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Lagrangian Vector Quantization With Combined
Entropy and Codebook Size Constraints
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Abstract—In this paper, the Lagrangian formulation of variable-
rate vector quantization is extended to quantization with simulta-
neous constraints on entropy and codebook size, including vari-
able- and fixed-rate quantization as special cases. The formulation
leads to a Lloyd quantizer design algorithm and generalizations
of Gersho’s approximations characterizing optimal performance
for asymptotically large rate. A variation of Gersho’s approach is
shown to yield rigorous results partially characterizing the asymp-
totically optimal performance.

Index Terms—Asymptotic, entropy constrained, high rate,
Lagrangian, quantization.

I. INTRODUCTION

THE theory of quantization derives largely from Lloyd’s
work [19], which formalized the optimal performance

and provided asymptotic approximations to the optimal perfor-
mance for high-rate and fixed-rate scalar quantization. Zador
[24] described extensions to vector quantization under one of
either of two constraints on the “rate” of a code: , the
logarithm total number of codewords, and , the Shannon
entropy of the quantizer output. The goal was to characterize
the smallest possible average distortion given a constraint
on the rate as measured by one of these two quantities under
the assumption that the rate was asymptotically large. The
first problem is generally known as fixed-rate coding because
of the implied assumption of using an equal number of
nats to specify each codeword, while the second problem is
generally known as variable-rate coding because of the implied
assumption that a differing number of bits or nats will be
used for each codeword by using an optimal lossless code to
describe the codeword indices. The latter case is also known as
entropy-constrained coding to reflect the constraint on entropy
rather than on log codebook size, and in fact Zador introduced
the constraint as a measure of required channel capacity to
reliably transmit the codeword indices rather than as a measure
of optimal lossless coding performance.

Zador’s original proofs of the fixed-rate results for high-rate
quantization were corrected and generalized in [4] and [11], and
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the entropy-constrained results were corrected and generalized
in [12] using the Lagrangian formulation of [8]. The Lagrangian
formulation replaces the traditional problem statement of min-
imizing the distortion subject to a rate constraint by an uncon-
strained minimization problem involving a Lagrangian distor-
tion combining distortion and rate. In the variable-rate case, this
provides a natural extension of the original Lloyd optimality
properties and the resulting Lloyd algorithm from fixed-rate to
variable-rate coding.

In Zador’s development and in all developments since, the
proofs for the two cases of fixed rate and variable rate have dif-
fered in significant ways as well as in the details. Zador [25]
closed his paper with the observation that “It appears likely that
the use of constraints of the type would help
unify” the fixed- and variable-rate proofs. This combined rate
constraint provides many potentially useful results in addition to
that of the possible unification of the two traditional approaches.
Such a linear combination of constraints can be viewed as the
Lagrange dual problem (see, e.g., [3, Ch. 5]) to minimizing the
average distortion subject to separate constraints on each def-
inition of rate. By varying the positive Lagrangian multipliers

and , one can essentially consider all possible separate
rate constraints. Thus, minimization of
provides a Lagrangian dual to the minimization of average dis-
tortion subject to the combined constraints.

In addition, such a weighted linear combination of different
definitions of “rate” is of practical interest as well as mathemat-
ical interest. The number of codewords can be important even
for variable-length coding systems for several reasons. First,
as a cost or penalty function, it makes explicit a quantity re-
lated to the storage needed for the codebooks required to syn-
thesize the final reproduction and usually to encode the orig-
inal signal. Second, without a penalty for the number of code-
words, a codebook for a variable-rate coding scheme with only
an entropy constraint might require an infinite number of code-
words [17], which can cause both theoretical and practical prob-
lems with code design and implementation. Third, in some ex-
amples such as clustering of Gauss mixtures, a mixture having
fewer Gaussian components is deemed superior to one with
many Gaussian components because it is simpler. The Lloyd
algorithm can be used for such designs [1], [13], and placing
an explicit penalty on the number of codewords (in this case,
Gaussian components of a mixture as represented by a covari-
ance matrix and mean vector) forces the algorithm to trade off
the number of codewords along with distortion and entropy [23].
Fourth, it is of interest to the traditional cases to consider an ex-
ample where is close to, but not equal to, the extremes
of and . In these cases, one of the two definitions of rate is
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the important one, but the other cannot be entirely discounted.
For example, one can study the behavior of variable-rate codes
with a mild additional constraint on the codebook size by using
a small .

As we are interested primarily in high-rate results where the
cost of rate is small with respect to that of distortion, we will
be interested in the relative behavior of and as both be-
come small. Here, we make the assumption that it is the relative
costs of entropy and log codebook size that remain fixed as the
combined cost tends to zero. Thus, we focus on a Lagrangian
minimization of the form , where

reflects the relative importance of the two cost con-
straints and governs the overall rate cost. The high-rate
regime will be considered by letting . Note that except
for the asymptotic results, the original Zador choice of and

, and our choice of and are equivalent in that either pair
implies values for the other.

The Zador linear combination of the two definitions of rates
is not the only possible general definition of average rate, which
includes the traditional examples as special cases. For example,
one could also consider a rate defined by a Renyi entropy as

where is the codeword index assigned to input by the
quantizer’s encoder, which will yield the fixed-rate definition if

and will converge to the Shannon entropy as . The
Zador form, however, has the advantage that it can be expressed
as an average over the input distribution of an instantaneous rate
(as will be seen), which leads to a Lagrangian distortion incorpo-
rating a cost of the rate per input symbol into the encoder. This
in turn results in a characterization of a Lloyd-optimal encoder
as one minimizing a Lagrangian distortion incorporating the in-
stantaneous rate and hence leads to a Lloyd clustering algorithm
for quantizer design. The Renyi entropy cannot be expressed as
an expectation of an instantaneous rate and hence lacks these
properties.

There is a very small literature considering combined rate
constraints. Simultaneous constraints on entropy and code-
book size were considered in the definition of the th order
Shannon rate-distortion functions by Rao and Pearlman [21].
The Shannon rate-distortion function is defined in terms of
a mutual information constraint, which is weaker than con-
straints on output entropy and codebook size, so the Shannon
rate-distortion function provides only a lower bound to the
achievable distortion for fixed dimension, a lower bound which
is guaranteed to be achievable only for asymptotically large
dimension. Chan and Gersho introduced modifications of the
Lloyd algorithm for tree-structured vector quantizer design,
which explicitly incorporated codebook storage as a constraint
by limiting the number of distinct node codebooks [6], [7].

This paper pursues Zador’s proposal of a combined rate mea-
sure in some depth. Following a brief presentation of prelim-
inaries, the development begins with an extension of the La-
grangian formulation for the variable-rate quantization case to
a combined constraint case. An easy extension of the Lloyd al-
gorithm provides necessary conditions for code optimality and

hence an iterative design algorithm based on alternating opti-
mization. Gersho’s heuristics and approximations are used to
develop formulas characterizing the optimal performance in the
high-rate regime (of both large entropy and number of code-
words). The results clarify the relations among three quantizer
characteristics of interest at high rates: distortion, entropy, and
codebook size. Traditional methods consider only the tradeoff
between distortion and either entropy or codebook size. The ap-
proach provides new results on the behavior of asymptotically
optimal sequences of quantizers, providing under certain con-
ditions separate characterizations of the behavior of distortion,
entropy, and codebook size in addition to Lagrangian combina-
tions.

The rest of this paper is organized as follows. In Section II,
vector quantization fundamentals are recalled, including some
main results from the high-resolution theory, Gersho’s heuristic
derivations, and conjecture. Section III describes the combined
codebook size and entropy constraint and states the high-rate
equivalence of the traditional and Lagrangian formulations
in this setting. Section IV provides a Gersho-type heuristic
derivation of the high-rate quantizer performance with the
combined constrained. In Section V, some auxiliary results are
developed, which form the basis of our rigorous development.
In Section VI, our first principal result, Theorem 1, provides
the precise high-rate asymptotics of the best achievable per-
formance under the combined rate constraint for the special
case of the uniform distribution on the unit cube. Our second
principal result, Theorem 2 in Section VII, proves that the
asymptotic formula developed heuristically in Section IV is an
upper bound on the best achievable performance for general
source densities. Connections with Gersho’s conjecture and a
conjecture are also given.

Highly technical proofs are relegated to the appendices,
which are terse in the interest of space. Detailed versions are
available on request from the authors.

II. QUANTIZATION FUNDAMENTALS

A quantizer or vector quantizer on , -dimensional Eu-
clidean space, can be described by the following mappings and
sets (all assumed to be measurable): an encoder ,
where , an associated partition

, , such that if ;
a decoder , an associated reproduction codebook

with of distinct elements; and a
length function , which is admissible in the sense
that . The condition for admissibility is Kraft’s
inequality in natural logarithms and it corresponds roughly to
the quantity of nats required to communicate the index to the
decoder using a uniquely decodable lossless code.

If for all with finite, the quantizer is
said to be fixed rate; otherwise, it is said to be variable rate.
Let denote both a shorthand for the collection of mappings

and the overall mapping .
Let denote the distortion between an input and a

quantized version , that is, a nonnegative mea-
surable function. The basic optimality properties will be de-
scribed for general distortion measures, but the high-rate results
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will focus on the squared error (squared Euclidean norm) dis-
tortion . If is a random vector having density , the
average distortion is defined as ,
where denotes expectation with respect to . The average
rate is defined by ; this reduces to
in the fixed-rate case. The optimal performance is the minimum
distortion achievable for a given rate, the operational distor-
tion-rate function . To distin-
guish between the fixed-rate and variable-rate cases in a manner
consistent with the later development, define

(1)

For fixed-rate quantizers, Lloyd’s necessary conditions for a
quantizer to be optimal are as follows.

• For a given decoder , the optimal encoder is
. The minimum obviously exists since

the index set is finite. Ties can be broken in an arbitrary
fashion.

• For a given encoder , the optimal decoder is
if the minimum exists. For

squared error, .
• for .
To obtain a similar set of properties in the variable-rate

case, a Lagrangian approach is used. Define the Lagrangian
distortion in terms of a Lagrangian multiplier by

. The expected Lagrangian dis-
tortion for a quantizer is

and the optimal performance
for a fixed is , where the infimum
is over all quantizers with admissible length functions. This
notation where the optimization of a function over one of its
arguments is denoted by the same function with that argument
removed will often be used. The Lloyd conditions are then [8]
as follow.

• For a given decoder and length function , the optimal en-
coder is . The min-
imum obviously exists when the index set is finite and can
be shown to exist (for well-behaved ) if the index set is
countably infinite. Again, ties can be broken arbitrarily.

• For a given encoder , the optimal decoder satisfies
if the minimum exists.

• For a given encoder , the optimal length function is
. Thus, for the optimal

length function, , where
is the Shannon

entropy of the encoder output (and, since the codewords
are assumed distinct, of the decoder output).

Although the condition for is
not necessary for optimality of variable-length codes, it is often
added as a requirement to avoid useless codewords. Given a par-
tition (or encoder ), the Lloyd properties determine the re-
maining components so optimizing over quantizers is equivalent
to optimizing over encoders or partitions. Thus, we emphasize
the quantizer or the partition , as is convenient, and write

and when we assume that
the encoder and the length function are optimally matched to

the partition. If the quantizer is a fixed-rate code, then the code-
book determines the encoder and hence the entire quantizer.

A. High-Rate Quantization

For the squared error distortion , the tradi-
tional form of Zador’s high-rate (or high-resolution) result for
fixed-rate quantizers is that if the probability density function
(pdf) satisfies the moment condition for
some , then [4], [11]

where is a positive constant given by
, is the uniform pdf on the

unit cube , and . The traditional form
of Zador’s result for variable-rate quantizers is

(2)

where is the differential entropy and the pos-
itive constant is given by . The first
rigorous proof of (2) used the Lagrangian approach. Assume
that the pdf is such that the is finite and a uniform scalar
quantized version of with cubic cell volume 1 has finite en-
tropy. Under these conditions [12]

(3)

where

(4)

The equivalence of the traditional Zador formulation and the
Lagrangian formulation was shown in [12, Lemma 1]: (2) holds
if and only if (iff) the Lagrangian form (3) holds. Similar argu-
ments show that in the fixed-rate case, (2) holds for iff

(5)

where

(6)

This has the same form as the variable-rate Zador result with
replacing and replacing .

The details of the proofs of the high-rate results for the tradi-
tional cases differ significantly, but most proofs of these results
follow the original Zador approach: 1) prove the result for ,
the uniform pdf on the unit cube; 2) extend the result to pdfs
that are piecewise constant on disjoint cubes of equal side ; 3)
prove the result for a general pdf on a cube; and 4) prove the re-
sult for general pdfs. The first step is a key one both because it
provides the primary building block for the subsequent results,
and because it suffices to study Zador’s constants.

B. Gersho’s Conjecture and Heuristics

The rigorous proofs of the high-rate results are notoriously
difficult, and the results had a limited audience until Gersho [10]
provided a relatively simple heuristic development of the basic
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formulas. His approach, although not rigorous, provides insight
into the results and a consistency check with the rigorous de-
velopment. Furthermore, a goal of this work is to develop an
approach that has some of the flavor of Gersho’s as an aid to in-
tuition, yet which is also amenable to rigorous analysis without
assuming more than the traditional cases.

Gersho’s conjecture involves two assumptions regarding
asymptotically optimal sequences of fixed-rate and vari-
able-rate quantizers. First, it is assumed that there exists a
quantizer point density function such that a sequence of
optimal codes with codewords, , will satisfy
for all “reasonable”

of reproduction vectors in a set

By definition, . A point density function is
simply a nonnegative function that integrates to and hence
is mathematically equivalent to a pdf and we use the abbre-
viation pdf for both. Second, Gersho assumed that if is
smooth and is large, then both the fixed-rate and variable-rate
minimum distortion quantizers have cells that are (approxi-
mately) scaled, rotated, and translated copies of , the convex
polytope that tessellates with minimum normalized moment
of inertia

where is the -dimensional volume of and
denotes the centroid of with respect to the

uniform distribution. Specifically, define as the minimum of
over all tessellating convex polytopes . Under these as-

sumptions, Gersho argued that for large

(7)

(8)

where the continuous relative entropy is given by

The distortion approximation results from the approximation of
integrals by Riemann sums. The entropy approximation, how-
ever, is known to hold only in very special cases such as those
where all quantization cells have equal volume as in Voronoi
regions of lattices [9], [18], and no general result along these
lines is known. These approximations can be combined with the
Holder and Jensen inequalities to obtain the Zador results [10],
as will be seen as a special case in Section III.

III. COMBINED CODEBOOK SIZE AND ENTROPY CONSTRAINTS

Define a combined instantaneous rate by

(9)

with and an admissible length function. The average
combined rate with the optimal choice of admissible yields

the Zador affine combined rate
. The choice of instantaneous rate implies a Lagrangian

distortion

(10)

for use in the encoder optimization step. This provides an en-
coder that takes into account the cost in nats or bits of transmit-
ting the index as does the traditional variable-rate case.

Because the combined rate will play the same role as
played by the traditional notion of “rate” in the fixed-rate and
variable-rate cases, it will be referred to as “rate.” It should not,
however, be considered as the transmission rate required since
that term better applies to . The multiplier can be viewed
as a Lagrangian multiplier reflecting the relative importance of
the length function and the codebook size, with the traditional
cases of fixed-rate and variable-rate quantization corresponding
to and , respectively. The traditional operational distor-
tion-rate functions of (1) immediately generalize to

where the infimum is over all quantizers with instantaneous
rate functions as in (9) with admissible length functions .
Define the Lagrangian distortion by (10) and define the average
distortion and optimal performance by

For and , the optimization will have the nec-
essary Lloyd conditions of the variable-rate case. Lloyd’s re-
quirement for the elimination of zero probability words can be
generalized as a means of “pruning” codebooks. For example, if
one uses a subpartition (superpartition or refinement) of a quan-
tizer partition , then rate will go down (up) and distortion down
(up). If decreases, however, then the original partition
could not be optimal. This provides a means of testing subpar-
titions to see if the reduction in rate more than compensates for
the increase in distortion [15] and to prune unneeded partition
cells if the subpartition is better.

As before, given a partition (or encoder ), the Lloyd prop-
erties determine the remaining components so optimizing over
quantizers is equivalent to optimizing over partitions. Thus, for
example, , where is
the minimum value of over all quantizers having
partition .

We will use the following notation for the performance for
partitions, the optimal performance over partitions, and the
asymptotically optimal performance:

(11)

(12)

and, if the limit exists,
.
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The equivalence of the high-rate results for the distortion-rate
and Lagrangian formulation follows in the combined constraint
case as it did in the traditional fixed- and variable-rate cases by
a straightforward modification of the [12, proof of Lemma 1],
as summarized in the following lemma.

Lemma 1: If

(13)

exists for a positive finite , then

Conversely, if

(14)

for a finite , then

Thus, the traditional distortion rate and the Lagrangian forms
of the high-rate results are equivalent in that the traditional style
limit exists iff the Lagrangian limit exists, and the limits are
related by

(15)

which includes (4) and (6) as special cases.

IV. HEURISTIC DERIVATION OF HIGH-RATE PERFORMANCE

Gersho’s approximations can be used to develop a solution
for the combined constraint case for general . Suppose that
a quantizer has a quantizer point density and a total of

quantization levels for large, then using (7), (8), and the
inequality

with equality iff

(16)

Since the goal is to minimize , this is the optimal
choice of given . Thus, for small

(17)

where

(18)
The best possible performance will be the one that minimizes

over all and hence Gersho’s arguments suggest
that if

(19)

and the infimum is over all pdfs , for which is well
defined, then

(20)

Since the functionals and of (18) and (19)
arise here in the context of Gersho’s conjecture and heuristic
development, we will refer to them as Gersho functionals.

The functional can be expressed as

(21)

(22)

The nonnegativity of the relative entropy implies im-
mediately that . If the de-
rived approximations are valid, then (16) implies that for a given
point density function the codebook size will be given approx-
imately in terms of the Lagrangian multiplier by

(23)

and hence, from (8)

(24)

and hence, the log codebook size and the quantizer output en-
tropy differ by a constant as the codebook size grows. Interest-
ingly enough, there is no explicit dependence on here; the de-
pendence is implicit through the selection of a minimizing

.
As a check on the combined constraint result derived using

Gersho’s heuristics, consider the traditional cases. If ,
Holder’s inequality yields the bound

(25)

with equality iff

(26)

the well-known solution for the fixed-rate case. From [11, Re-
mark 6.3], the moment condition (47) ensures that is
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finite and the minimizing is given by (26). If ,
then from Jensen’s inequality

(27)

with equality iff is constant for the support set of , again
agreeing with the classical result. (Here, equality requires that
the distribution of has bounded support.)

The general minimization of for does
not seem to have such a nice form. Since the infimum of a sum
of terms is bound below by the sum of the minima, it is easy to
see from (22), (25), and (27) that

but the inequality is strict except for the endpoints since, in gen-
eral, distinct yields those minima. The bound does hold, how-
ever, for , in which case uniform on the unit cube yields

(28)

In this case, (20) implies that

(29)

which is independent of (and hence if Gersho’s con-
jectures and approximations are true), and hence, Gersho’s con-
jecture and approximations lead to the general conjecture

(30)

which reduces to the known results in the traditional cases.
Unfortunately, is not convex in , and hence, it is

not immediately obvious how to approach its minimization. The
following lemma shows that a transformation yields an equiva-
lent convex optimization problem, and hence, the optimization
inherits all of the algorithms and properties of convex optimiza-
tion theory (see, e.g., [3]). The proof is straightforward but long
and is not essential to the paper, so it is omitted.

Lemma 2: , where
is given by (18) and (19), where

(31)

where the integrals are over the support set of and the infimum
over is over all measurable functions , for which is
well defined. The functional is (strictly) convex in .

The optimization over instead of can be viewed as a form
of “geometric programming” (e.g., [3, Sec. 4.5]). Unfortunately,
in this infinite-dimensional case, convexity does not guarantee
the existence of a minimizing . Strict convexity does, however,
guarantee that if a minimizing exists, it is unique (at least
up to a set of measure zero). In particular, if there is a local
minimum of with respect to , then it is the unique
global minimum.

An obvious problem with this heuristic approach is that it
rests on the assumption of the existence of a quantizer point

density function corresponding to a sequence of asymptotically
optimal quantizers. In some cases, one can use this assump-
tion along with others to derive traditional high-rate quantiza-
tion theorems as has been done by Na and Neuhoff [20], but
this raises the question of whether the existence of asymptoti-
cally optimal high-rate quantizers implies the existence of the
point density functions. In fact, the existence of point density
functions has been rigorously proved only for the fixed-rate

case. The result was first stated by Bucklew [5] and
subsequently proved rigorously by Graf and Luschgy [11]. The
existence of the density for the variable-rate case has not been
similarly proved, although Gersho’s heuristic arguments sug-
gest that it is uniform (and this is often assumed). We will see
that one can prove results bearing a close resemblance to those
predicted by Gersho’s arguments.

V. LAGRANGIAN DISTORTION INEQUALITIES

AND ASYMPTOTICS

The following lemma provides a lower bound to the La-
grangian average distortion that is independent of .

Lemma 3: Given a pdf and and partition

(32)

with equality iff .
Proof: Rearranging terms in the definition of

and using the inequality yields

with equality iff .

Corollary 1: Given the assumptions of Lemma 3
a)

;
b) ;
c) .

Proof: The first statement follows from the pre-
vious lemma and the definitions. The second follows
from

. The final statement
follows from the first statement since .

The functions and both have the form
of the function of (21), i.e., they are an affine combination of
their endvalues as in

(33)

The functions , , and are all infima of
the previous affine functions. These functions share many useful
properties, which are summarized in the following lemma. We
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use the notation as being typical, but the results apply to any
functions of the form described.

Lemma 4: Suppose that , , has the form

(34)

with

(35)

Then, the functionals and
are monotonically nondecreasing, concave, and continuous
functions of . Furthermore, the left derivative

exists and is finite on and the right derivative
exists on and is finite on . Last, is

differentiable with respect to [i.e., ] for
all except possibly for a countable set of points.

Proof: Equations (34) and (35) imply that and
hence also are monotonically nondecreasing in . Since

is affine in , it is both convex and concave and it is
continuous and its infimum over , , is concave. Since

is nondecreasing and concave, it is continuous every-
where except possibly at the origin . It is also continuous
at since

Since is concave on , its left derivative
exists and is finite on and its right derivative
exists on and is finite on . Furthermore, is
differentiable [i.e., ] for all
except possibly for a countable set of points (see, e.g., [22]).

It will be necessary during the development to tease apart
the separate behavior of and when is
chosen to minimize the convex combination . This al-
lows one to quantify separately the log codebook size when it is
the combination of codebook size and entropy that is being con-
trolled. The following corollary accomplishes this. The proof is
in part A of the Appendix.

Corollary 2: Given a functional , , satis-
fying (34), suppose that , , is chosen so that

(36)

Then

(37)

and for all except possibly a countable set of

(38)

In addition

and for all except possibly a countable set of

The functions and of (11) and (12)
have the form considered in Lemma 4, which with known results
for the traditional cases yields the following.

Corollary 3:

If satisfies conditions for the traditional (i.e., fixed- and vari-
able-rate) results, then

A. Limiting Distortion and Rate

The following is a simple technical result that extends a prop-
erty of the variable-rate and fixed-rate cases to the combined
constraint case.

Lemma 5: Suppose that converges to
and a sequence of quantizer partitions satisfies

for a finite constant . Then

Proof: Since

and hence
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which implies the lemma since all terms in the last expression
are all nonnegative.

The next result applies the previous ideas to show that under
certain conditions, the separate asymptotic behavior of distor-
tion, codebook size, and entropy can be teased apart.

Lemma 6: Given a pdf and , suppose that a se-
quence of partitions satisfies

(39)

then

(40)

(41)

(42)

(43)

(44)

For all except possibly a countable number of , the inequalities
become equalities and the left and right derivatives equal the
derivatives. For , the rightmost inequalities of (42) and
(44) and the leftmost inequality of (43) remain valid. For

, the leftmost inequalities of (42) and (44) and the rightmost
inequality of (43) remain valid.

Proof: Equation (39), Corollary 1, and the bound (32)
imply that

which from the continuity of implies (40),
which in turn combined with (39) yields (41). Lemma 4
and Corollary 2 provide the means of accomplishing this
separation. Since has the form of Lemma 4 and

, Corollary 2 yields
the third relation. The penultimate result follows from sub-
tracting times the third result from the second result. The
final result comes from adding times the third result to
the second result.

The lemma implies that under the assumed conditions,
controls the separate asymptotic behavior of distortion and
rate and not just their Lagrangian combination: for small

and
. The lemma also sandwiches the differ-

ence between the entropy and the log codebook size between
lower and upper bounds, which are equal for all except possibly
a countable number of , in which case the difference between
the entropy and the log codebook size converges to a finite
constant.

VI. UNIFORM DENSITY

Our first of two principal results extends Zador’s results
completely for the uniform distribution on the unit cube
to the combined constraint case. The theorem is proved in
part B of the Appendix.

Theorem 1: Let denote the uniform density on the unit cube
and let . Then

(45)

where

is a finite constant.

In the traditional cases of and , we have
and , respectively. In general, the theorem does
not explicitly identify the value of , but only states that
the limit in (45) exists and is finite.

From (13) and (14), the theorem implies the traditional Zador
asymptotic form

Comparing (45) with the formula (20) derived using Gersho’s
conjecture and approximations shows that the theorem is con-
sistent with Gersho’s approach if we identify

(46)

If Gersho’s conjecture were true for a certain , we would have
, and hence would

not depend on . This is the case for (scalar quantization),
where it is known that .

Theorem 1 describes the asymptotics for the case of a uniform
density on the unit cube and shows that

. It follows the general approach of Zador and the proofs
of the fixed-rate and variable-rate cases. The theorem states that
the infimum over of is in fact a limit as goes
to zero. The result has the intuitive interpretation that the best
values of in the sense of minimizing are the values
near , that is, in the high-rate regime.

Theorem 1 demonstrates that the assumptions of Lemma 6
are met in the case of the uniform distribution on a unit cube.
With and , Lemma 6 thus implies that
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which provides an improvement to the upper bound on the
asymptotic difference of entropy and codebook size of [14]. If
the Gersho approximations were valid, the left hand side would
be and the optimal codebooks would have the maximum
possible entropy. With the possible exception of , the
pure variable-rate case, regardless of log codebook size
cannot asymptotically exceed the entropy by more than a finite
constant.

VII. ACHIEVABLE PERFORMANCE

Our second principal result demonstrates that the Gersho
functional provides an upper bound to the optimal achievable
performance in the high-rate regime. The theorem is proved in
parts C–F of the Appendix.

Recall that the function is nondecreasing, concave,
and continuous in . Its left derivative and
right derivative with respect to are defined, nonneg-
ative, nonincreasing, and finite for , and

. The left and right derivatives are equal, and hence,
the derivative exists for all except possibly a countable set of

.

Theorem 2: Assume that has an absolutely continuous dis-
tribution with pdf such that

(47)

for some and

(48)

and that . Then

where is defined in Theorem 1, where

where is the Gersho functional given by (18) and (19),
and where for all except possibly a countable
set of .

If Gersho’s conjecture and approximations were true, then
and (46) would imply that

for all and hence for all ,
which implies exact agreement with the optimal asymptotic
performance derived using Gersho’s conjecture. If Gersho’s
conjecture and approximations are not true, then the result
shows that the formula (20) derived using Gersho’s methods
at least provides an upper bound for all except possibly a
countable set of in provided the term
is replaced by . Based on Gersho’s heuristics and the
known traditional special cases, we conjecture that the converse
results are true, that is, that

(49)

The conjecture is known to be true for the traditional cases
where if has finite differential entropy and if the parti-
tion of Euclidean space into unit cubes has finite entropy [12],
and where if for some (47) holds [4], [11]. In these

cases, and , ,
, . If has finite second

moment [as is the case if condition (47) for holds],
then and the entropy of the uniformly quantized

with cell side is finite. Henceforth, we assume that the pdf
satisfies the moment condition (47) and that (48) holds, and

hence also is finite. The conjecture will also be shown to
be true for the uniform densities on a cube of side with

.

VIII. DISCUSSION

The Zador-style results for fixed- and variable-rate quanti-
zation have been extended to combined entropy and codebook
size constraints for uniform distributions on a cube. It has also
been shown for general source densities that formulas devel-
oped based on the uniform distribution case coupled with a rig-
orous version of Gersho’s heuristic arguments characterize an
achievable performance for all except possibly a countable set
of .

The development can be viewed as a variation on Gersho’s
methods, which provides heuristics that can be rigorously
demonstrated. Instead of using assumptions on the optimal
cell shapes and a heuristic development of the asymptotic
entropy, we follow Zador’s methods and base the asymptotics
on high-rate optimal quantizers for uniform densities on small
cubes. The approach shows that in place of the assumption of
an asymptotic quantizer point density function , a function
playing the same role follows from a convex optimization
problem involving Lagrangian multipliers of the component
codes used to prove the theorem. The approach provides a
means of estimating the log codebook size even though only
a weighted sum of the entropy and log codebook size is con-
strained. The log codebook bounding does not provide a useful
characterization of the purely variable rate case because the
left derivatives required for the upper bound are not defined.
This is reflected in the fact that without the constraint of a finite
codebook, an infinite number of codewords may be needed
to achieve the optimal variable length code [17]. This makes
it remarkable that in the case of a very small but nonzero ,
the log codebook size can asymptotically be greater than the
entropy by no more than a constant, and hence, the fractional
difference goes to zero.

A natural question is how much the performance might suffer
in the purely variable-rate case by the addition of a constraint on
the log codebook size.

Let be a quantizer that is optimal under the combined rate
constraint and has large rate .
Assuming that conjecture (49) holds, the arguments (13) and
(14) imply

It is easy to see that the conjecture and the argument of Lemmas
3–6 imply , so we can express the
distortion in terms of the quantizer’s entropy rather than its com-
bined rate as
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Let denote an optimal entropy-constrained quantizer with
large entropy . The above with reduces to Zador’s
result

We have and ,
where is the Gersho functional given by (18) and (19). If
the two quantizers have equal entropy, the logarithm of the dis-
tortion loss suffered by with respect to due to the constraint
on its codebook size is given by

By definition, the loss is always nonnegative (this can also be
seen from the fact that both and are concave
functions of ). If Gersho’s conjecture holds true, the loss re-
duces to

Since we do not have a closed-form expression for the Gersho
functional, we cannot readily evaluate the loss, but numerical
optimization methods can be used to give a good approximation
for well-behaved source densities.

APPENDIX

A. Proof of Corollary 2

From (34), we have for all

Letting yields

Letting proves (37) and (38) follows from the pre-
vious lemma. The remainder of the corollary follows from

,
(36), and (37).

B. Proof of Theorem 1

Obviously , so we need only to show
that . The proof mimics the first step of
the corresponding result for the entropy-constrained case
in [12] with some nontrivial changes. For any fixed integer

, carve the unit cube into a collection of disjoint
cubes with sides .
Let denote the uniform density on cube .
Suppose that is an approximately optimal quantizer
partition for , that is, for an arbitrarily small ,

, and suppose that
the quantizer associated with has words, entropy

, codebook . Let denote the length function. For all
other subcubes , use a translate of the partition
to form , . All of the subcodes will have
the same number of codewords, the same length function, the
same entropy, and the same average distortion .
Thus, , all .
Form a composite or union code with partition with atoms
comprising all of the atoms of the subcode partitions .
The composite codebook will have words,
an encoder if , and a
decoder . The performance resulting from
this composite code will be bound below by the best possible
performance, . We have, with , that

Since is the conditional density of given the cube

where we have defined the random variable if
(so that ). Therefore
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which implies that , which
with Lemma 7 in part C of the Appendix means that for any

and any integer ,
or . Replacing

by , , any , and integer
.

The remainder of this proof follows closely the proof
of Lemma 9 for the entropy-constrained case in [12]. Fix

and note that ,
so for any , there is an integer such that

. is easily seen to be
nonincreasing with decreasing , hence

Choose any subsequence of tending to zero. The largest
possible value of the limit superior of the right-hand
side is , and hence, , which
means that . Hence,

, and hence, the limit
must exist and equal .

C. Uniform Densities on a Cube

Let , the uniform density on a cube of side and, in
particular, on the unit cube. The traditional results for
and are well known for this case. Define the uniform pdf

on the cube by ,
where denotes the indicator function of the set

. We often abbreviate to and to .
Then,
and , , and

.
Define a cube in with side and location as

.
Abbreviate to , the cube of side in the positive quad-
rant with one corner at the origin. In particular, any translation

of is called a unit cube. Suppose that is
a random variable with pdf on the unit cube . Then, the
scaled random variable for any has a pdf

on the cube . Any quantizer
with encoder and decoder for implies a corresponding
quantizer for

(50)

Conversely, given a quantizer for , one can construct a
corresponding quantizer for .

Lemma 7: ,
.

The following result relates the performance for a given
random variable with support on a cube to that of a shifted
or scaled version of the random variable. The result is an
extension of [12, Lemmas 7 and 8] to more general densi-
ties and combined rate constraints. The proof is essentially a
change of variables and follows [12] closely. The details are
in part G of the Appendix. The lemma allows us to focus on
the particular case of densities on the unit cube to infer the
properties of densities on any shifted and scaled cube.

Theorem 1 and Lemma 7 immediately imply the following.

Corollary 4: Equation (49) holds for a uniform density
on a cube of size with and

. Thus, .

The corollary shows that the conditions of Lemma 6 are again
satisfied.

D. Piecewise Constant Pdfs on Cubes

In the variable-rate case, the result for Zador’s second step is
easy because of the nice behavior of the limiting functions on
disjoint mixtures [12]. One constructs separate codes for all of
the cubes with constant pdfs and then quantifies the behavior of
the union codebook using an essentially linear decomposition of
the conditional distortions and entropies. In the fixed-rate case,
the corresponding step is much harder [4], [11], [24] because
one must solve a bit allocation problem across the cubes in order
to optimize the collection of codebooks overall by assigning
to each an appropriate number of quantization points, which
sum to the total available. Neither approach works alone in the
constrained case. As in the traditional cases, we build a union
codebook, but we choose local Lagrange multipliers so as to
optimize an overall average.

We begin with a heuristic development that can be viewed
as a variation on Gersho’s heuristic approach wherein instead
of making assumptions on the behavior of individual cells in
asymptotically optimal quantizers, we focus on the provable be-
havior in Lemma 6 of asymptotically optimal quantizers on indi-
vidual cubes and then combine the collection of quantizers into
a single overall quantizer. For simplicity, the heuristic develop-
ment focuses on for which the derivatives in Lemma 6 exist
and the inequalities are equalities, that is, for all except possibly
a countable number of . The supporting rigorous ar-
guments will use the more general bounds of Lemma 6.

Assume that a pdf is zero outside the union of a finite
number of disjoint cubes of
equal side . In particular, consider a pdf of the form

(51)

where is the volume of each , , and
, so that is a probability mass function (pmf). For this sec-

tion, we consider fixed. In the next section, we will use pdfs
of this form with small to approximate more general pdfs.

In terms of the pdf
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and

where , , and
.

For each cube with nonzero probability , we
design a nearly optimal code with partition for the condi-
tionally uniform pdf using a Lagrange multiplier
and a common value of for all . For the moment, we leave
open the choice of the except for the assumptions that it
is strictly positive (or the solution would yield infinite rate and
zero distortion) and that for all , for which , the
are small enough to ensure from Lemma 6 that

(52)

(53)

(54)

(55)

Observe that controls the number of quantization points in
each cell , i.e.,

(56)

The constant of proportionality is complicated, but it disappears
in the fraction of quantizer points falling in a single cell
given by

(57)

where we have defined the quantizer pmf as the fraction of
quantizer points within the th cube. Thus, if we wish to find
the fraction of quantization levels within any set consisting of
the union of a disjoint collection of the small cubes, we need
only to sum up the values of over the indexing the small
cubes in the subset. Thus, integrating the function

(58)
over this set gives the fraction of quantizer points in the set.
For sets consisting of unions of partition cells, this characterizes

as a quantizer point density function.
Each cube , for which , should be assigned zero

rate, that is, it should have zero entropy and zero log codebook
size so as to not waste bits.

Construct a composite code based on these subcodes. The
composite partition has as atoms all of the atoms of
all the small cube partitions for those cubes with nonzero prob-
ability , together with a single atom, which we
denote , which is the union of all of the cells having zero

probability. For this partition, we proceed to evaluate the per-
formance using the composite code. Keep in mind that all sums
are over the support set of .

Consider each term in the sum
. Apply (52)–(55) to write

the approximations

The sum for evaluating the total number of quantization cells
is over the support set of and hence excludes the cell of
containing all the zero probability cubes.

Combining the preceding equalities and approximations

Interestingly, the derivative terms are canceled. Recall that
is considered fixed (and very small) and that only the are
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free to optimize. For convenience, we normalize the Lagrangian
parameters as

(59)

If we fix the and let , then for all ,
satisfying our requirement for invoking the asymptotic results.
The can be considered as the relative Lagrangian multipliers
for the cells, which are held constant as becomes small.

The following lemma makes this development precise. It is
proved in part H of the Appendix

Lemma 8: Given a piecewise constant pdf of the form
(51) and a positive vector , then for any ,
there exists a sequence of partitions such that

For all except possibly a countable number of , for
any , there exists a sequence of partitions such that

The proof of the following corollary to Lemma 8 is contained
in the proof of Lemma 8 in (108). The result will be important
for the third step of the proof of Theorem 2.

Corollary 5: Given the assumptions of Lemma 8 and the
composite quantizer construction with partition of the proof,
the codebook size behaves as

For all except possibly a countable number of
the upper and lower bounds are identical with

The following corollary follows immediately from Lemma 8.

Corollary 6: Given the assumptions of the previous lemma,
define

where , where the infimum is over
all positive . Then, . For all ex-
cept possibly a countable collection of ,

.

Useful alternative forms for are given by

(60)

(61)

where from (57) and the discrete rela-
tive entropy is given by . Equa-
tion (61) expresses as plus the sum of
two nonnegative terms, hence is always defined (although it
may be infinite). Define the pmf by .
Then, (61) can be written as

Given a vector , the lower bound can be achieved by replacing
by the pmf defined by , that is, by

normalizing the vector with respect to . Neither of the rel-
ative entropy terms changes since the rescaling factors are all
canceled, so this substitution provides a strict improvement in

if is not already suitably scaled. Thus, the infimum
can be restricted to only those , for which

(62)

The function can be related to the functional of
Theorem 2 by the transformation by and

, which with (59) and (31) implies

Straightforward application of the discrete analogs of the ar-
guments of Lemma 2 shows that ,
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where , ,
, and where

where the infima are over positive vectors , vectors , and prob-
ability mass functions , respectively, for which the functions
are well defined.

As with the function, the function becomes the contin-
uous function of (18) if stated in terms of the induced densities.
The transformations relating the various optimizations are

In this finite-dimensional case, a continuity-compactness argu-
ment guarantees the existence of a minimum and the strict con-
vexity of in guarantees a unique minimizing value but no
simple form for the minimum or for the optimizing is known
except for the traditional cases of . The existence of a
minimizing , however, implies the existence of minimizing
and .

The optimization over has the nice intuitive interpretation
of optimizing over the fraction of quantizer levels contained in
each of the small cubes, which relates it to the traditional bit
allocation approach for the fixed rate case of Zador and to the
fixed-rate and variable-rate heuristic developments of Gersho
based on his conjecture. In the case considered, the code con-
struction used shows how relates to Lagrangian multipliers
used to locally optimize codebooks.

The following corollary uses the existence of an optimum
to modify the bound of Corollary 5 on the codebook size of
the composite quantizers used in the construction. The corol-
lary will be useful because the bound is dependent on , the
number of components in the piecewise constant model, only
though the functional . The lemma strongly resembles
the heuristically derived Gersho approximation (23) if the iden-
tification of (46) of and terms is made, which implies
also that .

Corollary 7: Given the assumptions of Lemma 8,
assume in addition that minimizes so that

. Then

(63)

where

(64)

(65)

For all except possibly a countable collection of

(66)

Proof: From (61) and (62), ,
and hence, (63) follows from Corollary 5 combined with Corol-
lary 2 applied to and . Note that here the min-
imizing or exists so the limits of Corollary 2 are not needed.

E. General Densities on a Cube

To generalize from piecewise constant pdfs on a cube to more
general pdfs on the unit cube, we approximate the latter by the
former and use the codes of the previous section.

Recall that the distribution of is assumed to be absolutely
continuous with respect to Lebesgue measure with pdf . We
assume that is zero outside the unit cube and that
so that is finite. In this case, the moment condition (47) and
the condition that uniform quantization into unit cubes yields
finite entropy are automatically satisfied. Given such a pdf , let

be the domain of , that is, the collection of
all , for which the integrals defining exist. This is the
collection of all , for which and are in the normed
linear space of -integrable functions and is
integrable with respect to Lebesgue measure on the unit cube.

is a convex subset of from Holder’s inequality.
Thus, is defined by a convex optimization problem.

We proceed to the limiting results needed for the case of
general densities on the unit cube. For any positive integer,
partitions into cubes of side length , say

. Given a pdf , form a piece-
wise constant approximation

The use of the piecewise constant approximation to the original
pdf follows that of [4] and [11]. This is a disjoint mixture source
with and component pdfs . If

denotes the distribution induced by , i.e.,
, then . The following lemma

showing some not surprising asymptotic properties is proved in
part A of the Appendix.

Lemma 9: Assume that and are as defined in this
section. Then

(67)

(68)

(69)

(70)

(71)
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Construction of Quantizers: We proceed as in the variable
length case [12] to modify the quantizer for the piecewise con-
stant approximation in a way that does not affect the perfor-
mance much, but allows us to bound the limiting behavior when
the quantizer is actually applied to the true pdf . The approach
here differs, however, in that both entropy and log codebook
size must be controlled, and we wish to construct a single se-
quence of partitions that asymptotically approaches the perfor-
mance promised by the Gersho style approximations.

For the entire development, assume we are given positive se-
quences and such that

(72)

For each integer , choose in Lemma 8 as
the value minimizing as

. Then, given the sequence , the lemma and
Corollary 7 imply the existence of a sequence of partitions

, for which

and

where

(73)

(74)

Thus, given , we can choose an sufficiently
large to ensure that for

(75)

We modify these sequences of quantizers
in a way that will permit necessary bounding of

the inaccuracies resulting when computing averages with
respect to instead of . The following technical lemma is
proved in part J of the Appendix. It shows that the partitions

will have for sufficiently small (or
large enough ) a collection of subcells with total probability
between and . For simplicity, for the moment, the
dependence on is suppressed as can be considered fixed.
Let and .

Lemma 10: Let be a pdf on , for which
is finite and is a sequence of

partitions with corresponding quantizers such that
. Then, for any

, there is an such that if then

all partitions that satisfy will have
a collection of cells with total probability
bounded as

(76)

We continue to suppress the dependence on until the mod-
ification of the quantizer is complete. Again, to simplify nota-
tion, we also suppress the and will assume for the moment
that is fixed as in the lemma. Abbreviate to . Con-
sider the partition and the corresponding quantizer

with the optimal length function , where the
single superscript denotes that this is a quantizer designed for
the distribution as distinct from a second quantizer , which
will be designed to provide a worst case bond on Lagrangian
distortion. Using Lemma 10 define

(77)

Choose a large constant to be specified later and define
. Construct a second quantizer as a uniform -di-

mensional (cubic lattice) quantizer with side width ,
where so that , ,

if , which we can assume
without loss of generality in the asymptotic ( and hence

) analysis, e.g., just redefine . Then, for all

(78)

Let and denote the encoder and index set of . This
quantizer has

(79)

codewords. Define the (constant) length function by

(80)

Note that is admissible since

(81)

A composite quantizer is formed by merging the quantizers
and , which will still be well matched to a specified pdf,

but will now also have a uniform bound on distortion and length
over all pdfs. The merging is accomplished by the universal
coding technique of finding the minimum Lagrangian distortion
codeword in the combined codebook: given an input vector ,
define

and define the encoder of by
. The minimum distortion rule uses the

total number of codewords for the composite quantizer
, and hence the codebook sizes and do

not affect the encoder.
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Define the decoder by . Recall the definition
of the index subset in (76), and define the length func-
tion for as

if and
if and
if .

Then, is admissible since from the choice of , (77), and (81)

Set and . Then, the
definition of implies

and hence

(82)

In particular, the upper bound for with (78) and (80)
implies

and, therefore

(83)

This completes the construction of the modified quantizer.
Reintroducing the dependence on and , note that the con-
struction depends on , , constants and , and

. We choose so that it will grow to infinity,
but not too fast in the sense that

(84)

Also, we now specify that is chosen such that

(85)

From Lemma 9, these requirements are met if, e.g., we let
and .

Let denote the original quantizer for with en-
coder , length function , and decoder . De-
note by and the sets used in the construction
of the merged quantizers with associated partitions

. We also need to control the behavior of the codebook
sizes , , and

. From (83),
we have the upper bound

(86)

where . Equations (75) and (79) yield the
following bounds on codebook sizes:

(87)

(88)

(89)

(90)

and

(91)

where

(92)

From (73), Lemma 9, and the assumed properties of and

(93)

and

(94)

Incorporating the bound of (91) into (86) yields

(95)

The next lemma extends [12, Lemma 12] to the combined con-
straint case. It is proved in part K of the Appendix. The lemma
uses the upper bound to the Lagrangian distortion of the merged
quantizers to provide an upper bound to the mismatch re-
sulting from applying the quantizers designed for to .

Lemma 11: For , the quantizer sat-
isfies
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where depends only on and , where
, and where is defined by (92)

and has a finite upper limit, and is defined in (84).

From the bounds of (82), (75), and (90), we have for
that

Combining this bound with the previous lemma implies that for

(96)

Given the original sequence, construct a final se-
quence of quantizers with partitions from the sequences

as follows. First, note that without loss of generality, we
can assume that are strictly increasing in .

Let

if

and define the quantizer as . By construc-
tion, is monotone nondecreasing in and grows without
bound and once (the se-
quence can be initialized in an arbitrary manner). From (96)

Since as , in view of Lemma 9, (84), and
(85), we have proved the first part of the following lemma. The
second part follows from (91), (93), and (94).

Lemma 12: Let have an absolutely continuous distri-
bution with pdf , which is zero outside the unit cube and
assume . Given , there exists a sequence
of partitions such that

where
where

and is defined in (31). Furthermore, for all except
possibly a countable number of .
The sizes of the codebooks satisfy

(97)
Since , the Gersho functional describes the

asymptotic behavior of the constructed sequence of quantizers.
The lemma implies the following corollary.

Corollary 8: Given the assumptions and definitions of the
previous lemma

The development for general densities on a cube was done
for the unit cube to keep things simple. Lemma 7 can be used to
extend the result to a cube of arbitrary size.

Corollary 9: The results of Lemma 12 hold if the unit cube
of the assumptions is replaced by the cube for finite

and .
Proof: From Lemma 7, for any quantizer on ,

there is an equivalent quantizer on with performance re-
lated by . Fur-
thermore, defining yields by a
change of variables so
that and hence

. Thus, the results of Lemma 12 hold with
the transformed quantizers and the addition of the scaling term

to both target performance and actual performance.

F. General Densities

Assume that has a pdf satisfying the conditions of Theorem
2, which ensures that is finite. Our proof for this case draws
on results and bounds from Graf and Luschgy [11] for the fixed-
rate case. With a slight change of notation, denote for any integer

the cube of side centered at the origin.
Corollary 9 and Lemma 12 imply the existence of quantizers
satisfying the bounds of Lemma 12 for the induced absolutely
continuous distributions on . Let denote the conditional
pdf given , the conditional pdf given , and

so that we have the disjoint
mixture , where
as . The following convergence properties are proved
in part L of the Appendix.

Lemma 13: Given the previous definitions,
and .

For any fixed and positive sequence , let be a
sequence of partitions of and the corresponding quan-
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tizers satisfying the properties of Lemma 12 (from Corollary 9)
for . In particular

(98)

and

(99)

where and are finite constants, which depend only on
; see (97).

As in the development of Lemma 12, we modify these quan-
tizers by merging them with other quantizers, but this time the
second quantizers will be simpler than in the previous case be-
cause the two quantizers partition disjoint regions and can be
handled separately.

Pick and construct a quantizer for using
partition with codebook size constrained as

(100)

so that if is small, then has only a small fraction of the
number of codewords given to . Choose to achieve

, that is, we overbound the performance by
considering an optimal fixed-rate quantizer on .

Form the composite quantizer for as the partition con-
sisting of the union of the atoms of and . The resulting
performance will be

where . Regrouping terms

(101)

where in the last inequality we used the fact that from
(100) we have if
(i.e., for all large enough since ). To
bound , we use Corollary 6.7 of Graf and
Luschgy [11], which in our notation becomes

for , where , ,
and depend only on and , but not on . Using (99) to
bound relate and , we have that

Invoking (99) results in
, where since

as
. Combining this with (101) and (98) shows that

Since , , and as
(by Lemma 13), the right-hand side can be made to be

arbitrarily close to by choosing first small
enough and then large enough. This proves that

which completes the proof of Theorem 2 for the general case of
pdfs satisfying the assumptions of the theorem.

G. Proof of Lemma 7

Let and denote the partitions corresponding to
and , respectively. Then,

, and hence,
. The number of codewords for the two

quantizers is identical by construction. A change of variables
yields average distortion

so that

which proves the first part of the lemma. The second follows by
taking the infimum over .
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H. Proof of Lemma 8

From Lemma 6, we can construct for for each cube
, for which a sequence of partitions , for

which

(102)

(103)

The final equation is equivalent to

(104)

The composite partition is defined as the partition having
as atoms all of the atoms of the individual cell partitions

(105)

From (102)

(106)

From (103)

(107)

and from (104)

so that

(108)

The inequalities of the lemma follow from (105) and the sum
of (106), times (107), and times (108). The equality
follows from the inequalities and Lemma 4

I. Proof of Lemma 9

The first two statements (67) and (68) are [12, Lemma 10],
and (70) follows from (69), which we now prove. Keep in mind
that all integrals in the proof are over . In particular, we write

for .
Suppose that is the minimizer for the piecewise con-

stant pdf satisfying . Then,
applying to the actual pdf

and hence, from the second statement of the lemma,
.



GRAY et al.: LAGRANGIAN VECTOR QUANTIZATION WITH COMBINED ENTROPY AND CODEBOOK SIZE CONSTRAINTS 2239

Conversely, suppose that yields a value of within
of the infimum so that . Let

and define
if
if
if .

We have ,
, and .

Since each upper bound is integrable on and
for all , the dominated convergence

theorem implies ,
, and

. Thus, from
the definition (31), , and
hence we can choose such that

. Since and , we have

for some constant depending on only. Hence, from the
first and second statements of the lemma

which proves the converse.
To prove (71), from the properties of left and right derivatives

J. Proof of Lemma 10

Let denote the th atom of and the associated
reproduction codeword. First, we show that

(109)

The assumptions of the lemma imply from Lemma 5
that . Define

. Fix and let . Then

where is the normalized second moment of a -di-
mensional sphere (see, e.g., [16]). Since

, this and the fact that
imply , from which it fol-
lows that by the absolute
continuity of with respect to the Lebesgue measure (see,
e.g., [2]). Note that
and so . Since

,
(109) follows.

The statement of the lemma follows by noticing that if
, then there must exist a collection of

partition cells with total probability between and .

K. Proof of Lemma 11

The proof is very similar to [12, proof of Lemma 12] and
hence only details that are distinct from those in [12] are given.
For simplicity, we suppress the subscripts , in the quantizer,
encoder, and decoder and the subscript in .

By definition

For any real number , let and
, so that

(110)

Then, (111), shown at the bottom of the next page, holds. The
pointwise upper bound (95) implies

(112)

Note that (110) and the fact that imply
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and so the function
is a pdf. Thus

(113)

where in the last step we used Lemma 4 to infer that
together with the bound

of [12, Lemma 3]. From the proof of Lemma 12 in [12]

(114)

Letting and combining the
upper bound of (112) with the lower bound of (113), we obtain

where as by (114). A similar argument
shows that

where as . Let
and combine these bounds with (110) and (111) to obtain the
bound of the lemma.

L. Proof of Lemma 13

To prove the first claim of the lemma, note that

Since is integrable by assumption,
and , the integral on the left converges to
as . This, together with , implies

, which is the first statement of the
lemma.

For the next part, recall that
, where

and from (18)

for any pdf , for which the integrals are finite. Thus, we need
to prove that .

Suppose that is approximately optimal for
in the sense that .
The density function can be thought of as a con-
ditional density function on . Following (26) de-
fine , which is
the optimal for the full pdf in the fixed-rate case.
Define a point density function (pdf) on by

, where
so that

(115)

(111)
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Then, from the definition of , the equation shown at
the top of the page holds, where as

, since , ,
, and

as

Furthermore

(116)

where since is integrable, which
ensures that goes to zero as .

Combining (115) and (116) with the first statement of the
lemma, for all large enough

where the last inequality follows since is asymptotically
optimal. This proves that .
Conversely, suppose that is approximately optimal for so
that . To form a candidate
for , truncate to and then renormalize, that is, form

. Then

As , the right-hand side converges to ,
whence , which finishes the
proof of the second statement.
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