mized along with the encoder and decoder. The first term in-
volves only the shape of the model pdf and it has been used in
clustering with the name of a “maximum-likelihood” (ML) dis-
tortion since minimizing this distortion over for a given
is equivalent to choosing the ML estimate forassuming the
vector was produced by one of the models [1], [22]. is
not a distortion in the strict sense since it need not be nonneg-
ative, but its average with respect tois nonnegative from the
divergence inequality.

Given such a distortion measure is specified, the optimal en-
coder is a minimum distortion encoder and hence for a given
decoder codebook

where ties are broken in an arbitrary fashion. The corresponding
encoder partition will then yield average distortion

where, as before, and

Thus,

with equality if and only if we choose the optimal length func-
tion . Thus, if we choose an optimal decoder
and length function for a partition, the average distortion ac-
cording to is exactly the mismatch. Thus, iterating the Lloyd
optimality properties of optimizing encoder, decoder, and length
function can only decrease average distortion and hence also the
mismatch.

The Lloyd algorithm for minimizing mismatch produces a
collection of models drawn from some set together
with a pmf . A collection of pdfs together with a pmf can be
viewed as amixtureand, hence, the proposed algorithm can be
viewed as a means of fitting mixtures of specified families of
densities to an arbitrary pdf.

Piecewise Uniform Codes

Let consist of all uniform pdfs on bounded sets with pos-
itive Lebesgue measure. For any pdfhaving bounded support

, its centroid in is easily seen to be a uniform pdf on. In
particular, suppose that has support . Since we re-
quire that and is bounded for the mismatch theorem
to hold, necessarily and hence . Then

with equality if . Thus, the centroid exists and is given
by

(59)

Thus, the robust uniform model foris also the minimum rela-
tive entropy model for from the space of all uniform models.

Consider the conditional relative entropy arising with a com-
posite quantizer. In order to fit uniform quantizers with finite
conditional relative entropy, we allow only partitionshaving
only bounded cells in the support set of. This will automati-
cally be true, e.g., if the support set ofis bounded. Also, we
allow only partitions with a fixed finite number of cells since the
infimum of over all countable partitions can be seen to
be . Since all the partition cells are assumed to be bounded,
the centroids then follow as before

(60)

Observe that the single uniform model case considered earlier
can be considered as an example of the clustered case with only
a single reproduction vector corresponding to the centroid of the
entire space. Since this adds a constraint to the optimization, the
performance must be worse and hence

(61)

if the partitions and models are chosen optimally. (In fact, it is
easy to see that for uniform model densities, (61) holds for an
arbitrary partition if the models are chosen optimally.) This im-
plies that composite quantizers will indeed provide reduced mis-
match from the single “worst case,” confirming the motivation
for considering them.

Gauss Mixture Codes

Let consist of all nonsingular Gaussian pdfs. Again begin
by considering the centroid as the Gaussian pdfmini-
mizing . This is accomplished by some algebraic manip-
ulation using relative entropies for Gaussian pdfs as found, e.g.,
in Kullback [25]. The centroid result is a minor variation on re-
sults derived in [1], [16], [22], but the derivation is provided for
completeness and is tailored to the specific version of the dis-
tortion used here.
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Suppose that a Gaussianhas mean and covariance and
that has mean and covariance . Then

The bracketed term is exactly the relative entropy between a
Gaussian pdf with mean and covariance and a second
Gaussian pdf with meanand covariance (e.g., see Kullback
[25, p. 189]). Thus, in particular, the quantity is nonnegative and
will, in fact, be zero with the choices and , i.e.,
if we choose the mean and covariance of the modelto match
the mean and covariance of. The rightmost term is nonnegative
and will also be if . With these choices we are left with

and the centroid is the Gaussian that has as mean and covari-
ance the mean and covariance with respect to.

Again consider the conditional relative entropy arising with a
composite quantizer. Given an encoder partition, the centroids
are given as above withreplaced by : define the conditional
mean and the conditional covariance

(conditioned on ). Then

(62)

As with the piecewise-uniform codes, it follows that (61)
holds for optimally chosen codes and hence clustered composite
quantizers indeed yield smaller mismatch than would a single
worst case. For a model quantizer with an optimal decoder, the
mismatch can be expressed simply as

which, with (20), can be expressed as

(63)

As with the Lagrangian formulation of variable-rate vector
quantization, the average distortion forces a balance between
the rightmost term, which tries to match Gaussian models
to partition cells, and the entropy term, which puts a cost on
partition cells.

When using individual Gaussian models with optimal code-
books and length functions, the the optimal encoder is

(64)

The rightmost term is a weighted quadratic distortion measure.
Similar distortion measures have been used in pattern recog-
nition with names such as the “local Mahalanobis” distortion
since it is a Mahalanobis distortion with respect to the covari-
ance and mean of model. The results developed here show
that the distortion arises naturally in a quantization or minimum
conditional relative entropy context. The model selection rule
by minimizing in this case corresponds to “quadratic dis-
crimination analysis (QDA)” to find the best of a collection of
Gaussian models for a given input vector [24]. Hence, for the
Gaussian case, can be considered a QDA distortion as well
as an ML or log-likelihood distortion.

This completes the description of the Lloyd algorithm for
minimizing mismatch using composite Gaussian quantizers
and, hence, provides an algorithm for designing Gauss mix-
tures. In practice, the pdf is not known and it must be
estimated from the data. Observe, however, that the encoder is
well defined given a decoder and length function without any
additional knowledge of . The decoder centroid requires only
the conditional expectation and covariance with respect to,
which can be estimated by sample means and covariances. The
length function requires only the , which can be
estimated by the counts for each encoder index. Preliminary
results for Lloyd clustering using this and related approaches
may be found in [1], [16], [22], [17].
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