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function of its training set size is investigated. For squared error distortion for some positive constant This upper bound was shown to have

and independent training data, worst case type upper bounds are derived the right order in a minimax sense in [5], where it was demonstrated
on the minimum training distortion achieved by an empirically optimal  that for any quantizer design method, there exist “bad” source

quantizer. These bounds show that the training distortion can underesti- djstributions for which the test distortion of the resulting quantizer

mate the minimum distortion of a truly optimal quantizer by as much as ; g 2 _ * Lo—1/2
a constant timesn ="/, where n is the size of the training data. Earlier @n IS lower-bounded a&[D(Qn )] D(.Q )2 cn for fmother
results provide lower bounds of the same order. positive constant,c The sample behavior d(Q;,) — D(Q™) for a

class of smooth source densities was studied by Chou [6], and upper
bounds onZ[D(Q;,)] — D(Q™) for dependent (mixing) training data
were developed by Zeevi [7]. The dependence of the test distortion on
the training set size was also empirically investigated by Cosetan

I. INTRODUCTION al. [8] and Cohret al.[9] in the context of image coding.

Vector quantizer design is usually based on a collection of exampleln this correspondence, the focus of attention is the less studied

vectors, called the training set or training data. In general, the objectf/@ining distortionD..(Q),,). Since the value oD, ((,,) is obtained

of a design algorithm (such as the popular generalized Lloyd algoritrﬁﬁ a by-prpduct of the d(_eS|gn procgdure Wlt_hout requiring additional
[1]) is to find an empirically optimal quantizer, that is, a quantizer oSt data, it can be considered an inexpensive estimat&(Qf, ) or

a given codebook size whose distortion in quantizing the training ddg4 @ )- For an empirically optimal quantizer minimizing., (Q.),

is minimum. The underlying principle of empirical design is that gooane always has

performance inside the training set will imply good performance on * *  ~x

other data produced by the source if the training set size is sufficiently ElDn(Qu] < D(Q7) < EID(@u)):

large to represent well the source statistics. But training vectors Mlje exact relationship between the training, test, and optimal distor-
be costly to obtain and the computational cost of design may becofhs is only known in the special case of quantizers with codebook
prohibitive for large training sets. Therefore, itis of interest to quantifyjze . = 1. In this case, it is easy to see that the single unique code-
how the performance of the designed vector quantizer improves as §afnt of the empirically optimal quantizer is the arithmetic average of

Index Terms—Empirical design, training distortion, vector quantization,
worst case bounds.

size of the training set increases. then training vectors, and therefore,

Assume that the quantizer dimension and the codebook size are
fixed. For any quantizef),, trained omn vectors, letD,, (Q,.) denote E[Dn(Q2)] = D(Q) <1 _ l)
the training distortion of),, (its average distortion inside the training e n

set) and letD(Q@,,) denote the test distortion @},, (its distortion in and
coding independent test data). Note that bBtH @,.) andD( Q.. ) are
functions of the training set and therefore are random quantities. The
quantityD(Q,.) is the “true” distortion of the designed quantizer; it is o o
the performance figure one wants to be as close as possibI&ds), for all source distributions with flqlte second moment. .
the distortion of a truly optimal quantizép*. A design procedure is The probl_em become_s nontrivial _when quar?tlze_rs with more than
called consistent if the test distortid(Q,, ) of the resulting quantizer one codepo_lnt are considered, and in genera_l little is known about the
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for any source distribution with a finite second moment. No matching For anyk > 1, let Q. be the family of alld-dimensional nearest
lower bounds or sharper upper bounds seem to be available in therliéighbor vector quantizers withcodevectors. A quantizép* € O,
erature. is called aroptimal k-point quantizer fog x if it has minimum distor-

In this correspondence, we apply techniques developed in [5] filon
proving minimax bounds in quantizer design to show that in the worst )
case, the differenc®(Q*) — E[D,.(Q%)] is proportional ton="'/2. D(Q") = min E [IX — QX)|1?]-
After introducing the necessary definitions in Section Il, three results Qe
concerning the mean-squared training distortion of an empirically ogxn optimal Q* always exists iff|| X ||? < oo, see, e.g., [3].)
timal quantizer are given in Section lll. Theorem 1 proves the existence et X, X, ---, X,, be independent and identically distributed
of “badly behaved” distributions on a bounded support set for whichj.i.d.) d-dimensional random vectors drawn accordingute. The

n

c collection { X;};=, is called thetraining data or training set. The

E[D,(Q)] < D(Q") — T (2) average squared distortion of a vector quantizen the training set is
for a constant: > 0 which depends on the quantizer dimension, the D.(Q) = 1 Z X = Q(X)|I%
codebook size (which is assumed to be at I83sand the diameter " n = ) '

of the support set. Theorem 2 reformulates this bound in terms of the
training ratio 3 = n/k (wherek > 3 is the codebook size) by showing Let ) denote arempirically optimalquantizer inQ;,, that is,Q is a

that there exist source distributions for which k-point quantizer which has minimum average squared distortion
(&) n
* * _ v « . 1 . 5
E[Dn(Qn)] < D(Q7) <1 \/E) 3) Dn(QF) = min = > IX = QX))
Cr Vo

wherec, > 0 is a universal constant. Theorem 3 presents an improved,

explicit form of an earlier result in [4] to show that the lower bound ©Ver the training set. The random quantify, (Q;,) is called the
training distortion of the empirically optimal quantizer. Note that

¢ the dependence @p;, and D,,(Q;,) on the training datd X, };=; is
vn suppressed in the notation.

) . Our goal is to compare the expected training distortion
holds for a¢ > 0, uniformly for all sources supported on a given

bounded set. This shows that bound (2) is tight in the sense that only . 1 & o
the constants may be improved. The proofs of these results are given ~ Z[Dn(@n)] = Eq min — > IX = QX))
in Section IV. @eer T

The bounds (2) and (3) immediately demonstrate that for larggf 5, empirically optimal quantize®> with the distortionD(Q*) of
values ofn. any bound in the form of (1) will be very loose for some, optimal quantize)*. Since
source distributions. On the other hand, note that (1) holds for all
source distributions while (2) and (3) are worst case bounds. Thus D.(Q%) > D.(QF)
our results do not exclude the possibility that #he' term in (1) has S
the right order for a restricted class of “smooth” source distributionf'%l.nd
Potential candidates are the source densities satisfying Pollard’s D(Q") = E[D(Q")]
central limit theorem [12] for empirical quantizer design.

we always have

[l. PRELIMINARIES AND PROBLEM FORMULATION * *
A vector quantizet) of dimensioni and codebook sizeis a (mea- o o _
surable) mapping of thé-dimensional Euclidean spa& into a fi- Moreover, it is easy to see that strict inequality holds whenever

nite set of pointy1, -+ -, yi }. The pointgy; € R%,i =1, ---, kare D(Q") > 0. Let P denote the collection of all source distributions
called thecodepointor codevectorand the collectiof{y1, - - -, ¥} which are supported by a given bounded set. Our results concern the
is called the codebook. maximum deviation ove of the expected training distortion from

For anyz € R?, let||z|| denote its Euclidean norm. Givendadi- the optimal distortion, that is, the quantity
mensional random vectdf with probability distribution x and finite . .
second momenE|| X ||* < oc, the mean-squared distortion of a vector SUGPP(D(Q ) = E[Dn(Qn)))-
quantizerQ is e
. In order to be consistent with earlier work [13], [5] on worst case
D(Q) = E[||X - Q(X)||2] — / |l — Q(l)”?,u (da). bounds in vector quantization, we will formulate our results in terms
R of classesP(B) containing all source distributions which satisfy the
peak power constraif®{(1/d)||X||* < B} = 1. In other words, for
any B > 0, the classP(B) consists of all source distributions whose
support is contained in the belk : ||| < VdB}.

A vector quantizer) with codebook{y:, -- -, y« } is called anearest
neighborquantizer if for allz € R?

lle = Q)I” = min |l — gill”.
I<isk . RESULTS
For any source distribution, a nearest neighbor quantizer has minimun®ur first result shows that for training data of sizethe difference
distortion among all other quantizers with the same codebook. THE Q") — E[D.(Q);,)] of the minimum distortion of an optimal quan-
fact allows us to consider only nearest neighbor quantizers in this ctizer and the expected training distortion of the empirically optimal
respondence without loss of generality. quantizer can be as large as constant time¥>.
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Theorem 1: For any quantizer dimensiah> 1 and codebook size  The result is based on a nonasymptotic upper bound on

k > 3 there exists a distributionx € P(B) such that for all training , .
setsizen > 2k E{Qseugk [D(Q) — Dn(Q)]}-

c(B, d, k)
I

At the core of the proof is a simple and elegant version of the classic
“metric entropy” bound [14], [15] of empirical process theory, recently
proved by Cesa-Bianchi and Lugosi [16], which allows us to provide
an explicit form of the constari{ B, d, k).

Bd\/ﬂ In summary, Theort_ams 1 a_nd 3 show that for independent training
3 data of sizen, the maximum differenc®(Q*) — E[D, (Q;,)] of the
distortion of an optimal quantizer and the expected training distortion

o - . of the empirically optimal quantizer is of order '/2. More formally,
In the next result the relative difference of the training and optim ese results imply that for all > 3 and large enough

distortions is considered, in which case a very simple bound can be
obtained in terms of the training ratib= n/k. ¢ < sup  (D(Q) — E[D.(QL)]) < c

< D E <
Theorem 2: For any quantizer dimensiah> 1 and codebook size Vi T uxerm) a
k > 3 there exists a distributionx € P(B) such that for all training for some constants ¢ > 0 depending or, k, andB.
set sizen > 2k

E[Dn(Qn)] < D(Q7) — (4)

where

o(B,d, k)=

IV. PROOFS

* * Co
E[D.(Q,)] < D(Q") <1 - W) Proof of Theorem 1:We simplify the notation by assuming that
B = 1 (that is,;x has to satisfyP{||X||> < Vd} = 1). Since
wherec, = * \/g ~ 0.27. we consider mean-squared distortion, for arbitr&ry> 0 the result

follows by straightforward scaling.

Theorems 1 and 2 are proved by using a construction of “bad” distri- To demonstrate the existence ¢f a satisfying the bound of the the-
butions introduced in [5]. This method uses discrete distributions sugrem, we will use a modified form of a construction introduced in [5,
ported by a finite number of points, although a modified constructiahe proof of Theorem 1]. Just as in [5], the basic idea is to construct a
using distributions with smooth densities is possible at the expenseselirce distribution such that with constant positive probability, the em-
complicating an already somewhat involved argument. An importapirically optimal quantizer is sufficiently “far” from the optimal quan-
pointis thatin [5] the choice of these “bad” distributions depends on tiiger. However, new techniques are needed to derive the desired bound
training set sizex. In our case, due apparently to the fact that we deaince we consider the training distortion (the empirically optimal quan-
with the training distortion instead of the test distortion, we are abiier is a function of the data on which its distortion is evaluated), while
to construct one “bad” distribution which works for all large enougin [5] the test distortion was considered (the distortion is evaluated on
n. Therefore, Theorem 1 guarantees the existence of at leafikede independent data).

source distribution irP(B) such that Assume that: > 3 is divisible by3 (we will relax this assumption
o . N later) and letn = 2 k (note thatm is even). LetA > 0 be a constant
h,?igif Vi(D(Q") = E[Dn(Q3)]) > 0. to be specified Iater andlet, -, z,, bem points inR? satisfying

L . llzi — ~J|| > 3A for all i 75 j. Let w denote thel-vectorw =
Next we examine in what sense (if any) the bound of Theorem( 0,---, 0). The proposeg x is the uniform distribution concen-

is tight. The constant(B, d, k) is rather small and can probably betrated on th@ oints pi=1, - that is,
improved. But the more fundamental question is whether'? can be P {20 2w d >
replaced with something larger. To answer this question in the negative, px(zh) = px ({z +wh) = L 1<i<m. (6)
we note that for alux € P(B) : 2m’ - -
The parameters gf x areA and the pointg;, ---, z,. We assume
D(Q") — E[D.(Qr)] < E{ sup [D(Q) — Dn(Q)]} (5) thatz, ---, z, andA are suchthatx € P(1),i.e
QEQy
: : : : max ([|zi]), [l + w)) < V.

where@,, denotes the family of ak-point nearest neighbor quantizers 1<i<m
with codepoints inside the sphefe : [|l+|| < vdB} (see the proof ciearly,ifA is small enough this is always possible; the specific choice
of Theorem 3). Any uniform upper bound on the expectation on thg A will be given later. A key feature of is thatan optimal quantizer

right-hand side will result in a uniform lower bound @{D..(Qn)l-  * for iy with k = 2 m codepoints has a very simple structure.
The existence of such an upper bound of ordel’? has been pointed

out in [4] (see [4, the discussion following Corollary 1]) although in Lemma 1: Let ux be defined by (6) and assume thjat — z;|| >
an asymptotic form and without explicit constants. Nevertheless, sugf} for all i # j. LetS be any subset ofl1, ---, m} of cardinality
a bound implies that the bound of Theorem 1 is essentially tight. S| = m/2. Then the quantizer which has one codepointaf 3 w

The following theorem presents a new form of this lower bount®r €achi € S and has codepoints at both and z; + w for each
which is tighter than those given by existing results and has a mdr& {1. ---, m} \ 5'is an optimali-point quantizer fog.x .

attractive, nonasymptotic form. The assertion of the lemma is intuitively clear; the proof is given in

Theorem 3: For any quantizer dimensiof > 1, codebook size [5: the Appendix]. Note that the optimal quantizer is not unique, and in

k > 1, training set size > 1, we have fact there arg, ") optimal quantizers fopx . _
Let the training dataX,, X, ---, X,, be drawn independently
B, d, k . N i ; N i
E[D.(Q5)] > D(Q") — ) from ux and letV; pe the number of training data points falling in
v the set{z;, z; + w},i.e.,

forall ux € P(B), whereé(B, d, k) = 96Bd*/* /. N=W{i: X;=znorX;=z+w,j=1,---,n}|
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Let Q™ have one codepoint at + ‘gu for eachi < m/2 and two
codepoints at; andz; + w for eachm /2 + 1 < i < m. ThenQ™ is

an optimalk-point quantizer by Lemma 1, and its distortion is given in

terms of theN; by

DQ) =E {1 > - Q*(Xj)llz}

AQ 1 m/2

4 n Z i

=1

E

()

where the second equality holds becall§d (X;) — X;||*> = A%/4
if X, takes value irU?;/f{% zi +w}and||Q*(X;) — X,|I* = 0
otherwise.

We now define a training-set-dependent quantizgr to ap-
proximate the empirically optimalk-point quantizer ). Let
(1), ---, o(m) be the permutation ofl, ---, m obtained by
switching the positions of the indicesand m/2 + i (i.e., letting
(i) = m/2+iando(m/2 + i) = i) for eachi < m/2 such that
Ni > Nzg,. Furthermore, let),. be thek-point quantizer whose
codepoints are, ;) + %w fori < m/2, andz,(;), z,(;) + w for
m/2 + 1 < i < m.Then we have

) 1 n o
E[D.(Q.) = E {; S x, - czn<xj>||‘}
j=1

AQ 1 m/2

4 n Z JVGU)

=1

—E )
since||Q.(X;) — X;||? = A%/4if

m/2

Xj € U Lzows 200 + w0l

=1

and||Q.(X;) — X;||* = 0 otherwise. Since the empirically optimal

quantizer;, minimizes the training distortion over dtkpoint quan-
tizers, we have

E[Dn(Qn)] 2 E[Dn(Q5)].
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and

PV, =0} =1 2,

m

Define

S, = i ij.
J=1

ThenS, = Ny — Nz, and sinceS,, is distributed symmetrically
about zero

E[(N\ = Nz 1)1 = § EIS.|. (11)

To lower-bound the last expectation we will use the following useful
inequality: for any random variablg with finite fourth moment

(7))

2 Gz

(12)
(see [17, p. 194] or [18, Lemma A.4]). Since the are independent
and identically distributed, and have zero mean, we have

E[SE] = nE[Y{] = n

m

On the other hand, expanding
n 4
J=1

FE [Si] =nkF [Yfl] +3n(n—1) (E [Yf])
= %1 4+ 3n(n—1) <£)

m
5, 2
(%)
m

where the inequality holds i#f > m. Hence (12) gives

yields

2

Therefore, using (7) and (8), we can lower-bound the difference

D(Q") — E[Dn(Q)] as
m/2

E Z(—Ni — No@y)

i=1

A1

DIQ") - ED.(Q)] 2 5 * ©

In the rest of the proof we will demonstrate that the expectation on

the right-hand side is of order—'/2. First note that for ali < m /2
we haveN, ;) = N; if Ni < Nz, andN,(;) = Nz, otherwise.
Therefore N; — N,(;) = (Ni — N%H)Jr, wherez™ = max(z, 0).
Thus

m/2

ESS (Ni= Noyy)) ¢ =

=1

m/2

B> (Ni—=Ngy)*
i=1

m .

=5 Bl(N = Ny )] (10)
since the pair¢N;, N= ;) have the same distribution. For eack

{1, ---, n} define the random variablg; as follows:Y; = 1 if the

training vectorX; contributes taV,, Y; = —1 if the training vector

X; contributes to\*%Jr] , andY; = 0 otherwise. Then

T

m

P{Y; =1} =P{Y;

1 n
E|\Sn| > — 4/ —.
| |_ \/5 m

Combine this with (11), (10), and (9) to obtain

* X A? m
DIQ") = EIDA@))] > 5o [

To maximize this lower bound, we need to makes large as possible
under the constraini x € P(1). A simple packing argument shows
(see [5, Step 14, proof of Theorem 1]) that the choice

Vd

= Am/d

(13)

is possible while maintaining the separation condition
llzi — zill 234, i#j

and also satisfying

Nz 4wl < V.

max (
1<i<m

.
~1
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SubstitutingA = m% andm = % k in (13) we can conclude that Proof of Theorem 3:As in the proof of Theorem 1, we assume
that B = 1 and obtain the result for generd by scaling. Since
d k‘—é X, X1, -+, X,, is an i.i.d. sequence ang” is a k-point quantizer
D(Q") = E[Dn(Qp)] 2 SV (14)  with minimum distortion, we can write
which proves the statement of the theorem fokalt 3 divisible by 3 D(Q") — E[Dn(Q3)]
andn > 3 k. < E{E[IX — Qu(X)|P|1X1, -+, Xa] = Da(@n)}
The proofforthe case whéris not a multiple o8 involves a slightly
modified construction. In this case, we tetbe the unique even posi- <E {@Seug [D(Q) - Dn(Q)]} (16)
Sk

tive integer satisfyindg: = 3m/2 + p, wherep is eitherl or 2. In the
definition of the modified: x the pointsz;, z; + w are assigned prob- whereQ;, denotes the family of alt-point nearest neighbor quantizers
ability 5.+, and we augment the support,of by one additional Wwith codepoints inside the sphefév/d) = {a: ||| < Vd}. The
point with probablllty( > (whenp = 1), or a pair of points, each Second inequality holds sind#{||.X:|| < Vd} = 1foralli and there-

m41 . * . . . ™
having probability=——— (whenp = 2). Since we now have: + 1 fore the codepoints a;; are insideS(+/d) with probability one.
. 2(7n+1) . (Q) "
pairs, we set For any@ € Qx let the random variabl&,, " be defined by
1 = - 2 2
Ao VI T8 =5 3 (B (1N - QX0IP] - I1X: - QX))
4(m + 1)1/ i=1
n
The details of the derivation are omitted since these are almost identical =3 (D(Q) = Da(Q))

to the case wheh is divisible by 3. Instead of (13), in this case we

obtain the slightly weaker bound so that by (16)
. N 2
2 m 1 D@ - B £ 2B { sy TOL. )
n QEQ,

D(Q") — E[Dn(Q7)] 2

We will use a standard but effective technique of empirical process
theory to upper-bound the expectation on the right-hand side.
First we recall some definitions. L&, p) be a totally bounded
Al—— metric space. For any’ C S ande > 0 the e-covering number
= 283 (19) N,(F, ¢) of F is defined as the minimum number of closed balls with
radiuse whose union coverg’.
A family {T,:s € S} of zero-mean random variables indexed by
the metric spacesS, p) is calledsubgaussiaim the metricp if for any
Proof of Theorem 2:The construction in the proof of Theorem 1A > 0 ands, s’ € S we have
is used again. Assume first thiats divisible by3. Then by (7) we have

where the second inequality holds because 2 and the third holds
becausen > Z (k — 2) andk > 4. O

BNTemT] g Mol 2,

AQ
D(Q") = The family {T.:s € S} is calledsample continuou# for any se-
) guencess, s2, --- € Ssuchthas; — s € S we havel;, — T, with
sinceE(N;) = =. Hence (13) can be rewritten as probability one.
A2 p The following result gives an upper bound on the expected
E[D,(Q;)] <D(Q") — " R supremum of the random variabléd;:s € S} in terms of the
24v2 covering number of the index space. It provides a version of a classical
= D(Q") <1 _ ﬂ) result in empirical process theory (see, e.g., [15]) with an explicit
2v2 constant.
=D(Q")[1- 1 E ) Lemma 2 ([16, Proposition 3]):If {7 : s € S} is subgaussian and
23 sample continuous in the metric then
If £ > 3is not divisible by3, thenu x is modified as in the last part diam(5)/2 _ 7
of the proof of Theorem 1. In this case, the distortiorf)dfis E “6113 T.p <12 /O VIn N, (S, €) de
D(Q) = i m wherediam(S) = sup, ,/c5 p(s, s') is the diameter of.
8 m+1

) ) o To apply the above result we need to show that w@eris equipped
wherem is the unique even positive integer such that 3m /2 +p,  yith a suitable metric, the family of random variablg?:Q € Q. }

wherep is eitherl or 2. Then (15) implies is subgaussian and sample continuous. For@n®' € Q;. define
A? m ’ 2 ' 2
D,.(Q)] <D pa(@Q, Q) =Vn sup |llz = Q(o)[]” = [lo = Q"(2)|I7].
EIDL(Q3] S DIQ) = 51 < oo |
_ x 1 m+1 Clearly, p,, is a metric onQy. Also, for anyQ, Q' € Q. we have
=D(@Q") |1 53
LT T4 = %7 < Vi pa(Q. Q) (18)
* {
D@ <1 T4 \/g \ ;) with probability one, which implies thatZ’ (i : Q € Qy} is sample

continuous. To show tha{tT(Q) Q € Qk} is subgaussmn imn,
where the second inequality holds sinae> § (k—2)andk>4. O we recall Hoeffding’s inequality [19] which states thabif, - - -, Y.,
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are independent zero-mean random variables suchithaty; < b,
i =1, .-+, n with probability one, then for alh > 0

B |:8)\ 2?:1 &;-] < e)\zvz(b—a)z/S.

Fori =1, ---, nlet
Y= (D@ - IIX: - QX))
2 (D(Q) ~ II5 — QX))
Then

T,EQ) _ Tr(y,Q,) — Z Y;

=1
where theY; are independent, have zero mean, and
1
v

for all <. Hence Hoeffding’s inequality implies

NCEHEEE)
(&

|y’l| < PH(Q~ Q/)

E < esz)n(Qte)Qﬂ

proving that{TﬁQ): @ € 9} issubgaussianin,. Therefore, Lemma

2 gives

~diam(Qy)/2
E{ sup T,EQ)} <12 / In N, (Qk. €)de. (19)
QREQ 0

To evaluate the integral we need the following bound on the covering

number of Q.

Lemma 3 ([5, Corollary 1]): For any0 < ¢ < 4d andk > 1, the
covering number 0B, in the metric

p(Q. Q)= sup |lle = Q@)|I* = llz — Q"(2)I|

lll|2<d

is bounded as

164\ *?
soanas (1)

Sincep, (Q, Q') = /np(Q, Q'), the preceding lemma implies that

kd
N, (Qx. €) < <16(IV\/n, )
€

forall0 < ¢ < /n 4d. Moreover, since

sup e — Q)] < 4d
[|z]|2<d

forall Q € 9k, we havediam(Qy) < +/n4d. Therefore, (17) and

(18) imply

/1 2d - kd
D@ - @< 2 [T i () e
- Jo
.\/ﬁg
= 24m / ‘ In <716d\/H ) de.
n o V €

(20)
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We can upper-bound the last integral as

/1 2d 1/8
/ In <M> de =16d/n / In <l> dx
o \/ € o \/ x
-1/8 1
< 2d+/n 8/ In <—> dx
o x

=2dy/nVIn 8 +1
< dd+/n

where we first used the change of variable= ¢/(16d./n) and then
applied Jensen’s inequality to the concave functi¢h = /. Com-
bining this bound with (20) proves Theorem 3. O
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This correspondence addresses only the first issue—the matching of
transform to source. Aackward adaptivenethod for transform adap-
tation is proposed and analyzed. In backward adaptation the encoder
and decoder adapt in unison based on the coded data without the ex-
plicit transmission of coder parameters. Backward adaptation is also

Transform Coding with Backward Adaptive Updates calledadaptation without side informatioor on-line adaptation
The use of backward adaptation for transform adaptation in trans-
form coding seems to be unprecedented, though backward adaptive
techniques have a long history. For example, adaptation of prediction
filters in speech coders is often backward adaptive [4], [5] and ADPCM
Abstract—The Karhunen—Loéve transform (KLT) is optimal for trans- i.ncludes .not only.bgckward adapta.tion of ﬁ,lter, taps but a!so of quan-
form coding of a Gaussian source. This is established for all scale-invariant tizer scaling [6]. Similar to the quantizer scaling in ADPCM is the back-
quantizers, generalizing previous results. A backward adaptive technique ward adaptive context modeling and quantizer scaling of the EQ image
for combating the data dependence of the KLT is proposed and analyzed. coder [7]. Itis also possible to adapt a quantizer more generally without
When the adapted transform converges to a KLT, the scheme is universal side information [8].
among transform coders. A variety of convergence results are proven. The incompletely realized aim of our work is to show that backward
Index Terms—Dbithered quantization, lossy data compression, transform - adaptation can result in a transform code thaiszersalfor Gaussian
coding, universal source coding. sources. “Universal” is used here to mean that the performance ap-
proaches that of an ideshnsform codelesigned witta priori knowl-
I. INTRODUCTION edge of the source distribution. The results along these lines are asymp-
totic in the data length, but the transform or block size is fixed. Empir-
The essence of transform coding is to apply a linear transform ity evidence and partial analyses are provided. Such a code would be
a source vector and then apply scalar quantization, as opposed togp«on-line” alternative to the “universal codebook” approach to uni-
plying scalar quantization directly to the source vector. Heuristicallyersa| transform coding by Effros and Chou [9Forward adaptive
transform coding works because the transform can eliminate corrglgehniques that are not necessarily universal are discussed, e.g., in [11].
tion between components of the source vector, producing a vector ofrhe results of [9] were inspiring to this study because they indi-
transform coefficients more amenable to scalar quantization and @Bieq superior performance of weighted universal transform coding
tropy coding. Transform codes are popular because they provide R weighted universal vector quantization for image compression
attractive compromise between computational complexity and perfQiiih reasonable vector dimensions. It was also shown that there are
mance. In the parlance of vector quantization, the point-density and @-aple gains to be realized by varying the transform, a result that runs
longitis losses of scalar quantization are eliminated or reduced, leaviinter to the conventional wisdom in image compression.
predominantly only a space-filling loss [1]. ) In the remainder of the correspondence, the aforementioned ideas
With a Gaussian source model, the optimal transform is a Karhunefys made more precise. The sources and coding structures under con-
Loéve (KLT), an orthonormal transform that produces uncorrelateffieration are described in Section II. Unable to satisfactorily analyze
transform coefficients. The optimality of the KLT is well known forine griginal coding structure, we give several analyses based on simpli-
high rates [2] or when optimal fixed-rate quantizers are employed [§}ing assumptions. The main results are stated in Section Il and proven
but holds more generally (see Appendix I). However, the KLT is rare{y aAppendix I1. Section IV describes ways in which the encoding algo-
used in practice for a variety of reasons. One prominent reason is thafms can be modified to reduce computational complexity or to track

the KLT is signal-dependent; the transform used in the encoder and QQ/'arying source. Concluding comments appear in Section V.
coder must be adjusted to correspond to the covariance of the source

in order to maintain optimality. A second reason is that since the KLT

has no special structure, it requires more operations to compute than

a harmonic transform such as a discrete cosine transform. For vectorset {=,, },cz+ be a sequence of independent and identically dis-
tributed (i.i.d.), zero-mean Gaussian random vectors of dimension
with covariance matrix?, = E[awT].Z If R, is notdiagonal, i.e., the
components of are correlated, one obtains better rate-distortion per-

a"g"?‘r:‘_i!zgigt rf?IC:i\F/leedf'rAsFt)glr\fios’eizgr\%; ;e;/ri%erg D:r(;emtbhetrhzla' Ulr?92-rsT_thizf"g’afllSrmance with transform coding than with direct scalar quantization

W nit whni 1 u W Wi v Ity - .

ifornia, Berkeley. The material in this correspondence was presented in pariigfj scalar entropy ,COdmg of the s.ource. VeCt.Ot‘S. .

the IEEE International Conference on Image Processing, Lausanne, Switzeﬂ-n transform coding, a square, invertible linear transfc'ﬂ’rl§ ap-

land, September 16-19, 1996 and at the IEEE Data Compression Confereptied to each source vector to get a vectortraihsform coefficients

Snowbird, UT, March 25-27, 1997. o yn = Tu,. The transform coefficients undergo scalar quantization
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