
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 7, JULY 2012 4105

Entropy Density and Mismatch in High-Rate Scalar
Quantization With Rényi Entropy Constraint

Wolfgang Kreitmeier and Tamás Linder, Senior Member, IEEE

Abstract—Properties of scalar quantization with th power dis-
tortion and constrained Rényi entropy of order are
investigated. For an asymptotically (high-rate) optimal sequence
of quantizers, the contribution to the Rényi entropy due to source
values in a fixed interval is identified in terms of the “entropy den-
sity” of the quantizer sequence. This extends results related to the
well-known point density concept in optimal fixed-rate quantiza-
tion. A dual of the entropy density result quantifies the distortion
contribution of a given interval to the overall distortion. The dis-
tortion loss resulting from a mismatch of source densities in the
design of an asymptotically optimal sequence of quantizers is also
determined. This extends Bucklew’s fixed-rate and Gray
et al.’s variable-rate mismatch results to general values of
the entropy order parameter .

Index Terms—Asymptotic quantization theory, distortion den-
sity, entropy density, quantizer mismatch, Rényi entropy.

I. INTRODUCTION

A SYMPTOTIC quantization theory studies the perfor-
mance of quantizers of a fixed dimension in the limit

of high rates (low distortion). This approach complements
Shannon’s rate-distortion theory where optimal codes of a fixed
rate (distortion) are investigated as the dimension becomes
asymptotically large. Panter and Dite [26] were the first to
derive a formula for the mean square distortion of optimum
scalar quantizers as the number of quantization levels becomes
asymptotically large. Zador’s classic work [29] for vector
quantizers determined the asymptotic behavior of the minimum
quantizer distortion under a constraint on either the log-car-
dinality of the quantizer codebook (fixed-rate quantization)
or the Shannon entropy of the quantizer output (entropy-con-
strained quantization). Zador’s results were later clarified and
generalized by Bucklew and Wise [6] and Graf and Luschgy
[12] for the fixed-rate case, and by Gray et al. [14] for the
entropy-constrained case. Gray and Neuhoff [16] provide a
historical overview of related results.
One way to unify and extend the fixed and variable-rate re-

sults is to define the quantizer’s rate by the Rényi entropy of
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order of its output. This generalized rate concept includes the
traditional rate definitions as special cases since corre-
sponds to fixed-rate quantization, while setting yields
variable-rate quantization. This approach was first suggested
in [13] as an alternative to the Lagrangian rate definition con-
sidered there which simultaneously controls codebook size and
output (Shannon) entropy. Further motivation for using Rényi
entropy as quantization rate can be obtained from axiomatic
considerations [1], [27], as well as from the operational role
of the Rényi entropy in variable-length lossless coding [2], [8],
[17].
The theory of quantization with Rényi -entropy constraint

has recently been explored in [18]–[21]. In particular, [19] de-
rived the sharp asymptotic behavior of the th power distortion
of optimal -dimensional vector quantizers for . In
[21], the technically more challenging case was consid-
ered and the asymptotically optimal th power distortion was
determined for scalar quantization and a fairly large
class of source densities. Thus, at least for scalar quantization,
only the case remains open, and it is conjectured
in [21] that the main result there remains valid in this range of
the parameter .
In addition to the asymptotic behavior of the optimal quan-

tizer performance, asymptotic quantization theory has also been
concerned with more subtle properties of (asymptotically) op-
timal quantizers. One such property is the existence, for a se-
quence of quantizers, of the so-called quantizer point density
function, loosely defined as a probability density which, when
integrated over a region, gives the fraction of the quantization
levels contained in that region. More formally, a point density,
if exists, is the probability density function of the limit distribu-
tion of the output levels of a sequence of quantizers. Point den-
sities and the closely related companding quantizers have been
instrumental in the early pioneering investigations into optimal
scalar and vector quantization [3], [10], [22], [26] (see also [24]
for a rigorous reformulation of Bennett’s result for the vector
case and [16] for the history of these results). Bucklew [7] was
the first to rigorously establish the existence of the point density
function for an asymptotically optimal sequence of fixed-rate
quantizers. To our knowledge, no such rigorous result is known
for variable-rate quantization. The concept of quantizer point
density has been very useful in analyzing the performance of
quantizers in a distributed setting (see, e.g., [25] and [28]).
Asymptotic quantization theory has also been successful in

providingmismatch results that quantify the loss in performance
when a sequence of quantizers that is asymptotically optimal
for one source is applied to a different source. Mismatch results
are theoretically important and, in practice, they may provide
a means for quantifying the performance of code designs that
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are based on source models estimated from data. For fixed-rate
vector quantization, Bucklew [7] was the first to prove such a
rigorous mismatch result. The variable-rate analog of this result
was proved in [15] where connections with mismatch results in
rate-distortion theory and robust lossy coding were also pointed
out. More recently, Na [23] determined sharp asymptotic for-
mulas for variance-mismatched scalar quantization of Laplacian
sources.
In this paper, we extend some of the more refined results

of fixed- and variable-rate asymptotic quantization theory in
the framework of quantization with Rényi entropy constraint
of order . The concept of a quantizer point density
is a problematic one for (Rényi) entropy-constrained quanti-
zation since (near) optimal quantizers can have an arbitrarily
large number of levels in any bounded region. Instead, for an
asymptotically optimal sequence of quantizers, we investigate
the Rényi entropy contribution of a given interval to the overall
rate. One of our main results, Theorem 2, shows that for a large
class of source densities, this contribution can be quantified by
the so-called entropy density of the sequence. A dual of this re-
sult, Corollary 1, quantifies the distortion contribution of a given
region to the overall distortion in terms of the so-called distor-
tion density. Interestingly, it turns out that the entropy and dis-
tortion densities are equal in the cases we investigate (Remark
5). Our other main contribution, Theorem 3, is a mismatch for-
mula for a sequence of asymptotically optimal Rényi entropy
constrained scalar quantizers. From our density and mismatch
results we can recover the known results for the traditional rate
definitions by formally setting or .
The rest of this paper is organized as follows. In Section II,

we formulate the quantization problem and give a somewhat
informal overview of our results in the context of prior work.
In Section III, the entropy and distortion density results are
presented and proved. The mismatch problem is considered in
Section IV. Concluding remarks are given in Section V.

II. PRELIMINARIES AND OVERVIEW OF RESULTS

A. Rényi Entropy and Quantization

We begin with the definition of Rényi entropy of order .
Let and let be a
probability vector, i.e., . For any ,
the Rényi entropy of order , , is defined as (see
[1] or [27])

Remark 1: All logarithms in this paper have base . Setting
, we can extend the definition to , obtaining

(1)

where denotes cardinality. Also, using the convention
, it is easy to see that letting yields the

regular (Shannon) entropy of

assuming is finite for some .
Let be a real-valued random variable with distribution .

Let be an index set (thus, is either finite or countably
infinite) and a Borel measurable partition
of the real line . Moreover, let be set of
distinct points in . Then, defines a (scalar) quantizer

such that

We call the codebook and the the codepoints (or quantiza-
tion levels). Each is called codecell. Clearly,
is the range of and

where . Let denote the set of
scalar quantizers, i.e., the set of all Borel-measurable mappings

with a countable range. The discrete random variable
is a quantized version of the random variable . With any

enumeration of , we define

as the Rényi entropy of order of with respect to . Thus,
is the log-cardinality of the codebook of (we assume

without loss of generality that each codecell of has positive
probability) and is the Shannon entropy of the quantizer
output.
For and , we measure the approximation error

between and by the th power distortion defined by

For any , we define

the optimal quantization distortion of under Rényi entropy
constraint . We call a quantizer optimal for under the en-
tropy constraint if and . In
particular, is the minimum distortion of any quantizer
with codebook size not exceeding , while is the min-
imum distortion under Shannon entropy constraint .
In the rest of this paper, all distributions to be quantized will

be absolutely continuous with respect to the Lebesgue measure
on the real line. If such a distribution has probability den-

sity function , then we will use the notation . We de-
note by the support of (the smallest closed set whose
complement has zero measure). If , then we define

. We will also assume throughout the paper
that the th moment of is finite, i.e., . This
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condition is sufficient (but not necessary) for to be finite
for all .
It has been shown in [20] that under the aforementioned con-

ditions, the set of all quantizers in the definition of can
be replaced by the set of quantizers having finitely many code-
cells, each of which is an interval. In view of this, we will as-
sume throughout the whole paper that the codecells of every
quantizer are intervals (but we do not restrict the number
of codecells to be finite) and each codepoint is contained in the
interior of the associated codecell.

B. Asymptotic Optimality and Conditional Distributions

The main result of [21] implies that under suitable assump-
tions on the source density , for all

(2)

where and

is the Rényi differential entropy of order of .
We can formally recover Zador’s classical results [29] in the

scalar setting from (2). Letting , we have

and , yielding Zador’s
formula for fixed-rate scalar quantization. For , we have

and , where is
the Shannon differential entropy of , and (2) becomes Zador’s
formula for variable-rate scalar quantization. In view of (2), we
call a sequence of quantizers asymptotically optimal if

and

Suppose is a bounded interval with positive probability.
We denote by the conditional distribution for given
and by the corresponding conditional density (so that

). We show in Theorem 2 that for , any
quantizer sequence that is asymptotically optimal for is
also asymptotically optimal for , i.e.,

(3)

Although this result is not very surprising, it will be very useful
in establishing further, more subtle properties of asymptotically
optimal quantizers.

C. Entropy and Distortion Densities

Let denote the number of codepoints of contained
in an interval . Let and let be a sequence of asymp-
totically optimal -level quantizers (so that ).
Specialized to the scalar case, one important result of Bucklew
[7] shows that

(4)

Thus, the probability density can be inter-
preted as the point density function for the codepoints of
asymptotically optimal quantizers (see also [12, Th. 7.5]).
Point densities are useful in gaining insight into the structure
of (asymptotically) optimal quantizers and can be used to
construct such quantizers via a companding construction.
Unfortunately, no rigorous point density results are known

for . In fact, even the definition of a point density func-
tion is problematic for entropy-constrained quantization since
for sources with a density, at any rate there exist near-op-
timal quantizers that have an arbitrarily large number of code-
points contained in a given bounded interval. Thus, an analog
of (4) cannot hold for an arbitrary sequence of asymptotically
optimal quantizers, although heuristic arguments indicate that
under some structural restrictions asymptotically optimal vari-
able-rate quantizers have a uniform point density (see, e.g., [10]
and [11]).
To define a tractable analog of the point density function, re-

call that denotes the conditional distribution for given
. In view of (1), we have and

. Thus, the fraction of codepoints contained in on the
left-hand side of (4) can be rewritten as

(5)

This ratio represents the relative contribution of the interval
to the total Rényi entropy of order .
The interpretation in (5) motivates us to define the Rényi en-

tropy contribution of an interval in a similar way for general
. In Theorem 2, we identify the limit of this entropy contri-
bution: Under appropriate conditions on the source density, for
any and asymptotically optimal sequence , we
have

(6)

It is easy to see that (6) reduces to the traditional point density
result (4) for .
In Corollary 1, we present an almost immediate consequence

of (6) and (3) which concerns the distortion contribution of an
arbitrary finite interval :

Thus, the probability density can be interpreted
as either the (Rényi) entropy density or the distortion density of
any asymptotically optimal quantizer sequence .

D. Mismatch

For scalar quantization Bucklew’s fixed-rate mismatch result
[7, Th. 2] can be stated as follows: If a sequence of -level
quantizers that is asymptotically optimal for a source with
distribution is applied to a source with distribution

, then (under some assumptions on and )
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where is the optimal point density func-
tion for from (4). This is a generalization of a classical
result of Bennett [3] who considered companding quantization
and mean square distortion. The integral on the right-hand side
is often called Bennett’s integral. In view of (4), and after some
calculations, we obtain that the asymptotic performance loss due
to mismatch is

(7)

where is the optimal point density for
and

(8)

denotes the Rényi divergence of order between densities
and . (Thus, the loss is always greater than one unless ).
For the entropy-constrained case, the main result of [15] im-

plies that if is asymptotically optimal for , but it is
used for , then

Here, is the Kull-
back–Leibler divergence (relative entropy) between and .
From (4), the loss due to mismatch is

(9)

In Theorem 3, we present a result on mismatch for quantiza-
tion with constrained Rényi entropy of order . The
result states that if is asymptotically optimal for ,
but is applied to , then

where

(10)

with (note that ). The loss due to mis-
match can be expressed as

(11)

The loss can be seen to be always greater than one unless
(see Remark 6 following Theorem 3). Setting formally
or (or, more precisely, letting or ) in the
previous formula yields the known cases (7) and (9).

III. ENTROPY DENSITY AND RELATED RESULTS

Throughout this section, we assume that . For
and , let

(12)

Definition 1: Let and define, for

whenever the integral is finite. Note that . We
call the quantization coefficient of .
Definition 2: A one-dimensional probability density function
is called weakly unimodal if it is continuous on its support and
there exists an such that is a compact
interval for every .
Note that every weakly unimodal density is bounded and

its support is a (possibly unbounded) interval. Clearly, all
continuous unimodal densities are weakly unimodal. The
class of weakly unimodal densities includes many parametric
source density classes commonly used in modeling information
sources such as exponential, Laplacian, Gaussian, generalized
Gaussian, and all bounded gamma and beta densities.
The following is one of the main results in [21].

Theorem 1 (see [21, Th 3.4]): For and , if
has a weakly unimodal density and for
some , then is well defined and

Remark 2:
a) The theorem and (2) express the same asymptotic result
since

The quantization coefficient can also be expressed
in terms of Rényi divergences (8) and the density
introduced in (10). One can easily verify that

(13)

Furthermore, for any density with
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Substituting and combining with (13), we obtain

b) Theorem 3.4 in [21] also covers the more exotic
case, but for technical reasons we require that
. The weak unimodality condition is a technical

one and most likely can be significantly relaxed.

Definition 3: A sequence of quantizer with
as is called -asymptotically optimal

for if

Remark 3: In what follows, we will simply write “asymptot-
ically optimal” instead of “ -asymptotically optimal.” Under
the conditions of Theorem 1, a quantizer sequence with

is asymptotically optimal for if and only if

For any measurable with , we denote by
the conditional probability for given . Let , be

such that and , but otherwise arbitrary.
In the following theorem, we let , , and

for .

Theorem 2: Let and . Let ,
where the density function is weakly unimodal and satisfies

for some . Let be an
asymptotically optimal sequence for . Then, for

(14)

and is asymptotically optimal for , i.e.,
and

(15)

Remark 4:
a) As discussed in Section II-C, the ratio on the left-hand
side of (14) can be interpreted as the relative contribution
to Rényi entropy of interval . The theorem determines
the limit of this relative entropy contribution for a se-
quence of asymptotically optimal quantizers. The method
used in the proof is a generalization of the approach de-
veloped by Bucklew [7] for the case .

b) Using and the condition ,
the integral in the definition of can be shown to

be finite by an application of Hölder’s inequality as in [12,
Remark 6.3 (a)]. For the same reason, is finite
for .

In the proof of the theorem, wewill need the following lemma
which is proved in the Appendix.

Lemma 1: Under the conditions of Theorem 2, the following
hold: For

(16)

and for all

(17)

and

(18)

Proof of Theorem 2: We begin the proof by showing that
(14) holds if we additionally assume that for

(19)

In this case, any subsequence of has a sub-subsequence,
which we also denote by , such that

(20)

for some . The obvious bound

(21)

implies that . In what follows, we show that is indepen-
dent of the choice of the sub-subsequence (and thus the limit in
(20) holds for the original sequence) and explicitly identify .
For any two sequences and of positive reals, we

write if

(22)

Note that if and , then
and . We can rewrite (20) as

(23)

We note that

(24)
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Since the cells of are intervals, at most two of them may
intersect both and (namely, those
containing and ). Then, (18) implies

In view of (23), we conclude

(25)

Applying (25) and (20) to (24), we obtain

(26)

Since by (16), Theorem 1 implies 1

(27)

1Strictly speaking, Theorem 1 (see [21, Th 3.4]) does not apply for since
its density is not weakly unimodal. However, is the mixture of two weakly
unimodal densities with well-separated supports, and the proof of [21, Th 3.4]
can easily be extended to this case.

and thus the limit inferior of the right-hand side of (26) is lower
bounded by

(28)

In view of the definition of , combining (26) and (28)
yields

(29)

where

Now let

(30)

and note that the bound (21) implies .More-
over, from (19), we actually obtain . Thus,
if , then Lemma 4 in the Appendix gives .
Moreover, a simple calculation yields .
Hence, we deduce from (29) that . Because we chose an
arbitrary convergent subsequence in (20), we obtain that (20)
actually holds with for the original quantizer sequence.
This and (30) yield (14) for . Also, (25) and (30) imply
(14) for .
As a next step, we will prove that (15) is true under the as-

sumption (19). We proceed indirectly. Assume first that (15) is
not true for . Then, by (27) we can choose a subsequence
of , also denoted by , such that

We deduce from (24) and (14) that

(31)
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since otherwise we would have

which would contradict the asymptotic optimality of . But
the right-hand side of (31) is , which contradicts (27),
so (15) must hold for . Similarly, we end in a contradiction
if we assume that (15) does not hold for .
It remains to prove that (19) must hold. Assuming the con-

trary, we have

Since ,

which would imply

contradicting (27). Hence, (19) must hold and the proof is com-
plete.

Let be a sequence of quantizers and for any
and any Borel set define

(32)

Moreover, for , let

(33)

Clearly, and are Borel measures on that are absolutely
continuous with respect to . We define the probability measure
by setting, for any Borel set ,

(34)

Corollary 1: Let and . Suppose that ,
where the density function is weakly unimodal and satisfies

for some . If is an asymp-
totically optimal sequence of quantizers for , then for any ,

such that we have

i) ;

ii) converges weakly to .

Remark 5: Combining Theorem 2 and the corollary and using
the notation introduced in (22), we observe that

(35)

This means that the relative error and entropy contributions of
over any given interval asymptotically coincide.
Proof of Corollary 1: We start by proving (i). Let
and define

Obviously, we can assume without loss of generality that
. Applying (14) and (15) in Theorem 2, we obtain

(36)

Definition 1, (34), and a straightforward calculation yield that
the right-hand side of (36) is equal to .
Next, we prove (ii). Because is asymptotically optimal

for we have as . Moreover,
is a finite measure. Due to a refined version of the Portmanteau
theorem [4, Th. 2.4 and Example 2.3], it suffices to prove that

for any . Let
and assume , since otherwise
for all . Applying the definitions (32) and (33),

we obtain

Since is asymptotically optimal for and by (i) we deduce

which proves (ii).
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IV. ASYMPTOTIC MISMATCH

In this section, we investigate the performance of a sequence
of quantizers that is asymptotically optimal for the source
distribution having density , but is applied to the source dis-
tribution having density .

Theorem 3: Let and . Suppose ,
, where and are weakly unimodal densities such that

is bounded. Assume for some .
If is an asymptotically optimal sequence of quantizers
for , then

(37)

and

(38)

Remark 6:
a) The mismatch formula (38) is best interpreted through the
companding quantization approach. In [21, Remark 4.12],
it was shown that for a source with density , companding
quantizers having point density induce high-rate asymp-
totics performance proportional to

(39)

Asymptotically optimal companding is obtained by set-
ting , which is the
unique minimizer of (39). If the sequence of companding
quantizers with this choice of is now applied to the mis-
matched distribution , then the same asymptotic
performance as in (38) is obtained. Thus, the main sig-
nificance of (38) is that it holds for an arbitrary asymp-
totically optimal sequence . The analogy with com-
panding quantization suggests that although can have
infinitely many codecells, one can interpret as the
point density related to every asymptotically optimal se-
quence of quantizers for .

b) Using the notation introduced in Sections II-B and II-D,
we can rewrite the mismatch formula (38) in the equiva-
lent forms

Formula (11) for the loss due to mismatch follows from
either of the last two expressions. The loss is always

greater than one unless since, according to the
preceding comment, is the unique minimizer of

over all densities .
c) The condition for the boundedness of is the same as
in the variable-rate mismatch result of [15]. The fixed-rate
result of Bucklew [7] requires essentially the same condi-
tion since the only known example when the uniform in-
tegrability condition given there is satisfied requires that

be bounded.
d) The conditions of Theorem 3 are satisfied when the sup-
port of and is the same compact interval and the cor-
responding densities and are continuous and bounded
away from zero on . But the theorem may also apply to
distributions with unbounded support. For example, if
and are Gaussian or Laplacian densities with mean zero
and variance and , respectively, then the conditions
are met if . Unfortunately, the boundedness con-
dition is not satisfiedwhen or when is Gaussian
and is Laplacian. Na [23] obtained a mismatch result
for two zero-mean Laplacian sources with arbitrarily mis-
matched variances by considering quantile quantizers, a
special class of fixed-rate asymptotically optimal quan-
tizers closely related to companding quantizers.

Proof: Let . We will proceed in several steps.
1) First we prove relation (37) under the stated assumptions
on and , but additionally assuming that is a compact
interval and

(40)

Let and let be a collec-
tion of disjoint intervals of equal length such that

. Let and
denote, respectively, the left and right endpoints of .
Define

and

Note that and
. Since for some , we

have

(41)

for any measurable . Thus, by (17) in Lemma 1 we
get
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Noting that for any we either have
for some or

, the above implies

(42)

Now we observe that and (40) imply for all
, , and ,

(43)
Combining (42) and (43), we deduce from (14) in Theorem
2 that

(44)

where is defined in (34) and we have defined

Here, denotes the characteristic function of
defined by if and if .
Similarly, we obtain

(45)

with

Obviously, , and since , , and are con-
tinuous on and the common length of the intervals
converges to zero as

Since the are uniformly bounded, from Fatou’s lemma
and by dominated convergence, we get

(46)

Combining (46) with (44) and (45), we obtain

By the definition of in (34), this yields (37).
2) We now prove relation (37) under the stated assumptions.
Since is weakly unimodal, the set

is a compact interval for all small enough.
Since , we have as , and
we also have as because is
absolutely continuous with respect to . Consequently

(47)

as . Set . Using (41) and (17) in Lemma
1, we obtain

(48)
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as . Noting that the density of satisfies the
condition imposed on in step 1, we obtain from this step
that

(49)

Combining (47), (48), and (49), we obtain that given any
we can choose small enough and

large enough such that for all

which yields (37).
3) We finish the proof by proving assertion (38). Using defi-
nition (32), we get

Thus, Corollary 1 (ii) and (37) yield

Using (33), we calculate

(50)

Using definition (12), it is easy to check that
and , and hence (50) is equivalent to (38),
completing the proof.

V. CONCLUDING REMARKS

We extended point density and mismatch results in fixed- and
variable-rate asymptotic quantization theory to scalar quanti-
zation with Rényi entropy constraint of order . We
showed that the Rényi entropy contribution of a given interval to
the overall rate for a sequence of asymptotically optimal quan-
tizers is determined by the so-called entropy density of the se-
quence, an analog of the traditional quantizer point density func-
tion. A dual of this result quantifies the distortion contribu-
tion of a given region to the overall distortion. We also proved
a mismatch formula for a sequence of asymptotically optimal
Rényi entropy constrained scalar quantizers. One can recover
the known results for the traditional rate definitions by formally
setting or in our density and mismatch results.

A natural question is whether the density and mismatch
results of this paper can be generalized to higher dimensional
(vector) quantization. To make progress in this direction, one
first needs to generalize Theorem 1 to higher dimensions
(cf., [21, Sec. VIII]) to obtain an analog of Zador’s fixed and
variable-rate vector quantization results for Rényi entropy
constraint. Assuming one can prove such a result, the main
difficulty in generalizing our proofs seems to be controlling
the entropy contribution at the boundary of hypercubes (higher
dimensional intervals).
Another interesting question is whether the coincidence of

distortion and entropy densities described by (35) in Remark 5 is
particular to quantization with Rényi entropy or is a deeper phe-
nomenon. In particular, one can ask whether replacing Rényi’s
entropy with some more general information measure (cf., [9])
would preserve the existence of and the special relationship be-
tween entropy and distortion densities. Answers to these ques-
tions would provide a more complete understanding of some of
the finer aspects of quantization theory.
As mentioned before, an analog of the fixed-rate point den-

sity result of Bucklew [7] [see (4)] cannot hold for arbitrary
sequences of asymptotically optimal entropy-constrained quan-
tizers. However, point densities play an important role in our
intuitive understanding of the structure of optimal quantizers
and may provide (heuristic) guidance in constructing (nearly)
optimal quantizers. Thus, it would be interesting to find a
framework within which rigorous point density result can be
proved for Rényi entropy constrained quantization (and for
traditional entropy-constrained quantization). For the scalar
case, companding quantization provides such a framework, but
for higher dimensions, the restriction to companding usually
precludes asymptotic optimality [5].

APPENDIX

Proof of Lemma 1: We first show (16). The asymptotic
optimality of for implies that as
. Since has a density, this yields, via Lemma 2 below, the

intuitively obvious fact that

This also gives for ,

(51)

Let be a probability vector and
. Since , we can lower bound

as
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Combing this bound with (51) yields (16).
Next, we prove (17) by contradiction. If (17) does not hold,

then there is a and a subsequence of , which we also
denote by , such that

(52)

We have

(53)

where the inequality holds since . Because is
asymptotically optimal, we know that as
. But the right-hand side of (53) converges to a finite limit by

assumption (52), a contradiction.
Also, (16) and an argument identical to the proof of (17)

imply that for all and

which completes the proof.

Lemma 2: Assume is a probability measure on , let
, and let be any norm on . Suppose is a

sequence of -dimensional vector quantizers (mappings
with at most countable) such that

Then
(54)

if and only if is nonatomic, i.e., for all .
Proof: If for some , then
shows that (54) cannot hold. Now assume that is

nonatomic. We proceed indirectly to prove (54). Since
for all and

, if (54) does not hold, then (considering subse-
quences if necessary) there exist an , points ,
and measurable sets , such that

(55)
Let denote the open ball of
radius centered at . We have for all

which, combined with (55), implies
. Thus, for all

This immediately implies that is a bounded set,
since would yield
because, as a probability measure on , is tight. Thus, we
can choose a subsequence of , which we also denote by

, such that as . For this subsequence,
for all large enough, implying, for all

Since , we obtain ,
which contradicts our assumption that is nonatomic.

Lemma 3: Let , , , and define
by

Then

If , then for every
, where

Proof: The assertion is obvious for the cases ,
or . Thus, we can assume that and . But
in this case, the assertion follows from elementary calculus.

A special case of the following lemma has already been used
in [7]. For the reader’s convenience, we provide a detailed proof.

Lemma 4: Let and . Let be
measurable. Then

If , then

for every , where .
Proof: The assertion follows from Lemma 3 with

and

(note that and if ).
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