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Lagrangian Empirical Design of Variable-Rate Vector
Quantizers: Consistency and Convergence Rates

Tamás Linder, Senior Member, IEEE

Abstract—The Lagrangian formulation of variable-rate vector quantiza-
tion is known to yield useful necessary conditions for quantizer optimality
and generalized Lloyd algorithms for quantizer design. In this correspon-
dence, the Lagrangian formulation is demonstrated to provide a conve-
nient framework for analyzing the empirical design of variable-rate vector
quantizers. In particular, the consistency of empirical design based on min-
imizing the Lagrangian performance over a stationary and ergodic training
sequence is shown for sources with finite second moment. The finite sample
performance is also studied for independent training data and sources with
bounded support.

Index Terms—Consistency, convergence rates, empirical design, La-
grangian performance, variable-rate quantization.

I. INTRODUCTION

In empirical quantizer design we are presented with a finite sample
of vector-valued data generated by an unknown source, and the goal is
to construct a vector quantizer of given dimension and rate yielding best
performance on future data generated by the same source. In this sense,
empirical design is a process of learning from examples where the ef-
fectiveness of learning is measured by applying the designed quantizer
to future data.

In fixed-rate quantization, where the rate of the quantizer is deter-
mined by the number of its codevectors, empirical design has been
studied in detail. Pollard [1] showed that the design based on mini-
mizing the empirical quantization error over a stationary and ergodic
training sequence is consistent, i.e., the distortion of the designed quan-
tizer converges to the optimum distortion as the length of the sequence
increases without bound. In practice, one has only a finite amount of
training data, so it is of interest to quantify how quantizer performance
improves as the size of the training data increases. The finite sample
performance (rate of convergence) for empirically optimal quantizers
trained on independent data was studied in [2], and the convergence
rate derived there was shown to be optimal in the minimax sense in [3].
Further results on empirical design of fixed-rate quantizers and related
statistical clustering problems are given in [4]–[8].

Our goal is to study the empirical design of variable-rate quantizers
where the quantizer rate is measured by the average length of a vari-
able-length lossless code used to encode the quantizer output. To avoid
some of the considerable difficulties inherent in the traditional formula-
tion of optimality for variable-rate quantization (see, e.g., [9]), we use
the Lagrangian formulation of Chouet al. [10]. The Lagrangian for-
mulation matches the generalized Lloyd algorithm [10] that is used in
practice to design variable-rate quantizers, and it has recently been used
to rigorously prove and generalize Zador’s classic result for the asymp-
totic behavior of optimal entropy-constrained quantizers [11]. More
importantly, the Lagrangian formulation yields an optimality condition
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(the generalized nearest neighbor condition) which proves essential in
our development. The Lagrangian formulation allows us to adapt tech-
niques from the theory of empirical processes and statistical learning
that have previously been used to analyze empirical fixed-rate quan-
tizer design.

This correspondence is organized as follows. In Section II, the basic
definitions of variable-rate quantization are introduced in both the
traditional and the Lagrangian settings. In Section III, we prove the
consistency of Lagrangian design for stationary and ergodic training
data for sources with finite second moment. In Section IV, the finite
sample performance is studied for independent training data drawn
from a source with bounded support. After establishing a key property
of optimal quantizers for sources with bounded support, we show that
the (Lagrangian) distortion of the empirically optimal variable-rate
vector quantizer converges to that of the truly optimal variable-rate
vector quantizer at a rateO(n�1=2), wheren is the size of the training
data. This result matches the convergence rate results developed for
fixed-rate empirical design [2], [3].

In variable-rate quantization, one can alternatively define the rate
of a quantizer by the entropy of the quantizer output [10], [12]. Al-
though our rate definition uses the average code length, the difference
between the two approaches is not significant, and the entropy-con-
strained counterparts of our results are easily seen to hold. Section V
discusses the connection with entropy-constrained quantization.

II. PRELIMINARIES

A variable-rate vector quantizerq is described by anencoder�:
d ! I, whereI is a countable index set, adecoder�: I ! d, and

an index coder : I ! f0; 1g�, wheref0; 1g� denotes the collec-
tion of all finite-length binary strings. is assumed to be a prefix-free
binary code. IfI is finite with N elements, without loss of gener-
ality we always takeI = f1; . . . ; Ng; otherwise,I is taken to be
the set of all positive integers. Thus,q maps any pointx 2 d into
one of the codevectors in the codebookf�(i); i 2 Ig, via the rule
q(x) = �(�(x)). LettingSi = fx: �(x) = ig denote the quantization
cells andyi = �(i) the codepoints ofq for i 2 I, we have

q(x) = yi; if and only if x 2 Si:

We assume that thed-dimensional random vectorX with distribution�
has finite second momentkXk2 <1, and define the mean-squared
distortion ofq in the usual way

D(�; q)
�
= kX � q(X)k2

wherek � k denotes the Euclidean norm ond.
The length function`: I ! f0; 1; 2; . . .g associates with each

index i the length of the corresponding codeword (i), i.e., `(i) =
length( (i)). The rate of the variable-rate quantizerq is defined as the
expected codeword length

r(�; q)
�
= `(�(X)) =

i2I

`(i) fq(X) = yig:

A length function` is calledadmissibleif it satisfies Kraft’s in-
equality i2I 2�`(i) � 1. Since a prefix-free code exists for a given
length functioǹ if and only if ` is admissible [13], for our purposes
it is enough to specify a quantizerq by its encoder�, decoder�, and
admissible length functioǹ. In this case, we writeq � (�; �; `).

In variable-rate quantization, ideally one is interested in the min-
imum distortion achievable for a given rateR � 0

�
�
R(�)

�
= inf

q: r(�; q)�R
D(�; q):
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However, the traditional formulation of quantizer optimality for vari-
able-rate quantizers is hard to handle. For example, the cells of an op-
timal quantizer achieving��R(�) can have a complex structure [9], as
opposed to the fixed-rate case [14]. Therefore, we use the Lagrangian
formulation of optimal distortion-rate tradeoff for variable-rate quanti-
zation that was first introduced by Chouet al. [10]. For a variable-rate
quantizerq � (�; �; `), and for� > 0, define theLagrangian distor-
tion by

��(�; q)
�
=D(�; q)+�r(�; q)= kX � q(X)k2 + �`(�(X))

and the optimal Lagrangian performance by

���(�)
�
= inf

q
��(�; q)

where the infimum is taken over all variable-rate quantizers.
Unlike the traditional formulation, the Lagrangian formulation

yields Lloyd optimality conditions for variable-rate vector quantizers
[10]. Namely, in the Lagrangian formulation, a necessary condition
for optimality is that each of the three components of the quantizer
be optimal for the other two. In particular, for a given decoder� and
length functioǹ , for � almost allx an optimal encoder must satisfy

�(x) = argmin
i2I

kx� �(i)k2 + �`(i) (1)

(ties are broken arbitrarily). Sincè satisfies Kraft’s inequality, the
above minimum is easily seen to be achieved by some indexi even
if I is not finite. An� satisfying (1) for allx 2 d is called ageneral-
ized nearest neighbor encoder.

We also need the following auxiliary result from [15] showing the
existence of quantizers that minimize the Lagrangian distortion.1

Theorem 1 [15]: For any� with finite second moment and� > 0
there is a variable-rate quantizerq�� with a generalized nearest neighbor
encoder such that

��(�; q
�
�) = ���(�):

It is well known that for a given rateR, ��R(�) is achievable by a
quantizerq minimizing��(�; q) for some� > 0 if and only if ��R(�)
(as a function ofR) coincides with its convex hull̂��R(�) at this rate.
Thus, Lagrangian optimization can be used to find the convex hull of
��R(�). For values ofR such that�̂�R(�) is strictly less than��R(�),
optimal variable-rate quantizers cannot be obtained by the Lagrangian
method. However, this is not a serious limitation in practical applica-
tions since any rate and distortion pair(R; �̂�R(�)) on the convex hull
can be achieved by “time sharing” between two quantizers that achieve
the convex hull, i.e., two quantizers that can be obtained by Lagrangian
minimization.

III. CONSISTENCY OFLAGRANGIAN EMPIRICAL DESIGN

We are interested in the performance of quantizers designed using a
finite training sequence. LetXn

1 = X1; . . . ; Xn be a stationary and
ergodic sequence ofd-valued random vectors with marginal distri-
bution�. We assume thatXn

1 andX are independent. Let�n denote
the empirical distribution ofXn

1 , i.e.,�n places weight1=n at each
pointXk, k = 1; . . . ; n. Fix � > 0 and define anempirically optimal
variable-rate quantizerq�n to be one that minimizes the empirical La-
grangian distortion

��(�n; q
�
n) = inf

q
��(�n; q) = ���(�n)

1More precisely, the result in [15] is for entropy-constrained quantizers, but
a slight modification of the proof yields Theorem 1.

i.e.,

q�n
�
= argmin

q�(�;�;`)

1

n

n

k=1

kXk � �(�(Xk))k
2 + �`(�(Xk)):

We will always assume (as we may by Theorem 1) that the encoder��n
of q�n is a generalized nearest neighbor encoder.

The performance of an empirically optimal variable-rate quantizer
q�n = (��n; �

�
n; `

�
n) is measured by its Lagrangian test distortion, given

by

��(�; q
�
n)

�
= kX � ��n(�

�
n(X))k2+ �`�n(�

�
n(X)) Xn

1 j :

The quantity��(�; q
�
n) is the Lagrangian distortion ofq�n in quan-

tizing independent (future) test data.��(�; q
�
n) is a random variable

sinceq�n depends on the training sequenceXn
1 , and it is easy to see that

��(�; q
�
n) � ���(�).

The following theorem shows that the design-based empirical La-
grangian distortion minimization is consistent in the sense that asn!
1, ��(�; q

�
n) converges to the optimal Lagrangian distortion���(�)

for almost every realization of the stationary and ergodic training se-
quence.

Theorem 2 (CONSISTENCY OFLAGRANGIANEMPIRICALDESIGN): For
any� > 0, the sequence of empirically optimal variable-rate quantizers
q�n, n = 1; 2; . . ., minimizing the empirical Lagrangian distortion sat-
isfies

lim
n!1

��(�; q
�
n) = ���(�) a.s.

Pollard’s consistency theorem [1] is based on bounding quantizer
performance using the so-calledL2 Wasserstein distance�(�; �) be-
tween two probability distributions� and� on d with finite second
moment. This distance is defined by

�(�; �)
�
= inf

X��; Y��
kX � Y k2

1=2

where the infimum is taken over all joint distributions of two random
vectorsX andY such thatX has distribution�, andY has distribution
� (denoted byX � � andY � �, respectively). It is known that the
infimum defining�(�; �) is a minimum, and that�(�; �) is a metric on
the space of probability distributions ond with finite second moment
(see, e.g., [16]).

Our proof uses Pollard’s technique, but we need to find a modified
version of�(�; �) suitable for variable-rate quantization.

Let D denote the set of all discrete distributions ond with finite
second moment and finite entropy. That is,� 2 D if and only if � is
concentrated on a finite or countably infinite setfxi; i 2 I�g � d,
and satisfies

i2I

kxik
2�(xi) <1; �

i2I

�(xi) log2 �(xi) <1:

For any� 2 D, letL� denote the minimum expected code length over
all admissible code-length functions`: I� ! f0; 1; . . .g

L� = min
`

i2I

`(i)�(xi): (2)

Note that a minimizing admissiblèalways exists [17], and thatL� <
1 by the Shannon–Fano bound [13].

For� > 0, � with finite second moment, and� 2 D define

��(�; �)
�
= �(�; �)2 + �L�

1=2
:

To interpret��(�; �), supposeX � � andY � � achieve�(�; �),
and let`� be an admissible code length achievingL� . ThenY can be
viewed as the output of a variable-rate “random quantizer” that, to each
x, assigns the reproduction vectorxi and a binary codeword of length
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`�(i) with probability fY = xijX = xg. The quantity��(�; �)2 is
the Lagrangian distortion of this random quantizer.

In this interpretation, the next lemma states that deterministic quan-
tizers always outperform random quantizers in the Lagrangian sense.

Lemma 1:

��
�(�) = inf

�2D
��(�; �)

2
:

Proof: Supposeq � (�; �; `) is a variable-rate quantizer such
that ��(�; q) < 1. Let �q denote the distribution of the discrete
random variableq(X) and note that�q 2 D. SinceX � � and
q(X) � �q

��(�; q) = kX � q(X)k2 + � `(�(X))

� �(�; �q)
2 + �L� = ��(�; �q)

2

and hence

��
�(�) = inf

q
��(�; q) � inf

�2D
��(�; �)

2
:

To show the reverse inequality, assumeX � � andY � � achieve
�(�; �), where� 2 D is concentrated on a countable set of pointsfyi;
i 2 I�g. Define the variable-rate quantizerq with index setI� to have
decoder�(i) = yi, i 2 I� , code length̀ � such that

L� =
i2I

`�(i)�(yi)

and encoder� that is optimized for� and`� , i.e.,

�(x) = argmin
i2I

kx� yik
2 + �`�(i) :

Then

��(�; q) = min
i2I

kX � yik
2 + �`�(i) :

SinceX andY achieve�(�; �), andY takes values infyi; i 2 I�g

��(�; �)
2 = kX � Y k2 + �L�

=
i2I

kx� yik
2 + �`�(i)

� fY = yijX = xg� (dx)

� min
i2I

kx� yik
2 + �`�(i) � (dx)

=��(�; q)

and we obtain

inf
�2D

��(�; �)
2 � inf

q
��(�; q):

As a consequence of the previous lemma, we obtain the following
stability result for the optimal Lagrangian performance.

Lemma 2: For any� and�0 with finite second moment

��
�(�)

1=2 ���
�(�

0)1=2 � �(�; �0):

Proof: Assume��
�(�) � ��

�(�
0) without loss of generality. Fix

� > 0 and let�0 2 D be such that

��(�
0
; �

0) � inf
�2D

��(�
0
; �) + �:

Then by Lemma 1

��
�(�)

1=2 ���
�(�

0)1=2

= inf
�2D

��(�; �)� inf
�2D

��(�
0
; �)

� inf
�2D

��(�; �)� ��(�
0
; �

0) + �

� ��(�; �
0)� ��(�

0
; �

0) + �

= �(�; �0)2 + �L�
1=2

� �(�0; �0)2 + �L�
1=2

+ �

� j�(�; �0)� �(�0; �0)j+ � � �(�; �0) + �

where the third inequality holds because

(a+ c)1=2 � (b+ c)1=2 � a
1=2 � b

1=2
; for all a � b � 0; c � 0

by the concavity of the square root, and the last inequality follows from
the triangle inequality since� is a metric. Since� > 0 was arbitrary,
we obtain��

�(�)
1=2 ���

�(�
0)1=2 � �(�; �0).

Proof of Theorem 2:Recall that�n is the empirical distribution
of the firstn samples of a stationary and ergodic sequence with mar-
ginal distribution�. It is not hard to show (see, e.g., [1]) that ergodicity
implies

lim
n!1

�(�; �n) = 0 a.s. (3)

To make use of this fact, we write

��(�; q
�
n)���

�(�) = ��(�; q
�
n)���

�(�n) + ��
�(�n)���

�(�):

(4)

Applying Lemma 2 with�0 = �n gives

��
�(�)

1=2 ���
�(�n)

1=2 � �(�; �n)

and hence (3) implies that the second difference on the right-hand side
of (4) converges to zero almost surely (a.s.).

To bound the first difference on the right-hand side of (4), recall that
by assumption, the encoder ofq�n � (��n; �

�
n; `

�
n) uses the generalized

nearest neighbor rule. Thus, for anyx; y 2 d

kx� q
�
n(x)k

2 + �`
�
n(�

�
n(x)) � kx� q

�
n(y)k

2 + �`
�
n(�

�
n(y)): (5)

Now let X � � andY � �n achieve�(�; �n), and, in addition,
suppose that the pairX; Y is independent of the training sequence
Xn

1 . Letting n denote conditional expectation with respect toXn
1 ,

(5) implies

��(�; q
�
n) = n kX � q

�
n(X)k2 + �`

�
n(�

�
n(X))

� n kX � q
�
n(Y )k

2 + �`
�
n(�

�
n(Y ))

� nkX � Y k2+ n kY �q�n(Y )k
2+�`

�
n(�

�
n(Y ))

+ 2 n fkX � Y kkY � q
�
n(Y )kg

= �(�; �n)
2 +��(�n; q

�
n)

+ 2 n fkX � Y kkY � q
�
n(Y )kg

� �(�; �n)
2 +��(�n; q

�
n) + 2 nkX � Y k2

1=2

� nkY � q
�
n(Y )k

2 1=2

= �(�; �n)
2 +��

�(�n) + 2�(�; �n)D(�n; q
�
n)

1=2

where the last inequality follows from the Cauchy–Schwarz inequality.
Since

D(�n; q
�
n)

1=2 � ��
�(�n)

1=2 � ��
�(�)

1=2 + �(�; �n)

by Lemma 2, we obtain

��(�; q
�
n)���

�(�n)

� �(�; �n)
2 + 2�(�; �n) ��

�(�)
1=2 + �(�; �n) :
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Sincelimn!1 �(�; �n) = 0 a.s. and���(�; q
�
n) � ���(�n), the first

difference in (4) converges to zero a.s. asn!1, completing the proof
of the theorem.

IV. FINITE SAMPLE PERFORMANCE

Our goal is to establish a connection between the performance
of the empirically designed variable-rate quantizer and the number
of training samples used in the design. We assume that the training
sequenceXn

1 = X1; . . . ; Xn consists of independent copies ofX.
In addition, we also assume that the source distribution is an element
of P(T ), the set of probability distributions on d supported on
BT = fx: kxk � Tg, the closed ball of radiusT > 0 centered at
the origin.

The finite sample performance (rate of convergence) has been ex-
tensively studied for the empirical design problem in fixed-rate quan-
tization [2], [7], [3], [18]. The techniques developed there will turn out
to be easily adaptable to the variable-rate case once we have estab-
lished a result (Lemma 3) concerning optimal variable-rate quantizers
for sources with bounded support. A key to the subsequent develop-
ment, this result shows that for sources with a given bounded support,
variable-rate quantizers that are optimal in the Lagrangian sense cannot
have too many codevectors or very large codeword lengths. The proof
uses an idea of Chou and Betts [19]. The strength of the Lagrangian ap-
proach is evident here; no such general result is known for variable-rate
quantizers that minimize the distortion for a given rate constraint.

ForT > 0 and positive integersN andL, letQN;L(T ) denote the
collection of all variable-rate quantizersq � (�; �; `) with index set
I such that

i) k�(i)k � T for all i 2 I;

ii) � is a generalized nearest neighbor encoder;

iii) `(i) � L for all i 2 I, andI is finite with cardinalityjIj � N .

Lemma 3: For any� 2 P(T ) and� > 0

min
q

��(�; q) = min
q2Q (T )

��(�; q) (6)

whereN = b25T =�c andL = b5T 2=�c. Thus, there existsq�n 2
QN;L(T ), and for thisq�n we have

��(�; q
�
n)����(�) � 2 sup

q2Q (T )

j��(�n; q)���(�; q)j: (7)

Proof: The second statement is an easy consequence of the first
one. Letq� denote a variable-rate quantizer achieving the minimum
Lagrangian distortion���(�). Since��(�n; q

�
n) � ��(�n; q

�), we
have the basic inequality

��(�; q
�
n)����(�) � ��(�; q

�
n)���(�n; q

�
n)

+��(�n; q
�)���(�; q

�):

Since�; �n 2 P(T ), by (6) there existq�; q�n 2 QN;L(T ), and we
obtain (7).

To prove (6), supposeq � (�; �; `) with index setI achieves
���(�). It is easy to see that any codevector ofq outsideBT can be
replaced by its projection to the surface ofBT without increasing the
Lagrangian distortion, so we can assume thatk�(i)k � T for all i 2 I.

Next recall that� is a generalized nearest neighbor encoder. Also,
we can assume that for eachSi = fx: �(x) = ig, i 2 I, we have
Si \ BT 6= ;; otherwise, since� 2 P(T ), we can discardi from
I without affecting the performance. Leti0 2 I be an index with
minimum codeword length, i.e.,

`(i0) = min
i2I

`(i):

Since� is a generalized nearest neighbor encoder, for anyi 2 I and
x 2 Si

kx� �(i)k2 + �`(i) � kx� �(i0)k2 + �`(i0):

Sincek�(i0)k � T , we havekx � �(i0)k2 � 4T 2 for all x 2 BT ,
and sinceSi\BT is nonempty, the previous inequality implies that for
all i 2 I

`(i) � 4T 2

�
+ `(i0): (8)

Now letq1 denote the quantizer with a single codepointy = 0 and rate
r(�; q1) = 0 (formally, the single binary codeword ofq1 is the empty
string of length zero). Then since� 2 P(T )

��(�; q1) = D(�; q1) + �r(�; q1) � T 2: (9)

On the other hand

��(�; q) � �r(�; q) � �`(i0)

which, together with (9) and the fact that��(�; q) � ��(�; q1) (since
q minimizes the Lagrangian distortion for�), implies that

`(i0) � T 2

�
:

Hence, by (8), we have for alli 2 I

`(i) � 5T 2

�
:

Now Kraft’s inequality implies

1 �
i2I

2�`(i) � jIj2�5T =�

and hencejIj � 25T =�. SettingN = b25T =�c andL = b5T 2=�c,
we obtainq 2 QN;L(T ), which completes the proof.

In view of Lemma 3, one can now use established techniques of em-
pirical processes and statistical learning theory to bound the Lagrangian
performance of an empirically optimal variable-rate quantizer for a fi-
nite amount of training data. In the following theorem, we assume (as
we may by Lemma 3) thatq�n 2 QN;L(T ).

Theorem 3: There is a constantC, depending only ond, �, andT ,
such that for alln � 1 and� 2 P(T )

��(�; q
�
n)����(�) � Cp

n
:

The proof is an application of the technique that was used in [2] to
prove a similar result for fixed-rate quantizers. The technique is based
on Vapnik–Chervonenkis theory and, due to Lemma 3, is readily adapt-
able to our case. For the sake of completeness, we give a detailed proof.

Proof: In what follows we will use notions and results of
Vapnik–Chervonenkis theory given, for example, in [20]–[22].

By bound (7) of Lemma 3, it suffices to give an appropriate upper
bound on the expected value of

sup
q2Q (T )

j��(�n; q)���(�; q)j

whereN = b25T =�c andL = b5T 2=�c. For

q � (�; �; `) 2 QN;L(T )

define the distortion function

f�; q(x)
�
= kx� q(x)k2 + �`(�(x)):

Then for allx 2 BT

0 � f�; q(x) � 4T 2 + �L = 4T 2 + �b5T 2=�c � 9T 2:
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Letting IA denote the indicator of the eventA, we have

��(�; q) = f�; q(X) =
9T

0

ff�; q(X) > ug du

and

��(�n; q) =
1

n

n

k=1

f�; q(Xk)

=
9T

0

1

n

n

k=1

Iff (X )>ug du a.s.

Hence,

sup
q2Q (T )

j��(�n; q)���(�; q)j

= sup
q2Q (T )

1

n

n

k=1

f�; q(Xk)� f�; q(X)

= sup
q2Q (T )

9T

0

1

n

n

k=1

Iff (X )>ug � ff�; q(X) > ug du

� 9T 2 sup
q2Q (T ); u>0

1

n

n

k=1

Iff (X )>ug � ff�; q(X) > ug

= 9T 2 sup
A2A

j�n(A)� �(A)j a.s. (10)

whereAN is the family of sets in d defined by

AN
�
= ffx: f�; q(x) > ug: q 2 QN;L(T ); u > 0g : (11)

For any class ofB of subsets of d and positive integerk, theshatter
coefficient B(k) is defined as the maximal number of different subsets
of a set ofk points in d which can be obtained by intersecting it with
elements ofB, that is,

B(k) = max
x ; ...; x 2

jffx1; . . . ; xkg \B: B 2 Bgj :

The Vapnik–Chervonenkis dimensionV (B) of B is the largest integer
k such that

B(k) = 2k

(if B(k) = 2k for all k, thenV (B) = 1 by definition).
Our main tool is a sharpened version of the classical Vapnik–Chervo-

nenkis inequality [20, Sec. 4.3] which states that if�n is the empirical
distribution ofn independent and identically distributed (i.i.d.) sam-
ples, then for any classB of measurable subsets ofd

sup
B2B

j�n(B)� �(B)j � c
V (B)

n

wherec is a universal constant. Applying this to the family of setsAN

defined in (11) and combining with the bound of (10) gives

sup
q2Q (T )

j��(�n; q)���(�; q)j �9T 2
c

V (AN)

n
: (12)

This bound yields the theorem if we can show thatV (AN) <1.
Since the encoder of eachq 2 QN;L(T )uses the generalized nearest

neighbor rule,f�; q(x) > u if and only if

kx� �(i)k2 + �`(i) > u for all i 2 I

i.e.,

fx: f�; q(x) > ug =
i2I

x: kx� �(i)k2 > u� �`(i) :

SincejIj � N , we obtain that eitherfx: f�; q(x) > ug is an intersec-
tion of the complements of at mostN closed balls of possibly different
radii in d (if u� �`(i) � 0 for somei), or fx: f�; q(x) > ug = d

(this is the case ifu � �`(i) < 0 for all i). Thus, if �AN denotes the
family of all intersections of complements ofN closed balls in d, then
we have

AN � �AN [ f dg:

It easily follows from the definition of shatter coefficients that
�A [f g(k) = �A (k) for all k. Hence, A (k) � �A (k),

which in turn implies

V (AN) � V ( �AN ):

A standard argument in Lemma 4 in the Appendix shows thatV ( �AN)
is bounded as

V ( �AN ) � 4N(d+ 1) ln(N(d+ 1)):

Combining this with (12) and the bound (7) of Lemma 3 we obtain the
theorem with

C = 18T 2
c 4N(d+ 1) ln(N(d+ 1))

whereN = b25T =�c.

V. CONNECTIONWITH ENTROPY-CONSTRAINEDQUANTIZATION

In variable-rate quantization, one can alternatively define the rate
of a quantizer by the entropy of the quantizer output [10], [12]. This
definition often simplifies matters since it does not tie the rate to a
particular variable-length lossless code. The entropy-constrained rate
of the vector quantizer with index setI, encoder�, and decoder� is

H(q(X)) = �
i2I

f�(X) = ig log2 f�(X) = ig:

Our formulation of variable-rate quantization needs only a slight
modification to accommodate this rate definition. If we remove the re-
striction that the code-length function` has to take integer values, and
only require that̀ (i) � 0 for all i 2 I and i2I 2

�`(i) � 1, then the
expected code length of a quantizerq � (�; �; `)

r(�; q) =
i2I

`(i) f�(X) = ig

is uniquely minimized by the length function

`(i) = � log2 f�(X) = ig; i 2 I:

With these optimal (noninteger) code lengths, the quantizer rate be-
comesr(�; q) = H(q(X)), the entropy of the quantizer output.

It is a simple matter to check that the proofs of the results in Sec-
tions III and IV carry over without change if the restriction that` is in-
teger valued is removed, leading to analogous results for entropy-con-
strained quantization. In particular, the entropy-constrained counter-
parts of Theorems 2 and 3 show the consistency and bound the finite
sample performance, respectively, of the empirical Lagrangian design
of entropy-constrained vector quantizers.

APPENDIX

Lemma 4: LetA denote the collection of all complements of closed
balls of nonnegative radius ind, and for any positive integerN define

�AN
�
= fA1 \ � � � \AN : Ai 2 A; i = 1; . . . ; Ng: (13)
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Then the Vapnik–Chervonenkis dimension of�AN is upper-bounded as

V ( �AN ) � 4N(d+ 1) ln(N(d+ 1)):

Proof: We have �A1 = A, and

�AN = fA \B: A 2 A; B 2 �AN�1g; for N � 2:

A well-known property of shatter coefficients (see, e.g., [20]) implies
that forN � 2 andk � 1

�A (k) � A(k) �A (k):

Thus, �A (k) � A(k)
N by induction. DefineD = fAc:A 2 Ag. It

follows immediately from the definition thatA(k) = D(k). Hence,
we obtain

�A (k) � D(k)
N
: (14)

SinceD is the collection of all closed balls ind, we haveV (D) = d+
1 by a result of Dudley [23]. Next, we use a well-known consequence of
Sauer’s lemma which states that for any class of setsB and all integers
k � V (B)

B(k) �
ke

V (B)

V (B)

(see, e.g., [20, Corollary 4.1]). This and (14) imply that for allk � d+1

�A (k) �
ke

V (D)

NV (D)

=
ke

d+ 1

N(d+1)

: (15)

An upper bound toV ( �AN ) can now be obtained by finding ak for
which the right-hand side is less than2k. It is easy to check that if
d � 2, thenk = 4N(d+ 1) ln(N(d+ 1)) satisfies this requirement.
Since ford = 1 we obviously haveV ( �AN) � 2N , we obtain that for
all N; d � 1,

V ( �AN ) � 4N(d+ 1) ln(N(d+ 1)):
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New Bounds for the Marcum -Function

Giovanni E. Corazza, Member, IEEE,and
Gianluigi Ferrari, Student Member, IEEE

Abstract—New bounds are proposed for the Marcum -function, which
is defined by an integral expression where the0th-order modified Bessel
function appears. The proposed bounds are derived by suitable approx-
imations of the 0th-order modified Bessel function in the integration re-
gion of the Marcum -function. They prove to be very tight and outper-
form bounds previously proposed in the literature. In particular, the pro-
posed bounds are noticeably good for large values of the parameters of the
Marcum -function, where previously introduced bounds fail and where
exact computation of the function becomes critical due to numerical prob-
lems.

Index Terms—Marcum -function, modified Bessel function of the first
kind, upper and lower bounds.

I. INTRODUCTION

Calculation of the generalized MarcumQ-function of orderM , usu-
ally referred to asQM (a; b), and particularly the popular case(M =
1) indicated as MarcumQ-function Q(a; b), is important in many
problems of signal detection [1], [2]. Immediate examples are the com-
putation of error probability in transmission over fading channels or
detection probability for code acquisition in a direct-sequence code-di-
vision multiple-access (DS-CDMA) system. Several algorithms have
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