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On the Training Distortion of Vector Quantizers

Tamás Linder, Member, IEEE

Abstract—The in-training-set performance of a vector quantizer as a
function of its training set size is investigated. For squared error distortion
and independent training data, worst case type upper bounds are derived
on the minimum training distortion achieved by an empirically optimal
quantizer. These bounds show that the training distortion can underesti-
mate the minimum distortion of a truly optimal quantizer by as much as
a constant times , where is the size of the training data. Earlier
results provide lower bounds of the same order.

Index Terms—Empirical design, training distortion, vector quantization,
worst case bounds.

I. INTRODUCTION

Vector quantizer design is usually based on a collection of example
vectors, called the training set or training data. In general, the objective
of a design algorithm (such as the popular generalized Lloyd algorithm
[1]) is to find an empirically optimal quantizer, that is, a quantizer of
a given codebook size whose distortion in quantizing the training data
is minimum. The underlying principle of empirical design is that good
performance inside the training set will imply good performance on
other data produced by the source if the training set size is sufficiently
large to represent well the source statistics. But training vectors may
be costly to obtain and the computational cost of design may become
prohibitive for large training sets. Therefore, it is of interest to quantify
how the performance of the designed vector quantizer improves as the
size of the training set increases.

Assume that the quantizer dimension and the codebook size are
fixed. For any quantizerQn trained onn vectors, letDn(Qn) denote
the training distortion ofQn (its average distortion inside the training
set) and letD(Qn) denote the test distortion ofQn (its distortion in
coding independent test data). Note that bothDn(Qn) andD(Qn) are
functions of the training set and therefore are random quantities. The
quantityD(Qn) is the “true” distortion of the designed quantizer; it is
the performance figure one wants to be as close as possible toD(Q�),
the distortion of a truly optimal quantizerQ�. A design procedure is
called consistent if the test distortionD(Qn) of the resulting quantizer
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Qn converges (in some sense) to its lower boundD(Q�) asn ! 1.
Of particular interest are the empirically optimal quantizersQ�

n

minimizing the training distortion:Dn(Q
�

n
) = minQ Dn(Qn). The

consistency of empirically optimal quantizers was first investigated
by Pollard [2], [3] for the case of mean-squared quantizer distortion.
His results show, among other things, that for a stationary and ergodic
training sequence, the test distortionD(Q�n) of an empirically optimal
quantizer converges toD(Q�) with probability one asn!1.

Pollard’s results imply that the performance of empirically optimal
quantizers will approach the optimum performance as the training
set size increases without bound. On the other hand, to determine
the training set size sufficient for achieving a preassigned level of
performance, one needs to study the dependence ofD(Q�n) on finiten.
Assume that the training set consists ofn independent sample vectors
drawn from the source distribution and letE[D(Q�n)] denote the
expected value (taken over the training sequence) of the mean-squared
test distortionD(Q�n). In [4] it was shown that for all source distribu-
tions supported by a given bounded region, the test distortion of the
empirically optimal quantizer satisfiesE[D(Q�n)]�D(Q�) � cn�1=2

for some positive constantc. This upper bound was shown to have
the right order in a minimax sense in [5], where it was demonstrated
that for any quantizer design method, there exist “bad” source
distributions for which the test distortion of the resulting quantizer
Qn is lower-bounded asE[D(Qn)]�D(Q�) � c1n

�1=2 for another
positive constant c1. The sample behavior ofD(Q�n) � D(Q�) for a
class of smooth source densities was studied by Chou [6], and upper
bounds onE[D(Q�n)]�D(Q�) for dependent (mixing) training data
were developed by Zeevi [7]. The dependence of the test distortion on
the training set size was also empirically investigated by Cosmanet
al. [8] and Cohnet al. [9] in the context of image coding.

In this correspondence, the focus of attention is the less studied
training distortionDn(Q

�

n). Since the value ofDn(Q
�

n) is obtained
as a by-product of the design procedure without requiring additional
test data, it can be considered an inexpensive estimate ofD(Q�n) or
D(Q�). For an empirically optimal quantizer minimizingDn(Qn),
one always has

E[Dn(Q
�

n)] � D(Q�) � E[D(Q�n)]:

The exact relationship between the training, test, and optimal distor-
tions is only known in the special case of quantizers with codebook
sizek = 1. In this case, it is easy to see that the single unique code-
point of the empirically optimal quantizer is the arithmetic average of
then training vectors, and therefore,

E[Dn(Q
�

n)] = D(Q�) 1�
1

n

and

E[D(Q�n)] = D(Q�) 1 +
1

n

for all source distributions with finite second moment.
The problem becomes nontrivial when quantizers with more than

one codepoint are considered, and in general little is known about the
size of the differenceD(Q�)�E[Dn(Q

�

n)]. In this respect, Abaya and
Wise [10] proved that under general conditions the expected training
distortion is a consistent estimate of the optimal distortion in the sense
thatD(Q�) � E[Dn(Q

�

n)] ! 0 asn ! 1. The size of the bias of
Dn(Q

�

n) in estimatingD(Q�) was first investigated in a recent work
by Kim and Bell [11] who showed that for squared error distortion

E[Dn(Q
�

n)] � D(Q�) 1�
1

n
(1)
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for any source distribution with a finite second moment. No matching
lower bounds or sharper upper bounds seem to be available in the lit-
erature.

In this correspondence, we apply techniques developed in [5] for
proving minimax bounds in quantizer design to show that in the worst
case, the differenceD(Q�) � E[Dn(Q

�
n
)] is proportional ton�1=2.

After introducing the necessary definitions in Section II, three results
concerning the mean-squared training distortion of an empirically op-
timal quantizer are given in Section III. Theorem 1 proves the existence
of “badly behaved” distributions on a bounded support set for which

E[Dn(Q
�
n)] � D(Q�)� cp

n
(2)

for a constantc > 0 which depends on the quantizer dimension, the
codebook size (which is assumed to be at least3), and the diameter
of the support set. Theorem 2 reformulates this bound in terms of the
training ratio� = n=k (wherek � 3 is the codebook size) by showing
that there exist source distributions for which

E[Dn(Q
�
n)] � D(Q�) 1� c0p

�
(3)

wherec0 > 0 is a universal constant. Theorem 3 presents an improved,
explicit form of an earlier result in [4] to show that the lower bound

E[Dn(Q
�
n)] � D(Q�)� ĉp

n

holds for aĉ > 0, uniformly for all sources supported on a given
bounded set. This shows that bound (2) is tight in the sense that only
the constants may be improved. The proofs of these results are given
in Section IV.

The bounds (2) and (3) immediately demonstrate that for larger
values ofn any bound in the form of (1) will be very loose for some
source distributions. On the other hand, note that (1) holds for all
source distributions while (2) and (3) are worst case bounds. Thus
our results do not exclude the possibility that then�1 term in (1) has
the right order for a restricted class of “smooth” source distributions.
Potential candidates are the source densities satisfying Pollard’s
central limit theorem [12] for empirical quantizer design.

II. PRELIMINARIES AND PROBLEM FORMULATION

A vector quantizerQ of dimensiond and codebook sizek is a (mea-
surable) mapping of thed-dimensional Euclidean spaced into a fi-
nite set of pointsfy1; � � � ; ykg. The pointsyi 2 d, i = 1; � � � ; k are
called thecodepointsor codevectorsand the collectionfy1; � � � ; ykg
is called the codebook.

For anyx 2 d, let kxk denote its Euclidean norm. Given ad-di-
mensional random vectorX with probability distribution�X and finite
second momentEkXk2 <1, the mean-squared distortion of a vector
quantizerQ is

D(Q) = E[kX �Q(X)k2] = kx�Q(x)k2�X (dx):

A vector quantizerQ with codebookfy1; � � � ; ykg is called anearest
neighborquantizer if for allx 2 d

kx�Q(x)k2 = min
1�i�k

kx� yik2:

For any source distribution, a nearest neighbor quantizer has minimum
distortion among all other quantizers with the same codebook. This
fact allows us to consider only nearest neighbor quantizers in this cor-
respondence without loss of generality.

For anyk � 1, let ~Qk be the family of alld-dimensional nearest
neighbor vector quantizers withk codevectors. A quantizerQ� 2 ~Qk

is called anoptimalk-point quantizer for�X if it has minimum distor-
tion

D(Q�) = min
Q2 ~Q

E kX �Q(X)k2 :

(An optimalQ� always exists ifEkXk2 <1, see, e.g., [3].)
Let X1; X2; � � � ; Xn be independent and identically distributed

(i.i.d.) d-dimensional random vectors drawn according to�X . The
collection fXigni=1 is called thetraining data or training set. The
average squared distortion of a vector quantizerQ on the training set is

Dn(Q) =
1

n

n

i=1

kXi �Q(Xi)k2:

LetQ�n denote anempirically optimalquantizer in~Qk, that is,Q�n is a
k-point quantizer which has minimum average squared distortion

Dn(Q
�
n) = min

Q2 ~Q

1

n

n

i=1

kXi �Q(Xi)k2

over the training set. The random quantityDn(Q
�
n) is called the

training distortion of the empirically optimal quantizer. Note that
the dependence ofQ�n andDn(Q

�
n) on the training datafXigni=1 is

suppressed in the notation.
Our goal is to compare the expected training distortion

E[Dn(Q
�
n)] = E min

Q2 ~Q

1

n

n

i=1

kXi �Q(Xi)k2

of an empirically optimal quantizerQ�n with the distortionD(Q�) of
an optimal quantizerQ�. Since

Dn(Q
�) � Dn(Q

�
n)

and

D(Q�) = E[Dn(Q
�)]

we always have

D(Q�) � E[Dn(Q
�
n)]:

Moreover, it is easy to see that strict inequality holds whenever
D(Q�) > 0. Let P denote the collection of all source distributions
which are supported by a given bounded set. Our results concern the
maximum deviation overP of the expected training distortion from
the optimal distortion, that is, the quantity

sup
� 2P

(D(Q�)� E[Dn(Q
�
n)]):

In order to be consistent with earlier work [13], [5] on worst case
bounds in vector quantization, we will formulate our results in terms
of classesP(B) containing all source distributions which satisfy the
peak power constraintPf(1=d)kXk2 � Bg = 1. In other words, for
anyB > 0, the classP(B) consists of all source distributions whose
support is contained in the ballfx : kxk � p

dBg.

III. RESULTS

Our first result shows that for training data of sizen, the difference
D(Q�)�E[Dn(Q

�
n)] of the minimum distortion of an optimal quan-

tizer and the expected training distortion of the empirically optimal
quantizer can be as large as constant timesn�1=2.
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Theorem 1: For any quantizer dimensiond � 1 and codebook size
k � 3 there exists a distribution�X 2 P(B) such that for all training
set sizen � 2

3
k

E[Dn(Q
�
n)] � D(Q�)� c(B; d; k)p

n
(4)

where

c(B; d; k) =
Bd k1�

283
:

In the next result the relative difference of the training and optimal
distortions is considered, in which case a very simple bound can be
obtained in terms of the training ratio� = n=k.

Theorem 2: For any quantizer dimensiond � 1 and codebook size
k � 3 there exists a distribution�X 2 P(B) such that for all training
set sizen � 2

3
k

E[Dn(Q
�
n)] � D(Q�) 1� c0p

�

wherec0 = 1
4

7
6
� 0:27:

Theorems 1 and 2 are proved by using a construction of “bad” distri-
butions introduced in [5]. This method uses discrete distributions sup-
ported by a finite number of points, although a modified construction
using distributions with smooth densities is possible at the expense of
complicating an already somewhat involved argument. An important
point is that in [5] the choice of these “bad” distributions depends on the
training set sizen. In our case, due apparently to the fact that we deal
with the training distortion instead of the test distortion, we are able
to construct one “bad” distribution which works for all large enough
n. Therefore, Theorem 1 guarantees the existence of at least onefixed
source distribution inP(B) such that

lim inf
n!1

p
n(D(Q�)�E[Dn(Q

�
n)]) > 0:

Next we examine in what sense (if any) the bound of Theorem 1
is tight. The constantc(B; d; k) is rather small and can probably be
improved. But the more fundamental question is whethern�1=2 can be
replaced with something larger. To answer this question in the negative,
we note that for all�X 2 P(B)

D(Q�)�E[Dn(Q
�
n)] � E sup

Q2Q
[D(Q)�Dn(Q)] (5)

whereQk denotes the family of allk-point nearest neighbor quantizers
with codepoints inside the spherefx : kxk �

p
dBg (see the proof

of Theorem 3). Any uniform upper bound on the expectation on the
right-hand side will result in a uniform lower bound onE[Dn(Q

�
n)].

The existence of such an upper bound of ordern�1=2 has been pointed
out in [4] (see [4, the discussion following Corollary 1]) although in
an asymptotic form and without explicit constants. Nevertheless, such
a bound implies that the bound of Theorem 1 is essentially tight.

The following theorem presents a new form of this lower bound
which is tighter than those given by existing results and has a more
attractive, nonasymptotic form.

Theorem 3: For any quantizer dimensiond � 1, codebook size
k � 1, training set sizen � 1, we have

E[Dn(Q
�
n)] � D(Q�)� ĉ(B; d; k)p

n

for all �X 2 P(B), whereĉ(B; d; k) = 96Bd3=2
p
k.

The result is based on a nonasymptotic upper bound on

Ef sup
Q2Q

[D(Q)�Dn(Q)]g:

At the core of the proof is a simple and elegant version of the classic
“metric entropy” bound [14], [15] of empirical process theory, recently
proved by Cesa-Bianchi and Lugosi [16], which allows us to provide
an explicit form of the constant̂c(B;d; k):

In summary, Theorems 1 and 3 show that for independent training
data of sizen, the maximum differenceD(Q�)� E[Dn(Q

�
n)] of the

distortion of an optimal quantizer and the expected training distortion
of the empirically optimal quantizer is of ordern�1=2. More formally,
these results imply that for allk � 3 and large enoughn

cp
n
� sup

� 2P(B)

(D(Q�)�E[Dn(Q
�
n)]) � ĉp

n

for some constantsc; ĉ > 0 depending ond, k, andB.

IV. PROOFS

Proof of Theorem 1:We simplify the notation by assuming that
B = 1 (that is,�X has to satisfyPfkXk2 � p

dg = 1). Since
we consider mean-squared distortion, for arbitraryB > 0 the result
follows by straightforward scaling.

To demonstrate the existence of a�X satisfying the bound of the the-
orem, we will use a modified form of a construction introduced in [5,
the proof of Theorem 1]. Just as in [5], the basic idea is to construct a
source distribution such that with constant positive probability, the em-
pirically optimal quantizer is sufficiently “far” from the optimal quan-
tizer. However, new techniques are needed to derive the desired bound
since we consider the training distortion (the empirically optimal quan-
tizer is a function of the data on which its distortion is evaluated), while
in [5] the test distortion was considered (the distortion is evaluated on
independent data).

Assume thatk � 3 is divisible by3 (we will relax this assumption
later) and letm = 2

3
k (note thatm is even). Let� > 0 be a constant

to be specified later and letz1; � � � ; zm bem points in d satisfying
kzi � zjk � 3� for all i 6= j. Let w denote thed-vectorw =
(�; 0; � � � ; 0). The proposed�X is the uniform distribution concen-
trated on the2m pointsfzi; zi + w; i = 1; � � � ; mg, that is,

�X(fzig) = �X(fzi + wg) = 1

2m
; 1 � i � m: (6)

The parameters of�X are� and the pointsz1; � � � ; zm. We assume
thatz1; � � � ; zm and� are such that�X 2 P(1), i.e.,

max
1�i�m

(kzik; kzi + wk) �
p
d:

Clearly, if� is small enough this is always possible; the specific choice
of�will be given later. A key feature of�X is that an optimal quantizer
Q� for �X with k = 3

2
m codepoints has a very simple structure.

Lemma 1: Let �X be defined by (6) and assume thatkzi � zjk �
3� for all i 6= j. Let S be any subset off1; � � � ; mg of cardinality
jSj = m=2. Then the quantizer which has one codepoint atzi +

1
2 w

for eachi 2 S and has codepoints at bothzi andzi + w for each
i 2 f1; � � � ; mg n S is an optimalk-point quantizer for�X .

The assertion of the lemma is intuitively clear; the proof is given in
[5, the Appendix]. Note that the optimal quantizer is not unique, and in
fact there are m

m=2
optimal quantizers for�X .

Let the training dataX1; X2; � � � ; Xn be drawn independently
from �X and letNi be the number of training data points falling in
the setfzi; zi + wg, i.e.,

Ni = jfj: Xj = zi orXj = zi + w; j = 1; � � � ; ngj:
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Let Q� have one codepoint atzi + 1

2
w for eachi � m=2 and two

codepoints atzi andzi + w for eachm=2 + 1 � i � m. ThenQ� is
an optimalk-point quantizer by Lemma 1, and its distortion is given in
terms of theNi by

D(Q�) =E
1

n

n

j=1

kXj �Q�(Xj)k2

=E
�2

4

1

n

m=2

i=1

Ni (7)

where the second equality holds becausekQ�(Xj) � Xjk2 = �2=4
if Xj takes value in m=2

i=1 fzi; zi + wg andkQ�(Xj) � Xjk2 = 0
otherwise.

We now define a training-set-dependent quantizerQn to ap-
proximate the empirically optimalk-point quantizer Q�n. Let
�(1); � � � ; �(m) be the permutation of1; � � � ; m obtained by
switching the positions of the indicesi andm=2 + i (i.e., letting
�(i) = m=2 + i and�(m=2 + i) = i) for eachi � m=2 such that
Ni > N +i. Furthermore, letQn be thek-point quantizer whose
codepoints arez�(i) +

1
2
w for i � m=2, andz�(i); z�(i) + w for

m=2 + 1 � i � m. Then we have

E[Dn(Qn)] =E
1

n

n

j=1

kXj �Qn(Xj)k2

=E
�2

4

1

n

m=2

i=1

N�(i) (8)

sincekQn(Xj) �Xjk2 = �2=4 if

Xj 2
m=2

i=1

fz�(i); z�(i) + wg

andkQn(Xj) � Xjk2 = 0 otherwise. Since the empirically optimal
quantizerQ�n minimizes the training distortion over allk-point quan-
tizers, we have

E[Dn(Qn)] � E[Dn(Q
�
n)]:

Therefore, using (7) and (8), we can lower-bound the difference
D(Q�)� E[Dn(Q

�
n)] as

D(Q�)�E[Dn(Q
�
n)] � �2

4

1

n
E

m=2

i=1

(Ni �N�(i)) : (9)

In the rest of the proof we will demonstrate that the expectation on
the right-hand side is of ordern�1=2. First note that for alli � m=2
we haveN�(i) = Ni if Ni � N +i, andN�(i) = N +i otherwise.
Therefore,Ni �N�(i) = (Ni �N +i)

+, wherex+ = max(x; 0).
Thus

E

m=2

i=1

(Ni �N�(i)) =E

m=2

i=1

(Ni �N +i)
+

=
m

2
E[(N1 �N +1)

+] (10)

since the pairs(Ni; N +i) have the same distribution. For eachj 2
f1; � � � ; ng define the random variableYj as follows:Yj = 1 if the
training vectorXj contributes toN1, Yj = �1 if the training vector
Xj contributes toN +1, andYj = 0 otherwise. Then

PfYj = 1g =PfYj = �1g = 1

m

and

PfYj = 0g =1� 2

m
:

Define

Sn =

n

j=1

Yj :

ThenSn = N1 � N +1 and sinceSn is distributed symmetrically
about zero

E[(N1 �N +1)
+] = 1

2 EjSnj: (11)

To lower-bound the last expectation we will use the following useful
inequality: for any random variableZ with finite fourth moment

EjZj � (E[Z2])3=2

(E[Z4])1=2
(12)

(see [17, p. 194] or [18, Lemma A.4]). Since theYj are independent
and identically distributed, and have zero mean, we have

E[S2n] = nE[Y 2
1 ] =

2n

m
:

On the other hand, expanding

S4n =

n

j=1

Yj

4

yields

E S4n =nE Y 4
1 + 3n(n� 1) E Y 2

1
2

=
2n

m
+ 3n(n� 1)

2

m

2

� 4
2n

m

2

where the inequality holds ifn � m. Hence (12) gives

EjSnj � 1p
2

n

m
:

Combine this with (11), (10), and (9) to obtain

D(Q�)� E[Dn(Q
�
n)] � �2

24
p
2

m

n
: (13)

To maximize this lower bound, we need to make� as large as possible
under the constraint�X 2 P(1). A simple packing argument shows
(see [5, Step 14, proof of Theorem 1]) that the choice

� =

p
d

4m1=d

is possible while maintaining the separation condition

kzi � zjk � 3�; i 6= j

and also satisfying

max
1�i�m

(kzik; kzi + wk) �
p
d:
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Substituting� =
p
d

4m
andm = 2

3
k in (13) we can conclude that

D(Q�)� E[Dn(Q
�
n)] � d

28
p
3

k1�

n
(14)

which proves the statement of the theorem for allk � 3 divisible by3
andn � 2

3 k.
The proof for the case whenk is not a multiple of3 involves a slightly

modified construction. In this case, we letm be the unique even posi-
tive integer satisfyingk = 3m=2 + p, wherep is either1 or 2. In the
definition of the modified�X the pointszi, zi +w are assigned prob-
ability 1

2(m+1)
, and we augment the support of�X by one additional

point with probability 1
(m+1)

(whenp = 1), or a pair of points, each
having probability 1

2(m+1)
(whenp = 2). Since we now havem + 1

pairs, we set

� =

p
d

4(m+ 1)1=d
:

The details of the derivation are omitted since these are almost identical
to the case whenk is divisible by3. Instead of (13), in this case we
obtain the slightly weaker bound

D(Q�)� E[Dn(Q
�
n)] � �2

24
p
2

mp
m+ 1

1p
n

� �2

24
p
2

2

3

m

n

� d

283

k1�

n
(15)

where the second inequality holds becausem � 2 and the third holds
becausem � 2

3 (k � 2) andk � 4.

Proof of Theorem 2:The construction in the proof of Theorem 1
is used again. Assume first thatk is divisible by3. Then by (7) we have

D(Q�) =
�2

8

sinceE(Ni) =
n
m

. Hence (13) can be rewritten as

E[Dn(Q
�
n)] �D(Q�)� �2

24
p
2

m

n

=D(Q�) 1� 1

2
p
2

m

n

=D(Q�) 1� 1

2
p
3

k

n
:

If k � 3 is not divisible by3, then�X is modified as in the last part
of the proof of Theorem 1. In this case, the distortion ofQ� is

D(Q�) =
�2

8

m

m+ 1

wherem is the unique even positive integer such thatk = 3m=2 + p,
wherep is either1 or 2. Then (15) implies

E[Dn(Q
�
n)] �D(Q�)� �2

24
p
2

mp
m+ 1

1p
n

=D(Q�) 1� 1

2
p
2

m+ 1

n

�D(Q�) 1� 1

4

7

6

k

n

where the second inequality holds sincem � 2
3 (k�2) andk�4.

Proof of Theorem 3:As in the proof of Theorem 1, we assume
that B = 1 and obtain the result for generalB by scaling. Since
X; X1; � � � ; Xn is an i.i.d. sequence andQ� is a k-point quantizer
with minimum distortion, we can write

D(Q�)�E[Dn(Q
�
n)]

� EfE[kX �Q�n(X)k2jX1; � � � ; Xn]�Dn(Q
�
n)g

� E sup
Q2Q

[D(Q)�Dn(Q)] (16)

whereQk denotes the family of allk-point nearest neighbor quantizers
with codepoints inside the sphereS(

p
d) = fx: kxk � p

dg. The
second inequality holds sincePfkXik �

p
dg = 1 for all i and there-

fore the codepoints ofQ�n are insideS(
p
d) with probability one.

For anyQ 2 Qk let the random variableT (Q)
n be defined by

T (Q)
n =

1

2

n

i=1

E kXi �Q(Xi)k2 � kXi �Q(Xi)k2

=
n

2
(D(Q)�Dn(Q))

so that by (16)

D(Q�)� E[Dn(Q
�
n)] � 2

n
E sup

Q2Q
T (Q)
n : (17)

We will use a standard but effective technique of empirical process
theory to upper-bound the expectation on the right-hand side.

First we recall some definitions. Let(S; �) be a totally bounded
metric space. For anyF � S and � > 0 the �-covering number
N�(F; �) of F is defined as the minimum number of closed balls with
radius� whose union coversF .

A family fTs : s 2 Sg of zero-mean random variables indexed by
the metric space(S; �) is calledsubgaussianin the metric� if for any
� > 0 ands; s0 2 S we have

E[e�(T �T )] � e� �(s; s )=2:

The family fTs : s 2 Sg is calledsample continuousif for any se-
quences1; s2; � � � 2 S such thatsj ! s 2 S we haveTs ! Ts with
probability one.

The following result gives an upper bound on the expected
supremum of the random variablesfTs : s 2 Sg in terms of the
covering number of the index space. It provides a version of a classical
result in empirical process theory (see, e.g., [15]) with an explicit
constant.

Lemma 2 ([16, Proposition 3]):If fTs : s 2 Sg is subgaussian and
sample continuous in the metric�, then

E sup
s2S

Ts � 12
diam(S)=2

0

ln N�(S; �) d�

wherediam(S) = sups; s 2S �(s; s0) is the diameter ofS.

To apply the above result we need to show that whenQk is equipped
with a suitable metric, the family of random variablesfT (Q)

n :Q2Qkg
is subgaussian and sample continuous. For anyQ; Q0 2 Qk define

�n(Q; Q
0) =

p
n sup
kxk �d

kx�Q(x)k2 � kx�Q0(x)k2 :

Clearly,�n is a metric onQk. Also, for anyQ; Q0 2 Qk we have

jT (Q)
n � T (Q )

n j � p
n �n(Q; Q

0) (18)

with probability one, which implies thatfT (Q)
n :Q 2 Qkg is sample

continuous. To show thatfT (Q)
n :Q 2 Qkg is subgaussian in�n,

we recall Hoeffding’s inequality [19] which states that ifY1; � � � ; Yn
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are independent zero-mean random variables such thata � Yi � b,
i = 1; � � � ; n with probability one, then for all� > 0

E e
� Y � e� n(b�a) =8:

For i = 1; � � � ; n let

Yi =
1

2
D(Q)� kXi �Q(Xi)k2

� 1

2
D(Q0)� kXi �Q0(Xi)k2 :

Then

T (Q)
n � T (Q )

n =

n

i=1

Yi

where theYi are independent, have zero mean, and

jYij � 1p
n
�n(Q; Q

0)

for all i. Hence Hoeffding’s inequality implies

E e
� T �T � e� � (Q;Q ) =2

proving thatfT (Q)
n : Q 2 Qkg is subgaussian in�n. Therefore, Lemma

2 gives

E sup
Q2Q

T (Q)
n � 12

diam(Q )=2

0

ln N� (Qk; �) d�: (19)

To evaluate the integral we need the following bound on the covering
number ofQk.

Lemma 3 ([5, Corollary 1]): For any0 < � � 4d andk � 1, the
covering number ofQk in the metric

�(Q; Q0) = sup
kxk �d

jkx�Q(x)k2 � kx�Q0(x)k2j

is bounded as

N�(Qk; �) � 16d

�

kd

:

Since�n(Q; Q0) =
p
n�(Q; Q0), the preceding lemma implies that

N� (Qk; �) � 16d
p
n

�

kd

for all 0 < � � p
n 4d. Moreover, since

sup
kxk �d

kx�Q(x)k2 � 4d

for all Q 2 Qk, we havediam(Qk) � p
n 4d. Therefore, (17) and

(18) imply

D(Q�)� E[Dn(Q
�
n)] � 24

n

p
n 2d

0

ln
16d

p
n

�

kd

d�

=
24
p
kd

n

p
n 2d

0

ln
16d

p
n

�
d�:

(20)

We can upper-bound the last integral as

p
n 2d

0

ln
16d

p
n

�
d� =16d

p
n

1=8

0

ln
1

x
dx

� 2d
p
n 8

1=8

0

ln
1

x
dx

=2d
p
n
p
ln 8 + 1

� 4d
p
n

where we first used the change of variablex = �=(16d
p
n) and then

applied Jensen’s inequality to the concave functionf(t) =
p
t. Com-

bining this bound with (20) proves Theorem 3.
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Transform Coding with Backward Adaptive Updates

Vivek K Goyal, Member, IEEE, Jun Zhuang, and
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Abstract—The Karhunen–Loève transform (KLT) is optimal for trans-
form coding of a Gaussian source. This is established for all scale-invariant
quantizers, generalizing previous results. A backward adaptive technique
for combating the data dependence of the KLT is proposed and analyzed.
When the adapted transform converges to a KLT, the scheme is universal
among transform coders. A variety of convergence results are proven.

Index Terms—Dithered quantization, lossy data compression, transform
coding, universal source coding.

I. INTRODUCTION

The essence of transform coding is to apply a linear transform to
a source vector and then apply scalar quantization, as opposed to ap-
plying scalar quantization directly to the source vector. Heuristically,
transform coding works because the transform can eliminate correla-
tion between components of the source vector, producing a vector of
transform coefficients more amenable to scalar quantization and en-
tropy coding. Transform codes are popular because they provide an
attractive compromise between computational complexity and perfor-
mance. In the parlance of vector quantization, the point-density and ob-
longitis losses of scalar quantization are eliminated or reduced, leaving
predominantly only a space-filling loss [1].

With a Gaussian source model, the optimal transform is a Karhunen-
Loève (KLT), an orthonormal transform that produces uncorrelated
transform coefficients. The optimality of the KLT is well known for
high rates [2] or when optimal fixed-rate quantizers are employed [3],
but holds more generally (see Appendix I). However, the KLT is rarely
used in practice for a variety of reasons. One prominent reason is that
the KLT is signal-dependent; the transform used in the encoder and de-
coder must be adjusted to correspond to the covariance of the source
in order to maintain optimality. A second reason is that since the KLT
has no special structure, it requires more operations to compute than
a harmonic transform such as a discrete cosine transform. For vectors
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of length ofN , the complexity difference is roughlyN2 compared to
N logN , which is not overwhelming for small values ofN:

This correspondence addresses only the first issue—the matching of
transform to source. Abackward adaptivemethod for transform adap-
tation is proposed and analyzed. In backward adaptation the encoder
and decoder adapt in unison based on the coded data without the ex-
plicit transmission of coder parameters. Backward adaptation is also
calledadaptation without side informationor on-line adaptation.

The use of backward adaptation for transform adaptation in trans-
form coding seems to be unprecedented, though backward adaptive
techniques have a long history. For example, adaptation of prediction
filters in speech coders is often backward adaptive [4], [5] and ADPCM
includes not only backward adaptation of filter taps but also of quan-
tizer scaling [6]. Similar to the quantizer scaling in ADPCM is the back-
ward adaptive context modeling and quantizer scaling of the EQ image
coder [7]. It is also possible to adapt a quantizer more generally without
side information [8].

The incompletely realized aim of our work is to show that backward
adaptation can result in a transform code that isuniversalfor Gaussian
sources. “Universal” is used here to mean that the performance ap-
proaches that of an idealtransform codedesigned witha priori knowl-
edge of the source distribution. The results along these lines are asymp-
totic in the data length, but the transform or block size is fixed. Empir-
ical evidence and partial analyses are provided. Such a code would be
an “on-line” alternative to the “universal codebook” approach to uni-
versal transform coding by Effros and Chou [9].1 Forward adaptive
techniques that are not necessarily universal are discussed, e.g., in [11].

The results of [9] were inspiring to this study because they indi-
cated superior performance of weighted universal transform coding
over weighted universal vector quantization for image compression
with reasonable vector dimensions. It was also shown that there are
sizable gains to be realized by varying the transform, a result that runs
counter to the conventional wisdom in image compression.

In the remainder of the correspondence, the aforementioned ideas
are made more precise. The sources and coding structures under con-
sideration are described in Section II. Unable to satisfactorily analyze
the original coding structure, we give several analyses based on simpli-
fying assumptions. The main results are stated in Section III and proven
in Appendix II. Section IV describes ways in which the encoding algo-
rithms can be modified to reduce computational complexity or to track
a varying source. Concluding comments appear in Section V.

II. PROPOSEDBACKWARD ADAPTIVE CODING STRUCTURE

Let fxngn2 be a sequence of independent and identically dis-
tributed (i.i.d.), zero-mean Gaussian random vectors of dimensionN

with covariance matrixRx = E[xxT ].2 If Rx is not diagonal, i.e., the
components ofx are correlated, one obtains better rate-distortion per-
formance with transform coding than with direct scalar quantization
and scalar entropy coding of the source vectors.

In transform coding, a square, invertible linear transformT is ap-
plied to each source vector to get a vector oftransform coefficients
yn = Txn: The transform coefficients undergo scalar quantization

1See the taxonomy of universal coding methods by Zhang and Wei [10] for
explanations of the quoted terms.

2Throughout the correspondence,R will be used to denote the (exact) co-
variance matrixE[vv ] of a random vectorv: R denotes an estimate ofR ob-
tained from a finite-length observation. Aside from this convention, subscripts
indicate the time index of a variable, except where two subscripts are given to
indicate the row and column indices of a matrix. A superscriptT indicates a
transpose.
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