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Abstract
We study the problem of lossless feature selection for a d-dimensional feature vector
X = (X (1), . . . , X (d)) and label Y for binary classification as well as nonparametric
regression. For an index set S ⊂ {1, . . . , d}, consider the selected |S|-dimensional
feature subvector XS = (X (i), i ∈ S). If L∗ and L∗(S) stand for the minimum risk
based on X and XS , respectively, then XS is called lossless if L∗ = L∗(S). For
classification, the minimum risk is the Bayes error probability, while in regression,
the minimum risk is the residual variance. We introduce nearest-neighbor-based test
statistics to test the hypothesis that XS is lossless. This test statistic is an estimate of
the excess risk L∗(S) − L∗. Surprisingly, estimating this excess risk turns out to be
a functional estimation problem that does not suffer from the curse of dimensionality
in the sense that the convergence rate does not depend on the dimension d. For the
threshold an = log n/

√
n, the corresponding tests are proved to be consistent under

conditions on the distribution of (X ,Y ) that are significantly milder than in previous
work. Also, our threshold is universal (dimension independent), in contrast to earlier
methods where for large d the threshold becomes too large to be useful in practice.
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1 Introduction

In this paper we study the problem of lossless feature selection for classification and
nonparametric regression.

Binary classification deals with the problem of deciding on a ±1-valued random
label Y based on a random feature vector X taking values in R

d , so that the risk,
measured by the decision error probability, is as small as possible. If the joint dis-
tribution of X and Y is known, then the optimal decision with minimum risk (error
probability), called the Bayes decision, can be derived. In the standard setup of clas-
sification, the joint distribution is unknown, but instead an observed random sample
(X1,Y1), . . . , (Xn,Yn) of n independent copies of (X ,Y ) is available from which an
estimate of the Bayes decision is to be constructed. Although estimates (classification
rules) exist whose error probabilities converge to the optimum as n → ∞without any
condition on the distribution of X and Y , the convergence rate of the error probability
of any such classification rule to the Bayes error is very sensitive to the dimension of
the feature vector. This suggests that dimension reduction, also called feature selection,
is crucial before constructing a classification rule.

For nonparametric regression, Y is a real-valued random variable withE[Y 2] < ∞,
the risk is the mean squared error, and the minimum risk is the residual variance.

In this paper we are interested in feature selection that is lossless, i.e., does not
incur any loss of information. For lossless feature selection, the minimum risk based
on the feature vector obtained by leaving out some components of X and that based
on the original feature vector X , are equal.

To make this notion precise, let S denote a proper subset of {1, . . . , d}, and for an
R
d -valued feature vector

X = (X (1), . . . , X (d)),

consider the R|S|-valued subvector picked out by S, given by

XS = (X (i), i ∈ S). (1)

Let L∗ and L∗(S) denote the minimum risk based on X and XS , respectively.
Then XS is called lossless if L∗ = L∗(S). One goal in this paper is to construct a
nonparametric (distribution-free) test for the null hypothesis H0 : L∗ = L∗(S), i.e.,
for the null hypothesis that the minimum risks based on X and XS are equal. In our
setup, the alternative hypothesisH1 is that L∗ < L∗(S), i.e.,H1 is the complement of
the null hypothesis, and therefore there is no separation gap between the hypotheses.
It is not at all obvious that consistency is possible without any separation gap. Dembo
and Peres (1994) and Nobel (2006) characterized hypotheses pairs that admit strongly
consistent tests, i.e., tests that, with probability one, only make finitely many Type I
and II errors. This property is called discernibility. As an illustration of the intricate
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nature of the discernibility concept, Dembo and Peres (1994) demonstrated an exotic
example, where the null hypothesis is that the mean of a random variable is rational,
while the alternative hypothesis is that this meanminus

√
2 is rational. (See also Cover

(1973) andKulkarni andZeitouni (1991).) The discernibility property showsup inBiau
andGyörfi (2005) (testing homogeneity), Devroye and Lugosi (2002) (classification of
densities), Gretton and Györfi (2010) (testing independence), Györfi andWalk (2012)
and Györfi et al. (2023) (testing conditional independence), Morvai and Weiss (2021)
and Nobel (2006) (classification of stationary processes), among others.

Consistent tests can be constructed by estimating the functionals L∗ and L∗(S)

using distribution-free consistent nonparametric estimates, i.e., estimates that (in some
sense) converge to the target functional as n → ∞. For example, Györfi and Walk
(2017) consider theBayes error probability,Devroye et al. (2018) the residual variance,
Berrett et al. (2019), Delattre and Fournier (2017), and Kozachenko and Leonenko
(1987) the differential entropy,Gretton andGyörfi (2010), Silva andNarayanan (2010),
and Wang et al. (2005) the mutual information, and Beirlant et al. (2001) the total
variation.

Most of these estimators are based on consistent nonparametric estimators of the
corresponding function (e.g., for the residual variance, the estimator of the regression
function).However, the rate of convergence of such functional estimators is determined
by the rate of convergence of the corresponding function estimator, which can be
slow. In general, estimating the function itself is a harder problem than estimating the
corresponding functional because the variance of the functional estimate can be of
order O(1/n), as is the case in this work, see for example inequalities (29), (42) and
(43) in our analysis. In fact, it surprisingly turns out that functional estimators with
good rate of convergence are based on non-consistent function estimates, e.g., the
1-NN-based estimators of residual variance in Devroye et al. (2018) and differential
entropy in Kozachenko and Leonenko (1987).

In this paper, we introduce a distribution-free test which uses an estimate of the
difference of the minimum risks L∗ − L∗(S), called the excess risk. This is in contrast
to estimating L∗ and L∗(S) separately and then taking the difference of these two
estimates. This is an important step since all separate estimates of L∗ and L∗(S) suffer
from the curse of dimensionality. We propose a nearest-neighbor-based test statistic
Tn and the threshold an = log n/

√
n. The null hypothesis L∗ = L∗(S) is accepted if

Tn ≤ an , and otherwise rejected. Our main results show that the resulting tests (for
classification and regression, respectively) are consistent in the sense that the Type
I and II errors converge to zero as the sample size n tends to infinity. Surprisingly,
estimating the excess risk turns out to be a functional estimation problem where there
is no curse of dimensionality in the sense that the convergence rate (under the null
hypothesis) depends on d only through a multiplicative factor (see (36) at the end of
the proof of Theorem 1.)

For the alternative hypothesis, the analysis is relatively straightforward because the
consistency of the test naturally follows from the consistency of the minimum risk
estimates. However, under the null hypothesis, the problem is more challenging. On
the one hand, the estimation error Tn −E[ Tn ] is of order 1/√n. On the other hand, the
absolute value of the biasE[ Tn ] can be of order n−1/d (d is the dimension of the feature
vector X ), which can be much larger than 1/

√
n. The resulting threshold is about an =
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log n/n1/d , which becomes impractically large for high-dimensional X , because the
test rarely rejects the null hypothesis, see, e.g., Györfi andWalk (2017) (classification)
and Devroye et al. (2018), Section 3 (regression). To address this problem, we develop
statistics Tn such that the bias of the estimator of L∗(S) is much larger than the bias of
the estimator of L∗, resulting in a negative biasE[ Tn ]. This approach allows us to set a
universal, dimension independent threshold an , yielding smaller and more practically
useful threshold values.

We note that if for a threshold sequence a′
n , Tn < a′

n is a consistent test, then so is
fn(Tn) < fn(a′

n) for any sequence of increasing scaling functions fn , so by replacing
the test statistic Tn by fn(Tn), the threshold an = fn(a′

n) can easily bemade dimension
independent. However, in this case fn(Tn) would not be a consistent estimate of the
excess risk L∗−L∗(S), which wouldmake a test based on fn(Tn)much less attractive.

Under mild smoothness conditions, the main results in this paper show the consis-
tencyof the constructed tests for the lossless feature selectionproperty for classification
and nonparametric regression. However, onemay in addition be interested in the power
of these tests. Without any separation gap between the hypotheses, for any test the
rate of convergence of the Type II error (power) can be arbitrarily slow. In future work
one may consider a formulation of separation that makes it possible to derive sharper
bounds on the power on these tests. For example, with the null hypothesisH0 as above,
one may consider the alternative hypothesisH1 to be L∗ + δ < L∗(S) for some fixed
but unknown δ > 0 and investigate the power of the test in this setup as a function of
n and d.

The paper is organized as follows. In Sect. 2 we introduce a novel k-nearest-
neighbor-based test statistic and threshold for lossless feature selection in classification
and state the consistency of the corresponding test under a mild Lipschitz-type condi-
tion (Theorem 1). We also state a lemma (Lemma 1) that gives sharp upper and lower
bounds on the first absolute moment of the average of n independent and identically
distributed ±1-valued random variables, which plays an important role in proving
the test’s consistency under the null hypothesis. In Sect. 3 we introduce a similar test
for lossless feature selection for nonparametric regression and state its consistency
(Theorem 2). Finally, the proofs are presented in Sect. 4.

2 Lossless feature selection for classification

The task of binary classification is to decide on the ±1-valued random variable Y
given an Rd -valued random vector X by finding a decision function g, defined on the
range of X , such that g(X) = Y with large probability. If g : Rd → {−1, 1} is an
arbitrary measurable decision function, then its error probability is denoted by

L(g) = P{g(X) 
= Y }.

Let

m(x) = E[ Y | X = x].
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It is well-known that the so-called Bayes decision g∗, the decision function that
minimizes the error probability L(g), is given by

g∗(x) = sgnm(x),

where sgn(z) = 1 if z ≥ 0 and sgn(z) = −1 if z < 0 for any z ∈ R.
The minimum error probability, also called the Bayes error probability, is given by

L∗ = P{g∗(X) 
= Y } = min
g

L(g),

which can be considered as the minimum risk in classification.
Constructing the Bayes decision requires the knowledge of the distribution of

(X ,Y ). Typically, this distribution is unknown and instead one observes the training
samples

Dn = {(X1,Y1), . . . , (Xn,Yn)},

consisting of independent and identically distributed (i.i.d.) copies of (X ,Y ), which
arrive in a stream with increasing sample size n. The monograph by Devroye et al.
(1996) provides constructions of classification algorithms, based on the data Dn , that
are universally consistent in the sense that the error probability of these algorithms
tends to the Bayes error probability for all distributions of (X ,Y ) as n → ∞. How-
ever, the rate of convergence of the error probabilities heavily depends on regularity
(smoothness) properties of the functionm and on the dimension d of the feature vector
X . Detecting a subset of ineffective features that, in the presence of the other features,
has no influence on L∗ allows lossless reduction of the dimension.

This section deals with testing the hypothesis of ineffectiveness of specific features.
The test uses an estimate of the difference of the Bayes error probabilities with and
without these features.

As before, for S ⊂ {1, . . . , d} let L∗(S) denote the Bayes error probability when
Y is estimated using the subvector XS = (Xi , i ∈ S). Our aim is to construct a
test for the hypothesis L∗ = L∗(S), i.e., the hypothesis that the subset of neglected
features (X (i), i /∈ S) do not provide more information beyond what is contained in
XS . A set S with this property provides lossless feature selection. Note, however, that
the neglected features (X (i), i /∈ S) may still be informative, e.g., it is possible that
L∗ = L∗(S) = L∗(Sc).

Most dimension reduction algorithms for classification are modified versions of
principal component analysis (PCA), where one looks for a linear transformation of
the feature vector into a lower dimensional subspace. In the resulting optimization
problem the Bayes error probability is replaced by a smooth error proxy, see, e.g.,
Siblini et al. (2021) and Tang et al. (2014).

A particular way of dimension reduction is feature selection. Similarly to the PCA,
in feature selection algorithms, instead of the Bayes error probability, one usually
considers other, more treatable criteria, see Guyon and Elisseeff (2003). Usually, such
feature selection algorithms are looking for individual relevant features. Another, more
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direct goal is to find a good feature set S that has small size |S| and error probability
L∗(S) that is close to L∗. If one fixes |S| = d ′ for some integer 1 ≤ d ′ < d, the problem
is to find a d ′-element selection S with minimal Bayes error L∗(S). In this respect,
the examples of Cover and van Campenhout (1977) and Toussaint (1971) show that
the d ′ features that are individually the best do not necessarily constitute the best d ′-
dimensional vector, and therefore, every algorithm has to search exhaustively through
all d ′-element subsets S, see Chapter 32 in Devroye et al. (1996), This procedure is
prohibitively complex and instead one may search for the smallest feature set S that
provides lossless feature selection, a task that may be easier. In this paper we are
concentrating on the problem of testing whether or not a given S provides lossless
feature selection, but we do not deal with the problem of searching for such a smallest
feature set S. Finding effective algorithms for identifying such S may be the subject
of future work.

When searching for such an S based on the training samples Dn , the classification
null-hypothesis H0, defined as

L∗(S) = L∗ (2)

must be tested. The null-hypothesis (2) means that the subset of neglected features
(X (i), i /∈ S) of the vector X carries no additional information, i.e., it has no additional
predictive power.

An obvious approach to this problem is to estimate L∗(S) and L∗ from the data and
to accept the hypothesis (2) if the difference of the estimates is small. Unfortunately,
it seems that no such estimates with fast rate of convergence are available in the
literature. Antos et al. (1999) proved that without any regularity conditions, the rate
of convergence for any estimate of L∗ can be arbitrarily slow. In view of this, our
approach will be to estimate directly the difference L∗(S) − L∗. This task will prove
easier in the sense that we can construct an estimate Tn of L∗(S) − L∗, for which,
without any condition,

Tn → L∗(S) − L∗ (3)

in L1, and if L∗(S) − L∗ = 0, then

E[ |Tn| ] → 0

with a nontrivial rate of convergence. More specifically, we introduce an estimate Tn
and a threshold an → 0 such that (3) holds and if L∗(S) − L∗ = 0, then

lim
n→∞P{Tn > an} = 0.

In order to detect ineffective features, Györfi and Walk (2017) proposed near-
est neighbor and partitioning-based statistics and, for the threshold an ≈ 1/

√
n +

n−2/(2+d), proved the consistency of the resulting tests under fairly restrictive condi-
tions on the distribution of the pair (X ,Y ). For the case of large d, which is the focus
in feature selection, the corresponding an is too large to be useful in practice. In this
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section we weaken the restrictive conditions and significantly decrease the threshold
value.

Let S ⊂ {1, . . . , d} be fixed and introduce the notation

̂X = XS,

m̂(̂X) = E[ Y | ̂X ] = E[m(X) | ̂X ]

and

̂L∗ = L∗(S) = P{sgn m̂(̂X) 
= Y }.

For any measurable g : Rd → {−1, 1} we have

L(g) − L∗ = E
[

I{g(X) 
=g∗(X)}|m(X)| ] , (4)

where I denotes the indicator function (see Devroye et al. 1996, Theorem 2.2). Letting
g = −g∗ in (4), we obtain (1 − L∗) − L∗ = E[ |m(X)| ]. Therefore

L∗ = 1

2

(

1 − E
[|m(X)|]),

and similarly

̂L∗ = 1

2

(

1 − E
[|m̂(̂X)|]),

implying that

̂L∗ − L∗ = 1

2

(

E
[|m(X)|]− E

[|m̂(̂X)|]) , (5)

Therefore the classification null hypothesis (2) is equivalent to

E
[|m(X)|]− E

[|m̂(̂X)|] = 0. (6)

To test the null hypothesis, we propose a nearest-neighbor-based test statistic. Fix
x ∈ R

d and reorder the data (X1,Y1), . . . , (Xn,Yn) according to increasing values of
‖Xi − x‖, where ‖ ·‖ denotes the Euclidean norm onRd . The reordered data sequence
is denoted by

(X(n,1)(x),Y(n,1)(x)), . . . , (X(n,n)(x),Y(n,n)(x)), (7)

so that X(n,k)(x) is the kth nearest-neighbor of x . In case of a tie, i.e., if Xi and X j are
equidistant from x , then Xi is declared “closer” if i < j . In this paper we assume that
ties occur with probability 0. This assumption can be enforced by endowing X with a
(d + 1)th component Z that is independent of (X ,Y ) and is uniformly distributed on
[0, 1], see Section 11.2 in Devroye et al. (1996). In this situation, the training samples
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are similarly modified. We note that this procedure does not change either L∗ or ̂L∗
and m and m̂ remain unchanged as well.

Choose an integer kn less thann. The k-nearest-neighbor (k-NN) regression estimate
of m is

mn(x) = 1

kn

kn
∑

j=1

Y(n, j)(x). (8)

Analogously to (8), from the training subsamples

̂Dn = {(̂X1,Y1), . . . , (̂Xn,Yn)}

(where ̂Xi is the subvector picked out from Xi by the selected features S), we introduce
the k-NN estimate m̂n of m̂:

m̂n (̂x) = 1

kn

kn
∑

j=1

̂Y(n, j)(̂x). (9)

The k-nearest-neighbor classification rule is defined by the plug-in estimator

gn(x) = sgn(mn(x)).

Assuming ties occur with probability 0, if kn is chosen so that kn → ∞ and kn/n → 0,
then without any other condition on the distribution of (X ,Y ), the k-NN classification
rule is strongly consistent, i.e.,

L(gn) → L∗ a.s.,

where L(gn) = P{gn(X) 
= Y | Dn}, see Sections 11.1 and 11.2 in Devroye et al.
(1996).

To construct the test we assume for convenience that 2n i.i.d. training samples are
available, so that in addition to Dn = {(X1,Y1), . . . , (Xn,Yn)}, the i.i.d. copies

D′
n = {(X ′

1,Y
′
1), . . . , (X

′
n,Y

′
n)}

of (X ,Y ) are also available ((X ,Y ), Dn , and D′
n are independent). Recalling (5), we

estimate the difference

E

[

|m(X)| − |m̂(̂X)|
]

by means of the nearest-neighbor-based test statistic

Tn = 1

n

n
∑

i=1

(

Y ′
i sgn(mn(X

′
i )) − |m̂n(̂X

′
i )|
)
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with kn chosen as

kn = �√log n�.

One accepts the classification null hypothesis if

Tn ≤ an,

where

an = log n√
n

. (10)

To prove the consistency of this test, we need the following modified Lipschitz
condition. It is a combined smoothness and tail condition that weakens two rather
restrictive conditions that are used in the literature: the Lipschitz continuity of m and
the condition that X is bounded.

Definition 1 ( Chaudhuri and Dasgupta (2014), Döring et al. (2018)) If μ stands for
the distribution of X , then m satisfies the modified Lipschitz condition if there exists
C∗ > 0 such that for any x, z ∈ R

d ,

|m(x) − m(z)| ≤ C∗μ(Sx,‖x−z‖)1/d ,

where Sx,r = {y ∈ R
d : ‖y − x‖ ≤ r} denotes the closed Euclidean ball centered at

x having radius r .

The following theorem, which is one of the main results in this paper, states the
consistency of our test.

Theorem 1 Let d ≥ 2 and assume that ties occur with probability 0. Then

(a) Under the classification alternative hypothesis, one has

lim
n→∞P{Tn ≤ an} = 0.

(b) If m̂ satisfies the modified Lipschitz condition and the residual variance satis-
fies E

[

(Y − m̂(̂X))2
] = 1 − E[m̂(̂X)2] > 0, then under the classification null

hypothesis, one has

lim
n→∞P{Tn > an} = 0.

Remarks:

(i) The proof of the theorem also works if instead of the modified Lipschitz condition
one assumes the standard Lipschitz condition and the boundedness of X .
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(ii) In the proof we make use of the Efron-Stein inequality (Boucheron et al. 2013,
Theorem 3.1). At the price of a larger threshold (log n)2/

√
n, the Efron-Stein

inequality can be replaced by an exponential concentration inequality, such as
McDiarmid’s inequality (Boucheron et al. 2013, Theorem 6.2), to obtain strong
consistency. (A test is called strongly consistent if, almost surely, with increasing
sample size it makes finitely many errors.)

In the analysis we show that, under the null hypothesis, the expectation of the test
statistic is negative, and in the proof we need to lower bound the expected L1 norm of
the corresponding regression estimate. In contrast to the L2 setup, where the difference
of the second moment and the squared expectation is equal to the variance, here the
difference of the first absolute moment and the absolute value of the expectation is
much less than the standard deviation if the expectation is nonzero. In this respect the
lower bound in the following lemma plays a crucial role. The proof of the lemma is
given in Sect. 4.2.

Lemma 1 Let Z1, . . . , Zn be ±1-valued i.i.d. random variables with mean a and
variance σ 2 = 1 − a2. Then,

|a| +
√
2

n3/2
σ n ≤ E

∣

∣

∣

1

n

n
∑

i=1

Zi

∣

∣

∣ ≤ |a| + c∗

n3/2
σ n (11)

with c∗ = c∗(a) < ∞ if a 
= 0.

We note that for a = 0 the upper bound in (11) is not valid, but the lower bound is.
In fact, for a = 0 the Berry-Esseen theorem implies the asymptotics

E

∣

∣

∣

∣

∣

1

n

n
∑

i=1

Zi

∣

∣

∣

∣

∣

=
√

2

πn
+ O

(

1

n

)

.

Lemma 1 can be considered as a binomial distribution analogue of the second part
of Lemma 5.8 in Devroye and Györfi (1985), which deals with the normal distribution.
However, an application of that result, together with the normal approximation to the
binomial distribution using the Berry-Esseen theorem according to the first half of this
Lemma 5.8, does not give the bound of Lemma 1 because the normal approximation
is too rough for our setting.

3 Lossless feature selection for nonparametric regression

An analogous problem can be posed in the context of nonparametric regression, where
Y is a real-valued random variable with E[Y 2] < ∞. Here the functional

L∗ = E

[

(Y − m(X))2
]

.
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withm(x) = E[Y | X = x], plays the central role. It is known that for any measurable
function g : Rd → R,

E

[

(Y − g(X))2
]

= L∗ + E

[

(m(X) − g(X))2
]

and therefore

L∗ = min
g

E

[

(Y − g(X))2
]

,

where theminimum is taken over allmeasurable functions g : Rd → R. The functional
L∗ is often referred to as the residual variance; it is the minimum mean squared error
in predicting Y based on the observation X .

For S ⊂ {1, . . . , d}, the predictive power of a subvector XS = (X (i), i ∈ S) of X
is measured by the residual variance

L∗(S) = E

[

(Y − E[Y | XS])2
]

that can be achieved using the features as explanatory variables. For possible dimen-
sionality reduction, one needs, in general, to test the regression null hypothesis H0
that the two residual variances are equal:

L∗ = L∗(S). (12)

Again, a set S with this property provides lossless feature selection.
Identifying a set of features S with the property (12) is equivalent to finding a set of

features S̄ = Sc that are irrelevant in inference. Lei andWasserman (2014) introduced
the Leave-One-Covariate-Out (LOCO) value

LOCO(Sc) = L∗(S) − L∗,

for characterizing the importance of a feature or a subset of features, see also Gan
et al. (2023), Verdinelli and Wasserman (2023), and Williamson et al. (2021). These
papers mostly deal with finding a single element set Sc that minimizes LOCO(Sc).
Testing the null hypothesis (12) is equivalent to testing LOCO(Sc) = 0 a task of which
Williamson et al. (2021) says “Developing valid inference under this particular null
hypothesis appears very difficult.”

As in De Brabanter et al. (2014), a natural way of approaching this testing problem
is by estimating both residual variances L∗ and L∗(S), and accept the regression null
hypothesis if the two estimates are close to each other.

For fixed S ⊂ {1, . . . , d}, let ̂X = XS and m̂ (̂x) = E[Y | ̂X = x̂]. Due to the
identities

L∗ − L∗(S) =
(

E[Y 2] − E
[

m(X)2
]

)

−
(

E[Y 2] − E
[

m̂(̂X)2
]

)

= E
[

(m(X) − m̂(̂X))2
]

,
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the regression null-hypothesis H0 defined by (12) is equivalent to both

E
[

m(X)2
] = E

[

m̂(̂X)2
]

. (13)

and

P
{

m(X) = m̂(̂X)
} = 1. (14)

As an estimate of E
[

m(X)2
] − E

[

m̂(̂X)2
]

, (Devroye et al. 2018, Section 3)
introduced the following 1-NN based test statistic

T̃n = 1

n

n
∑

i=1

Y ′
i (Y(n,1)(X

′
i ) − ̂Y(n,1)(̂X

′
i )). (15)

and accepted the null-hypothesis H0 if

T̃n ≤ ãn = log n
(

n−1/2 + n−1/d
)

.

For bounded Y and X , X with a density, and m satisfying the ordinary Lipschitz
condition, Devroye et al. (2018) showed that this test is strongly consistent. For large
d, the threshold above is too large to be of practical use.

We slightlymodify the test statistic T̃n in a way that results in a negative bias. Define
a nearest-neighbor-based test statistic

Tn = 1

n

n
∑

i=1

(

Y ′
i mn(X

′
i ) − m̂n(̂X

′
i )
2
)

,

where mn and m̂n are the k-NN regression estimators defined in (8) and (9),
respectively. Again, here we set

k = kn = �log n�,

and with an = log n/
√
n as in (10), we accept the regression null hypothesis if

Tn ≤ an .

The following theorem is the main result of this section:

Theorem 2 Let d ≥ 2 and assume that ties occur with probability 0.

(a) Under the regression alternative hypothesis

lim
n→∞P{Tn ≤ an} = 0.
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(b) If m̂ satisfies the modified Lipschitz condition, E
[

Y 4 | X] ≤ C a.s. for some finite
C > 0, and the residual variance satisfies E

[

(Y − m̂(̂X))2
]

> 0, then under the
regression null hypothesis

lim
n→∞P{Tn > an} = 0.

Similarly to Theorem 1, if in the proof of this theoremwe assume that Y is bounded
and the Efron-Stein inequality is replaced by an exponential concentration inequality,
then with the larger threshold (log n)2/

√
n we obtain strong consistency.

4 Proofs

4.1 Somemoment inequalities

A cone with angle θ centered at the origin is the collection of all points y ∈ R
d such

that angle(y, z) ≤ θ for some given z ∈ R
d . The following inequalities will be needed

in the proofs of Theorems 1 and 2.

Lemma 2 Let γd be the minimum number of cones centered at the origin and having
angle π/6 whose union covers Rd . Set

m∗
n(x) = 1

kn

n
∑

i=2

Yi I{Xi is among the kn NNs of x in {X2,...,Xn}
}.

(a) Under the assumptions of Theorem 1, one has

E

[

(∫

|mn(x)| μ(dx) −
∫

|m∗
n(x)| μ(dx)

)2
]

≤ 16γ 2
d

n2
.

(b) Under the assumptions of Theorem 2, one has

E

[

(∫

m(x)mn(x) μ(dx) −
∫

m(x)m∗
n(x) μ(dx)

)2
]

≤ 16Cγ 2
d

n2

and

E

[

(∫

mn(x)
2μ(dx) −

∫

m∗
n(x)

2μ(dx)

)2
]

≤ 64Cγ 2
d

n2
.

Proof We only prove the second half of Lemma 2(b); the proofs of the other two
inequalities are similar, but easier. We have

E

[

(∫

mn(x)
2μ(dx) −

∫

m∗
n(x)

2μ(dx)

)2
]

123



L. Györfi et al.

≤ E

[

(∫

|mn(x) + m∗
n(x)| · |mn(x) − m∗

n(x)|μ(dx)

)2
]

= E

[

∣

∣mn(Xn+1) + m∗
n(Xn+1)

∣

∣ · ∣∣mn(Xn+1) − m∗
n(Xn+1)

∣

∣

· ∣∣mn(Xn+2) + m∗
n(Xn+2)

∣

∣ · |mn(Xn+2) − m∗
n(Xn+2)

∣

∣

]

,

where Xn+1 and Xn+2 are independent of the training samples Dn and have the
common distribution of the Xi . Therefore, using the notation in (7),

E

[

(∫

mn(x)
2μ(dx) −

∫

m∗
n(x)

2μ(dx)

)2
]

≤ E

[

E

[

(|mn(Xn+1)| + |m∗
n(Xn+1)|) |Y1| + |Y(n,kn+1)(Xn+1)|

kn

· (|mn(Xn+2)| + |m∗
n(Xn+2)|) |Y1| + |Y(n,kn+1)(Xn+2)|

kn
· I{X1is among theknNNs of Xn+1 andXn+2 in{X1,...,Xn}}
∣

∣

∣ X1, . . . , Xn,Y1, . . . ,Yn
]

]

≤ 16Ck2n
k4n

· E
[

E

[

I{X1 is among the kn NNs ofXn+1 and Xn+2 in {X1,...,Xn}}
∣

∣

∣X1, . . . , Xn+2

]

]

≤ 16C

k2n
· P {X1 is among the kn + 2 NNs of Xn+1 and Xn+2 in {X1, . . . , Xn+2}} .

Thus,

E

[

(∫

mn(x)
2μ(dx) −

∫

m∗
n(x)

2μ(dx)

)2
]

≤ 16C

k2n(n + 1)n
E

[

(
n+2
∑

j=2

I{X1 is among the kn+2 NN’s of X j in {X1,...,Xn+2}}
)2
]

= 16C

k2n(n + 1)n
E

[

(
n+2
∑

j=2

I{X1 is among the kn+1 NN’s of X j in {X1,...,X j−1,X j+1,...,Xn+2}}
)2
]

≤ 16C

k2nn
2 ((kn + 1)γd)

2,
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where for the last step we refer to in Corollary 6.1, Györfi et al. (2002). ��
Lemma 3 (Extended Efron-Stein inequality, Boucheron et al. (2004), Theorem 6) Let
A be a measurable set and Z = (Z1, . . . , Zn) be an i.i.d. n-tuple of A-valued random
variables. Set Z (1) = (Z2, . . . , Zn). Let f and g be real-valued measurable functions
on An and An−1, respectively, such that f (Z) is integrable. Then,

Var( f (Z)) ≤ nE
[

( f (Z) − g(Z (1)))2
]

.

4.2 Proof of Theorem 1

Proof of Theorem 1(a) Assume the classification alternative hypothesis and define c∗
as

c∗ = E
[

(|m(X)| − |m̂(̂X)|)] > 0. (16)

For n sufficiently large,

P{Tn ≤ an} ≤ P{Tn ≤ c∗/2} ≤ P{|Tn − c∗| ≥ c∗/2} ≤ 2E[ |Tn − c∗| ]
c∗ .

Therefore, it suffices to show that

lim
n→∞E[ |Tn − c∗| ] = 0. (17)

We use the decomposition

Tn = (Tn − E[ Tn | Dn ]) + E[ Tn | Dn ]. (18)

One obtains

E
[

(Tn − E[ Tn | Dn ])2 | Dn
] ≤ 2E[Y 2]

n
+ 2E[mn(X ′

1)
2 | Dn]

n

≤ 4

n
a.s., (19)

and thus

E
[

(Tn − E[ Tn | Dn ])2] → 0. (20)

Furthermore, one has

E[ Tn | Dn ] = E
[

Y ′
1 sgn(mn(X

′
1)) | Dn

]− E
[ |m̂n(̂X

′
1)|
∣

∣Dn
]

=
∫

m(x) sgn(mn(x)) μ(dx) −
∫

|m̂n (̂x)| μ̂(dx̂). (21)
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We notice

|m(x) sgn(mn(x)) − |m(x)| | ≤ 2|mn(x) − m(x)|

and obtain

E

[

∣

∣

∣

∫

m(x) sgn(mn(x)) μ(dx) −
∫

|m(x)| μ(dx)
∣

∣

∣

]

≤ 2E

[∫

|mn(x) − m(x)| μ(dx)

]

→ 0, (22)

where the last step follows from (Györfi et al. 2002, Theorem 6.1). This theorem also
yields

E

[

∣

∣

∣

∫

|m̂n (̂x)| μ̂(dx̂) −
∫

|m̂ (̂x)| μ̂(dx̂)
∣

∣

∣

]

≤ E

[ ∫

|m̂n (̂x) − m̂ (̂x)| μ̂(dx̂)

]

→ 0. (23)

From (21), (22), (23), and the definition of c∗ in (16) we get

E
[ ∣

∣E[ Tn | Dn ] − c∗∣
∣

] → 0. (24)

Now (18), (20), and (24) yield (17) and part (a) of Theorem 1 is proved. ��
Proof of Lemma 1 With the notation p = (a + 1)/2, one has

n
∑

i=1

Zi = 2B(n, p) − n,

where B(n, p) is a binomial random variable with parameters n and p ∈ [0, 1].
Without loss of generality we assume that σ 2 = 1− a2 = 4p(1− p) > 0; otherwise
(11) holds with equality. Therefore, p ∈ (0, 1). Due to the chain of equalities

E
∣

∣2B(n, p) − n
∣

∣ = E
∣

∣2(n − B(n, 1 − p)) − n
∣

∣

= E
∣

∣− 2B(n, 1 − p)) + n
∣

∣

= E
∣

∣2B(n, 1 − p)) − n
∣

∣,

it suffices to consider the case of p ≤ 1/2, i.e., a ≤ 0. We have

E

∣

∣

∣

∣

∣

1

n

n
∑

i=1

Zi

∣

∣

∣

∣

∣

= E

∣

∣

∣

∣

2B(n, p) − 2np

n
+ a

∣

∣

∣

∣

123



Distribution-free tests for lossless feature selection in…

= E

(

2B(n, p) − 2np

n
+ a

)+
+ E

(−2B(n, p)+2np

n
− a

)+

= 2E

(

2B(n, p) − 2np

n
+ a

)+
+ E

[−2B(n, p)+2np

n
− a

]

= 2E

[

2B(n, p) − n)+

n

]

+ |a| (25)

≥ 2P
{

B(n, p)/n > 1/2
}

/n + |a|. (26)

Stirling’s formula implies that

P
{

B(n, p)/n > 1/2
} ≥ 1√

2n
e−nD(1/2‖p),

where

D(ε‖p) = ε ln
ε

p
+ (1 − ε) ln

1 − ε

1 − p
,

see (4.7.2) on p. 115 in Ash (1990). Since D (1/2‖p) = − ln σ , we obtain

P
{

B(n, p)/n > 1/2
} ≥ 1√

2n
σ n,

which, in view of (26), proves the lower bound in the lemma.
For the sake of simplicity, in the proof of the upper bound assume that n is even.

As in the proof of the upper bound assuming that 0 < p < 1/2, we have

E
[

(B(n, p) − n/2)+
] =

∑

n/2< j≤n

( j − n/2)

(

n

j

)

p j (1 − p)n− j

=
∑

0< j≤n/2

j

(

n

n/2 + j

)

pn/2+ j (1 − p)n/2− j

=
∑

0< j≤n/2

j

(

n

n/2 + j

)

2−n
(

p

1 − p

) j

2n
√

p(1 − p)
n

=
∑

0< j≤n/2

j

(

n

n/2 + j

)

2−n
(

p

1 − p

) j

σ n .

Therefore, in view of (25), we have to prove that

∑

0< j≤n/2

j

(

n

n/2 + j

)

2−n
(

p

1 − p

) j

= O
(

1/
√
n
)

.

123



L. Györfi et al.

Stirling’s formula implies that

√

n

8 j(n − j)
≤
(

n

j

)

2−nh( j/n) ≤
√

n

2π j(n − j)
if 1 ≤ j ≤ n − 1

and

(

n

j

)

2−nh( j/n) ≤ 1 if 0 ≤ j ≤ n,

where, for ε ∈ (0, 1),

h(ε) = −ε log2 ε − (1 − ε) log2(1 − ε)

is the binary entropy function, see p. 530 in Gallager (1968). This implies

∑

0< j≤n/2

j

(

n

n/2 + j

)

2−n
(

p

1 − p

) j

≤
∑

0< j≤n/4

j

√

n

2π(n2/4 − j2)

(

p

1 − p

) j

+
∑

n/4< j≤n/2

j2−n(1−h((n/2+ j)/n))

(

p

1 − p

) j

≤
√

n

2π(n2/4 − n2/16)

∑

0< j≤n/4

j

(

p

1 − p

) j

+ 2−n(1−h(3/4))n2

= O
(

1/
√
n
)+ O

(

2−n(1−h(3/4))n2
)

= O
(

1/
√
n
)

,

since p < 1/2. ��
Proof of Theorem 1(b) Assume the classification null hypothesis. We use the decom-
position of Tn in (18). The upper bound in (19) implies

P
{

Tn − E[ Tn | Dn ] ≥ an/2
} ≤ 8

a2nn
. (27)

On the other hand, (21) and the classification null hypothesis (see (6)) yield that

E[ Tn | Dn ] ≤
∫

(|m(x)| − |m̂n (̂x)|) μ(dx)

=
∫

(|m̂ (̂x)| − |m̂n (̂x)|) μ̂(dx̂)
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= −
(∫

|m̂n (̂x)| μ̂(dx̂) − E

[∫

|m̂n (̂x)| μ̂(dx̂)

])

+
(∫

|m̂ (̂x)| μ̂(dx̂) − E

[∫

|m̂n (̂x)| μ̂(dx̂)

])

. (28)

Using first Lemma 3 and the corresponding definition of m̂∗
n , and then part (a) of

Lemma 2, one obtains

Var

(∫

|m̂n (̂x)| μ̂(dx̂)

)

≤ nE

[

(∫

|m̂n (̂x)| μ̂(dx̂) −
∫

|m̂∗
n (̂x)|μ̂(dx̂)

)2
]

≤ 16γ 2
d ′

n

= Cd

n
, (29)

where Cd > 0 is finite. We will prove that

∫

|m̂ (̂x)| μ̂(dx̂) − E

[∫

|m̂n (̂x)| μ̂(dx̂)

]

< 0 (30)

for all n large enough. We use the decomposition

∫

|m̂ (̂x)| μ̂(dx̂) − E

[∫

|m̂n (̂x)| μ̂(dx̂)

]

=
∫

|m̂ (̂x)| μ̂(dx̂) −
∫

∣

∣E[ m̂n (̂x) ]∣∣ μ̂(dx̂) (31)

+
∫

∣

∣E[ m̂n (̂x) ]∣∣ μ̂(dx̂) − E

[∫

|m̂n (̂x)| μ̂(dx̂)

]

. (32)

For (31), under the modified Lipschitz condition the proof of Theorem 6 in Döring
et al. (2018) implies that

∫

|m̂ (̂x)| μ̂(dx̂) −
∫

∣

∣E[ m̂n (̂x) ]∣∣ μ̂(dx̂) ≤
∫

∣

∣m̂ (̂x) − E[ m̂n (̂x) ]∣∣ μ̂(dx̂)

= O

(

(

kn
n

)1/d ′)

. (33)

Let Rn,kn (̂x) = ‖x̂ − ̂X(n,kn)(̂x)‖ be the kn-NN distance and recall that ties occur
with probability 0 by assumption. Since m̂n (̂x), defined in (9), can be written in the
form

m̂n (̂x) = 1

kn

n
∑

j=1

Y j I{‖x̂−̂X j‖≤Rn,kn (̂x)} ,
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one can see that given Rn,kn (̂x), the estimate m̂n (̂x) is conditionally distributed as
the average of kn i.i.d. ±1-valued random variables. Conditioned on Rn,kn (̂x), these
random variables have common variance

kn · Var(m̂n (̂x) | Rn,kn (̂x)
) = 1 − E

[

m̂n (̂x) | Rn,kn (̂x)
]2

. (34)

Then Jensen’s inequality and Lemma 1 imply

∫

E
[ |m̂n (̂x)|

]

μ̂(dx̂) −
∫

∣

∣E[ m̂n (̂x) ]∣∣ μ̂(dx̂)

≥
∫

E
[

E
[ |m̂n (̂x)|

∣

∣ Rn,kn (̂x)
]]

μ̂(dx̂)

−
∫

E

[

∣

∣

∣E[ m̂n (̂x) | Rn,kn (̂x) ]
∣

∣

∣

]

μ̂(dx̂)

≥
√
2

k3/2n

∫

E

[

(

1 − E[ m̂n (̂x) | Rn,kn (̂x) ]2
)kn/2

]

μ̂(dx̂).

Again, apply Jensen’s inequality twice:

∫

E
[ |m̂n (̂x)|

]

μ̂(dx̂) −
∫

∣

∣E[ m̂n (̂x) ]∣∣ μ̂(dx̂)

≥
√
2

k3/2n

(∫

E

[

1 − E[ m̂n (̂x) | Rn,kn (̂x) ]2
]

μ̂(dx̂)

)kn/2

≥
√
2

k3/2n

(∫

E

[

1 − E[ m̂n (̂x)
2 | Rn,kn (̂x) ]

]

μ̂(dx̂)

)kn/2

=
√
2

k3/2n

(

1 −
∫

E
[

m̂n (̂x)
2] μ̂(dx̂)

)kn/2

≥
√
2

k3/2n

(

1 −
∫

m̂ (̂x)2μ̂(dx̂) + o(1)

)kn/2

,

where the last step holds because
∫

E{m̂n (̂x)2}μ̂(dx̂) → ∫

m̂ (̂x)2μ̂(dx̂) as n → ∞
by (Györfi et al. 2002, Theorem 6.1). By the condition 1 − ∫

m̂ (̂x)2μ̂(dx̂) = 1 −
E[m̂(̂X)2] > 0, we therefore obtain

∫

∣

∣E[ m̂n (̂x) ]∣∣ μ̂(dx̂) − E

[∫

|m̂n (̂x)| μ̂(dx̂)

]

≤ −e−c1kn

k3/2n

(35)

for some c1 > 0. Since kn = �log n�, (33) and (35) yield

∫

|m̂ (̂x)|μ̂(dx̂) − E

[∫

|m̂n (̂x)|μ̂(dx̂)

]
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≤ O

(

(√
log n

n

)1/d ′)

− 1

nc1/
√
log n(log n)3/4

< 0

if n is large enough, and so (30) is verified. From (18), (27), (28), (29) and (30), we
now get for all n large enough,

P {Tn > an} ≤ P {Tn − E[ Tn | Dn ] ≥ an/2}
+ P

{

−
(∫

|m̂n (̂x)|μ̂(dx̂) − E

[∫

|m̂n (̂x)|μ̂(dx̂)

])

> an/2

}

+ I{∫ |m̂ (̂x)|μ̂(dx̂)−E{∫ |m̂n (̂x)|μ̂(dx̂)}>0}

≤ 8

a2nn
+ 4Var

(∫ |m̂n (̂x)|μ̂(dx̂)
)

a2n

≤ 8

a2nn
+ 4Cd

na2n
(36)

→ 0,

which yields part (b) of Theorem 1. ��

4.3 Proof of Theorem 2

Proof of Theorem 2(a) Assume the regression alternative hypothesis. We will prove
that

Tn →
∫

m(x)2μ(dx) −
∫

m̂ (̂x)2 μ̂(dx̂) > 0

in probability. We have

Tn = Ln − ̂Ln,

where

Ln = 1

n

n
∑

i=1

Y ′
i mn(X

′
i )

and

̂Ln = 1

n

n
∑

i=1

m̂n(̂X
′
i )
2.
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Again, one can show that

E
[

(Tn − E[ Tn | Dn ])2] ≤ 2E[ Y ′
1
2mn(X ′

1)
2 ]

n
+ 2E[ m̂n(̂X ′

1)
4 ]

n

= 4E[ Y 4 ](1 + o(1))

n
, (37)

which yields

lim
n→∞(Tn − E[ Tn | Dn ]) = 0 (38)

in probability. One has

E[ Ln | Dn ] =
∫

m(x)mn(x) μ(dx) →
∫

m(x)2μ(dx)

and

E[̂Ln | Dn ] =
∫

m̂n (̂x)
2 μ̂(dx̂) →

∫

m̂ (̂x)2 μ̂(dx̂)

in probability, because by (Györfi et al. 2002, Theorem 6.1),

∫

(mn(x) − m(x))2 μ(dx) → 0

and
∫

(m̂n (̂x) − m̂ (̂x))2 μ̂(dx̂) → 0

in probability. Thus we obtain that

lim
n→∞E[ Tn | Dn ] = 0 (39)

in probability. Therefore, by (38) and (39), under the alternative hypothesis

Tn →
∫

m(x)2μ(dx) −
∫

m̂ (̂x)2 μ̂(dx̂) > 0

in probability, which proves part (a) of Theorem 2. ��
Proof of Theorem 2(a) Assume the regression null hypothesis. We have

P{Tn > an} ≤ P
{

Tn − E[ Tn | Dn ] ≥ an/2
}

+ P
{

E[ Tn | Dn ] − E[ Tn ] ≥ an/2
}

+ I{E[ Tn ]>0} (40)
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The bound (37) implies that

P
{

Tn − E[ Tn | Dn ] ≥ an/2
} ≤ 8E[ Y 4 ]

a2nn
→ 0. (41)

Similarly to the proof of Theorem 1, using first Lemma 3 and the corresponding
definition of m̂∗

n , and then part (b) of Lemma 2, one obtains

Var

(∫

m(x)mn(x) μ(dx)

)

≤ nE

[

(∫

m(x)mn(x) μ(dx) −
∫

m(x)m∗
n(x) μ(dx)

)2
]

≤ 16Cγ 2
d

n
(42)

and

Var

(∫

m̂n (̂x)
2 μ̂(dx̂)

)

≤ nE

[

(∫

m̂n (̂x)
2 μ̂(dx̂) −

∫

m̂∗
n (̂x)

2 μ̂(dx̂)

)2
]

≤ 64Cγ 2
d ′

n
. (43)

Thus,

Var (E[ Tn | Dn ])
= Var

(∫

m(x)mn(x)μ(dx) −
∫

m̂n (̂x)
2μ̂(dx̂)

)

≤ 2Var

(∫

m(x)mn(x)μ(dx)

)

+ 2Var

(∫

m̂n (̂x)
2μ̂(dx̂)

)

≤ cd
n

with finite cd > 0. Therefore

P
{

E[ Tn | Dn ] − E[ Tn ] ≥ an/2
} ≤ 4Var (E[ Tn | Dn ])

a2n

≤ 4cd
na2n

→ 0. (44)

In view of (40), (41), and (44), it remains to prove that under the regression null
hypothesis

E[ Tn ] < 0 (45)
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if n is large enough.Under the null hypothesis (see (14)) one can use the decomposition

E[ Tn ] =
∫

m(x)E[mn(x) ] μ(dx) −
∫

E[ m̂n (̂x)
2] μ̂(dx̂)

=
∫

m̂ (̂x)E[mn(x) ] μ(dx) −
∫

m̂ (̂x)2 μ̂(dx̂)

+
∫

m̂ (̂x)2 μ̂(dx̂) −
∫

E[ m̂n (̂x) ]2 μ̂(dx̂)

−
∫

Var (m̂n (̂x)) μ̂(dx̂). (46)

Again, under the modified Lipschitz condition the proof of Theorem 6 in Döring et al.
(2018) implies that

∫

m̂ (̂x)E[mn(x)] μ(dx) −
∫

m̂ (̂x)2 μ̂(dx̂)

≤
√

∫

m̂ (̂x)2 μ̂(dx̂)

√

∫

(

E[mn(x)] − m̂ (̂x)
)2

μ(dx)

=
√

∫

m̂ (̂x)2 μ̂(dx̂)

√

∫

(

E[mn(x)] − m(x)
)2

μ(dx)

= O

(

(

kn
n

)1/d
)

(47)

and
∫

m̂ (̂x)2 μ̂(dx̂) −
∫

E[ m̂n (̂x)]2 μ̂(dx̂)

≤
√

∫

(|m̂ (̂x)| + |E[ m̂n (̂x)]|
)2

μ̂(dx̂)

√

∫

(

E[ m̂n (̂x)] − m̂ (̂x)
)2

μ̂(dx̂)

= O

(

(

kn
n

)1/d ′)

. (48)

Analogously to (34) and by Jensen’s inequality we obtain that

kn ·
∫

Var (m̂n (̂x)) μ̂(dx̂)

≥ kn ·
∫

E
[

Var
(

m̂n (̂x) | ̂X1, . . . , ̂Xn
)]

μ̂(dx̂)

=
∫

E

⎡

⎣

1

kn

kn
∑

j=1

Var
(

Yn, j (̂x) | ̂X1, . . . , ̂Xn
)

⎤

⎦ μ̂(dx̂)
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=
∫

1

kn

kn
∑

j=1

E

[

(

Yn, j (̂x) − m̂(̂Xn, j (̂x))
)2
]

μ̂(dx̂)

→ E
[

(Y − m̂(̂X))2
]

,

where for the limit relation we refer to Theorem 6.1 in Györfi et al. (2002). Therefore,
under the condition E

[

(Y − m̂(̂X))2
]

> 0, one obtains

−
∫

Var (m̂n (̂x)) μ̂(dx̂) ≤ − c2
kn

(49)

with c2 > 0 for n large enough. Thus, (46), (47), (48) and (49) yield

E [Tn] ≤ O

(

(

1

n

)1/d
)

+ O

(

(

kn
n

)1/d ′)

− c2
kn

< 0

for n sufficiently large (since kn = �log n�) and so (45) is verified. This completes the
proof of part (b) of Theorem 2. ��
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