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Nonparametric Estimation and Classification 
Using Radial Basis Function Nets and 

Empirical Risk Minimization 
Adam Krzyzak, Member, IEEE, Tamas Linder, and Ghbor Lugosi 

Abstruct- In this paper we study convergence properties of 
radial basis function (RBF) networks for a large class of basis 
functions, and review the methods and results related to this 
topic. We obtain the network parameters through empirical 
risk minimization. We show the optimal nets to be consistent 
in the problem of nonlinear function approximation and in 
nonparametric classification. For the classification problem we 
consider two approaches: the selection of the RBF classifier via 
nonlinear function estimation and the direct method of minimiz- 
ing the empirical error probability. The tools used in the analysis 
include distribution-free nonasymptotic probability inequalities 
and covering numbers for classes of functions. 

I. INTRODUCTION 
N neural network literature much attention has been de- I voted to multilayer perceptrons (see, e.g., Barron [l], 

Homik et al. [l8], Xu et al. [36], and the references therein). 
Recently, another class of networks, called radial basis func- 
tion (RBF) networks, has been studied by Broomhead and 
Lowe [5], Chen et al. 161, Moody and Darken [23], Poggio 
and Girosi 1261, Powell 1291, and Xu et al. 1371, [381. RBF 
nets have been shown to have universal approximation ability 
by Hartman et al. [16] and Park and Sandberg [24], [25]. 
Convergence rates for approximations of smooth functions 
by RBF nets have been studied by Girosi and Anzellotti 
[14]. In this paper we study generalization abilities of RBF 
nets (estimation error) and a learning procedure based on 
empirical risk minimization. We also show convergence of 
the optimized network in nonlinear functional approximation 
and classification by using the Vapnik-Chervonenkis approach 
and covering numbers. 

Denote by F'k the class of RBF networks with one hidden 
layer and at most 5 nodes for a fixed kernel K :  IR t IR, that 
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is, let 3 k  consist of all functions of the form 
k 

fe(.) 1 C W a K ( [ z  - c z l t ~ a [ ~  - G I )  + W O  (1) 

where W O , W ~  .. . , wk E [ - b k , b k ] ,  cl,  , c k  E IRd, and 
A l ,  . . . , Ak E Rdz, bk > 0 being a parameter of the class 
(we also allow bk = m). The parameter 8 is given as 8 = 
( W O , .  . . , wk, b l ,  . . . , b k ,  c1,. . . , Ck). For a given fixed kernel 
K ,  there are three sets of parameters: 1) the w,, i = 1, . . . , 5, 
which are tlhe weights of the output layer of an RBF net; 2) 
the center vectors c,,i = 1 , . . . , 5 ;  and 3) A, , i  = l , . . . , k ,  
which are d x d positive matrices determining the size of the 
receptive field of the basis functions K ( [ z  - c , ] ~ A , [ ~  - e,]). 
The last two sets constitute the weights of the hidden layer of 
an lU3F net The problem of determining a specific value 8 for 
B is called learning or training. The most common choice for 
K is the G<aussian function, K(r2)  = e-rp2 with A,' = a:l, 
but a number of alternatives can also be used [26]. For a 
specific Ki(r2), e.g., a Gaussian K(r2)  = e-", the size, 
shape and orientation of the receptive field of a node are 
determined by the matrix A,. When A,-l = c:I, the shape 
is a hyperspherical ball with its radius given by a,. When 
A, = diay[at l , .  . . , a%], the shape of the receptive field is 
an elliptical ball with each axis coinciding with a coordinate 
axis; the lengths of the axes are determined by czl, . . . , u,d, 
respectively. When A, is a nondiagonal but symmetric matrix, 
we have A, = RFD,R, where D, is a diagonal matrix which 
determines the shape and size of the receptive field, and R, 
is a rotation matrix which determines the orientation of the 
receptive field. 

In addition to model (l), probabilistic neural networks based 
on the Bayes-Parzen density estimate have been considered by 
Specht [30]. The normalized version 

a=1 

n 

Cw,K([z - C,ItA%[Z - 4 
(2) a=1 

fn (z )  = n 

C K ( [ x  - ctltAa[z - ea]) 
2=1 

of (1) has been recently investigated in [23]  and [38]. 
Let us now formulate the problem. Suppose that the random 

variables X and Y take values in Rd and R, respectively. 
To predict the value of Y upon observing X ,  we need a 
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measurable function f :  Rd -+ lR such that f ( X )  is close 
to Y in some useful sense. If EIY)’ < CO, then there exists a 
measurable function m minimizing the squared LZ prediction 
error, that is 

J* = inf E I ~ ( X )  - yI2 = E \ ~ ( x )  - Y ) ~ .  

To estimate m without making any assumption about the 
distribution of ( X , Y ) ,  we assume that a training set D, = 
{ X,, x); of independent, identically distributed copies of 
(X, Y )  is given, where D, is independent of ( X ,  Y ) .  To obtain 
a good predictor we construct an estimate f n  = f b  of m by 
selecting the parameter vector 8 (and thus an estimator fg, 
depending on Dn)  which minimizes the empirical error. In 
other words, based on the training sequence, we choose an 
estimator f n  from the class of functions 3;i, such that fn 
minimizes the empirical L2 error 

f 

that is 

J n ( f n )  5 J n ( f )  for f E 3 k .  

The number of allowable nodes k will be a function of the 
training set size n, to be specified later. The performance of 
the estimate f n  is measured by the conditional squared Lz 
error 

J ( f n )  = E(lfn(X) - YI2ID,). 

We call a sequence of estimators { f n }  strongly consistent for 
a given distribution of ( X , Y ) ,  if 

J( f , )  - J* -+ O almost surely (as.) as n -+ CO. 

f, is strongly universally consistent if it is strongly consistent 
for any distribution of ( X ,  Y )  with EIY]’ < CO. 

Observe that J* = E(Y - W L ( X ) ) ~ ,  where m(z) = 
E(YIX = z) is the regression function, and J ( f n )  - J* -+ 0 
if and only if 

E ( ( f n ( X )  - Y)21Dn) - E ( m ( X )  - YI2 
= E ( ( f n ( X )  - m(x))21&) -+ 0 

which is the usual notion of &-consistency for regression 
function estimates. 

Estimation of a regression function is in close relationship to 
pattern recognition. In the classification (pattern recognition) 
problem Y can take only two values: Y E {-1,l). A classifier 
is a binary valued function gn(x), that can depend on the data 
D,, and its error probability P{g, (X)  # YID,} is to be 
minimized. The function g* minimizing the error probability 
is called the decision, whose error probability P{g*(X) # Y }  
is the Bayes risk. A sequence of classifiers { g n }  is called 
strongly consistent, if 

P{9n(X)  # YID,} - L* + 0 
almost surely (as.) as n -+ 00. 

(9,) is strongly universally consistent if it is consistent for 
any distribution of ( X , Y ) .  

It is well known that good estimators of m(z)  provide 
classifiers with small error probability. One can, however, do 
even better than to derive classifiers from good regression 
estimators. One of the goals of this paper is to investigate 
consistency properties of an RBF-estimate of m and of the 
classifier derived from it, and of an RBF classifier based on 
the more natural approach of minimizing the empirical error 
probability. 

The idea of empirical risk minimization has extensively 
been used in the literature. When this minimization is carried 
out over exceedingly rich (complex) family of candidate func- 
tions, the resulting estimate usually overfits the data, i.e., it is 
not likely to perform well for data statistically independent of 
the training set. Different measures of complexity of families 
of functions have been used for different purposes, but they are 
all related to the cardinality of a finite subset which represents 
the family in a certain sense. Examples are metric entropy 
[20], [3 I], and random covering numbers [27]. Asymptotic 
properties of the method of empirical risk minimization were 
studied among others by Vapnik [32] and Haussler [17]. For 
the candidate functions to approximate closely a large set of 
target functions, one generally needs to increase the size of 
the candidate family as the size of the training set increases. 
A good trade-off, however, should also be maintained between 
the complexity of the candidate family and the training data 
size to avoid overfitting. This idea of using candidate classes 
which grow in a controlled manner with the size of the training 
data is Grenander’s method of sieves [15]. This approach 
is used in a pattern recognition framework by Devroye [9], 
and by White [35], and Faragd and Lugosi [13] for neural 
networks. 

In this paper we apply empirical risk minimization together 
with the method of sieves to establish consistency in regression 
estimation and pattern recognition using RBF networks. In 
doing so, we demonstrate how to apply the tools of the trade 
(covering numbers, VC dimensions, and their connections with 
each other) to feedfonvard RBF nets. 

In Section 11, we show that under rather general conditions 
on the kernel, the family of functions UTEl F;i is dense 
in L p ( p )  for any p > 0 and probability measure ,U on lRd. 
Section III deals with regression estimation, where in Theo- 
rem 2 we prove that the RBF regression estimate based on 
empirical error minimization is universally consistent. RBF 
classifiers obtained by empirical error probability minimization 
are studied in Section IV. Theorem 3 provides a nonasymptotic 
distribution-free upper bound on the estimation error of RBF 
classifiers using window kernels, and Theorem 4 deals with 
the universal consistency of such networks. We then show that 
there exist smooth unimodal kernels having no nonasymptotic 
distribution-free upper bounds such as in Theorem 3, in 
the following sense: for every n and any algorithm which 
determines the parameters of the REF net based on a training 
sequence of length n, there exists a distribution such that 
P{g,(X) # YIDn} - L* > c for a positive universal constant 
c > 0. Finally, in Appendix A we review some results in 
VC and related theories. These results are fundamental in 
establishing bounds on the estimation error not only for RBF 
nets but for any scheme using empirical risk minimization. 



KRZYZAK et al.: NONPARAMETRIC ESTIMATION AND CLASSIFICATION 477 

11. APPROXIMATION Let k ( z )  = K ( z ) /  J K ( z )  dz, kh( z )  = ( l / h d ) k ( z / h ) ,  and 
define The error of the regression estimator can be decomposed 

into approximation and estimation parts 

J ( f n )  - J* = ( inf J(f) - J * )  + (J(fn) - inf J ( f ) ) .  

Since Elf(x) - YI2 - Elm(x)  - YI2 = ~ l f ( ~ )  - m(x)I2 
for all f, we have 

f € F k  f Grlc 

inf J ( f )  - J* = inf E l f ( X )  - m(X)I2 .  (3) f E F k  fcFk 

In this section we consider the approximation error (3) when 
3 k  is the family of RBF networks of the form 

k 

f6'(z) = x w t K ( ( z  - c t ) /b t )  + WO (4) 

where K :  I R ~  -+ R and B = ( w O , . . . , W k , b l , . . . ,  

bh, c1, . . . , c k )  is the vector of parameters W O , .  . . , w k  E 
R, b l , .  . . , bk E R and c 1 , .  . . , Ck E Rd. Clearly, when K 
is radially symmetric, the nets (4) constitute a subset of nets 
in the form of (1). 

In what follows, we will show that UT=.=, 3 k  is dense 
in L 4 ( p )  for any q E (0, CO), and probability measure p 
on Rd, if K is a basis function that satisfies the regularity 
conditions listed in Theorem 1. We will also show that 
UT=.=, 3 k  is dense in &(A) for any p E [~,co) ,  where X 
stands for the d-dimensional Lebesgue measure. In fact, any 
m E L,(p) n &(A) can be approximated simultaneously in 
both norms. 

Consequently, for q = 2 the approximation error inffcFlc 
J ( f )  - J* converges to zero if k -+ CO. Theorem 1 somewhat 
generalizes an approximation result of Park and Sandberg [24], 
[25] who showed that if K E L1(A) n Lp(X) and ./ K # 0, 
then the class of RBF nets defined in (4) is dense in &(A) 
for p 2 1. 

z=1  

Theorem I: Suppose K :  Rd + R is bounded and 

Since g is continuous, we have by [34, Theorem 9.81 that 
1imh-o oh(z)-= g ( 2 )  for all z E Rd, and we also have 
Ic%(z)I I BIIKIIL~(~)  = B < CO for all E Rd, where B = 
SUpa:cRd Ig(z)I. Then the dominated convergence theorem 
implies that 1imh-o 119 - o h l l ~ ~ ( ~ l  = 0 and 1imh-o 119 - 
oh1 I L ~ ( x )  = 0, meaning that we can choose an h > 0 such that 

S S 
119 - ohIILq(fi)  < 4 and 119 - OhIIL,(X) < 4 (8) 

are both satisfied. In the rest of the proof, using a probabilistic 
argument similar to the one by Barron [2], we will demonstrate 
that there exists an f 0  which approximates Oh within S/4 in 
both L p ( p )  and &(A) norms. 

First assume that g(z) 2 0 for all IC, and define the 
probability density function cp by 

Then oh(z) = E[l?(z, Z ) ] ,  where l?(z, y) = C - l l ? h ( z  - y) 
and Z has density cp. For any r>O let S, = {? E Rd: llzll 5 
T } ,  and define the probability measure j, by X,(B) = X(B n 
S,)/X(S,). Furthermore, let ,G = $ i, + ?j p, and consider a 
random variable Y with distribution b. 

Let Z 1 , Z 2 ,  . . . be an i.i.d. sequence independent of Y, with 
each 2, having density cp. By the strong law of large numbers, 
for all z 

k 1 
lim - XI?(., 2%) = C ~ ( I C )  

k+o3 k 
z=1 

almost surely. Then by Fubini'q theorem 

k 1 
k-m k 
lim - E(Y, 2%) =  oh(^) 

K E L 1 ( N  n ( 5 )  

for some p E [l, CO), and assume that J K ( z )  dz # 0. Let ,U 
be an arbitrary probability measure on Rd and let q E (0, CO). 
Then the RBF nets in the form (4) are dense in both L,(p) almost Let denote the induced by 
and L, (A). In particular, if after mother application of Fubini's 

E L, ( n L, (A), then for any (21 7 2 2  , ' '). It 
theorem that for v-almost all infinite sequences x = (21 ,  

z2, + . .) the sets B, c Rd of z's for which 
E there exists a 0 = ( w o , .  . . , W k ,  b l , .  . , b k ,  c 1 , .  . . , c k )  such 
that 

Ld Ife(z) - ~ ( ~ I I P  dx < E. (6)  

Pro08 We will use the norm notations I ( f l l L q ( f i )  and 
11g11LP(x) for the L q ( p )  and &(A) norms, respectively, of 
any f E L, ( p )  and g E L, (A). Since m E L,  (p )  n L, (A),  for 
any 6 > 0 there exists a continuous g supported on a compact 
set Q such that 

fails to hold have ,G measure zero. Thus there exists a sequence 
(21 ,  z2, . .) for which 

1 k 

lim - 
k - c c  k 2(z, 2%) = vh(z) 

z=1 

holds for fi-almost all z. In particular, the above con- 
vergence holds a.e. [A] on s,, as well as a.e. [p].  Since 
sup,,?I Il?(z,y)l 5 C-l supa: Ikh(z)I < CO, the dominated 
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convergence theorem implies that for h k ( x )  = ( 1 / k )  
E;==, K(z, z,) we have 

>i$ Ilhk - ohlIL,(p)  = 0. (9) 

To prove convergence in Lp(A),  we choose r large enough to 
ensure that for given 61 > 0 the following holds: 

sup / 
yEQ Rd-S, 

Il?(x, y)lp dz <&Si and 

Igh(z)I” dx < 61. (10) 
L S ?  

Since K,oh E &(A)  and Q is compact, such an T exists. 
Consider now the decomposition 

f J’ l h k ( 2 )  - oh(Z) lP  dx. 
R d - S ,  

Since h k  -+ ah on s, a.e. [A], the first integral on the right- 
hand side converges to zero by dominated convergence. Now 
the fact that the z, are in Q implies via (IO) that 

5 2 s p  

Hence by choosing r and 61 appropriately, and letting t be 
large enough, we obtain Ilhk - ~ ~ I I L , ( ~ )  5 6/4. Since the 
h k  are RBF nets in the form of (4), this and (9) imply the 
existence of an f 8  such that 

6 s 
4 4 iigh - f8~~L,(p) < - and iiah - fs~~L,(x) < -. (11) 

To prove (1 1) for general g we use the decomposition 
g(z) = g+(x) - g- (x ) ,  where g+ and g- denote the positive 
and negative parts of g, respectively. Then 
C r h ( X )  =ah (1) (z) - .f’(z) 

Now cp) and cp’ are approximated as above by fO(l) and 
f o p ) ,  respectively, and for f8 = f8(1) + fO(2) we obtain (1 1). 

Finally, from (7), (S ) ,  and ( I  1) we conclude that 

which proves (6) after choosing a suitable S as a function of E .  

Note that the above proof also establishes the first statement of 
the theorem, namely that { f e :  8 E 0 )  is dense in both L q ( p )  

For smooth classes of function, one can obtain rate-of- 
and L, (A). 0 

here is the investigation of the properties of the best nth order 
convex approximation from a set of functions, when the target 
function is assumed to lie in the closure of the convex hull of 
the set. Such results are given by Barron [2], Darken er al. [SI, 
and Girosi and Anzellotti [14]. The very important question of 
incremental (i.e., recursive) approximations is also dealt with 
by Jones [19J, as well as in the above cited papers. 

III. REGRESSION ESTIMATION 

In this section we consider regression estimation using RBF 
networks of the form 

k 

f s ( z )  = C w t K ( [ z  - czItA2[x - e t ] )  + W O .  

Here B = (WO,. . . , Wk, c l , .  . . , Ck,  AI , .  . . , A h )  is the vector 
of parmeters, where W O , .  .. , W k  E IR, c 1 ,  .. . , Ck E R ~ ,  
and A l , - . . , A k  are positive d x d matrices. The scalar 
basis function K :  [0, CO) + lR is a monotone decreasing, 
left-continuous, bounded function. Given the training set 
D, = ((xi, yi), . . . , ( X n ,  Y,)) consisting of ta i.i.d. 
copies of ( X , Y ) ,  our estimate of the regression function 
m(z) = E(YIX = z) is the RBF f~ which minimizes the 
empirical L2 error 

(12) 
2=1 

To be more specific, for each n we fix 0, as the set of 
parameters defined by 

19 = ( W O , .  . . , Wk,,  Ci, . . . , c k ,  , A=,, . . . , A k n ) :  

i=O 

and we choose our regression estimator as an f e ,  8 E 0, 
satisfying 

Thus the optimal f e  is sought among the RBF’s consisting of at 
most k, neurons satisfying the weight constraint .Ef:o 1w,I2 5 
b,. If we assume that IK(r)( 5 1 for all T 2 0, then these 
constraints and the Cauchy-Schwarz inequality imply that for 
any 8 E 0, and x E Ed 

(15) 
r k 

lf~(x>I~ = C w X ( [ z  - czItA[z - e,]) + W O  
l2=1 

I bn( tn  + 1). 

In what follows we will denote by f,, for convenience, the 
empirically optimal RBF net in (14). With a slight abuse of 
notation we put F, = { f e :  8 E 0,) thus making explicit 
the dependence on n of 3 k ,  k = k,. We have the following 

approximation results as in [2] .  One of the underlying methods consistency result for the regression estimate f,. 
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Theorem2: Consider a family of RBF nets defined 
by (12), with k 2 1 arbitrary, such that the defining 
kernel K :  [O,CO) --f lR is integrable with respect to the 
Lebesgue measure. Suppose furthermore that K is monotone 
decreasing, left-continuous, and bounded. If k,, 6 ,  -+ CO and 
k:b: log (kib:)/n + 0 as n -+ CO, then the RBF net f, 
minimizing the empirical La error over Fn = { f e : O  E 0,) 
satisfies 

J ( f n )  - J* - 0  as n +  CO 

in probability for any distribution of ( X , Y )  satisfying 
EIYl2 <CO. If in addition kn/n6  -+ CO as n --f CO for 
some 6 2 0, then f n  is strongly universally consistent, i.e., 
the above convergence holds almost surely. 

Prooj? We begin with the usual decomposition of the 
error into approximation and estimation parts 

J ( f n )  - J* = (;:;n J ( f )  - J * )  + ( J ( f n )  - inf J ( f ) ) .  
f e r ‘  

Approximation Error: Since E l f ( X )  - Y l 2  - E l m ( X )  - 
YI2 = E I f ( X )  - YI2 for all f, we have 

But .En is just the set of functions of the form (12) since 
k,,bn --f CO as n --f CO. Thus the right-hand side of the 
above equation tends to zero by Theorem 1, implying that the 
approximation error inff€F J ( f )  - J* converges to zero. 

Estimation Error, Y Unbounded: To deal with the estima- 
tion error J ( f n )  - inffEFn J ( f )  we will use the well-known 
inequality 

J ( f n )  - inf ~ ( f )  
f E 3 n  

I _  n 

(16) 

To prove that this supremum converges to zero, we will use 
nonasymptotic uniform large deviation inequalities involving 
suprema over classes of functions. 

First we restate a result by Lugosi and Zeger [21] asserting 
that if the right-hand side of (16) converges to zero either in 
probability or almost surely for all distributions such that IY 1 
is bounded, then the estimation error converges to zero in the 
same sense for any distribution such that E(Y 1’ < CO. For the 
sake of completeness, we include the proof in Appendix B. 

Lemma 1 (Lugosi and Zeger [21]):  If 
I .  n I 

in probability (almost surely) for every distribution of ( X ,  Y )  
such that Y is bounded with probability one, then 

J ( f n )  - inf J ( f )  -+ o 
f €3, 

in probability (almost surely) for every distribution of ( X ,  Y )  
such that E(Y l 2  < 00. 

Estimatioii Error, Y Bounded: By the above result, we may 
assume that P{  IY I 5 L }  = 1 for some positive L. If 191 _< L, 
then by (15) the functions h(x,y) = ( f ( x )  - v)’ , f  E Fn, 
are bounded above 

~ ( X , Y )  ~ ‘ $ m a x { I f ( x ) I ~ ,  1 ~ 1 ~ )  5 4max{bn(kn + 1) ,~’ )  

5 5bnkn (17) 

when b,(k, + 1) 2 L2 (i.e., when n is large enough). Thus, 
for such n, the supremum in (16) is bounded above by 

I 

where H n  = { h ( ~ , ~ ) : h ( z , y )  = ( f ( x )  - Y ) ~ , P  E .En}, 
and for all h E H ,  we have ]h(x,y)I 5 5bnkn for all 
( x , ~ )  E llZd x [-L,L].  We will now use the notion of 
covering numbers (Definition 1 in Appendix A) and Lemma 
3 by Pollard in Appendix A. We apply Lemma 3 with 
m = d f  1,F = X,,Zy = ( ( X l , Y ~ ) , . . . , ( X , , Y , ) ) ,  and 
B = 5bnk,, to obtain 

5 t l E N ( ~ / 1 6 ,  H ~ ,  ~ , “ ) ~ - n ~ ~ / ~ ~ ~ ( 5 ~ n ~ ~ ) ~ .  (19) 

Bounding the Covering Number: In the remaining part of 
the proof vve derive an upper bound on N ( E ,  X n ,  x,”), which 
will imply consistency through the above inequality. Let f1 

and f 2  be two real functions on Rd satisfying 1fa(x)12 5 
bk(k,  + l:) , i  = 1,2, for all x E Ed. Then for h ~ ( x , y )  = 

( ( x ~ , y l ) , . . . , ( z n , Y n ) )  with (Y;( 5 L,Z= 1 , . . . , n ,  we have 
( f l ( x )  - $1)’ and h 2 ( ~ , 9 )  = ( f ib)  - Y)’,  MI any zl” = 

since I f(r) - LI 5 2 d m  for n large enough. Since 
l f I 2  5 bni:kn + 1) for all f E F,, the functions f1,.  . . , f z ,  I = 
N(e,Fn,z?) ,  in the definition of the covering number can 
be chosen so that they also satisfy lfiI2 5 bn(k, + l ) ,  i = 
1,. . . , Z,where x? = ( 5 1 , .  . . , xn) .  Combining this with (20) 
we conclude that for n large enough 

Next we estimate N ( E ,  3n, xy) by building up 3, from a 
relatively simpler class of functions. For this, our tool will be 
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Lemma 4 in Appendix A. Let us define the classes of functions 

8 = { K ( [ x  - eltA[z - c]):  c E Rd}, 

8 and 8, by 

Gn = { W .  9: g E S, lwl<_ 61 
Then by Lemma 4 (2), for any x;" E Rnd we have 

Since 
k ,  

2 + w o : ~  E 8 , C I ~ z l  I bn 
z=o 

by applying Lemma 4 (1) k,  + 1 times we obtain 

In the last step, we estimate N(E, 6 ) .  We will need the 
concept of VC dimension of a class of sets as given in 
Definition 2 in Appendix A and the connection between 
covering numbers and VC dimension given by Lemma 5 in 
Appendix A. Using an argument by Pollard [27] we will 
show that the collection of graphs of functions in B has 
finite VC dimension, which will result in a suitable bound 
on N ( E ,  6, x;) via Lemma 5. 

Since K is left continuous and monotone decreasing we 
have K ( [ x  - cItA[z - c ] )  2 t iff [x - cItA[z - e] 5 cp(t), 
where cp(t) = max {y: K(y) 2 t} .  Equivalently, (x, t )  must 
satisfy 

xtAx - d ( A c  + Ate) + ctAc - cp(t) 5 0. 

Consider now the set of real functions on Etd+' that are given 
for any (2,s) E Rd x R by 

gA,o ,p ,y (X,  S )  = X t A X  + xta f ps + y 
where A ranges over all d x d matrices, and a E Rd, ,8, y E R 
are arbitrary. The collection {gA,cy,p,y} is a (d2 + d + 1)- 
dimensional vector space of functions, thus the class of sets 
of the form { ( E ,  s): gA,a,P,y(2,  s) 5 0) has VC dimension at 
most d2 + d + 2 by Lemma 6 in Appendix A. Clearly, if for 
a given a collection of points {(x;,t;)} a set {(%,t).g(z) 2 
t } ,  g E 6 picks out the points (zzl, tZ , ) ,  . . . , (xZ1, tZ,), then 
there exist A, a ,  P, y such that { (x, s): gA,a,p,y(x, s) 2 0) 
picks out exactly (xzl, cp(tZ,)), . . . , ( x Z l ,  cp(tzl)). This shows 
that Vi 5 d2 + d + 2. Thus Lemma 5 gives 

2(d2+d+2) 

NE,G,x;)  

from which, upon substitution into (22), we obtain 

In view of (21) and (19) this implies that with appropriate 
constants Cl, C2, and C3 we have 

P{J(fn,)  - inf J(f) > e }  
f € 3 n  

Since kn, b, + CO as n + 00, the above upper bound tends 
to zero for any t > O  if 

and the universal consistency is proved. It is easy to check 
that if we additionally have kn/n6 -+ 00 for some 6 > 0, then 
the upper bound (23) is summable in n for any E > O ,  and 
the strong universal consistency follows by the Borel-Cantelli 
lemma. 0 

IV. CLASSIFICATION 
In the classification (pattern recognition) problem, based 

upon the observation of a random vector X E Etd, one has 
to guess the value of a corresponding label Y, where Y is a 
random variable taking its values from { -1, l}. The decision 
is now a function g :  IRd i { -1, 1}, whose goodness is 
measured by the error probability L(g)  = P { g ( X )  # Y } .  
It is well known that the decision function that minimizes the 
error probability is given by 

where m(z) = E(YIX = x), g* is called the Bayes decision, 
and its error probability L* = P { g * ( X )  # Y }  is the Bayes 
risk. 

When the joint distribution of ( X , Y )  is unknown (as is 
typical in practical situations), a good decision has to be 
learned from a training sequence 

Dn = ((XI, YI), . . ' 7  ( X n ,  Yn)) 

which consists of n independent copies of the IRd x { -1,1}- 
valued pair (x,l'). Then formally, a decision rule g, is a 
function g n : R d  x (ELd x {-1, 1})" i {-1, l}, whose error 
probability is given by 

L ( g n )  = P { g n ( X ,  Dn) # YIDn}. 

Note that L ( g n )  is a random variable, as it depends on the 
(random) training sequence D, . For notational simplicity, we 
will write g n ( x )  instead of gn(x, Dn). 

A sequence of classifiers { g n }  is called strongly consistent if 

P { g n ( X )  # YID,} - L* --+ 0 
almost surely (as.) asn  -+ 00 
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and {g,) is strongly universally consistent if it is consistent 
for any distribution of (X,Y) .  

It is intuitively clear that pattern recognition is closely 
related to regression function estimation. This is seen by 
observing that the function m defining the optimal decision 
g* is just the regression function E ( Y ( X  = x). Thus, having 
a good estimate fn(x) of the regression function m, we expect 
a good performance of the decision rule 

-1 if f n ( x )  5 0 
1 otherwise. gn(x> = 

Indeed, we have the well-known inequality 

P{g,(X) # YIX = 2, a} - P(g*(X) # YIX = 2) 
L I fn(x)  - m(x)I (25) 

P{Sn(X) # YIaL) - P{S*(X) # Y) 

I (E((fn(X) - m(x))21a) )1 '2 .  

(see, e.g., [lo]) and in particular 

Therefore, any strongly consistent estimate f, of the regres- 
sion function m leads to a strongly consistent classification 
rule gn via (24). For example, if fn  is an RBF-estimate of 
m based on minimizing the empirical L2 error J n ( f e ) ,  then 
according to the consistency theorem discussed in the previous 
section, gn is a strongly universally consistent classification 
rule. That is, for any distribution of (X,Y),  it is guaranteed 
that the error probability of the RBF-classifier gets arbitrarily 
close to that of the best possible classifier if the training 
sequence D, is long enough. 

While consistency is an extremely important property, it 
gives little information about the finite-sample behavior of 
L(g,). The intuitive reason why we can do much better 
than basing our decision on an L2-consistent RBF regression 
estimate is that the empirical L2 error has only a vague 
relationship with the error probability. For the classification 
problem, it is more natural to minimize the number of errors 
committed by the corresponding classifiers on the training 
sequence. 

Let K : R d  --f IR be a kernel function. Consider RBF 
networks given by 

k 

fe(x)  = C w 2 K ( A 2 [ z  - c21) + W O  (26) 
2 = 1  

i.e., the normalized number of errors committed by g in 
classifying D,. It is a natural choice to pick a classifier g, 
from 9, by rninimizing the empirical error probability 

L ( g n )  5 L ( 4 )  for 4 E G,. 

In the sequel we investigate the behavior of the error proba- 
bility L(g,) := P{g,(X) # YID,} of the selected classifier. 

The distance L(g,) - L* between the error probability of 
the selected rule and the Bayes risk may be decomposed into 
a random and a deterministic component 

where the first term on the right-hand side is called the 
estimation emor and the second is called the approximation 
error. 

We begin by investigating the estimation error. The estima- 
tion error measures the distance of the error probability of the 
selected classifier from that of the best &-node RBF classifier. 
The size of the estimation error is an interesting quantity in 
itself, as it tells us how far we are from the best classifier 
realizable by a network with complexity IC,. Assume first that 
K :  IRd --f (0, l}, i.e., K ( x )  = Ie(x) is the indicator function 
of some subiset C of Rd. We have the following: 

Theorem 3: Assume that K is an indicator function. As- 
sume that thle class of sets 

C1 = {{x ci IRd: K(A[z - c]) > 0): c E IRd,  A invertible) 

(28) 

has a finite \IC dimension Vc, . Then for every n ,  k,  and E > 0 

for some constants C1 and C2 depending only on Vc,. 
The importance of the theorem above lies in the fact that it 

gives a distribution-free, nonasymptotic bound for the error 
probability of the selected classification rule. By a simple 
bounding argument it follows from Theorem 3 that 

where 6' = ( w o , .  .. , W k ,  c1 ,  a . .  , C k ,  A l , - . .  , Ak) is the vec- 
tor of parameters, W O ,  .. . ,wk E R, c1,. . . , C k  E R ~ ,  and 
A l , .  . . , Ak are nonsingular d x d matrices. Let {IC,} be a 
sequence of positive integers. Define F, as the set of RBF 
networks in the form of (26) with k = k,. Given an f o  as 
above, we define the classifier go: Rd -+ { -1, l} as 

Let 9, be the class of classifiers based of the class of 
functions F,. To every classifier g E Gn, assign the empirical 
error probability 

where the constant c depends on the class C1 only. This 
inequality tells us that no matter what the distribution of 
( X ,  Y) is, we are always within O( d m )  of the best 
error probability achievable by a k,-node RBF. We emphasize 
that this is not true for classifiers based on minimizing the 
empirical &-error. 

Examp1e:F: The quantity V& depends only on the set C E 
IRd defining the indicator K.  

1) When C is the unit sphere, C1 is just the family of 
d-dimensional ellipsoids. It is well known (see, e.g., 
Pollard [27]) that Vc, < 00 in this case (in fact, it is 
not hard to see that VC 5 d2 + d + 2). 



482 E E E  TRANSACTIONS ON NEURAL NETWORKS, VOL. 7, NO 2, MARCH 1996 

2) Suppose C is a convex polytope, i.e., the intersection of 
I (1 > d )  halfspaces. Then C1 is a collection of polytopes 
of I faces, and it follows from, e.g., Pollard [27] that 

Proof of Theorem 3: We will start with the observation 
vc, I Z(d + 1). 

that 

(see, e.g., Devroye [9]). Let C, denote the collection of subsets 
of sets IRd x { -1,l) in the form 

{(z,?4): s(z) # Yh 9 E A. (30) 

We estimate the right-hand side by the Vapnik-Chervonenkis 
inequality (Lemma 7 in Appendix A). In our case C = C, and 
2, = ( X , , y ) , j  = 1 , . . . , n .  It is not hard to see that 

s(n, cn> = s(n, en> 

where C, is the collection of subsets of Etd of the form 
{x: g(z) = 1},g E 6,. The classifier g has a feedforward 
architecture with k ,  + 1 computational nodeSAall having binary 
outputs. Thus the shatter coefficient S(n, C,) has an upper 
bound (Baum and Haussler [3, Theorem 11) 

where V, = E:;:’ V,, the sum of the VC dimensions of the 
classes of indicators at each node. In our case the first IC, nodes 
are equipped with the class C1 [defined in (28)], and have VC 
dimension Vc, . The (IC, -+ l)th node is associated via (27) with 
the class of k,-dimensional linear threshold functions which 
has VC dimension k ,  + 1 (see Cover [7] and Wenocur and 
Dudley [33]). Thus we have 

v, = IC,(VCl + 1) + 1 

and we can write 

Combining (29), (3O), and Lemma 7, we obtain the desired 

Now, with a strong upper bound on the estimation error in 
hand, it is easy to obtain conditions on I C ,  for strong universal 
consistency of RBF classifiers based on the minimization of 
the empirical error probability. The next theorem states that 
if k ,  -+ cc as n 3 cc not too rapidly, then the sequence 
gn is strongly universally consistent. Farag6 and Lugosi [13] 
proved a similar result for sigmoidal neural networks trained 
by minimizing the empirical error probability. 

inequality. 0 

Theorem 4: Let K be an indicator such that Vc, < cc for 
Cl defined in (28). Suppose that the set of RBF networks 
given by (26), k being arbitrary, is dense in L1(p) on balls 
{x E IRd: [IzI[ 5 B }  for any probability measure p on 
Ed. If k, 3 cc and n-l(ICnlogn) -+ 0 as n 3 00, then 
the sequence of classifiers gn minimizing the empirical error 
probability is strongly universally consistent. 

Remurk: Note that the approximation result of Theorem 
1 applies when K is an indicator with J K < 00, thus the 
denseness condition in Theorem 4 holds in this case. 

Proof of Theorem 4: The consistency of gn is proved by 
decomposing L(g,) - L* in the usual way 

For the first term on the right-hand side we invoke Theorem 
3. Since n-l(k, logn) + 0 as n -+ 00, the right-hand side of 
the inequality of Theorem 3 is summablt in n for any t > 0. 
Therefore the estimation error L(g,) -infgEGn L(g)  converges 
to zero with probability one by the Borel-Cantelli theorem. 

To bound the approximation error, recall (25). Clearly 

where ,u is the measure induced by X .  Now the denseness 
condition and the fact that IC, + cc as n + cc imply that 
for any B>O 

Since IimB,, P{llXll> B }  = 0, (32) and (33) imply that 
infgEG, L(g) - L* -+ 0 as n -+ 00. The proof of the theorem 

A natural question immediately arises: What other kernels 
provide the same behavior of the estimation error as Theorem 
3? For example, it is easy to see that if is a weighted sum 
of finitely many indicators, then a result similar to Theorem 
3 still holds. The key question is whether the VC dimension 
of the class of sets of the form 

is complete. 0 

} 
k 

2: CW,K(A,[~ - c,]) -two > 0 i i=l 
is finite, and how it depends on k .  If the VC dimension 
is infinite, then as Blumer et aZ. [4] point out, there is no 
distribution-free upper bound on the estimation error. In fact, 
if the VC dimension is infinite, then for every n, and for 
any training method, there exists a distribution such that 
the error probability of the resulting classifier is at least a 
universal constant away from the optimal error probability 
infgEcn L(g) in the class. Bounding the VC dimension of 
such classes is a challenging problem. One would suspect 
that for “nice” unimodal kernels the situation should not be 
dramatically different from when K is an indicator of (say) a 
ball. It may come as a surprise that for some “nice,” smooth 
kernels this is not the case. Our counterexample is based on 
the work of Macintyre and Sontag. We show that there exists 
a symmetric, unimodal, continuous one-dimensional kernel, 
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with the property K ( z )  5 K(y) if 1x1 2 lyl, such that the VC 
dimension corresponding to the class G, is infinite if k, 2 2. 
A finite set S is said to be shattered by the class of sets C if 
every B c S is of the form B = S n G for some C E C. 
Thus the VC dimension of C is infinite iff for any n there 
exists a set of n elements shattered by C. The construction of 
our example relies on the following lemma (C” denotes the 
space of functions having derivatives of arbitrary order). 

Lemma 2 [22]: There exists a bounded, monotone increas- 
ing C” function T :  R --$ R, such that the class of sets 

A = { A ,  = {Z E R: T ( U Z )  + T ( - U Z )  > 0): U > O ]  

has infinite VC dimension. Further, the the points 51, . . , 2, 
that are shattered by A can all be chosen in the interval (0, I). 

Based on the construction of r ( z )  in the above result, we 
now show that there exists a “nice” kernel such that the 
VC dimension of the corresponding class of RBF classifiers 
8, is infinite for every n. For nets using such a kernel, 
by a result of Blumer et al. 141, for every n and for any 
method of selecting the parameters of the net, there exists 
a distribution such that the error probability of the resulting 
classifier is larger than infgEan L(g)+c, where c is a universal 
constant. Interestingly, this does not mean that strong universal 
consistency is not achievable with RBF nets based on such 
kernels. For example, the kernel in the counterexample below 
satisfies the conditions of Theorem 2, therefore the classifi- 
cation rule based on the regression function estimate obtained 
by minimizing the empirical squared Lz error remains strongly 
universally consistent. This makes the point that consistency is 
a very weak property when it comes to studying finite-sample 
behavior of classifiers. Theorem 3 shows that minimizing the 
empirical error probability in an RBF class based on a window 
kernel has a desirable finite-sample property, which many 
other algorithms and kernels fail to share. 

Theorem 5: There exists a continuous kernel K :  R + R, 
which is unimodal, bounded, monotone increasing for z < 0, 
and decreasing for x > 0, such that the shatter coefficient of 
the class of sets 

equals 2” for all n. Thus, the VC dimension corresponding to 
G, is infinite whenever k ,  2 2. 

Proof: The pathological function T of Lemma 2 is con- 
structed as follows: Let a(x )  = (1 - x2)-’ and define 

i f s 2 0  

a( t )  dt  otherwise 

and 

t(2) = 3p(z) + a(.) cos(z) 

Then i is bounded, infinitely differentiable, and monotone 
increasing. Furthermore 

?(ax)  + ?(-ax) = 2a(ux)  cos(ax). 

Thus ?(ax)  -t ?(-ax) > 0 iff cos(uz) > 0. It is not hard to see 
that for any n there exist x1, . . . , x, > 1 shattered by sets of 
the form {x: cos(uz) > 0). Now T is defined as 

T ( Z )  = 3&) + ol(z)e-1/z2 cos(l/z). 

r(uz) f ?-(-U%) = 2 a ( u 2 ) e - 1 / ( 4 2  cos(l/(uz)) 

Clearly, T satisfies the same conditions as P ,  and 

which is positive iff cos ( l / (ax ) )  > 0. Thus r(x) + r ( - x )  > 0 
iff ?(l /x) + f(-l /x) > 0. But all the shattered points for i 
were greater than one, therefore their reciprocals shattered by 
the sets {x: cos ( l / (u z ) )  > 0) are in (0, 1). To use the above 
construction of Macintyre and Sontag, we make the simple 
observation ithat the shattered x, can be chosen so that 

cos(u,x,) > 0 if x, E S, (34) 

and 

COS(U,X,) < O if xi  E {xi,. . . , xn} - S, (35) 

for some u l , . . . , u ~ > O , N  = 2”, where S~,...,SN are all 
the subsets of { X I , . - .  ,x,}. Define the kernel K as 

K ( x )  = T ( - I x I +  1). 

Then K ( x )  = g(lz1) with g ( t )  = T(-t  - l ) , t  1 0, and K 
is monotone decreasing, bounded and continuous. In fact, g 
(and thus U’) is infinitely differentiable everywhere except at 
zero. Now for 1x1 < h 

K ( 5 : )  + K ( F )  = r ( : )  + T ( ? ) .  (36) 

Thus the theorem will be proved if we can show that there 
exist {zl,~..,zn} shattered by the sets {x: r(z /h , )  + 
r(-x/hj);>O}, j  = l,...,N,N = 2,, such that 

(37) 

Let the SG,’S and a,’s be as in (34) and (35). The value of 
C O S ( Q ~ X , )  ILS determined by b,, in the unique representation 
of x ,  

2T 27r 

U 3  U3 
x, = k, ,  - + b,, , ha,, 2 0 integer, 0 5 b,, < -. 

By the continuity of cos(x) we can choose the u,’s satisfying 
(34) and (35) to be rational: u3 = p,/q, , for some integers 
p,,q,,j = l , . . . , N  . Define Z = 27r IIEl 4,. Then M, = 
a3Z/(27r) is an integer for all j ,  and for any positive integer 
L we havle 

27r 

aj 
5; + LZ = ( k i j  + L M J -  + bij  

which implies cos(u,(z, + L Z ) )  = cos(u,x,) for all i , j .  
This means that if L is chosen large enough, the points 
y, = x, -I- LZ satisfy max,(l/y,) < min, a,, and therefore 
{x: K((a,  - % ) / ~ , ) + K ( ( - U ,  - ~ ) / u , ) > O } , j  = 1 , . . . , N  

0 shatter { 1 /yl, . . . , l/yn} by (36) and (37). 
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V. CONCLUSIONS 

In this paper, we have established convergence properties 
of general RBF nets. Upon imposing mild conditions on the 
basis functions they have been seen to approximate arbitrcrary 
functions in L P ( p )  norm, p > 0. We have proved the gener- 
alization ability of RBF nets in nonlinear function estimation 
for a large class of basis functions with parameters learned 
through empirical risk minimization. We have considered two 
approaches to classification based on RBF networks. In one 
approach, we base the classification on nonlinear function 
estimation and show the resulting network to be consistent. 
We obtain better results in training the network by minimizing 
the empirical error probability directly, provided that the RBF 
net uses a window kernel. We give a counterexample of RBF 
nets in which these better properties cannot be achieved by any 
method of training the network. It remains an open problem 
to characterize kernels which will share these convergence 
properties with the window kernels. 

APPENDIX A 
REVIEW OF SOME RESULTS CONCEFWNG 
vc DIMENSION AND COVERWG NWERS 

2) If F 0 E denotes the set of functions { f  g: f E F, g E 
G}, then for any zy E R"" and E > 0 we have 

N(E, 3 0 9 , z ; )  
I N('/C2B2),3',Z;L)N(EI(2Bl), E, $1. 

The notions of shatter coefficient and VC dimension 
are used in this paper for bounding covering numbers in 
Section ID, as well as directly in Section IV through the 
celebrated Vapnik-Chervonenkis inequality (Lemma 7). 

DeJinition 2: Let C be a collection of subsets of IR". The 
nth shatter coefficient S(n,  C) of C is defined as the maximum 
number of distinct subsets C can pick from a finite set of n 
elements 

S(n,C) = max I{S n C: C E C}l. 

The VC dimension of C (denoted by VC) is the largest n 
satisfying S(n,C) = 2n. By definition VC = CO if S(n ,C)  = 
2" for all n. 

If C = {{z:  g(z) = 1);g E G}, for a class E of indicators, 
then V, = Vc by definition. 

A connection between covering numbers and VC dimension 
is given by the following: 

SCR" 
(SI=n 

Lemma 5 [17]: Let 3 be a collection of real functions on 
Em with If(.)/ 5 B for all z E R" and f E F. Suppose 
that the family of sets 

In what follows, we list some important definitions and 
results that are crucial in dealing with empirical risk mini- 
mization. First, we give the definition of covering numbers 
for classes of functions. { ( z , t )  E IRm+l: f ( z )  2 t } ,  f E 3 

Dejinition 1: Let 3 be a class of real functions on R". 
The covering number N ( E ,  3, zy)  is defined for any e 2 0 
and z;" = (XI,. . . , z,) E EL"" as the smallest integer I such 
that there exist functions 91, . - , gl: Rm t R satisfying for 
each f E 3 

When 2; = (21,. . , 2") is an n-vector of R"-valued 
random variables, the covering number N ( E , F , Z ~ )  is a 
random variable with expectation EN(',  F, zy ) .  The next 
result, by Pollard, is our main tool in Section III. 

Lemma 3 (271: Let F be a class of real functions on R" 
with I f (z) l  _< B for all f E F , z  E R", and let 27 = 
(21, . . . , 2") be IR" valued i.i.d. random variables. Then for 
any t > O  

has finite VC dimension V,. Then for any zy E R"" and 
E > 0 we have 

The VC dimension can often be upper-bounded by means 
of the following very useful result. 

L R " a  6 [27]: Let 3 be a d-dimensional vector space of 
real functions on IR". Then the class of sets of the form 
{IC: f ( z )  >_ O ) , f  E 3, has VC dimension no greater than 
d +  1. 

The following is the fundamental VC inequality. 
Lemma 7 [31]: Let C be a class of sets in R", and 

let Zl , . . . ,Zn  be a sequence of R"-valued i i d .  random 
variables. Then for any E and n 

5 4s(2n, C)e--nt2/8 

where s (n ,C)  is the nth shatter coefficient of c. 

APPENDIX B The following lemma is often useful when 3 is built up 
from relatively simpler classes. 

Lemma 4 [28]: Let 3 and G be two families of real func- 
tions on R" with I f ( . ) [  5 Bl and lg(z)l 5 Bz for all 
z E R",f E F a n d g  E G. 

1) If 3@ 6 denotes the set of functions { f  + g: f E F, g E 

PROOF OF LEMMA 1 
The proof is given for Lp norms loss functions (1 5 p < CO), 

thus J ( f )  = ( E l f ( X )  - YlP)l/P. Let L>O be an arbitrary 
fixed number and introduce the following truncated random 
Vmkbles: 

yL = { I sgn (Y)  otherwise 
if IYI 5 L G}, then for any 2; E R"" and E ,  6 > 0 we have 

N(' + 6, J= CE 8,  z;) F N(',  F, z;")N(S, E, 2;"). 
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and 

for j = 1, + .  , n, where sgn(z) = 21f,.0) - 1. Further, let 
hn be a function in 3n that minimizes the empirical error 
based on the truncated variables 

Combining the two inequalities above, we obtain 

where (39) and (41) follow from the triangle inequality, 
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while (40) exploits the defining optimality property of m,. 
Combining this with (38) and using the strong law of large 
numbers, we get 

limsup(d(m,) - inf J(f)) 
n+m f € 3 n  

sup ( E I ~ ( x )  - Y ~ P ) ‘ / P  

+ ~ ( E J Y ~  - Y ~ P ) ’ / P  a.s. 

The first term of the right-hand side is zero almost surely by 
the conditions of the theorem, while the second term can be 

U made arbitrarily small by appropriate choice of L. 
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