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Efficient Adaptive Algorithms and Minimax Bounds
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Abstract—Zero-delay lossy source coding schemes are consid-
ered for both individual sequences and random sources. Perfor-
mance is measured by the distortion redundancy, which is defined
as the difference between the normalized cumulative mean squared
distortion of the scheme and the normalized cumulative distortion
of the best scalar quantizer of the same rate that is matched to
the entire sequence to be encoded. By improving and generalizing
a scheme of Linder and Lugosi, Weissman and Merhav showed
the existence of a randomized scheme that, for any bounded in-
dividual sequence of length , achieves a distortion redundancy
( 1 3 log ). However, both schemes have prohibitive com-

plexity (both space and time), which makes practical implemen-
tation infeasible. In this paper, we present an algorithm that com-
putes Weissman and Merhav’s scheme efficiently. In particular, we
introduce an algorithm with encoding complexity ( 4 3) and
distortion redundancy ( 1 3 log ). The complexity can be
made linear in the sequence length at the price of increasing
the distortion redundancy to ( 1 4 log ). We also consider
the problem of minimax distortion redundancy in zero-delay lossy
coding of random sources. By introducing a simplistic scheme and
proving a lower bound, we show that for the class of bounded mem-
oryless sources, the minimax expected distortion redundancy is
upper and lower bounded by constant multiples of 1 2.

Index Terms—Algorithmic efficiency, individual sequences,
lossy source coding, minimax redundancy, scalar quantization,
sequential coding.

I. INTRODUCTION

CONSIDER the widely used model for fixed-rate lossy
source coding at rate , where an infinite sequence of

real-valued source symbols is transformed into a
sequence of channel symbols taking values from the
finite channel alphabet , , and these
channel symbols are then used to produce the reproduction se-
quence . The scheme is said to have an overall delay
of at most if there exist non-negative integers and with

such that each channel symbol depends only
on the source symbols , and the reproduction
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for the source symbol depends only on the channel symbols
. When , the scheme is said to have zero

delay. In this case, depends only on , and on
, so that the encoder produces as soon as is

available, and the decoder can produce when is received.
Lossy source coding schemes with limited delay (in partic-

ular with zero delay) are of obvious practical interest in all ap-
plications where small delay is a crucial requirement. In this
paper, we investigate the construction of provably efficient and
computationally feasible methods for zero-delay lossy source
coding. We mainly concentrate on methods that perform uni-
formly well with respect to a given reference coder class on
every individual (deterministic) sequence. In this individual-se-
quence setting, no probabilistic assumptions are made on the
source sequence, which provides a natural model for situations
where very little is known about the source to be encoded. We
also investigate the best performance of zero-delay schemes for
probabilistic sources and determine tight performance bounds
for the class of memoryless sources.

The study of zero-delay coding for individual sequences was
initiated in [1]. There, a zero-delay scheme was constructed that,
uniformly over all individual sequences, performs essentially as
well as the best scalar quantizer that is matched to the particular
sequence to be encoded. More precisely, it was shown that for
any bounded sequence of source symbols, the scheme’s nor-
malized accumulated mean squared distortion is not larger than
the normalized cumulative distortion of the best scalar quan-
tizer of the same rate plus an error term (called the distortion
redundancy) of order . The scheme was based on a
generalization of exponentially weighted average prediction of
individual sequences (see Vovk [2], [3] and Littlestone and War-
muth [4]), and it required that both the encoder and the decoder
have access to a common randomization sequence.

The results in [1] were improved and generalized by
Weissman and Merhav [5]. They considered the construction of
schemes that can compete with any finite set of limited-delay
and finite-memory coding schemes without requiring that the
decoder have access to the randomization sequence. In the
special case dealt with in [1], where the reference class is the
(zero-delay) family of scalar quantizers of a given rate, the re-
sulting scheme has distortion redundancy of order .
Similarly to the method of [1], the basic idea is to assign a
weight to each of a finite collection of quantizers approximating
all possible quantizers of rate such that the weight is an
exponentially decreasing function of the accumulated distortion
of the quantizer. Then, a quantizer is chosen randomly with
probabilities proportional to the assigned weights and used in
transmitting symbols for a certain period.

1053-587X/04$20.00 © 2004 IEEE
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Although both schemes have the attractive property of per-
forming uniformly well on individual sequences, they are com-
putationally inefficient in that the number of weights they have
to maintain is polynomial in with a degree that is proportional
to , where is the rate of the scheme. In particular,
in their straightforward implementation, they require a compu-
tational time of order , where for the scheme
in [1] and for the scheme in [5]. This prohibitive
complexity comes from the fact that in order to well approxi-
mate the performance of the best scalar quantizer by the perfor-
mance of the best quantizer from a finite set of quantizers, these
methods have to calculate and store the cumulative distortion
of about quantizers. Clearly, even for moderate values of
the encoding rate, this complexity makes the implementation of
both methods infeasible. It was identified as an important open
problem in both [1] and [5] to find an algorithm with similar
performance properties but significantly lower complexity.

The main result of this paper is an algorithm for im-
plementing the scheme of Weissman and Merhav whose
computational complexity is of order . The key idea is
to use the special structure of scalar quantizers to efficiently
generate randomly chosen quantizers according to the expo-
nential weighting scheme without having to calculate and store
the cumulative losses of all reference quantizers. The
complexity of the scheme can be reduced to (i.e.,
linear in the length of the sequence) by increasing the distortion
redundancy to .

In the second part of the paper, we investigate the distor-
tion redundancy problem for zero-delay coding schemes in the
probabilistic setting. In particular, we provide lower and upper
bounds for stationary and memoryless random sources. These
bounds are based on learning-theoretic analyses of the minimax
distortion redundancy in the design of empirically optimal quan-
tizers [6], [7]. We show that there exists a simple (not random-
ized) zero-delay scheme whose expected distortion redundancy
is bounded by a constant times . In the other direction,
we show an -type lower bound on the maximum distor-
tion redundancy over the class of memoryless sources for any
zero-delay scheme. This proves that for memoryless sources,
the minimax distortion redundancy of zero-delay lossy coding
is essentially proportional to . Note that this is in con-
trast to the best-known convergence rate for
zero-delay coding of individual sequences given by Weissman
and Merhav’s scheme. Whether this rate can be
improved for individual sequences remains an open problem.

The rest of the paper is organized as follows. In Section II,
after giving formal definitions, we construct an algorithm that
efficiently implements the scheme of Weissman and Merhav and
analyze its performance and complexity. In Section III, we show
that the minimax distortion redundancy of zero-delay schemes
for memoryless sources is at least of order , and we also
describeandanalyzeasimplisticschemethatprovidesamatching

-type upper bound. Conclusions are drawn in Section IV.

II. FAST ALGORITHM FOR INDIVIDUAL SEQUENCES

In this section, first, we formally define the model of
fixed-rate zero-delay sequential lossy source coding and de-

scribe the coding scheme of Weissman and Merhav. The main
result of this section is an efficiently computable algorithm to
implement their method.

A fixed-rate zero-delay sequential source code of rate
( is a positive integer and log denotes base-2

logarithm) is defined by an encoder-decoder pair connected
via a discrete noiseless channel of capacity . We assume that
the encoder has access to a sequence of indepen-
dent random variables distributed uniformly over the interval
[0,1]. The input to the encoder is a sequence of real numbers

taking values in the interval [0,1]. (All results may
be extended trivially for arbitrary bounded sequences of input
symbols.) At each time instant , the encoder
observes and the random number . Based on , ,
the past input values , and the past
values of the randomization sequence ,
the encoder produces a channel symbol ,
which is then transmitted to the decoder. After receiving ,
the decoder outputs the reconstruction value based on the
channel symbols received so far.

Formally, the code is given by a sequence of encoder–decoder
functions , where

and

so that , and , . Note
that there is no delay in the encoding and decoding process.
The normalized cumulative squared distortion of the sequential
scheme at time instant is given by

The expected cumulative distortion is

where the expectation is taken with respect to the randomizing
sequence .

An -level scalar quantizer is a measurable mapping
, where the codebook is a finite subset of with cardinality

. The elements of are called the code points. The
instantaneous squared distortion of for input is .
A quantizer is called a nearest neighbor quantizer if, for all

, it satisfies

It is immediate from the definition that if is a nearest neighbor
quantizer and has the same codebook as , then

for all . For this reason, we will only con-
sider nearest-neighbor quantizers. In addition, since we consider
sequences with components in [0,1], we can assume without
loss of generality that the domain of definition of is [0,1] and
that all its code points are in [0,1].
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Let denote the collection of all -level nearest neighbor
quantizers. For any sequence , the minimum normalized cu-
mulative distortion in quantizing with an -level scalar
quantizer is

Note that to find a achieving this minimum, one has to
know the entire sequence in advance.

The expected distortion redundancy of a scheme (with re-
spect to the class of scalar quantizers) is the quantity

where the supremum is over all individual sequences of length
with components in [0,1] (recall that the expectation is taken

over the randomizing sequence). In [1], a zero-delay sequential
scheme was constructed whose distortion redundancy converges
to zero as increases without bound. In other words, for any
bounded input sequence, the scheme performs asymptotically
as well as the best scalar quantizer that is matched to the entire
sequence. The main result of Weissman and Merhav [5], spe-
cialized to the zero-delay case, improves the construction in [1]
and yields the best distortion redundancy known to date given
by

where is a constant depending only on .
The coding scheme of [5] works as follows: The source se-

quence is divided into nonoverlapping blocks of length (for
simplicity, assume that divides ). At the end of the th block,
that is, at time instances , , a quan-
tizer is chosen randomly from the class of all -level
nearest neighbor quantizers whose code points all belong to the
finite grid

according to the probabilities

(1)

where is a parameter to be specified later,

for all

and for all . At the beginning of the
st block, the encoder uses the first time

instants to describe the selected quantizer to the receiver

( denotes the smallest integer not less than ), that is, for
time instants

an index identifying is transmitted (note that ).
In the rest of the block, that is, for time instants

the encoder uses to encode the source symbol and trans-
mits to the receiver. In the first time
instances of the st block, that is, while the index of the
quantizer is communicated, the decoder emits an arbitrary
symbol . In the remainder of the block, the decoder uses
to decode the transmitted .

Choosing , one obtains, as it is implic-
itly proven in Theorem 1 and Corollary 2 in [5], that for all

, the expected cumulative distortion of this scheme
is bounded as

(2)

where , , and are positive constants depending only on
. The right-hand side of (2) is asymptotically minimized by

setting and for positive constants
and ; in this case, one obtains that

To be able to set and this way, the encoder and the de-
coder need to know the sequence length in advance. However,
using the well-known method of exponentially increasing block
lengths (see, e.g., [8]), the algorithm can be modified so that it
performs essentially just as well without the prior knowledge of

(only the constants will slightly increase).
In the straightforward implementation of this algorithm, one

has to compute the distortion for all the quantizers in in
parallel. This method is computationally inefficient since it has
to perform computations for each input symbol, which
becomes with the optimal choice . Thus,
the overall computational complexity of encoding a sequence
of length becomes , and the space complexity1

of the algorithm is since the cumulative
distortion for each quantizer in has to be stored. Clearly, this
complexity is prohibitive for all except very low coding rates.

In the following, we describe an efficient way to implement
the above algorithm. The main point is that one can draw a quan-
tizer according to the distribution in (1) without computing the
cumulative distortions for all .

1Throughout this paper, we do not consider specific models for storing real
numbers; for simplicity, we assume that a real number can be stored in a memory
space of fixed size.
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Theorem 1: For any , , , and
, there exists a zero-delay source coding scheme

of rate for coding sequences of length such that
for all

where , are positive constants that depend only on ,
and the coding procedure has computational com-
plexity and space complexity.

Remarks: It is easy to check that to minimize the above upper
bound, one has to choose and for
positive constants and . This way, a distortion redundancy
of is achieved. As a result, the computational
complexity becomes , and the memory need of the
algorithm is . The algorithm can also be implemented
with computational complexity (that is, linear both in
and ). In this case, to minimize the distortion, we have to set

and , implying a distortion redundancy
of order and space complexity.

It can be shown that the actual distortion of the scheme
(for the current realization of the randomizing sequence

) is, with high probability, close to the expected
performance given in the theorem. In particular, by a straight-
forward application of the Azuma–Hoeffding inequality (see
[5] for details), for any

Recently, in [9], another low complexity algorithm was devel-
oped for the same problem. This algorithm uses the “follow the
perturbed leader”-type prediction method of Hannan [10] and
Kalai and Vempala [11] instead of the exponentially weighted
average prediction. This algorithm, which is conceptually some-
what simpler than the one in the theorem, can be implemented in
linear time, and it achieves a slightly worse distortion
redundancy of order while having only
space complexity. However, unlike the algorithm in the theorem,
the performance of the algorithm of [9] cannot be improved at
the price of increasing its complexity. In other words, that algo-
rithm cannot achieve the best known distortion
redundancy.

Proof of Theorem 1: In the proof, we use the algorithm of
[5], but we draw the random quantizers in a computationally
efficient way.

Let denote the indicator function of the event . For any
fixed and such that , let

if

if

if and .
(3)

Define , , and denote the code points of
by . Then, for ,

denotes the partial distortion of in the interval
when quantizing the sequence ,

and the distortion of can be decomposed as

Next, we provide an algorithm that for any fixed chooses
a quantizer randomly according to the distribution
given in (1). This algorithm assumes that the partial distortions

are known for all , , . The efficient
computation of the will be treated later.

We construct by choosing its code points sequentially
in an increasing order: First, we compute the distribution of
the smallest code point, and draw the code point randomly ac-
cording to this distribution; having chosen the smallest
code points, we compute the conditional distribution of the th
smallest code point and draw the code point according to this
distribution. After having chosen all the code points, the re-
sulting quantizer (a random object) will satisfy

for all .
For any and , , let

denote the set of -level quantizers in
with smallest code points . For , de-

fine formally . Let
denote the probability that the th code point of is ,
given that the smallest code points are .
Clearly, for , we have

(4)

and for

(5)

To compute these probabilities efficiently, for any
, define

and for and , define

where for all . Setting and , we
can simplify the notation as
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Expressions (4) and (5) can be rewritten in terms of .
Introducing the notation and ,
for , we have

(6)

For , letting for , we
have (7), shown at the bottom of the page. Note that (7) reduces
to (6) for .

The values of can be computed for all
and via the following recursion:

(8)

Note that the case has to be considered only when
.

In summary, we have the following algorithm.

Algorithm 1 (Drawing a random quantizer
according to (1))
Input: , , k .

k
z for all K , .

For to
compute k using (8) for all K

(also for if ).
For to
compute k m m for all m m ,

m
K according to (7);

choose m randomly according to the
computed conditional probability
distribution.

Let k be a nearest-neighbor quantizer
with code points M.

From the derivation of the algorithm, the following lemma is
straightforward.

Lemma 1: The quantizer generated by Algorithm 1 sat-
isfies (1).

Since , the complexity to compute
from the function is proportional to , and since

can be chosen in ways, the computation of from
has complexity . Thus, the computation of

for all possible values has complexity , which in
turn implies that the computational complexity of Algorithm 1
is also , provided the partial distortions are
known.

To maintain these distortion values, for each input symbol
, we have to update the distortion of each interval con-

taining . Since the number of such intervals can vary from
approximately to , this implies extra computations of
the order of for the whole sequence, making the overall
computational complexity , which be-
comes in the minimum distortion case when both
and are proportional to .

The amount of necessary computations can be reduced by
storing only approximate distortion values, at the price of only
slightly increasing the normalized cumulative distortion. The
idea is that instead of the original sequence , we use its finely
quantized version to compute the approxi-
mate distortion values that are then used to determine the distri-
bution for generating the random quantizers. The are obtained
via a -level uniform scalar quantizer, that is

if
if

(here, denotes the largest integer not greater than ). It is
easy to check that for any nearest neighbor quantizer with
code points in [0,1], we have

where is the -level uniform scalar quantized version of .
Thus, for any sequence of quantizers in

(7)
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(9)

Define for all and as was defined
in (3) but with in place of . That is

if

if

if and .

(10)

Then, for , denotes the partial
distortion of the quantizer with code points
in the interval when applied to the sequence

. Unlike , can be computed efficiently for all
.
For each time instant , define the histogram

counting the number of input symbols falling in the th cell of
the -level uniform quantizer. Clearly, can easily be com-
puted using constant computational capacity in each time in-
stant. (The index satisfying can be iden-
tified in constant time; then, is increased by one.) This
way, the are immediately available at the end of the th
block. The next lemma, which is proved in the Appendix (Al-
gorithms 3–5) shows that using , can be computed
efficiently.

Lemma 2: Given and , , the values
of for all ( ) can be computed in

time.
Using this lemma, we obtain the following zero-delay source

coding scheme.

Algorithm 2 (Universal low-complexity
zero-delay source coding scheme)
Input: , , , , n.

and for all .
For to
if then
compute k for all (using
Algorithms 3–5 with input , kl );
choose randomly k using Algorithm 1
with input , , k ;

i i xi j K for all
if K

M

then transmit the corresponding index
symbol for k;
else transmit k i ;

if then .

By (2) and (9), the above coding scheme can be decoded with
expected distortion redundancy

and the encoding procedure has a computational complexity
and space complexity (de-

coding can obviously be performed in linear time with
space complexity).

Remarks: Algorithm 2 may be difficult to implement online
since in order to choose a quantizer randomly at the end of each
block, computations have to be performed during a
single time slot. With the choice of parameters and

yielding linear complexity in , this amounts to
computations during one time slot. To alleviate this

problem, one can modify the algorithm so that is determined
during the st block, which is of length , and
then can be applied in the nd block instead of the

st block. This way at each time instant, only a constant
number of computations is carried out. It is not difficult to see
that this modification results in essentially the same distortion
redundancy, and only the constants will slightly increase.

Although, in principle, only one random number is needed to
generate the code points in Algorithm 1, in practice,
one may want to use random numbers (one for each code
point). In this case, the additional condition should be
satisfied (this always holds for large enough if either

or ).
Even though here we only consider squared distortion, most

of the arguments presented above generalize in a quite straight-
forward way to more general distortion measures. In particular,
it is easy to see that for difference distortion measures of the
form , where is nondecreasing and Lipschitz on
[0,1], Algorithm 1 can be modified in a natural manner so that
Lemma 1 remains true. The modified algorithm preserves the
computational complexity of order . Moreover,
a bound similar to Theorem 1 holds with modified constants.
To construct an algorithm with a reduced complexity similar to
Algorithm 2, additional assumptions on the distortion measure
may be needed. If, for example, for a pos-
itive integer , then Algorithm 2 may be modified by straight-
forward adjustments in Algorithms 3–5.

III. MINIMAX DISTORTION REDUNDANCY FOR

MEMORYLESS SOURCES

The purpose of this section is to show that if the source is a sta-
tionary and memoryless random sequence, then the rate of con-
vergence may be speeded up so that the distortion redundancy
is of order , as opposed to the distortion
redundancy proved by Weissman and Merhav [5] for individual
sequences. We first prove a lower bound of order that
holds not only for the reference class of all scalar quantizers but
for the entire reference class of all zero-delay coding schemes
as well.

We assume that the source is a sequence of independent and
identically distributed (i.i.d.) random variables , the
randomizing sequence is independent of the source,
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and both the source and the randomizing sequence take values
in the interval [0,1]. Consider any zero-delay encoder-decoder
sequence , where, as before

and

so that the channel input at time is and the
reconstruction is , .

The following lemma was proved (in different forms) by Er-
icson [12] and Gaarder and Slepian [13] (see also [14]). It states
that for memoryless sources, the best performance over the class
of zero-delay codes is achieved by a (memoryless) scalar quan-
tizer. We give a short proof for completeness.

Lemma 3: If is a sequence of independent random
variables, then for any sequence , we have for all

where denotes the class of scalar nearest neighbor quantizers
with reconstruction levels.

Proof: Define the “reproduction coder”
by

Denote the distribution of by , and recall that
and are independent. Thus

Since among only depends on and it can take at
most values, the function can take at most
values for each fixed . Hence, if denotes the class
of measurable real functions of a real variable with at most
distinct values, then for , almost all

Since the class of -level scalar nearest neighbor quantizers
achieves the infimum on the right-hand side

and the lemma is proved.

It was shown in [7, Th. 1] that for any , there exists a
bounded i.i.d. sequence such that for some and
all

Combining this with Lemma 3 gives the following lower bound
for bounded memoryless sequences of length on the normal-
ized distortion redundancy of any zero-delay scheme with re-
spect to the best scalar quantizer matched to the entire sequence.

Theorem 2: For any , there exist a stationary and
memoryless source taking values in [0,1] and a con-
stant such that for any randomizing sequence ,
zero-delay encoder-decoder sequence of rate

, and all

Remark: The theorem immediately implies that the min-
imax distortion redundancy for individual sequences is lower
bounded as

Note that there is a gap between this lower bound and the best
known -type upper bound given in [5].

Next, we show that the convergence rate is in fact
achievable by a simplistic zero-delay scheme described as fol-
lows. Time is divided into exponentially increasing blocks of
length . At the end of the th block, the encoder
selects an -level nearest neighbor quantizer , minimizing
the empirical distortion, that is

where

and the minimum is taken over the class of all -level
nearest neighbor quantizers whose code points all belong to the
finite grid

where we choose . At the beginning of the st
block, the encoder describes the selected quantizer to the
receiver. This may be done using bits, that is, in at most

time periods. In the rest of the st block,
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the encoder uses the quantizer to transmit at each
time instant .

Remark: Wu and Zhang [15] gave an algorithm with com-
putational complexity , which finds an -level empiri-
cally optimal quantizer for an ordered input sequence of length

. Using this algorithm, it is easy to see that the zero-delay
scheme defined above may be implemented at a total compu-
tational cost of , where the second term is
the time needed to sort the input sequence in each block.

The performance of this zero-delay scheme may be bounded
as follows.

Theorem 3: Consider the scheme described above, and
assume that are independent and identically dis-
tributed random variables taking values in [0,1]. Then, there
exists a constant , depending on only, such that

Moreover, almost surely, for sufficiently large

Remarks: It follows from Lemma 3 that the upper bound
for the expectation also holds if the minimum is taken over all
rate- zero-delay schemes instead of the class of -level scalar
quantizers. Thus, Theorems 2 and 3 also imply that the minimax
expected distortion redundancy over the class of memoryless
sources and for the reference class of all zero-delay schemes is
sandwiched between constant multiples of .

It is easy to see that the above-described simplistic scheme
fails in the individual sequence setting. This can be shown by
constructing a sequence for which the scheme performs poorly
(we use a construction from [5], where the Hamming distortion
measure was considered). For simplicity, consider the case

, and assume that for all .
Since the empirically optimal quantizer has only two code
points, it is always possible in the st block to choose

such that . We
let all in the st block be equal to so that

for all . Thus, the normalized
cumulative distortion for this sequence is at least 1/16 for all .
On the other hand, for any , let denote a
quantizer with two code points that is empirically optimal for

. Let , , and denote the empirical frequencies in the
sequence of 0, 1/2, and 1, respectively, and assume without
loss of generality that (i.e., ). Then, the
Lloyd conditions for quantizer optimality [16] imply that 1 must
be a code point of , and the other code point of lies in the
interval [0,1/2]. The distortion of on is easily seen to equal

, which is an expression whose maximum in
under the constraint is . Thus,

the empirical distortion of on is at most ;
therefore, the distortion redundancy of the simplistic scheme is
at least for all .

Proof of Theorem 3: Denote the “expected” distortion of
the empirically selected quantizer by

where has the same distribution as the and is independent
of them. In addition, let the distortion of the optimal quantizer
be denoted by

It was shown by Linder et al. [6] (see also Linder [17]) that

(11)

and that

(12)

where the constant only depends on . (In the rest of the
proof, denotes a constant depending on only, whose value
may change from line to line.) Combining these results with the
fact that, by Lemma 2 in [1]

we conclude that for a constant
, depending on . To analyze the expected distortion of the

zero-delay scheme, recall that in the st block, the first at
most time instances are used to transmit the
quantizer , and the contribution of this part to the cumulative
distortion is at most . In the rest of the st
block, the cumulative distortion

conditionally, given , is a sum of i.i.d. random vari-
ables, with expected value .

To bound the expected cumulative distortion, let be arbi-
trary such that falls in the st block, that is,

. By the argument above
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Since , we obtain that

Finally, since
whose expected value is bounded by a constant times

, the proof of the first statement is complete.
In the proof of the second statement, we use the following

version of Kolmogorov’s inequality (see, e.g., Rényi [18]).
Lemma 4: If are zero-mean, i.i.d., random vari-

ables with variance , then for all

In particular, if the take their values in the interval ,
then , and by Hoeffding’s inequality [19], for any

To prove the almost sure statement of the theorem, first note
that it follows by the bounded differences inequality of McDi-
armid [20] that for any

(13)

Thus, the total distortion over the th block may be bounded as

where we denote

for , and

and the inequality follows from (11) and (12) since

Note that conditioned on , the random vari-
ables are i.i.d. with zero mean taking values
in , and by (13), is a zero-mean random variable with

. Thus, by Hoeffding’s inequality,
and the union bound, for any and

The distortion accumulated during the st period may be
bounded similarly, although here we use Lemma 4 instead of
Hoeffding’s inequality. We obtain, for any
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Choosing and using the union bound,
we obtain that for all , the probability that there exists an

such that

is at most . Since , we obtain
that there exists a constant (depending on ) such that for all

, the probability that there exists an
such that

is at most . Applying the Borel–Cantelli
lemma concludes the proof of the almost-sure statement of the
theorem.

IV. CONCLUDING REMARKS

We presented an efficiently computable algorithm for zero-
delay lossy source coding whose normalized cumulative dis-
tortion is guaranteed to be almost as small as that of the best
scalar quantizer. We have also determined the best possible con-
vergence rate for the distortion redundancy in zero-delay lossy
coding of memoryless sources.

Since our algorithm depends on the special structure of the
class of all -level nearest neighbor scalar quantizers, it is not
clear whether it can be generalized to other, richer reference
classes of encoders. Such an extension would be of both prac-
tical and theoretical interest since the special reference class of
all scalar quantizers somewhat limits the scope of our results.
The results of Weissman and Merhav [5] on which we have
built our algorithm cover all finite classes of limited-delay fi-
nite-memory coding schemes. Of special practical importance
would be the extension of our efficient method to the classes
of sliding block codes, trellis source codes, and codes based on
differential pulse code modulation (DPCM). For these classes,
an additional difficulty is the efficient approximation of the full
reference class by a finite set of encoders from the class.

On the theoretical side, an interesting open problem is to de-
termine whether the convergence rate obtained in
[5] for the distortion redundancy in the case of individual se-
quences can be improved.

APPENDIX

PROOF OF LEMMA 2

To compute , we have to consider three cases.

Case 1) and . Obviously, we have
. Since it can be shown that

we can compute for in-
creasing by storing and computing

, , and recursively as follows.

Algorithm 3 (Computing )
Input: , kl .

.
For to

k ;

kl ;

kl
;

kl .

Case 2) , . Here, similarly to Case 1, we
obtain

Thus, can be computed re-
cursively as follows.

Algorithm 4 (Computing )
Input: , kl .

.
For to 1

k ;

kl ;

kl
;

kl .

Case 3) , . In this case, and
for some integers

. For , we have ; otherwise,
can be computed recursively for increasing

since straightforward calculations yield
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where if is not an integer. Thus,
can be computed in this case by the fol-

lowing algorithm.

Algorithm 5 (Computing
)

Input: , kl .
For to
for to
if then

k ;
;

else

kl kl ;

kl

kl ;

k kl

kl .

Clearly, the computational complexity of Algorithms 3 and 4
is , whereas to perform Algorithm 5, we need op-
erations. Thus, at the end of the th block, determining
for all has computational complexity .
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