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Lagrangian Empirical Design of Variable-Rate Vector (the generalized nearest neighbor condition) which proves essential in

Quantizers: Consistency and Convergence Rates our development. The Lagrangian formulation allows us to adapt tech-
nigues from the theory of empirical processes and statistical learning
Tamas LinderSenior Member, IEEE that have previously been used to analyze empirical fixed-rate quan-

tizer design.

. . ) . This correspondence is organized as follows. In Section Il, the basic
Abstract—The Lagrangian formulation of variable-rate vector quantiza- . . o ] .
tion is known to yield useful necessary conditions for quantizer optimality deflr'll.tlons of variable-rate Qua”t'zf’ﬂt'on are lntroduced in both the
and generalized Lloyd algorithms for quantizer design. In this correspon-  traditional and the Lagrangian settings. In Section Ill, we prove the
dence, the Lagrangian formulation is demonstrated to provide a conve- consistency of Lagrangian design for stationary and ergodic training
nient framework for analyzing the empirical design of variable-rate vector  4ata for sources with finite second moment. In Section IV, the finite

quantizers. In particular, the consistency of empirical design based on min- . . . .
imizing the Lagrangian performance over a stationary and ergodic training sample performance is studied for independent training data drawn

sequence is shown for sources with finite second moment. The finite sample from a source with bounded support. After establishing a key property
performance is also studied for independent training data and sources with of optimal quantizers for sources with bounded support, we show that

bounded support. the (Lagrangian) distortion of the empirically optimal variable-rate
Index Terms—Consistency, convergence rates, empirical design, La- vector quantizer converges to that of the truly optimal variable-rate
grangian performance, variable-rate quantization. vector quantizer at a rate(n—'/?), wheren is the size of the training

data. This result matches the convergence rate results developed for
fixed-rate empirical design [2], [3].

In variable-rate quantization, one can alternatively define the rate

In empirical quantizer design we are presented with a finite sam@e a quantizer by the entropy of the quantizer output [10], [12]. Al-
of vector-valued data generated by an unknown source, and the goahisugh our rate definition uses the average code length, the difference
to construct a vector quantizer of given dimension and rate yielding bésttween the two approaches is not significant, and the entropy-con-
performance on future data generated by the same source. In this sestggined counterparts of our results are easily seen to hold. Section V
empirical design is a process of learning from examples where the @ilscusses the connection with entropy-constrained quantization.
fectiveness of learning is measured by applying the designed quantizer
to future data. Il. PRELIMINARIES

In fixed-rate quantization, where the rate of the quantizer is deter- ) . . ) )
mined by the number of its codevectors, empirical design has beeclf‘ variable-rate vector quantizey is described by alencosiera».
studied in detail. Pollard [1] showed that the design based on mifi- = £ where/I. 1S acountablf index set,@c:)deni. T — R, and
mizing the empirical quantization error over a stationary and ergodi@ index codery: 7 — {0, 1}, where{0, 1}" denotes the collec-
training sequence is consistent, i.e., the distortion of the designed qutéﬁ’ﬂ of all flnlte-ler_wgth l_)lnary strlpgsw is assum_ed to be a prefix-free
tizer converges to the optimum distortion as the length of the sequef¥ary code. IfZ is finite "r‘"th N el?ments, without loss of gener-
increases without bound. In practice, one has only a finite amount@Jy We always take = {1, ..., N} otherwise 7 is takerl to be
training data, so itis of interest to quantify how quantizer performand@e set of all positive integers. Thugmaps any poin: € R® into
improves as the size of the training data increases. The finite samPit¢ Of Fhe codevectors in th? c'odebobk’(z), i € I}, viathe rule
performance (rate of convergence) for empirically optimal quantize#§?) = fg(o"(l’)/)' Letting5; = {«: a(z) = i} denote the quantization
trained on independent data was studied in [2], and the convergeREUS andy: = /3(7) the codepoints of for i € Z, we have
rate derived there was shown to be optimal in the minimax sense in [3].
Further results on empirical design of fixed-rate quantizers and related
statistical clustering problems are given in [4]-[8]. We assume that thedimensional random vectdf with distributionu

Our goal is to study the empirical design of variable-rate quantizetas finite second momeHi| X ||? < oo, and define the mean-squared
where the quantizer rate is measured by the average length of a vaigtortion ofg in the usual way
able-length lossless code used to encode the quantizer output. To avoid A ) -
some of the considerable difficulties inherent in the traditional formula- D(p, ) = E(IX — (X))l
tion of optlmgllty for varlgble-rate guantization (see, e.g., [9]), we usv%here” .|| denotes the Euclidean norm 8.
the Lagrangian formulation of Chaet al. [10]. The Lagrangian for- L : . .

. . . . . Thelength function: 7 — {0, 1, 2, ...} associates with each
mulation matches the generalized Lloyd algorithm [10] that is used in . . s ;
. . i - . mdgx:, the length of the corresponding codeward:), i.e., (i) =

practice to design variable-rate quantizers, and it has recently been yse . . T )

. . \ . ength+'(7)). The rate of the variable-rate quantizes defined as the
to rigorously prove and generalize Zador’s classic result for the asymp-

. " . . : pected codeword length
totic behavior of optimal entropy-constrained quantizers [11]. Moré
importantly, the Lagrangian formulation yields an optimality condition (i, q) a Et(a(X)) = Z ((HP{g(X) = .}

|. INTRODUCTION

q(z) = yi, ifand only if x € .S;.
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However, the traditional formulation of quantizer optimality for varidi.e.,

able-rate quantizers is hard to handle. For example, the cells of an op- 1 &

timal quantizer achieving, (1) can have a complex structure [9], as ¢, 2 arg min — Z 1X5 — Bla(Xi)|]® + M(a(X4)).
opposed to the fixed-rate case [14]. Therefore, we use the Lagrangian a=(e,8,0 " 5

formulation of optimal distortion-rate tradeoff for variable-rate quantiye will always assume (as we may by Theorem 1) that the enedder
zation that was first introduced by Cheutial. [10]. For a variable-rate of 47 is a generalized nearest neighbor encoder.

quantizery = («, 3, (), and forA > 0, define theLagrangian distor-  The performance of an empirically optimal variable-rate quantizer
tion by an, = (a0, Br, €) is measured by its Lagrangian test distortion, given
by

Ax(ps V=D (e )+ A (. ) =E{IX = q(O)[” + M(a(X))} R ,
A, 43) 2E[IX = Br(an GO + MG (an (X)) X7] -

and the optimal Lagrangian performance by ) ) ) ] ] ]
The quantityA,(u, ¢,;) is the Lagrangian distortion af;, in quan-

AX(p) 2 inf Ax(p, q) tizing independent (future) test data, (u, ¢;,) is a random variable
4 sinceg;, depends on the training sequed¢g, and it is easy to see that
where the infimum is taken over all variable-rate quantizers. E A1, q5) > AX(p).

Unlike the traditional formulation, the Lagrangian formulation The following theorem shows that the design-based empirical La-
yields Lloyd optimality conditions for variable-rate vector quantizergrangian distortion minimization is consistent in the sense that-as
[10]. Namely, in the Lagrangian formulation, a necessary conditior, Ax(y, ;) converges to the optimal Lagrangian distortid( 1)
for optimality is that each of the three components of the quantiztar almost every realization of the stationary and ergodic training se-
be optimal for the other two. In particular, for a given decodeand quence.

length functior¢, for 1« almost allz an optimal encoder must satisfy Theorem 2 (ONSISTENCY O AGRANGIANEMPIRICAL DESIGN:  For

a(x) = argmin (||lo — B + (1)) (1) anyA > 0,the sequence of empirically optimal variable-rate quantizers
i€z ¢n,n =1, 2, ..., minimizing the empirical Lagrangian distortion sat-

(ties are broken arbitrarily). Since satisfies Kraft's inequality, the iSfies
above minimum is easily seen to be achieved by some ind=ien Hm A ) = AT
if 7 is not finite. An« satisfying (1) for all: € R? is called ageneral- it M gn) = B3 (p) - as.
ized nearest neighbor encoder
We also need the following auxiliary result from [15] showing the Pollard’s consistency theorem [1] is based on bounding quantizer
existence of quantizers that minimize the Lagrangian distoftion.  performance using the so-calléd Wasserstein distang€ ., v) be-

e . . . d . . .
Theorem 1 [15]: For any: with finite second moment anél > 0 tween two probgblllty dI.StrIbu.tIOFI,B andv on R* with finite second
moment. This distance is defined by

there is a variable-rate quantizgrwith a generalized nearest neighbor
/ < 2
encoder such that o, v) 2 XN;IJI.lfyw (E|X - YHz)L/

Ax(p, gx) = AX(p). where the infimum is taken over all joint distributions of two random
vectorsX andY such thatX has distribution:, andY” has distribution

v (denoted byX ~ p andY ~ v, respectively). It is known that the
infimum definingp(p, v) isaminimum, and that(u, ») is ametric on
the space of probability distributions & with finite second moment

gsfee, e.g., [16]).

It is well known that for a given rat®, 6% () is achievable by a
quantizerg minimizing Ax (x, ) for someA > 0 if and only if 6% ()
(as a function ofR) coincides with its convex hull7; () at this rate.

Thus, Lagrangian optimization can be used to find the convex hul Our proof uses Pollard’s technique, but we need to find a modified

Sr(j1). For values offt such thab (y) is strictly less thardl (x), version ofp(u, v) suitable for variable-rate quantization.

optimal variable-rate quantizers cannot be obtained by the I‘a‘grang"flrll_et D denote the set of all discrete distributions f with finite

tions since any rate and distortion paR, §%(x)) on the convex hull concentrated on a finite or countably infinite det; i € 7,} C R,

can be achieved by “time sharing” between two quantizers that achieve e
. . . and satisfies
the convex hull, i.e., two quantizers that can be obtained by Lagrangian

minimization. Z i |)?v(z:) < oo, - Z v(z;)log, v(x;) < oco.
el €1,
IIl. CONSISTENCY OFLAGRANGIAN EMPIRICAL DESIGN For anyv € D, let L,, denote the minimum expected code length over

We are interested in the performance of quantizers designed usin%jné"ldmlssmle code-length functiodisl, — {0, 1, ...}

finite training sequence. LeX; = X, ..., X, be a stationary and L, = min E i)v(a;). )
. d . . . . i
ergodic sequence dt“-valued random vectors with marginal distri- €T,

bution . We assume thak';’ and.X" are independent. Let,, denote  nqye that a minimizing admissiblealways exists [17], and thdt, <
the empirical distribution ofX[', i.e., u,, places weight /n at each o by the Shannon—Fano bound [13].

poithk, k=1, s Fix A > 0 and defi_nt_a a_rempirically o_p_timal For > 0, x with finite second moment, and€ D define
variable-rate quantizer; to be one that minimizes the empirical La- N ‘ L
grangian distortion palps v) = (p(p, v)> +AL) .
Ax(pin, qi) =1inf Ax(pin. q) = A (1n) To interpretp, (yt, v), supposeX ~ u andY ~ v achievep(y, v),
q

and let?, be an admissible code length achievibg. ThenY can be

IMore precisely, the result in [15] is for entropy-constrained quantizers, bitewed as the output of a variable-rate “random quantizer” that, to each
a slight modification of the proof yields Theorem 1. x, assigns the reproduction vectarand a binary codeword of length
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£, (i) with probabilityP{Y = x;|X = x}. The quantityp, (u, v)* is < inf pa(p, v) — pa(p', v') +e
the Lagrangian distortion of this random quantizer. vep

In this interpretation, the next lemma states that deterministic quan- <oalp, v —pa(p, ') + e
tizers always outperform random quantizers in the Lagrangian sense. 172

= (p(n, v+ /\L,,/)l/2 — (p(p'. v+ AL )" e

< lplps v = p(is V) € < plps 1) + €

where the third inequality holds because

Lemma 1:
AX(n) = it palp. v)*.

Proof: Suppose; = (a, 8, () is a variable-rate quantizer such (a + ¢)'/? — (b + ¢)'/? < a'/? —=p'/%, foralla >b>0,c¢>0
that A\ (p, q¢) < oo. Let v, denote the distribution of the discrete . . .
random variable;(X) and note thav, € D. SinceX ~ u and bythg concayﬂy ofthe square root, aqd thg Iastlnequalltyfol!ows from
¢(X) ~ v, the trlaqgle'}neqlugllty smc;? I1S ? metric. Sllnce > 0 was arbitrary,
. ) we obtainA (1) =A% (u)* < plp, ). m
A ) =EIIX = g(OI + AB(a(X) Proof of Theorem 2:Recall thaty,, is the empirical distribution
> p(p, uq)2 + AL, = palp, uq)2 of the firstn samples of a stationary and ergodic sequence with mar-
and hence _gina_l distribution. It is not hard to show (see, e.g., [1]) that ergodicity
implies
AX(p) = inf Ax(p, @) > inf pa(p, v)*.
a vep lim p(p, pn) =0 a.s. 3
To show the reverse inequality, assufie~ u andY ~ v achieve e
p(u, v),wherev € D is concentrated on a countable set of points  To make use of this fact, we write

i € 7, }. Define the variable-rate quantizewith index setZ,, to have

decodelﬁ(i) = y;,i € T,,, code lengthf,, such that AA(/M q:) - Af\(//,) = A/\(.U’a QZ) - Ai(l‘n) + Af\(//,n) - Af\(l’f)-
: 4
Lo= ) 6(iv(v) | | |
€T, Applying Lemma 2 withy' = p,, gives
and encodet that is optimized for3 and/(,, i.e., Ai(u)l/z _ Aﬁ(,un)l/z < p(i, pin)
Pk j— n 3 r — - 2 f 7
alr) = aligelzlzm (Il = will” + M (8)). and hence (3) implies that the second difference on the right-hand side
Then of (4) converges to zero almost surely (a.s.).
To bound the first difference on the right-hand side of (4), recall that
Ax(p, ¢) = Emin (|| X - vill> + AL(D)). by assump_tion, the encodergf = (a;,, 55, g,*;) uses the generalized
€Ly nearest neighbor rule. Thus, for anyy € R
SinceX andY achievep(y, v), andY takes values ify;;i € 7, } llz = an(@)|I” + M (o (@) < lle = an()|* + Mo (an(y)). (5)
pa(u, v)* =E {Ix-v I* + ALy} Now let X ~ p andY ~ pu, achievep(u, pu), and, in addition,
- ) ' suppose that the paiX, YV is independent of the training sequence
- /d Z (”1’ —yill” + Vu(l)) X{'. Letting E,, denote conditional expectation with respectXd,
R ez, (5) implies
P ==t An(ps 4) =En {JIX = @2 (X + A6 (an (X))}
> / min ([le — yill* + A6 (0)) 1 (da) SEAIX = eI + Ao (an (V) }
Rrd €2y
=Ax(ps q) <SE X = Y[P4E, {|IYV —gn (V)P A6 (an (V) }
and we obtain + 2B, {IIX = Y[[IY = ¢ (Y)[I}
inf pa(us v)* 2 inf A, ). O = (s n)* + Ax(ftns ¢)

: _ _ + 2B, {IIX =YY = ¢ )1}
As a consequence of the previous lemma, we obtain the following
stability result for the optimal Lagrangian performance. < plps ) + Ax(pns €4) +2 (E.|IX — Y||2)1/2
Lemma 2: For anyu andy’ with finite second moment
AN =AY < plp 1),

Proof: AssumeA3} (i) > A3 (p') without loss of generality. Fix
¢ > 0 and letv’ € D be such that

Iy
: (lEn”y _C.IIL(Y)HZ)
=p(s )"+ AX(n) + 200y 1) Dpn a3)'?

where the last inequality follows from the Cauchy—Schwarz inequality.

Since
paG's V) < inf pa(i', v) e D(pn i)"? < AR ()" < A" + plps i)
Then by Lemma 1 by Lemma 2, we obtain
Al(w)? = A3 () An(ps 42) = AL ()

= inf pa(p, v) = inf pa(', v) < (s 1) + 201ty pin) (Ai(u)l/2 + plp. un)) :
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Sincelim, o p(i, pin) = 0a.s.and\X(u, ¢5,) > Al (un), thefirst Sincea is a generalized nearest neighbor encoder, foria@yZ and

difference in (4) converges to zero a.snas» oo, completing the proof = € S;

of the theorem. O i ) 2 .
[l = B + NG < e = BGo)lI? + Mio).

IV. FINITE SAMPLE PERFORMANCE Sincel|3(io)|| < T, we havef|lx — 3(io)||* < 4T* for all « € Br,

) ) . and sinces; N By is nonempty, the previous inequality implies that for
Our goal is to establish a connection between the performange, €T

of the empirically designed variable-rate quantizer and the number
of training samples used in the design. We assume that the training
sequenceX' = X, ..., X, consists of independent copies _&f.
In addition, we also assume that the source distribution is an eIemRmW letg:
of P(T), the set of probability distributions oR? supported on
By = {a: ||z|| £ T}, the closed ball of radiu’ > 0 centered at
the origin. )

The finite sample performance (rate of convergence) has been ex- Ax(v.q1) = D(v, 1) + Mr(v. 1) < T )
tensively studied for the empirical design problem in fixed-rate quagy, the other hand
tization [2], [7], [3], [18]. The techniques developed there will turn out )
to be easily adaptable to the variable-rate case once we have estab- Ax(v, q) 2 Ar(v, q) > M(io)

lished a result (Lemma 3) concerning optimal variable-rate quantizgggich, together with (9) and the fact that (v, ¢) < A (v, ¢1) (since
for sources with bounded support. A key to the subsequent develgnninimizes the Lagrangian distortion fo), implies that

ment, this result shows that for sources with a given bounded support, o
variable-rate quantizers that are optimal in the Lagrangian sense cannot ((ig) < T_
have too many codevectors or very large codeword lengths. The proof A
uses an idea of Chou and Betts [19]. The strength of the Lagrangian B§nce. by (8), we have for alle 7

proach is evident here; no such general result is known for variable-rate 0 < 57?2
(1) < —.

€) < T+ fio). ®)

denote the quantizer with a single codepgirt 0 and rate
r(v, q1) = 0 (formally, the single binary codeword gf is the empty
string of length zero). Then sineee P(T)

guantizers that minimize the distortion for a given rate constraint. A
ForT > 0 and positive integerd” andL, let Q~, 1.(T') denote the Now Kraft's inequality implies
collection of all variable-rate quantizeys= («, 3, £) with index set i) _572/2
7 such that 1222 >R
el
i) ||3@)| < Tforalli € T; - 5 .
__) I _( = _ _ and hencéZ| < 2°7°/* SettingV = [2°7°/*| andL = |5T2/)],
ii) o is a generalized nearest neighbor encoder; we obtaing € Qw, r.(T), which completes the proof. u
iiiy £(i) < Lforalli € 7, andZ is finite with cardinality|Z| < N. In view of Lemma 3, one can now use established techniques of em-

pirical processes and statistical learning theory to bound the Lagrangian

performance of an empirically optimal variable-rate quantizer for a fi-

min Ax(v, ¢) = min  Ax(v, ¢) (6) nite amount of training data. In the following theorem, we assume (as
1 2€2n,7.(T) we may by Lemma 3) that’ € Q. (7).

572 = i * H i
where N = [2°77/*| andL = |5T%/)]. Thus, there existg;, € Theorem 3: There is a constard, depending only od, \, andT,

Lemma 3: For anyr € P(T) and\ > 0

Qw, (T, and for thisg;, we have such that for all. > 1 andp € P(T)
Ax(py gn) = AXNp) €2 sup | Ax(pa, @) = Ax(p )] (7) ) AT <
4€QN.L(T) EAN(p, gn) — AX(p) < 7

Proof; The second ;tatement 'S an easy consequence O.f t_he flrsﬁ’he proof is an application of the technique that was used in [2] to
one. Letq" denote a variable-rate quantizer achieving the minimum

; ; . .y . . prove a similar result for fixed-rate quantizers. The technique is based
Lagrangian d.ISt.OI’tlom%\(//,). SinceAx(jins ) < Ax(jn, 4°), We on Vapnik—Chervonenkis theory and, due to Lemma 3, is readily adapt-
have the basic inequality

able to our case. For the sake of completeness, we give a detailed proof.
Ax(pts qn) = AN(1) < Ax(pts qn) = Bapin, qn) Proof: In what follows we will use notions and results of
+ Ax(tin, @) = Ax(p, 7). Vapnik—Chervonenkis theory given, for example, in [20]-[22].
By bound (7) of Lemma 3, it suffices to give an appropriate upper
Sinceu, p. € P(T), by (6) there exist*, ¢, € Qn,(T), and we pound on the expected value of
obtain (7).

To prove (6), suppose = («, 3, £) with index setZ achieves Axlpn, 0) = Ax(p. 9)
AX(v). Itis easy to see that any codevectorgabutside By can be
replaced by its projection to the surface®f without increasing the whereN = LQBTZ/AJ andL = |5T%/)]. For
Lagrangian dlstorthn,sowe canassume nmwz)n_g T foralli € 7. 0= (a, B, () € Q. 1(T)

Next recall thatv is a generalized nearest neighbor encoder. Also,
we can assume that for eabh = {a: a(x) = i},i € Z, we have define the distortion function
S; N Br # 0; otherwise, sincee € P(T), we can discard from A 5
7 without affecting the performance. Lét € Z be an index with P alw) = lle = q(@)I” + Allal)).
minimum codeword length, i.e., Then for allz € Br

sup
7€Q N (1)

t(io) = min £(:). 0 < frq(x) <AT? 4 ML = 4T% + A[5T? /)] < T2,
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Letting 4 denote the indicator of the eveAt we have i.e.,
, T , {@: o, q(z) > u} = 2|z — 8@ > u— ME)}.
Ax(p, @) =Efr, o X) = / P{fro(X) > u} du D{ :
Q
and Since|Z| < N, we obtain that eithefa: fi, ,(2) > u} is an intersec-
A N - ¥ tion of the complements of at maat closed balls of possibly different
Axpns ) = AZ Fra(Xe) radii in R? (if u — A((i) > 0 for somei), or {x: fa ,(x) > u} = R?
=1

(this is the case i — M(i) < 0 for all 7). Thus, if Ay denotes the

9T & family of all intersections of complements &t closed balls ifR?, then
= /0 ; Z I{f)\,q()(k)>u} du a.s. we have
k=1
Hence, Axn C Ay U{R"}.
sup | Ax(ptns @) — Ay )] It easily follows from the definition of shatter coefficients that
2€Qn, (1) Sayuiray(k) = S4, (k) for all k. Hence,Sa, (k) < Sy, (k),

which in turn implies

1 ¢ , ,
= su = Ca(Xi) —Efa, (X , T
et oy | 2P a0 = Bl ) V(Ay) < V(Ay).
= sup A standard argument in Lemma 4 in the Appendix shows thad )
1€Qn, (1) is bounded as
972 n o .
1 . V(AN) <4AN(d+ 1)In(N(d + 1)).
/ <; Zl{fx,q(xk)>u} _ P{f&,ﬂ)ﬁ) > ’LL}) du ( 7\) < 4N( ) ( ( ))
° k=1 Combining this with (12) and the bound (7) of Lemma 3 we obtain the
< oT? sup theorem with

q€Q N, (1), u>0

C =18Tc\/4N(d+ 1)In(N(d + 1))

whereN = 2577/ O

1 n
~ 2 A e = P (X) > u}
k=1

V. CONNECTIONWITH ENTROPY-CONSTRAINED QUANTIZATION

=97% sup |un(A) —pu(4)| as. (20)
A€AN In variable-rate quantization, one can alternatively define the rate
whereAy is the family of sets ifR” defined by of a quantizer by the entropy of the quantizer output [10], [12]. This
definition often simplifies matters since it does not tie the rate to a
Ax 2 ({o: fr () > u}: g € On, 1(T), u > 0}, (11) particular variable-length lossless code. The entropy-constrained rate

o of the vector quantizer with index sét encodery, and decodef is
For any class 0B of subsets oft? and positive integek, theshatter q '

coefficientSs(k) is defined as the maximal number of different subsets H(¢(X))=- Z P{a(X) =i}log, P{a(X) = i}.

of a set ofk points inR? which can be obtained by intersecting it with i€z
elements of3, that is, Our formulation of variable-rate quantization needs only a slight
Su(k) = max {2 21} N B: B € B)| modification to accommodate this rate definition. If we remove the re-
©1, ., o ERY T striction that the code-length functidrhas to take integer values, and

only require that(i) > 0 foralli € 7 andy_,, 2~ < 1, thenthe

The Vapnik—Chervonenkis dimensi®df( 3) of B3 is the largest integer expected code length of a quantizez (o, . )

k such that
. r(p, q) = LO)P{a(X) =1
Su(k) = 2" (1 0) ; JP{a(X) =i}
(if Ss(k) = 2* for all k, thenV (B) = oo by definition). is uniquely minimized by the length function

Our maintoolis a sharpened version of the classical Vapnik—Chervo-
nenkis inequality [20, Sec. 4.3] which states that,ifis the empirical
distribution of» independent and identically distributed (i.i.d.) samWith these optimal (noninteger) code lengths, the quantizer rate be-
ples, then for any clas8 of measurable subsets @f comesr(u, ¢) = H(q(X)), the entropy of the quantizer output.

It is a simple matter to check that the proofs of the results in Sec-

(i) = —log, P{a(X) = i}, i €.

IE{Sup |pn (B) — ;/,(B)|} <ec ViB) tions lll and IV carry over without change if the restriction tiias in-

Bes n teger valued is removed, leading to analogous results for entropy-con-
wherec is a universal constant. Applying this to the family of sdts ~ Strained quantization. In particular, the entropy-constrained counter-
defined in (11) and combining with the bound of (10) gives parts of Theorems 2 and 3 show the consistency and bound the finite

_ sample performance, respectively, of the empirical Lagrangian design
E{ sup | Ax(tins @)= A (s q)|} <9T%c V (;‘LN) . (12) of entropy-constrained vector quantizers.
a€Qxn, (1) n

This bound yields the theorem if we can show thdtdx) < oc. APPENDIX

Since the encoder of eaghe Qn, 1, (T') usesthe generalized nearest Lemma 4: Let A denote the collection of all complements of closed
neighbor rulefx, ,(x) > « if and only if balls of nonnegative radius R, and for any positive intege¥ define

llx = B+ A(i) >u  foralli € T AvE{AN-NAN: A €A i=1,...,N}). (13)
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An upper bound td”(Ax) can now be obtained by finding /afor New Bounds for the Marcum Q-Function
which the right-hand side is less thafi. It is easy to check that if ] )
d > 2,thenk = 4N (d 4+ 1)In(N(d + 1)) satisfies this requirement. Giovanni E. CorazzaMember, IEEE.and
Since ford = 1 we obviously havé’ (A ) < 2V, we obtain that for Gianluigi Ferrarj Student Member, IEEE
all N, d > 1,
V(,Z\N) <AN(d+ 1)In(N(d + 1)). O Abstract—New bounds are proposed for the Marcum@-function, which

is defined by an integral expression where th@th-order modified Bessel
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