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Efficient Tracking of Large Classes of Experts
András György, Member, IEEE, Tamás Linder, Senior Member, IEEE, and Gábor Lugosi

Abstract—In the framework of prediction of individual se-
quences, sequential prediction methods are to be constructed
that perform nearly as well as the best expert from a given class.
We consider prediction strategies that compete with the class of
switching strategies that can segment a given sequence into several
blocks, and follow the advice of a different “base” expert in each
block. As usual, the performance of the algorithm is measured by
the regret defined as the excess loss relative to the best switching
strategy selected in hindsight for the particular sequence to be
predicted. In this paper, we construct prediction strategies of low
computational cost for the case where the set of base experts is
large. In particular, we provide a method that can transform any
prediction algorithm that is designed for the base class into a
tracking algorithm. The resulting tracking algorithm can take
advantage of the prediction performance and potential computa-
tional efficiency of in the sense that it can be implemented with
time and space complexity only times larger than that
of , where is the time horizon and is a parameter of
the algorithm. With properly chosen, our algorithm achieves a
regret bound of optimal order for , and only times
larger than the optimal order for for all typical regret
bound types we examined. For example, for predicting binary
sequences with switching parameters under the logarithmic loss,
our method achieves the optimal regret rate with time
complexity for any .

Index Terms—Algorithmic efficiency, compound experts,
changing environments, data compression, individual sequences,
nonstationary sources, sequential coding, sequential decision
making, sequential prediction.

I. INTRODUCTION

I N the online (sequential) decision problems considered in
this paper, a decision maker (or forecaster) chooses, at each

time instant , an action from a set. After each ac-
tion taken, the decision maker suffers some loss based on the
state of the environment and the chosen decision. The general
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goal of the forecaster is to minimize its cumulative loss. Specif-
ically, the forecaster’s aim is to achieve a cumulative loss that
is not much larger than that of the best expert (forecaster) in a
reference class , from which the best expert is chosen in hind-
sight. This problem is known as “prediction with expert advice.”
The maximum excess loss of the forecaster relative to the
best expert is called the (worst case) cumulative regret, where
the maximum is taken over all possible behaviors of the envi-
ronment and denotes the time horizon of the problem. Several
methods are known that can compete successfully with different
expert classes in the sense that the regret only grows sublinearly,
that is, . We refer to [1] for a survey.
While the goal in the standard online prediction problem is to

perform nearly as well as the best expert in the class , a more
ambitious goal is to compete with the best sequence of expert
predictions that may switch its experts a certain, limited, number
of times. This, seemingly more complex, problem may be re-
garded as a special case of the standard setup by introducing
the so-called meta experts. A meta expert is described by a se-
quence of base experts , such that at time in-
stants themeta expert follows the predictions of the
“base” expert by predicting . The complexity of such
ameta expert may bemeasured by

, the number of times it changes the base predictor
(each such change is called a switch). Note that switches par-
tition into contiguous segments, on each of
which the meta expert follows the predictions of the same base
expert. If a maximum of changes are allowed and the set of
base experts has elements, then the class of meta experts is
of size . Since the computational com-
plexity of basic prediction algorithms, such as the exponentially
weighted average forecaster, scales with the number of experts,
a naive implementation of these algorithms is not feasible in
this case. However, several more efficient algorithms have been
proposed.
One approach, widely used in the information theory/source

coding literature, is based on transition diagrams [2], [3]: a
transition diagram is used to define a prior distribution on the
switches of the experts, and the starting point of the current
segment is estimated using this prior. A transition diagram
defines a Markovian model on the switching times: a state of
the model describes the “status” of a switch process (corre-
sponding to, e.g., the time when the last switch occurred and the
actual time), and the transition diagram defines the transition
probabilities among these states. In its straightforward version,
at each time instant , the performance of an expert algorithm is
emulated for all possible segment starting points , and
a weighted average of the resulting estimates is used to form
the next prediction. In effect, this method converts an efficient
algorithm to compete with the best expert in a class into one
that competes with the best sequence of experts with a limited
number of changes. The time complexity of the method depends
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on how complex the prior distribution is, which determines the
amount of computation necessary to update the weights in the
estimate. Note that a general prior distribution would require
exponential computational complexity in the sequence length,
while at each time instant the transition diagram model requires
computations proportional to the number of achievable states
at that time instant. Using a state space that describes the actual
time, the time of the last switch, and the number of switches
so far, [2] provided a prediction scheme achieving the optimal
regret up to an additive constant (for the logarithmic loss), and,
omitting the number of switches from the states, a prediction
algorithm with optimal regret rate was provided. The authors
of [3] showed (also for the logarithmic loss) that the transition
probabilities in the latter model can be selected so that the re-
sulting prediction scheme achieves the optimal regret rate with
the best possible leading constant, and the distributions they
use allow computing the weights at time instant with
complexity. As a result, in time steps, the time complexity
of the best transition-diagram based algorithm is a factor
times larger than that of the original algorithm that competes
with , yielding a total complexity that is quadratic in .
For the same problem, a method of linear complexity was

developed in [4]. It was shown in [5] that this method is equiv-
alent to an easy-to-implement weighting of the paths in the full
transition diagram. Although, unlike transition diagram-based
methods, the original version of the algorithm of [4] requires
an a priori known upper bound on the number of switches, the
algorithm can be modified to compete with meta experts with
an arbitrary number of switches: a linear complexity variant
achieves this goal (by letting its switching parameter decrease
to zero) at the price of somewhat increasing the regret [6]. A
slightly better regret bound can be achieved for the case when
switching occurs more often at the price of increasing the com-
putational complexity from linear to [7], [8] (by dis-
cretizing its switching parameter to levels).
In another approach, reduced transition diagrams have been

used for the logarithmic loss (i.e., lossless data compression) in
[9] and [3] (the latter work considers a probabilistic setup as
opposed to the individual sequence setting). Reduced transition
diagrams are obtained by restricting some transitions, and, con-
sequently, excluding some states from the original transition di-
agram, resulting in (computationally) simpler models that, how-
ever, have less descriptive power to represent switches. An ef-
ficient algorithm based on a reduced transition diagram for the
general tracking problem was given in [10], while [11] devel-
oped independently a similar algorithm to minimize adaptive
regret, which is the maximal worst case cumulative excess loss
over any contiguous time segment relative to a constant expert.
It is easy to see that algorithms with good adaptive regret also
yield good tracking regret.
An important question is how one can compete with meta ex-

perts when the base expert class is very large. In such cases
special algorithms are needed to compete with experts from
the base class even without switching. Such large base classes
arise in online linear optimization [12], lossless data compres-
sion [13]–[15], the shortest path problem [16], [17], or lim-
ited-delay lossy data compression [18]–[20]. Such special algo-
rithms can easily be incorporated in transition-diagram-based
tracking methods, but the resulting complexity is quadratic in

(see, e.g., [3] for such an application to lossless data com-
pression or [21]–[23] for applications to signal processing and
universal portfolio selection). If the special algorithms for large
base expert classes are combined with the algorithm of [4] to
compete with meta experts, the resulting algorithms again have
quadratic complexity in ; see, e.g., [5] and [24] (the main
reason for this is that the special implementation tricks used for
the large base expert classes, such as dynamic programming, are
incompatible with the efficient implementation of the algorithm
of [4] for switching experts). The only example we are aware of
where efficient tracking algorithms with linear time complexity
are available for a meaningful, large class of base experts is the
case of online convex programming, where the set of base ex-
perts is a finite-dimensional convex set and the (time-varying)
loss functions are convex [25] (see also the related problem of
tracking linear predictors [26]). In this case, projected gradient
methods (including exponentially weighted average prediction)
lead to tracking regret bounds of optimal order. Note that instead
of the number of switches, these boundsmeasure the complexity
of the meta experts with the more refined notion of norms.
In this paper, we tackle the complexity issue in competing

with meta experts for large base expert classes by presenting a
general method for designing reduced transition diagrams. The
resulting algorithm converts any (black-box) prediction algo-
rithm achieving good regret against the base-expert class into
one that achieves good tracking and adaptive regret. The advan-
tage of this transition-diagram based approach is that the con-
version is independent of the base prediction algorithm , and
so some favorable properties of are automatically transferred
to our algorithm. In particular, the complexity of our method
depends on the base-expert class only through the base predic-
tion algorithm , thus exploiting its potential computational ef-
ficiency.1 Our algorithm unifies and generalizes the algorithms
in [9], [11] and our earlier work [10]. This algorithm has an ex-
plicit complexity-regret tradeoff, covering essentially all such
results in the literature. In addition to the (almost) linear com-
plexity algorithms in the aforementioned papers, the parameters
of our algorithm can be set to reproduce the methods based on
the full transition diagram [2], [3], [21], or the complexity-re-
gret behavior of [7] and [8]. Also, our algorithm has regret of
optimal order with complexity for any ,
while setting results in complexity and a re-
gret rate that is only a factor of larger than the optimal one
(similarly to [9]–[11]).
The rest of this paper is organized as follows. First the

online prediction and the tracking problems are introduced in
Section II. In Section III-A, we describe our general algorithm.
Sections III-B and III-C present a unified method for the
low-complexity implementation of the general algorithm via
reduced transition diagrams. Bounds for the performance of the
algorithm are developed in Section III-D. More explicit bounds
are presented for some important special cases in Sections III-E
and III-F. The results are extended to the related framework
of randomized prediction in Section IV. Some applications to
specific examples are given in Section V.

1Other black-box reductions of forecasters for different notions of regret are
available in the literature; for example, the conversion of forecasters achieving
good external regret to ones achieving good internal regret [27], [28].
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II. PRELIMINARIES

In this section, we review some basic facts about prediction
with expert advice, and introduce the tracking problem.

A. Prediction With Expert Advice

Let the decision space be a convex subset of a vector space
and let be a set representing the outcome space. Let

be a loss function, assumed to be convex in its
first argument. At each time instant , the environ-
ment chooses an action and each “expert” from a ref-
erence class forms its prediction . Then the forecaster
chooses an action (without knowing ) and suffers loss

, and the losses , are revealed to the
forecaster. (This is known as the full information case and in
this paper we only consider this model. In other, well-studied,
variants of the problem, the forecaster only receives limited in-
formation about the losses.)
The goal of the forecaster is to minimize its cumulative loss

, which is equivalent to minimizing its
excess loss relative to the the set of experts
, where for all .
Several methods are known that can compete successfully

with different expert classes in the sense that the (worst case)
cumulative regret, defined as

only grows sublinearly, that is, . One of the
most popular among these is exponential weighting. When the
expert class is finite or countably infinite, this method assigns,
at each time instant , the nonnegative weight

to each expert . Here, is the
cumulative loss of expert up to time , is called
the learning parameter, and the are nonnegative initial
weights with , so that (we define

for all , as well as ). The decision chosen
by this algorithm is

(1)

which is well defined since is convex.
In this paper, we concentrate on two special types of loss

functions: bounded convex and exp-concave. For such loss
functions the regret of the exponentially weighted average
forecaster is well understood. For example, assume that is
convex in its first argument and takes its values in , and
the set of experts is finite with . If is nonincreasing
in , then for all

(2)

PREDICTION WITH EXPERT ADVICE

For each round

(1) the environment chooses the next outcome and
the expert advice ; the expert
advice is revealed to the forecaster;

(2) the forecaster chooses the prediction ;
(3) the environment reveals the next outcome ;
(4) the forecaster incurs loss and each expert
incurs loss .

Fig. 1 Repeated game of prediction with expert advice.

see [29]. By setting the initial weights to
, and with the choice , one obtains for

all

(3)

If, on the other hand, for some the function
is concave for any fixed (such loss functions are

called exp-concave) then, choosing and
, one has for all

(4)

We note that the regret bounds in (2)–(4) do not require a fixed
time horizon, that is, they hold simultaneously for all .
The family of exp-concave loss functions includes, for ex-

ample, for , the square loss
with , and the relative entropy loss

with . A special case of the latter is the
logarithmic loss defined for and by

, which plays a central
role in data compression. Here and throughout this paper de-
notes the indicator of event . We refer to [1] for discussions of
these bounds.

B. Tracking Problem

In the standard online prediction problem, the goal is to per-
form as well as the best expert in a given reference class . In
this paper, we consider the more ambitious goal of competing
with a sequence of expert predictions that are allowed to switch
between experts. Formally, such a meta expert is defined as fol-
lows. Fix the time horizon . A meta expert that changes
base experts at most times can be described by a vector
of experts and a “transition path”

such that
. For each , the meta expert follows

the advice of expert in the time interval . When the
time horizon is clear from the context, we will omit it from the
description of and simply write . We note
that this representation is not unique as the definition does not
require that base experts and be different. Any meta ex-
pert that can be defined using a given transition path is said
to follow .



6712 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 11, NOVEMBER 2012

The total loss of the meta expert indexed by , accumu-
lated during rounds, is

where denotes the loss of expert
in the interval . For any , let

denote the set of all transition paths up to time represented
by vectors with and

. For any and define
the truncation of at time as , where
is such that (note that guarantees that

, and so is well defined). Furthermore,
let denote the last change up to time ,
and let denote the number of switches up
to time . A transition path with switches splits the time
interval into contiguous segments.
Our goal is to perform nearly as well as the meta experts, that

is, to keep the regret small relative to the meta
experts for all outcome sequences . It is clear
that this cannot be done uniformly well for all meta experts; for
example, it is obvious that the performance of a meta expert
that is allowed to switch experts at each time instant cannot be
achieved for all outcome sequences. Indeed, it is known [4], [30]
that, for exp-concave loss functions, the worst case regret of
any prediction algorithm relative to the best meta expert with at
most switches, selected in hindsight, is at least of the order of

, where the worst case tracking regret with respect
to meta experts with at most switches is defined as

Algorithms achieving optimal regret rates are known under gen-
eral conditions: for general convex loss functions and a finite
number of base experts, a tracking regret of order

(or if is known in advance)
can be achieved [4], [5], [24], while the lower
bound is achievable in the case of exp-concave loss functions
and a finite number of experts [2]–[4], [6], [21], or when the
base experts form a convex subset of a finite-dimensional linear
space [31].
We will also consider the related notion of adaptive regret

introduced in [31] and [11], which is the maximal worst case
cumulative excess loss over any contiguous time segment rela-
tive to a constant expert. Minimizing the tracking and the adap-
tive regret are similar problems. In fact, one can show that the
FLH1 algorithm of [31] developed to minimize the adaptive re-
gret and a dynamic version of the fixed-share algorithm of [4]
introduced by [6] to minimize the tracking regret are identical.
Furthermore, any algorithm with small adaptive regret also en-
joys small tracking regret, since the regret, in time steps, rel-
ative to a meta expert that can switch the base expert times
can be bounded by . Although tracking regret bounds
do not immediately yield bounds on the adaptive regret (since
the regret on a time segment may be negative), it is usually

straightforward tomodify the proofs for tracking regret to obtain
bounds on the adaptive regret; see, e.g., the proof of Theorem 2.

III. REDUCED COMPLEXITY TRACKING ALGORITHM

A. General Tracking Algorithm

Here, we introduce a general tracking method which forms
the basis of our reduced complexity tracking algorithm. Con-
sider an online forecasting algorithm that chooses an element
of the decision space depending on the past outcomes and the
expert advices according to the protocol described in Fig. 1.
Suppose that for all and possible outcome sequences of length
, satisfies a regret bound

(5)

with respect to the base expert class , where
is a nondecreasing and concave function with .

These assumptions on are usually satisfied by the known
regret bounds for different algorithms, such as the bounds (3)
and (4) (with defining in the latter case). Suppose

and an instance of is used for time instants
, that is, algorithm is run on

data obtained in the segment . The accumulated loss of
during this period will be denoted by . Then (5)

implies

Running algorithm on a transition path
means that at the beginning of each segment of (at time in-
stants ) we restart ; this algorithm will be denoted in the
sequel by . Denote the output of this algorithm at time
by . This notation emphasizes the fact
that, since is restarted at the beginning of each segment of ,
the output of at time is influenced by only through

, the beginning of the segment that includes . The loss of
algorithm up to time is

As most tracking algorithms, our algorithm will use weight
functions satisfying

(6)

for all and . Thus, each is a probability
distribution on such that the family is
consistent. To simplify the notation, we formally define as
the “empty transition path” , , and

.
We say that covers if the change points of

are also change points of . Note that if covers , then any
meta expert that follows transition path also follows transition
path . We say that covers if for any there exists

with which covers .
Now we are ready to define our first master algorithm, given

in Algorithm 1. We note that the consistency of implies
that, for any time horizon , Algorithm 1 is equivalent to the
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exponentially weighted average forecaster (1) with the set of
experts and initial weights

for . The performance and the computational
complexity of the algorithm heavily depend on the properties
of ; in this paper, we will concentrate on judicious choices
of that allow efficient computation of the summations in
Algorithm 1 and have good prediction performance.

Algorithm 1 General tracking algorithm.

Input: prediction algorithm , weight functions
, learning parameters .

For predict

The next lemma gives an upper bound on the performance of
Algorithm 1.

Lemma 1: Suppose for all , the
transition path is covered by such

that , and satisfies the regret bound (5). Assume
that the loss function is convex in its first argument and takes
values in the interval . Then for any meta expert ,
the regret of Algorithm 1 is bounded as

(7)

On the other hand, if is exp-concave for the value of and
Algorithm 1 is used with , then

(8)

Proof: Let be the expert vector such that
the meta experts and perform identically. Then
clearly

Using (5) and the concavity of , we get

(9)

Assume that the loss function is convex in its first argu-
ment and takes values in the interval . Since Algorithm 1
is equivalent to the exponentially weighted average forecaster
with experts and initial weights

, we can apply the bound (2) to obtain

Combining this with (9) proves (7).
Now assume that is exp-concave. Then by [4, Lemma 1]

(10)

This, together with (9), implies (8).

B. Weight Function

One may interpret the weight function as the condi-
tional probability that a new segment is started, given the begin-
ning of the current segment and the current time instant. In this
case, one may define in terms of a time-inhomogeneous
Markov chain whose state space at time is

. Starting from state , at any time instant , the
Markov chain either stays where it was at time or switches
to state . The distribution of is uniquely determined by
prescribing and for

(11)

where the so-called switch probabilities need only
satisfy for all . A realization
of this Markov chain uniquely determines a transition path:

if and only if
for , and for ,

. Inverting this correspondence, any uniquely
determines a realization . Now the weight function
is given for all and by

(12)

where is such that . It is easy
to check that satisfies the two conditions in (6). Clearly,
the switch probabilities uniquely determine . The
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aforementioned structural assumption on , originally intro-
duced in [2], greatly reduces the possible ways of weighting dif-
ferent transition paths, allowing implementation of Algorithm 1
with complexity at most (if one step of can be imple-
mented in constant time), instead of the potentially exponential
time complexity of the algorithm in the naive implementation;
see Section III-C.
Some examples that have been proposed for this construc-

tion (given in terms of the switch probabilities) include the fol-
lowing.
1) , used in [4], is defined by for some

.
2) , used in [6], [8], and [11], is defined by

.
3) , used in [2], is defined by

(13)

which is the Krichevsky–Trofimov estimate [13] for binary
sequences of the probability that after observing an all-
zero sequence of length , the next symbol will be a
one. Using standard bounds on the Krichevsky–Trofimov
estimate, it is easy to show (see, e.g., [2]) that for any
with segment lengths (satisfying

)

(14)

4) and used in [3] (similar weight functions were
considered in [5]) are defined as follows: for a given

,2 let and (with
and ). Then, and are

defined, respectively, by

and

Here, we consider the weights . It is shown in [3, proof
of (39)] that for any ,

(15)

C. Low-Complexity Algorithm

Efficient implementation of Algorithm 1 hinges on three fac-
tors: (i) Algorithm can be efficiently implemented; (ii) the ex-
ponential weighting step can be efficiently implemented, which
is facilitated by (iii) the availability of the losses at
each time instant for all in the sense that these losses
can be computed efficiently. In what follows, we assume that (i)
and (iii) hold and develop a method for (ii) via constructing a

2The upper bound is missing from [3], although it is implicitly required
in the proof.

new weight function that significantly reduces the com-
plexity of implementing Algorithm 1.
First, we observe that the predictor of Algorithm 1 can be

rewritten as

(16)

where the weights are given by

(17)

Note that gives the weighted sum of the exponential
weights of all transition paths with the last switch at .
If the learning parameters are constant during the time

horizon, the above means that Algorithm 1 can be implemented
efficiently by keeping a weight at each time instant for
every possible starting point of a segment . Indeed,
if for all , then (17), (11), and (12) imply that each

can be computed recursively in time from (set-
ting at the beginning) using the switch probabilities
defining as follows:

(18)
Using this recursion, the overall complexity of computing the
weights during rounds is . Furthermore, (16) means
that one needs to start an instance of for each possible starting
point of a segment. If the complexity of running algorithm for
time steps is (i.e., computing at each time instant has

complexity ), then the overall complexity of our algorithm
becomes .
It is clearly not a desirable feature that the amount of compu-

tation per time round grows (linearly) with the horizon . While
we do not know how to completely eliminate this ever-growing
computational demand, we are able to moderate this growth sig-
nificantly. To this end, we modify the weight functions in such a
way that at any time instant we allow at most actual
segments with positive probability (i.e., segments containing
that belong to sample paths with positive weights), where
is a parameter of the algorithm (note that may depend on, e.g.,
the time horizon ). Specifically, we will construct a newweight
function such that

where denotes base-2 logarithm. By doing so, the time and
space complexity of the algorithm becomes times
more than that of algorithm , as we need to run
instances of in parallel and the number of nonzero terms in
(18) and (16) is also (here, we exclude the trivial
case where has zero space complexity; also note that the
time complexity of is at least linear in since it has to
make a prediction at each time instant). Thus, in the case of a
linear-time-complexity algorithm , the overall complexity of
Algorithm 1 becomes .
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In order to construct the new weight function, at each time
instant we force some segments to end. Then any path that
contains such a segment will start a new segment at time
(and hence the corresponding vector of transitions contains ).
Specifically, any time instant can be uniquely written as
with being a positive odd number and a nonnegative integer
(i.e., is the largest power of 2 that divides ). We specify that
a segment starting at can “live” for at most time instants,
where is a parameter of the algorithm, so that at time

we force a switch in the path. More precisely, given any
switch probability for all , we define a new switch
probability

(19)

where

if
otherwise.

Thus, if and only if a segment started at is still
valid at time . In terms of the Markov chain introduced in
(11), the new switch probabilities in definition (19) mean that if
the chain is in state at time such that , then
the chain switches to state with the original switch probability

and remains at state with probability , but if
, then the chain switches to state with probability 1.

In this way, given the switch probabilities and the associ-
ated weight function , we can define a new weight function

via the new switch probabilities and the procedure
described in Section III-B. Note that the definition of im-
plies that for a transition path either

or (20)

The aforementioned procedure is a common generalization
of several algorithms previously reported in the literature for
pruning the transition paths. Specifically, yields the pro-
cedure in [9], yields our previous procedure [10],
yields the method in [11], while yields the original
weighting without pruning. We will show that the time
complexity of the method with a constant (i.e., when is in-
dependent of the time horizon ) is, in each time instant, at most

times the complexity of one step of , while the time
complexity of the algorithm without pruning is times the
complexity of . Complexities that interpolate between these
two extremes can be achieved by setting appropri-
ately.
We say that a segment at time instant is alive if it contains
and is valid if there is a path with that contains
exactly that segment. In what follows, we assume that the orig-
inal switch probabilities associated with the satisfy

for all . (Note that the weight function
examples introduced in Section III-B all satisfy this condition.)
The condition implies that for all . Further-
more, if satisfies ,

, where is the largest power of 2 divisor of ,
then from (19) we get .

The next lemma gives a characterization of when
and, as a consequence, bounds the number of valid segments
that are alive at .

Lemma 2: Let be the binary form of with
, , and .

Then, if and only if for some
and such that is the largest

2-power divisor of ; in particular, is even if for some
, and odd otherwise. As a consequence, at any

time instant there are at most segments that
are valid and alive.

Proof: It is clear that for any satisfying the conditions of
the lemma, since

. To prove the other direction, consider ,
assume , and denote the largest 2-power divisor of
by . By definition, if and only if

for some . After reordering,
we obtain

(21)

Let be the unique index such that
(note that always holds). Then divides , and

. Combining this inequality with (21) gives
. Taking into account

that both and are divisible by , we obtain .
Furthermore, since is the largest 2-power divisor of , must
be even when for some , and odd
otherwise.
Finally, for any , the set

has at most elements. Since , the proof is
complete.

Note that for the valid segments that are alive at
start exactly at , and so the number of valid
segments at time is exactly the number of 1s in the binary form
of [9]. The aforementioned lemma implies that Algorithm 1 can
be implemented efficiently with the proposed weight function

.

Theorem 1: Assume that Algorithm 1 is run with weight
function derived using any from any weight func-
tion defined as in Section III-B. If for some
and all , then the time and space complexity of Al-
gorithm 1 is times the time and space complexity of
, respectively.
Proof: The result follows since Lemma 2 implies that the

number of nonzero terms in (18) and (16) is always .

D. Regret Bounds

To bound the regret, we need the following lemma which
shows that any segment can be covered with at most

valid segments.
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Lemma 3: For any , there exists such that for
any segment of with :
i) , and are switch points of (if ,
it is considered as a switch point), and contains at most

segments in ;

ii) if the switch points of in are
, then , and for any nondecreasing

function

(22)

(23)

where the second summation in (22) is empty if .

Remark: Note that it is possible to obtain for the less com-
pact and harder-to-handle formula

by taking into account that the last segment in the con-
struction of the proof can always be defined to be of length at
least . Furthermore, for it follows from
[9] that the last term is not needed in (22), and hence the latter
bound can be strengthened to

(24)

Proof: Clearly, it is enough to define independently in
each segment of . We construct the switch points

of in this interval, for some , and an
auxiliary variable one by one such that ,
and, defining as the largest 2-power divisor of

(25)

for . Assume that we have already defined
satisfying (25) for . Then a seg-

ment starting at may be alive with positive probability at
any time instant in . Define to be the largest
nonnegative integer such that there is
such that divides . Then belongs to the set

(although,
clearly, ). Since is a set of consecu-
tive integers, it has an element that is divisible by ,
and this element is not the odd number . Thus,

and since is divisible by ,
the maximal property of the 2-power divisor of implies
that . Therefore, defining ,

its largest 2-power divisor is , proving (25) for (note
that it is easy to show that the choice of , and hence that of ,
is unique).
Now let be the smallest integer such that . To

prove part (i) of the lemma, it is sufficient to show that
and the segments cover

, which is clearly true if . From (25) and the fact
that is divisible by , we have

where in the last step we used the definition of . This finishes
the proof of (i).
To prove (ii), we first show that the transition path con-

structed previously satisfies (22), where, with a slight abuse
of notation, we redefine from part (i) to be . First no-
tice that since , we have

. Repeated application of (25) implies, for

any

and

Using the crude estimate finishes the proof of
(22). The last inequality (23) holds trivially for , and holds
for since

Taking into account that if covers ,
Lemma 3 trivially implies the following bounds.
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Lemma 4: For any there exists with
such that covers and

(26)

where

if

if .
(27)

Proof: The lower bound is trivial, and the upper bound di-
rectly follows from Lemma 3 for . For
the upper bounds follow since on each segment of we

can define as in the proof of Lemma 3. Hence, if
, then

where in the last step we used Jensen’s inequality and the con-
cavity of the logarithm.

We now apply the preceding construction and results to the
weight function to obtain our main theorem.

Theorem 2: Assume that Algorithm 1 is run with and
weight function for some (derived from

), based on a prediction algorithm that satisfies (5) for
some . Let be defined by (27). If is convex in its first
argument and takes values in the interval and
for , then for all and any , the
tracking regret satisfies

(28)

where the function is defined as

Furthermore, for and , the adaptive regret of the
algorithm satisfies

(29)

where the function is defined as

On the other hand, if is exp-concave for some and we
let for in Algorithm 1, then for any
and the tracking regret satisfies

(30)

while for and , the adaptive regret can be
bounded as

(31)

Proof: First we show the bounds for the tracking regret.
To prove the theorem, let be defined as in Lemma 1, and we
bound the first and last terms on the right-hand side of (7) and
(8) (with in place of ). Note that the conditions on
imply that is a nondecreasing function of for any
fixed (this follows since
is a nonincreasing function of by the concavity of ,
and hence is nondecreasing). Combining this with the
bounds on in Lemma 4 implies

The last term in (7) and (8) can be
bounded by noting that by (20) and
the latter can be bounded using (15); this is given by . This
finishes the proof of the tracking regret bounds.
Next we prove the bounds for the adaptive regret. Assume

we want to bound the regret of our algorithm in a segment
with . By Lemma 3 there exists a transition
path such that it has a switch point at , has at most

segments in , and .

Let denote the switch points of in

where , and let and . Notice that, since
we are interested in the performance of the algorithm only in the
interval , a modified version of Lemma 1 can be applied,
where the loss is considered only in the interval and the
weight of can be thought to be the sum of the weight of all
transition paths that agree with in . Specifically, letting

and
, it can be shown similarly to
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Lemma 1 that in the case of a loss function that is convex in its
first argument and takes values in , for any expert

(32)

Now can be bounded in a similar way as
in [3]. For , we can use (15). For it

can be shown, following the proof of (15) in [3], that

(33)

whenever . Indeed, let denote the event that is a
switch point and let denote the event that

are the switch points in . Since the switch probabilities
are independent of and ,

for , we have

where the second inequality follows from inequalities [3, (36)
and (38)], and the third follows since .
It is easy to see that the bound in (33) is larger than (15) if

. Thus, combining with (32) for the maximizing value
, and using , we obtain the bound

(29) on the adaptive regret. A modified version of (32) (without
the term) yields (31).

Remarks:
1) Note that the tracking regret can be trivially bounded
by times the adaptive regret (as sug-
gested in [11]). However, the direct bounds on the
tracking regret are somewhat better than this: the first
term coming from the adaptive regret bound would be

, which is larger than the first
term in the tracking
regret bounds. This justifies our claim for exp-concave
loss functions, since the last terms will be essentially the
same, although the main term in the bound is not affected.
The difference is more pronounced for the case of the
convex and bounded loss function, where the middle

term becomes multiplied by if the
tracking bound is computed from the adaptive regret
bound, resulting in an increased constant factor in the
main term.

2) The aforementioned theorem provides bounds on the
tracking and adaptive regrets in terms of the regret bound
of algorithm . However, in many practical situations,
behaves much better than suggested by its regret bound.

This behavior is also preserved in our tracking algorithms:
omitting step (9) in Lemma 1 we can replace the first term
in (28) and (30) with , which is the
actual regret of algorithm on the (extended) transition
path . Reordering the resulting inequality, we can see
that the loss of our algorithm is not much larger than that
of run on ; for example, in the exp-concave case we
have

E. Exponential Weighting

We now apply Theorem 2 to the case where is the expo-
nentially weighted average forecaster and the set of base experts
is of size , and discuss the obtained bounds (for simplicity we
assume , but would just slightly change
the presented bounds). In this case, if is convex and bounded,
then by (3) the regret of is bounded by .
Setting for some ( is independent of

but depends on the time horizon ), the bound (28) be-
comes, for

Furthermore, if an upper bound on the complexity (number of
switches) of the meta experts in the reference class is known in
advance, then can be set as a function of as well.
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Letting , the bound

(28) becomes

We note that these bounds are of order ,

respectively , only a factor of
larger than the ones of optimal order resulting from earlier
algorithms [4], [5], [24] which have complexity (strictly
speaking, the complexity of [4] is , but, when combined
with efficient algorithms designed for the base-expert class,
only complexity versions are known [24]). In some
applications, such as online quantization [24], the number of
base experts depends on the time horizon in a polynomial
fashion, that is, for some . In such cases,
the order of the upper bound is not changed; it remains still

if the number of switches is unknown,

and if the maximum number of
switches is known in advance. This bound is within a
factor of of the best achievable regret for this case.
Next we observe that at the price of a slight increase of com-

putational complexity, regret bounds of the optimal order can be
obtained. Indeed, setting for some and

independently of the maximum
number of switches

If is optimized for an a priori known bound , then
we get

These bounds are of the same and, re-
spectively, order as the ones achievable
with the quadratic complexity algorithms [21], [24], but the
complexity of our algorithm is only times larger

than that of running (which is typically linear in ). Thus,
in a sense the complexity of our algorithm can get very close to
linear while guaranteeing a regret of optimal order. (Note, how-
ever, that a factor appears in the regret bounds so setting
very small comes at a price.)
A similar behavior is observed for exp-concave loss func-

tions. Indeed, if is exp-concave and is the exponentially
weighted average forecaster, then by (4) the regret of is
bounded by . In this case, for , the
bound (30) becomes

which is a factor of larger than the existing optimal
bounds of order (see [2]–[4], [6], and
[21]) valid for algorithms having complexity (again,
concerning [4], we mean its combination with some efficient
algorithm designed for the base-expert class). Note that in this
case the algorithm is strongly sequential as its parametrization
is independent of the time horizon . For , we
obtain a bound of optimal order

Bounds of similar order can be obtained for exp-concave loss
functions in the more general case when is not of size , but
is a bounded convex subset of an -dimensional linear space.
Then for several algorithms under different
assumptions. This is the case for exp-concave loss functions
when performs exponential weighting over all base experts.
Using random-walk-based sampling from log-concave distribu-
tions (see [32]), efficient probabilistic approximations exist to
perform this weighting in many cases. Exact low complexity
implementations, such as the Krichevsky–Trofimov estimate for
the logarithmic loss [13] (see Example 1), are, however, rare.
When additional assumptions are made, e.g., the gradient of
the loss function is bounded, the online Newton step algorithm
in [12] can be applied to achieve logarithmic (standard) regret
against the base-expert class . We refer to [33] for a survey.

F. Weight Function

In this section, we analyze the performance of Algorithm 1
for the case when the “Krichevsky–Trofimov” weight function

is used. Our analysis is based on part (ii) of Lemma 3, fol-
lowing ideas of Willems and Krom [9] who only considered the
logarithmic loss. Applying the weight function (derived
from ), this analysis improves the constants relative to The-
orem 2 for small values of , although the resulting bound has
a less compact form. Nevertheless, in some special situations
the bounds can be expressed in a simple form. This is the case
for the logarithmic loss, where, for the special choice ,
applying (24), the new bound now achieves that of [9] proved
for the same algorithm. The idea is that in the proof of Theorem
2 the concavity of was used to get simple bounds on sums
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which are sharp if the segments are of (approximately) equal
length. However, in our construction the length of the subseg-
ments (corresponding to the same segment of the original tran-
sition path) or, more precisely, their lower bounds grow expo-
nentially according to (25). This makes it possible to improve
the upper bounds in Theorem 2. It is interesting to note that the
weight functions and give better bounds for ,
where the segment lengths are approximately equal, while the
large differences in the segment lengths for can be
exploited by the weight function .
To obtain “almost closed-form” regret bounds for a general
, we need the following technical lemma.

Lemma 5: Assume that is a differen-
tiable function and . Define by

for all . Then, the second derivative of is given by

Therefore, is concave on if for all
.
Proof: First note that since for , Leibniz’s

integral rule gives

since

Differentiating gives the desired result.

Next, we give an improvement of Theorem 2 for small values
of . For simplicity, the bounds are only given for the tracking
regret. It is much more complicated to obtain sharp bounds for
the adaptive regret, since, similarly to the proof of Theorem 2, it
would require to lower bound the probability that a new segment
is started at some time instant , but here the switch probabili-
ties , defined in (13), depend both on and , unlike

which only depends on .

Theorem 3: Assume that is differentiable and satisfies
for all , and Algorithm 1 is run with

weight function . Let

and

If is convex in its first argument and takes values in the interval
, and for , then for any

the tracking regret satisfies, for all

(34)

On the other hand, if is exp-concave for the value of and
for in Algorithm 1, then for any

the tracking regret satisfies

(35)

Proof: We proceed similarly to the proof of Theorem 2 by
first applying Lemma 1. However, the resulting two terms are
now bounded using Lemma 3(ii) instead of Jensen’s inequality,
which allows us to make use of the potentially large differences
in the segment lengths.
For any transition path let

denote the transition path defined by Lemma

3 with . The first term of the first upper bound
given in Lemma 1 can be bounded as follows: for any segment

of , Lemma 3(i) and (23) yield

Since the right-hand side of the aforementioned inequality is a
concave function of by Lemma 5 and the condi-
tions on , Jensen’s inequality implies

(36)
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The weight function can be bounded in a similar way. By the
standard bound (14) on the Krichevsky–Trofimov estimate [14],
we have

(37)

Applying (22) for a segment of yields

where in the last step we bounded the ceiling function from
above and from below, as appropriate. Furthermore, it is easy to
check that the last expression above is concave in .
Therefore, combining it with (37), applying Jensen’s inequality,
we obtain

Applying this bound and (36) in Lemma 1 yields the statements
of the theorem.

We now apply Theorem 3 to the exponentially weighted
average predictor. For bounded convex loss functions
we have . Assuming , if

(i.e., is independent

of the number of switches ), we obtain

Optimizing as a function of an upper bound on the number
of switches yields

Note that if for some , the first term is
asymptotically negligible compared to the second in the above
bounds. For example, if is set independently of , we obtain

On the other hand, if , the bound becomes

when is set independently of .
For exp-concave loss functions we have, for

while if we get

Note that for both types of loss functions, we have a clear
improvement relative to Theorem 2, where we used the weight
function , for the case when . However, no such
distinction can be made for . Indeed, for convex loss
functions constant multiplicative changes in vary the exact
form of the factor , with constants in the
second term, and, consequently, the order of the bounds depends
on the relative size of , while, for example, the value of
determines the order of the bounds for exp-concave losses, e.g.,
constructing the weigh function from is better for
. Also note that the aforementioned bounds for and
have improved leading constant compared to [10] and

[31], respectively.
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IV. RANDOMIZED PREDICTION

The results of the previous section may be adapted to the
closely related model of randomized prediction. In this frame-
work, the decision maker plays a repeated game against an ad-
versary as follows: at each time instant , the deci-
sionmaker chooses an action from a finite set, say
and, independently, the adversary assigns losses to
each action . The goal of the decision maker is to
minimize the cumulative loss .
Similarly to the previous section, the decision maker may try

to compete with the best sequence of actions that can change
actions a limited number of times.More precisely, the set of base
experts is and as before, we may define a meta
expert that changes base experts times by a transition path

and a vector of actions ,
where and

. The total loss of the meta expert indexed by
, accumulated during rounds, is

with

There are two differences relative to the setup considered ear-
lier. First, we do not assume that the loss function satisfies spe-
cial properties such as convexity in the first argument (although
we do require that it be bounded). Second, we do not assume in
the current setup that the action space is convex, and so a convex
combination of the experts’ advice is not possible. On the other
hand, similar results as before can be achieved if the decision
maker may randomize its decisions, and in this section we deal
with this situation.
In randomized prediction, before taking an action, the

decision maker chooses a probability distribution over
(a vector in the probability simplex in ),

and chooses an action distributed according to (condition-
ally, given the past actions of the decision maker and the losses
assigned by the adversary).
Note that now both and are random variables not

only because the decision takes randomized decisions but also
because the losses set by the adversary may depend on past ran-
domized choices of the decision maker. (This model is known
as the “nonoblivious adversary”.) We may define the expected
loss of the decision maker by

where denotes the th component of .
For details and discussion of this standard model, we refer

to [1, Section 4.1]. In particular, since the results presented in
Section I can be extended to time-varying loss functions and
since is a linear (convex) function, it can be shown that regret
bounds of any forecaster in the model of Section I can be ex-
tended to the sequence of loss functions . That is, the bounds

can be converted into bounds for the expected regret of a ran-
domized forecaster. Furthermore, it is shown in [1, Lemma 4.1]
how such bounds in expectation can be converted to bounds that
hold with high probability.
For example, a straightforward combination of [1, Lemma

4.1] and Theorem 2 implies the following. Consider a prediction
algorithm defined in the model of Section III-A that chooses
an action in the decision space and suppose that it
satisfies a regret bound of the form (5) under the loss function

. Algorithm 2, which is a variant of Algorithm 1, converts
into a forecaster under the randomized model. At each time

instant , the algorithm chooses, in a randomized way, a tran-
sition path , and uses the distribution

that would choose, had it been started at time
, the time of the last change in the path up to time . In

the definition of the algorithm

denotes the cumulative expected loss of algorithm , where we
define and , and

is the cumulative expected loss suffered by in the time interval
with respect to for .

Algorithm 2 Randomized tracking algorithm.

Input: Prediction algorithm , weight function
, learning parameters .

For choose according to the distribution

choose , and pick .

Corollary 1: Suppose for all and
, and satisfies (5) with respect to the loss func-

tion . Assume that Algorithm 2 is run with weight function
for some . Let . For any , the

regret of the algorithm satisfies, with probability at least

where and are defined as in Theorem 2.
Proof: First note that Theorem 2 can easily be extended to

time-varying loss functions (in fact, Lemma 1, and consequently
Theorem 2, uses the bound (2) which allows time-varying loss
functions). Combining the obtained bound for the expected loss
with [1, Lemma 4.1] proves the corollary.
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V. EXAMPLES

In this section, we apply the results of this paper for a few
specific examples.

Example 1 (Krichevsky–Trofimov Mixtures): Assume
and , and consider the logarithmic loss

defined as . As mentioned
before, the logarithmic loss is exp-concave with , and
hence, we choose . This loss plays a central role in data
compression. In particular, if a prediction method achieves, on
a particular binary sequence , a loss , then
using arithmetic coding the sequence can be described with at
most bits [34]. We note that the choice of the expert class

corresponds to the situation where the sequence is
encoded using an i.i.d. coding distribution. Competing against
the expert class also has a probabilistic interpre-
tation: it is equivalent to minimizing the worst case maximum
coding redundancy relative to the class of i.i.d. source distribu-
tions on .
Let and denote

the number of 0s and 1s in , respectively. Then the loss of an
expert at time is

which is the negative log-probability assigned to by a mem-
oryless binary Bernoulli source generating 1s with probability
. The Krichevsky–Trofimov forecaster is an exponentially
weighted average forecaster over all experts using initial
weights (i.e., the distribution)
defined as

It is well known that can be computed efficiently as
. By [14], the

performance of the Krichevsky–Trofimov mixture forecaster
can be bounded as

In this framework, a meta expert based on the base expert
class is allowed to change a certain number of times.
In the probabilistic interpretation, this corresponds to the
problem of coding a piecewise i.i.d. source [2], [3], [7]–[9].
If we apply Algorithm 1 to this problem with , we can
improve upon Theorem 3 by using instead of
in the bound (note that was obtained by calculating the
Krichevsky–Trofimov bound for the transition probabilities),
and obtain, for any transition path and meta expert

For , this bound recovers that of [9] (at least in the leading
term), and improves the leading constant for and
when compared to [10] and [11], respectively.
On the other hand, for , , using with

in Algorithm 1, Theorem 3 implies

This bound achieves the optimal order for any
, however, with increased leading constant. On the negative
side, for specific choices of our algorithm does not recover the
best leading constants known in the literature (partly due to the
common bounding technique for all ): if , our bound is
a constant factor worse than those of [7] and [8] which have the
same complexity (disregarding logarithmic factors);
on the other hand, in case our algorithm is identical to
the complexity algorithm of Shamir and Merhav [3], and
hence an optimal bound can be proved for (and for ),
as done in [3] achieving Merhav’s lower bound [30].

Example 2 (Tracking Structured Classes of Base Experts): In
recent years, a significant body of research has been devoted
to prediction problems in which the forecaster competes with a
large but structured class of experts. We refer to [1], [16], [17],
[24], [35]–[38] for an incomplete but representative list of pa-
pers. A quite general framework that has been investigated is the
following: a base expert is represented by a -dimensional bi-
nary vector . Let be the class of experts.
The decision space is the convex hull of , so the forecaster
chooses, at each time instant , a convex combina-
tion . The outcome space is

and if the outcome is , then the loss of expert
is , the standard inner product of and .

The loss of the forecaster equals .
The authors of [36] introduce a general prediction algorithm,
called “Component Hedge,” that achieves a regret

where . What makes Component Hedge in-
teresting, apart from its good regret guarantee, is that for many
interesting classes of base experts it can be calculated in time
that is polynomial in , even when has exponentially many
experts. We refer to [36] for a list of such examples. The re-
sults of this paper show that we may obtain efficiently com-
putable algorithms for tracking such structured classes of base
experts. For example, (28) of Theorem 2 applies in this case,
with . The calcula-
tions in Section III-E may be easily modified for this case in a
straightforward manner.

Example 3 (Tracking the Best Quantizers): The problem
of limited-delay adaptive universal lossy source coding of
individual sequences has recently been investigated in de-
tail [18]–[20], [24], [39]–[41]. In the widely used model of
fixed-rate lossy source coding at rate , an infinite sequence of
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-valued source symbols is transformed into a
sequence of channel symbols which take values from
the finite channel alphabet , , and these
channel symbols are then used to produce the ( -valued)
reproduction sequence . The quality of the repro-
duction is measured by the average distortion ,
where is some nonnegative bounded distortion measure. The
squared error is perhaps the most popular
example.
The scheme is said to have overall delay at most if there

exist nonnegative integers and with such that
each channel symbol depends only on the source symbols

and the reproduction for the source symbol
depends only on the channel symbols . When
, the scheme is said to have zero delay. In this case,

depends only on , and on , so that the
encoder produces as soon as becomes available, and the
decoder can produce when is received. The natural ref-
erence class of codes (experts) in this case is the set of -level
scalar quantizers

The relative loss with respect to the reference class is known
in this context as the distortion redundancy. For the squared
error distortion, the best randomized coding methods [20], [39],
[41], with linear computational complexity with respect to the
set , yield a distortion redundancy of order .
The problem of competing with the best time-variant quan-

tizer that can change the employed quantizer several times (i.e.,
tracking the best quantizer) was analyzed in [24], based on a
combination of [20] and the tracking algorithm of [4]. There the
best linear-complexity scheme achieves
distortion redundancy when an upper bound on the number
of switches in the reference class is known in advance. On
the other hand, applying our scheme with in the
method of [24] and using the bounds in Section III-E gives
a linear-complexity algorithm with distortion redundancy

if is known in advance and only slightly worse
distortion

redundancy if is unknown. When , the distortion
redundancy for linear complexity becomes somewhat worse,
proportional to up to logarithmic factors.

VI. CONCLUSION

We examined the problem of efficiently tracking large expert
classes where the goal of the predictor is to perform as well as
a given reference class. We considered prediction strategies that
compete with the class of switching strategies that can segment
a given sequence into several blocks, and follow the advice of
a different base expert in each block. We derived a family of
efficient tracking algorithms that, for any prediction algorithm
designed for the base class, can be implemented with time

and space complexity times larger than that of ,
where is the time horizon and is a parameter of the al-
gorithm. With properly chosen, our algorithm achieves a re-
gret bound of optimal order for , and only times

larger than the optimal order for for all typical regret
bound typeswe examined. For example, for predicting binary se-
quences with switching parameters, ourmethod achieves the op-
timal regret rate with time complexity for
any . Linear complexity algorithms that achieve op-
timal regret rate for small base expert classes have been shown
to exist in [4] and [6]. Our results show that the optimal rate is
achievable with the slightly larger , com-
plexity even if the number of switches is not known in advance
and the base expert class is large. It remains, however, an open
question whether the optimal rate is achievable with a linear
complexity algorithm in this case.
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