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Abstract—We consider adaptive sequential lossy coding of bounded in-
dividual sequences when the performance is measured by the sequentially
accumulated mean-squared distortion. The encoder and the decoder are
connected via a noiseless channel of capacity and both are assumed to
have zero delay. No probabilistic assumptions are made on how the se-
quence to be encoded is generated. For any bounded sequence of length,
the distortion redundancy is defined as the normalized cumulative distor-
tion of the sequential scheme minus the normalized cumulative distortion
of the best scalar quantizer of rate which is matched to this particular
sequence. We demonstrate the existence of a zero-delay sequential scheme
which uses common randomization in the encoder and the decoder such
that the normalized maximum distortion redundancy converges to zero
at a rate log as the length of the encoded sequence increases
without bound.

Index Terms—Individual sequences, scalar quantization, sequential pre-
diction, zero-delay lossy source coding.

I. INTRODUCTION

In a widely used model of lossy source coding, an infinite sequence
of real-valued source symbolsx1; x2; . . . is transformed into a se-
quence of channel symbolsy1; y2; . . . (assumed to take values from a
finite alphabet) which are transmitted through a noiseless channel. The
received channel symbols are then used to produce the reproduction se-
quencêx1; x̂2; . . .. Such a system is calledcausalif the reproduction
of the current source symbol depends on the present and past source
symbols, but not on the future ones. In general, very little is known
about the optimum performance theoretically attainable (OPTA) for
causal coding of probabilistic sources. For the special case of a sta-
tionary and memoryless source, Neuhoff and Gilbert [1] showed that
the OPTA function of causal codes is achieved by time-sharing of en-
tropy-coded scalar quantizers.

A requirement more restrictive than causality is that of zero delay. A
lossy coding scheme is said to have zero delay if each channel symbol
yn depends only on the past and present source symbolsx1; . . . ; xn
and the reproduction̂xn for the present source symbolxn depends
only on the channel symbolsy1; . . . ; yn received so far. Zero-delay
schemes have an obvious advantage over other coding methods (such
as block codes) in applications where decoding delay is a crucial factor.
For memoryless sources, it has been shown by Ericson [2] and Gaarder
and Slepian [3] (see also [4]) that the zero-delay OPTA function is
achieved by the optimal (Lloyd–Max) scalar quantizer for the source.
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In this work, we consider the problem of zero-delay source coding in
a deterministic setting. Inspired by recent work on prediction of indi-
vidual sequences, we study zero-delay sequential quantization of indi-
vidual sequences. In this setting, it is not assumed that the source is gen-
erated by an underlying probabilistic mechanism. In general, the goal
is to construct asinglezero-delay scheme whose cumulative distortion
on every bounded sequence is very close to that of the best scheme for
the given sequence within a family of fixed zero-delay schemes. The
probabilistic analog of this problem is the problem of zero-delay uni-
versal coding with respect to a given class of sources.

The theory of lossy compression for individual sequences originates
in Ziv’s fundamental work [5] on finite-state lossy compressibility of
individual sequences. In [5], the analog of the distortion-rate function
was defined in an individual sequence setting as the least distortion
asymptotically achievable when the sequence is encoded by anarbi-
trary finite-state encoder at a given fixed rate. A crucial difference be-
tween Ziv’s setup and the problem we consider is that we do not allow
any delay in the system, while in Ziv’s definition of compressibility
and in the corresponding coding theorem encoders with arbitrary delay
are allowed. As a consequence, the results of [5] are asymptotic in the
coding delay, and they offer little guidance on how to approach the
fixed-delay problem.

Although lossless sequential source coding has been extensively
studied (see Merhav and Feder [6] for a thorough survey), no results
seem to be available concerning its lossy counterpart. One main
difficulty with the lossy case is that, unlike in the lossless case, the
decoder does not have access to the past source outputs. Therefore,
the well-developed arsenal of universal lossless coding and sequential
prediction cannot be directly applied.

In this correspondence, we investigate the possibility of zero-delay
lossy coding of individual sequences. Our main result, in Section II, de-
scribes a zero-delay sequential adaptive coding scheme which, asymp-
totically, achieves a cumulative mean-squared distortion achieved by
the best scalar quantizer of a given rate matched to the actual bounded
source sequence. In other words, the proposed method has to compete
sequentially with an “anticipating” scheme that sees the entire sequence
in advance and chooses the best scalar quantizer for this sequence. The
construction builds on techniques developed in the theory of predic-
tion of individual sequences, namely, it uses an appropriately modified
version of the exponential weighting method pioneered by Vovk [7],
[8] and Littlestone and Warmuth [10]. The proposed method requires
common randomization in the encoder and the decoder. Some aspects
of common randomization are discussed in Section III.

Admittedly, the special class of reference methods (i.e., the family
of all fixed-rate scalar quantizers) limits the scope of this result, but it
is still of interest, especially in view of the previously cited results of
Ericson [2] and Gaarder and Slepian [3]. To our knowledge, this is the
first result concerning zero-delay sequential lossy coding of individual
sequences.

II. PROBLEM FORMULATION AND RESULTS

A (randomized) zero-delay sequential source code of rate
R = logM (whereM is a positive integer andlog denotes logarithm
to the base2) is described by an encoder–decoder pair which are
connected via a noiseless channel of capacityR. It is assumed that
both the encoder and the decoder have access to a common sequence
of random variablesfUig

1

i=1, where eachUi is uniformly distributed
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on the interval[0; 1]. (Note that theUi need not be independent.)
The input to the encoder is a sequence of real numbersx1; x2; . . .
assumed to be bounded such thatxi 2 [0; 1] for all i � 1. (One
could more generally assume that eachxi is in a fixed interval of
lengthB, but since squared error distortion will be considered, the
choicexi 2 [0; 1] does not limit generality.) At each time instant
i = 1; 2; . . . ; the encoder observesxi and the random numberUi.
Based onxi, Ui, and the past input valuesxi�1 = (x1; . . . ; xi�1),
the encoder produces a channel symbolyi 2 f1; 2; . . . ; Mg which is
then transmitted to the decoder. After receivingyi, the decoder outputs
the reconstruction valuêxi based onUi and the channel symbols
yi = (y1; . . . ; yi) received so far.

More formally, the code is given by a sequence of encoder–decoder
functionsffi; gig1i=1, where

fi: [0; 1]i � [0; 1]! f1; 2; . . . ; Mg

and

gi: f1; 2; . . . ; Mgi � [0; 1]! [0; 1]

so thatyi = fi(x
i; Ui) andx̂i = gi(y

i; Ui), i = 1; 2; . . .. Note that
there is no delay in the encoding and decoding process. Thenormalized
cumulative squared distortionof the sequential scheme at time instant
n is given by

Dn(x
n) =

1

n

n

i=1

(xi � x̂i)
2

where the dependence ofDn on the randomizing sequence is sup-
pressed in the notation. The expected cumulative distortion is

Dn(x
n) = E

1

n

n

i=1

(xi � x̂i)
2

where the expectation is taken with respect to the randomizing se-
quenceUn = (U1; . . . ; Un).

An M -level scalar quantizerQ is measurable mapping ! C,
where thecodebookC is a finite subset of with cardinalityjCj = M .
The elements ofC are called thecodepoints. The instantaneous squared
distortion ofQ for inputx is (x � Q(x))2. A quantizerQ is called a
nearest neighbor quantizer if it satisfies

(Q(x)� x)2 = min
y2C

(x� y)2

for all x. It is immediate from the definition that ifQ is a nearest
neighbor quantizer and̂Q has the same codebook asQ, then

(Q(x)� x)2 � (Q̂(x)� x)2; for all x:

For this reason, we will only consider nearest neighbor quantizers.
Also, since we consider sequences with components in[0; 1], we can
assume without loss of generality that the domain of definition ofQ is
[0; 1] and that all its codepoints are in[0; 1].

Let Q denote the collection of allM -level nearest neighbor quan-
tizers. For any sequencexn, let D�n(x

n) denote the minimum nor-
malized cumulative distortion in quantizingxn with anM -level scalar
quantizer, that is, let

D
�
n(x

n) = min
Q2Q

1

n

n

i=1

(xi �Q(xi))
2
:

Note that to find aQ 2 Q achievingD�n(x
n) one has to know the en-

tire sequencexn in advance. The next theorem asserts that there exists
a zero-delay sequential source code of rateR which, for any bounded

input sequence, performs asymptotically as well as the best scalar quan-
tizer of rateR matched to the entire sequence.

Theorem 1: For any R = logM there exists a randomized
zero-delay sequential source codeffi; gig1i=1 of rate R whose
expected normalized cumulative distortionDn(x

n) satisfies, for all
xn 2 [0; 1]n

Dn(x
n)�D

�
n(x

n) � Cn
�1=5 logn (1)

whereC is a constant independent ofn andxn1 . In particular

lim sup
n!1

max
x 2[0;1]

Dn(x
n)�D

�
n(x

n) � 0:

Remarks:

a) Theorem 1 considers the expectation of the normalized cumula-
tive distortionDn(x

n), where the expectation is taken over the
randomizing sequenceUn = (U1; . . . ; Un). However, bounds
concerning the sample behavior ofDn(x

n) can also be derived
if it is additionally assumed thatU1; U2; . . . is a sequence of in-
dependent random variables. This problem is discussed in more
detail in Section III where Corollary 1 shows that, for indepen-
dent randomization, the cumulative distortion satisfies

lim sup
n!1

Dn(x
n)�D�n(x

n)

n�1=5 logn
� C; almost surely.

b) The storage and computational complexity of the scheme in
Theorem 1 is roughly determined by the cardinality of a set of
weights that must be stored and periodically updated at both
the encoder and the decoder (see the proof of Proposition 1). In
the present scheme, the number of these weights is proportional
to nM=5, wheren is the length of the sequence to be encoded
andM is the number of channel symbols. This may make the
scheme prohibitively complex in practice for even moderate
values ofM . It is an interesting open problem to find a modi-
fication of the scheme where the complexity does not increase
exponentially with the number of channel symbols.

To prove Theorem 1, we first consider the case of sequential coding
of sequences of a fixed finite length.

Proposition 1: For any~n � 1 andR = logM there exists a ran-
domized zero-delay sequential source codeff

(~n)
i ; g

(~n)
i g~ni=1 of rateR

for coding sequences of length~n such that for alln � ~n and for all
xn 2 [0; 1]n

nDn(x
n) � nD

�
n(x

n) + c~n4=5 log ~n (2)

wherec is a positive constant which does not depend on~n.

Proposition 1 demonstrates the existence of a zero-delay scheme for
sequentially coding sequences of lengthn which is asymptotically (for
largen) efficient. To see this, letn = ~n in Proposition 1. Then for any
n � 1 there exists a sequential code for sequences of lengthn such
that for anyxn 2 [0; 1]n

Dn(x
n) � D

�
n(x

n) + cn
�1=5 logn: (3)

Note that codes achieving (3) depend on the lengthn of the sequence
to be encoded and, therefore, Proposition 1 does not directly imply the
existence of a single sequential codeffi; gig1i=1 capable of coding
sequences of arbitrary length and achieving (1). The following proof
exhibits a simple construction of a sequential codeffi; gig

1
i=1 which

satisfies Theorem 1 using the finite-length codes of Proposition 1. The
proof is inspired by a similar trick in [9].
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Proof of Theorem 1:For anyi = 1; 2; . . . ; let l be the non-
negative integer that satisfies2l � i < 2l+1. Now use the codes
ff

(~n)
i ; g

(~n)
i g~ni=1 of Proposition 1 with~n = 2l to definefi andgi by

yi = fi xi; Ui = f
(2 )

i�2 +1
xi2 ; Ui

and

x̂i = gi yi; Ui = g
(2 )

i�2 +1
yi2 ; Ui :

That is, forl = 0; 1; . . ., the segments

x2 �1
2

= (x2 ; . . . ; x2 �1)

are independently encoded using the codeff
(2 )
i ; g

(2 )
i g2i=1. The re-

sulting sequenceffi; gig1i=1 is clearly a sequential code in the sense
of Theorem 1.

To bound the cumulative distortion, for any1 � j � k, we let

D(xkj ) = E

k

i=j

(xi � x̂i)
2

and also define

D�(xkj ) = min
Q2Q

k

i=j

(xi �Q(xi))
2:

Note that for allj < k0 � k, one has

D�(xk �1j ) +D�(xkk ) � D�(xkj ):

Therefore, Proposition 1 implies that for alln such that2m � n <
2m+1

nDn(x
n) =

m�1

l=0

D x2 �1
2

+D(xn2 )

�

m�1

l=0

D� x2 �1
2

+ c 2l
4=5

log 2l

+D�(xn2 ) + c(2m)
4=5

log 2m

�D�(xn) +

m

l=0

c 2l
4=5

log 2l

�D�(xn) + c log 2m
m

l=0

2l
4=5

=nD�
n(x

n) + c log 2m
2(m+1) � 1

2 � 1

�nD�
n(x

n) + Cn4=5 logn

whereC = c24=5=(24=5 � 1) � 2:35c. We conclude that for all
n � 1 andxn 2 [0; 1]n, the normalized cumulative distortion of the
sequential scheme is upper-bounded as

Dn(x
n) � D�

n(x
n) + Cn�1=5 logn

which proves Theorem 1.

Proof of Proposition 1: Let QN = fQ1; . . . ; QNg be a fixed
but arbitrary collection ofM -level nearest neighbor scalar quantizers
such that the codepoints of eachQj are inside[0; 1]. Fix x~n 2 [0; 1]~n,
and forn = 1; . . . ; ~n, let

Lnj =

n

i=1

(xi �Qj(xi))
2

and setL0
j = 0. To simplify the description of the code, let us first

construct a hypothetical coding scheme in which both the encoder and
decoder have access to the valuesLnj , j = 1; . . . ; N , at each time
instantn. The hypothetical scheme uses the well-known exponential
weighting method of sequential prediction, (see, e.g., Vovk [7], Little-
stone and Warmuth [10], and Cesa-Bianchiet al. [9]). Let � > 0 be
fixed and forn = 1; . . . ; ~n, define the weights

�nj =
e
��L

N

m=1

e��L

(note that N
j=1 �

n
j = 1). At time n, the encoder uses the random

numberUn and the weights�nj to generate the random indexJn 2
f1; . . . ; Ng with distribution

PrfJn = jg = �nj ; j = 1; . . . ; N:

Then the encoder picks the quantizerQJ to encodexn and transmits
the channel symbol representing the quantizer outputQJ (xn). After
receiving this channel symbol, the decoder outputsQJ (xn) (note that
since the decoder has access toUn and the�nj , it can also generateJn).

The expected normalized cumulative distortion of the hypothetical
scheme (denoted bydn(xn)) is given by

dn(x
n) =

1

n

n

i=1

E(xi �QJ (xi))
2

=
1

n

n

i=1

N

j=1

(xi �QJ (xi))
2 PrfJi = jg

=
1

n

n

i=1

N

j=1

�ij(xi �Qj(xi))
2: (4)

In the Appendix, we show that for alln � 1

ndn(x
n) � min

1�j�N
Lnj +

lnN

�
+
n�

8
: (5)

Moreover, a simple argument presented in Lemma 2 in the Appendix
shows that for eachN � 2, there exists a collection ofM -level nearest
neighbor quantizersQN = fQ1; . . . ; QNg, supported in[0; 1], such
that for allxn 2 [0; 1]n

min
Q2Q

n

i=1

(xi �Q(xi))
2

� min
Q2Q

n

i=1

(xi �Q(xi))
2 + n

1

N1=M � 1
: (6)

Using thisQN in the definition of the hypothetical scheme, we can
rewrite (5) as

ndn(x
n) � nD�

n(x
n) + n

1

N1=M � 1
+

lnN

�
+
n�

8
: (7)

Construction of Sequential Scheme:The bound (7) implies that�
andN can be chosen (as functions of~n) such that the cumulative dis-
tortion of the hypothetical scheme satisfies

ndn(x
n) � nD�

n(x
n) +O ~n1=2 log ~n :

To achieve this, however, the hypothetical scheme has to transmit the
values ofLij , j = 1; . . . ; N at all time instantsi, which requires an
additional channel of infinite capacity between the encoder and the de-
coder. The basic idea for constructing a sequential scheme of true rate
logM is to periodically transmit approximate (quantized) versions of
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the cumulative quantizer lossesLij and to use these approximations to
form the approximate weightŝ�ij at the decoder. We show that using
only a small fraction of the overall available rate to transmit the quan-
tized cumulative distortions, thê�ij will sufficiently well approximate
the�ij so that the difference between the distortionDn(x

n) of the re-
sulting sequential scheme and the distortiondn(x

n) of the hypothetical
scheme becomes negligible for largen.

To describe the scheme, letfnl; l = 1; 2; . . .g be a strictly in-
creasing sequence of positive integers such thatn1 = 1. LetK � 1 be
a fixed integer and letqK denote theK-level uniform quantizer over
[0; 1]. Introduce1

bl = dK logM nle:

For any l � 1, if bl < nl+1 � nl, then in the time intervali =
nl; . . . ; nl+1 � 1, the encoder transmits losslessly the values of~xr =
qK(xr), r = 1; . . . ; nl�1, using the firstbl of the availablenl+1�nl
channel uses. (Note that this is possible since the number of different
ways of partitioningnl�1 points intoK cells is not greater thannKl .)
In these time instants (fori = nl; . . . ; nl + bl � 1) the decoder’s
output is set to a constant value (sayx̂i = 1=2). In the remaining time
instantsi = nl + bl�1; . . . ; nl+1 � 1, the encoder forms the approx-
imate weights

�̂ij =
e
��L̂

N

m=1

e��L̂
; j = 1; . . . ; N (8)

where

L̂ij =

n �1

r=1

(~xr�Qj(~xr))
2; j = 1; . . . ; N; i = nl; . . . ; nl+1�1:

(Note that for fixedj, the approximate weight̂�ij is constant for
i = nl + bl�1; . . . ; nl+1 � 1.) UsingUi, the encoder then generates
the random index̂Ji with distributionPrfĴi = jg = �̂ij , picksQĴ

to quantizexi, and transmits the channel symbol for the quantizer
outputQĴ (xi). Observe that at the same time instants, the decoder
has already access to allx̂r , r = 1; . . . ; nl � 1, and thus it can simul-
taneously calculatê�ij for j = 1; . . . ; N , andi = nl; . . . ; nl+1 � 1.
Using Ui and the received channel symbol, the decoder can output
x̂i = QĴ (xi).

If nl+1 � nl � bl for somel, then the encoder is defined to be in an
idle state in the time segmenti = nl; . . . ; nl+1 � 1 and the decoder
outputs some preset constant value (sayx̂i = 1=2).

Analysis of Distortion: For i = nl; . . . ; nl+1 � 1 such that
nl+1 � nl � bl, we have(xi � x̂i)

2 � 1. If nl+1 � nl > bl, then
(xi � x̂i)

2 � 1 for i = nl; . . . ; nl + bl � 1. On the other hand, for
i = nl + bl; . . . ; nl+1 � 1, we have

E(xi � x̂i)
2 =

N

j=1

(xi �Qj(xi))
2 Pr Ĵi = j

=

N

j=1

�̂ij(xi �Qj(xi))
2:

Fix n � ~n and consider the cumulative distortion at timen. Extending
the definition (8) of the approximate weights to alli=nl; . . . ; nl+1�1;
we can now upper-bound the expected cumulative distortion as

nDn(x
n) =

n

i=1

E(xi � x̂i)
2

�

n

i=1

N

j=1

�̂ij(xi �Qj(xi))
2 +

S

l=1

bl (9)

1dte denotes the smallest integer not less thant, andbtc denotes the largest
integer not greater thant.

whereSn = maxfl: nl � ng. First, we give an upper bound for
the first term of the right-hand side of (9) in terms of the cumulative
distortion of the hypothetical scheme. Since(Qj(x)� x)2 � 1 for j
andx 2 [0; 1], (4) implies
n

i=1

N

j=1

�̂ij(xi �Qj(xi))
2 � ndn(x

n) �

n

i=1

N

j=1

�̂ij � �ij : (10)

Since

�̂ij =
e
��L̂

N

m=1

e��L̂
and �ij =

e
��L

N

m=1

e��L

Lemma 3 in the Appendix implies that
N

j=1

�̂ij � �ij � 2� max
1�j�N

L̂i�1j � Li�1j :

Now it is easy to see that for any nearest neighbor quantizerQ sup-
ported in[0; 1] and anyx; ~x 2 [0; 1], we have

(x�Q(x))2 � (~x�Q(~x))2 � 2jx� ~xj:

This implies that for alli = nl; . . . ; nl+1 � 1 and allj = 1; . . . ; N

L̂ij � Lij =

n �1

r=1

(~xr �Qj(~xr))
2 �

i

r=1

(xr �Qj(xr))
2

� 2

n �1

r=1

j~xr � xrj +

i

r=n

(xr �Qj(xr))
2

�
(nl � 1)

K
+ (nl+1 � nl)

where the second inequality follows since

jxr � ~xrj = jxr � qK(xr)j � 1=(2K):

Summarizing these bounds, we obtain

nDn(x
n)� ndn(x

n)

�

S

l=1

bl + 2�

S

l=1

(nl+1 � nl)
nl � 1

K
+ (nl+1 � nl) : (11)

Combining this with the bound (7) on the cumulative distortion of the
hypothetical scheme, for alln � ~n we obtain

nDn(x
n)� nD�

n(x
n)

= nDn(x
n)� ndn(x

n) + ndn(x
n)� nD�

n(x
n)

� n
1

N1=M � 1
+

lnN

�
+
n�

8
+

S

l=1

bl

+ 2�

S

l=1

(nl+1 � nl)
nl � 1

K
+ (nl+1 � nl) :

It only remains to choose the parameters�, N , K, and the sequence
fnlg appropriately. We do this by settingnl = blac for somea > 1
which allows us to approximately optimize the upper bound by an ap-
propriate choice of the constanta. In this case, we haveSn � n1=a

and (ignoring the constants) the upper bound has the form

n

N1=M
+

lnN

�
+ n� +Kn1=a logn+

�n2

K
+ �n2�1=a:

Straightforward calculation reveals that ignoring logarithmic and con-
stant factors, the choice that approximately minimizes this upper bound
is a = 5=2, � � ~n�4=5, K � ~n2=5. The number of reference quan-
tizersN must be such thatN1=M is bounded by a polynomial of~n and
its order is at least~n1=5. Computationally, it may be advantageous to
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chooseN as small as possible (i.e., lettingN � ~nM=5). Resubstituting
these values into the upper bound above gives the desired result.

III. REMARKS ON COMMON RANDOMIZATION

The proposed quantization scheme has an obvious weakness: it re-
quires that the same sequence of uniform random variablesU1; U2; . . .
be available at both the encoder and the decoder. This assumption is not
uncommon in universal quantization of probabilistic sources (see the
works of Ziv [11] and Zamir and Feder [12]) where theUi sequence
represents “subtractive dither.” In practice, these may be replaced by a
pseudorandom sequence generated at both the sender and receiver side.

Observe that the only requirement forU1; U2; . . . is that their dis-
tribution should be uniform. No assumption on the joint distribution
of these variables is necessary for Theorem 1. In an extreme case, as
in [11], one may even takeU1 = U2 = � � �, that is, use thesame
variable at each time instance. This has no effect on the expected be-
havior of the distortion. On the other hand, using the same random-
izing variable at all time instants hides a danger of instability, as the
true (random) distortionDn(x

n) may be far from its expected value
Dn(x

n) = EDn(x
n). The next fact shows that one may avoid insta-

bility by using an independent randomizing sequence.

Lemma 1: If U1; U2; . . . are independent and uniformly distributed
over [0; 1], then the distortionDn(x

n) of the quantization scheme of
Theorem 1 satisfies, for allt > 0

Pr Dn(x
n)�Dn(x

n) > t � 2e�2nt :

In particular, by the Borel–Cantelli lemma, combining Lemma 1
with Theorem 1 yields the following.

Corollary 1: Assume that a sequence of independent uniform
random variables is available at both the encoder and the decoder.
Then there exists a randomized zero-delay sequential source code
ffi; gig

1
i=1 of rate R whose normalized cumulative distortion

Dn(x
n) satisfies, for allfxig1i=1 such thatxi 2 [0; 1] for all i

lim sup
n!1

Dn(x
n)�D�n(x

n)

n�1=5 logn
� C; almost surely (12)

whereC is the same constant as in Theorem 1.

Proof of Lemma 1:Recall from the proof of Proposition 1 that
for all n

Dn(x
n)�Dn(x

n)

�
1

n

n

i=1

xi �QĴ (xi)
2

� E xi �QĴ (xi)
2

where the random variablêJi is a function ofUi and the approximate
weights�̂ij , j = 1; . . . ; N . Since the approximate weights are deter-
ministic (i.e., their values do not depend on the sequenceU1; U2; . . .,
see (8)), the expression on the right-hand side is an average ofn in-
dependent random variables. Now recall Hoeffding’s inequality [13]
which states that ifSn = n

i=1Xi, whereX1; . . . ; Xn are indepen-
dent random variables such thatXi 2 [a; b] with probability one, then

Prfn�1jSn � E(Sn)j > tg � 2e�2nt =(b�a) ; for all t > 0:

LettingXi = (xi �QĴ (xi))
2 and[a; b] = [0; 1] yields the claim of

the lemma.

APPENDIX

Proof of (5): Distortion of Hypothetical Scheme:Using a stan-
dard technique (see, e.g., Cesa-Bianchi [14]) to upper-bounddn(x

n),

we defineWn = N
j=1 e

��L . Then, sinceW1 = N , on the one
hand, we have

ln
Wn+1

W1
= ln

N

j=1

e��L � lnN

� ln max
1�j�N

e��L � lnN

= � � min
1�j�N

Lnj � lnN: (13)

On the other hand, recalling that by Hoeffding’s inequality [13], for
any random variableX 2 [0; 1] ands 2 , E(esX) � esE(X)+s =8

ln
Wn+1

W1
=

n

i=1

ln
Wi+1

Wi

=

n

i=1

ln

N

j=1

e��L

N

j=1

e
��L

=

n

i=1

ln

N

j=1

e��(x �Q (x )) e
��L

N

j=1

e
��L

=

n

i=1

ln

N

j=1

�ije
��(x �Q (x ))

�

n

i=1

ln e
�� � (x �Q (x )) +� =8

(by Hoeffding's inequality)

= � �

n

i=1

N

j=1

�ij(xi �Qj(xi))
2 +

n�2

8

= � �ndn(x
n) +

n�2

8
:

Combining the preceding bound with (13) yields

ndn(x
n) � min

1�j�N
Lnj +

lnN

�
+
n�

8
:

Lemma 2: LetQ denote the family of allM -level nearest neighbor
scalar quantizers whose codepoints are all inside[0; 1]. Then, for any
N � 2, there exists a collection ofN scalar quantizers

QN = fQ1; . . . ; QNg � Q

such that for allxn 2 [0; 1]

min
Q2Q

n

i=1

(xi �Q(xi))
2�min

Q2Q

n

i=1

(xi�Q(xi))
2+n

1

N1=M�1
:

Proof: The statement of the lemma will follow if we can con-
struct aQ0 � Q with cardinalityjQ0j � N such that for anyQ 2 Q
there is aQ0 2 Q0 satisfying

max
x2[0;1]

(x�Q(x))2 � (x�Q0(x))2 �
1

N1=M � 1
:

Toward this end, letk = bN1=Mc and defineQ(k) as the family of
nearest neighbor quantizers withM or less codepoints which all belong
to the set

C(k) = f1=(2k); 3=(2k); . . . ; (2k� 1)=(2k)g:

Since for anyy 2 [0; 1] there is ay0 2 C(k) with jy� y0j � 1=(2k), it
is easy to see that for anyM -level nearest neighbor quantizerQ with
codepoints inside[0; 1] there is aQ0 2 Q(k) with

max
x2[0;1]

(x�Q(x))2 � (x�Q0(x))2 �
1

k
:

SincejQ(k)j � kM � N , the lemma follows.
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Lemma 3: Let � > 0, and for anyv = (v1; . . . ; vN) 2 N and
j = 1; . . . ; N , define

�j(v) =
e��v

N

k=1

e��v
:

Then, for anyv; v̂ 2 N ,
N

j=1

j�j(v̂)� �j(v)j � 2� max
1�j�N

jv̂j � vj j:

Proof: For� 2 [0; 1], let hj(�) = �j(v + �(v̂ � v)) and let
h0j(�) denote the derivative ofhj(�). Then, by the mean value theorem
of differentiation, for some~� 2 (0; 1) we have

�j(v̂)� �(v) = hj(1)� hj(0) = h
0
j(~�):

Now

h
0
j(~�) =

N

i=1

@�j

@vi
(v + ~�(v̂ � v))(v̂i � vi)

where

@�j

@vi
=

���j(1� �j); i = j

���j�i; i 6= j.

Therefore, by letting~�j = �j(v + ~�(v̂ � v)) and using the fact that
N
j=1

~�j = 1, we obtain

j�j(v̂)� �j(v)j = �~�j (1� ~�j)(v̂j � vj) +
i6=j

~�i(v̂i � vi)

� �~�j2(1� ~�j) max
1�j�N

jv̂j � vj j

� 2�~�j max
1�j�N

jv̂j � vj j

which implies the lemma.
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On Quantization With the Weaire–Phelan Partition

Navin Kashyap, Student Member, IEEE,and
David L. Neuhoff, Fellow, IEEE

Abstract—Until recently, the solution to the Kelvin problem of finding
a partition of into equal-volume cells with the least surface area was
believed to be tessellation by the truncated octahedron. In 1994, D. Weaire
and R. Phelan described a partition that outperformed the truncated oc-
tahedron partition in this respect. This raises the question of whether the
Weaire–Phelan (WP) partition can outperform the truncated octahedron
partition in terms of normalized moment of inertia (NMI), thus providing a
counterexample to Gersho’s conjecture that the truncated octahedron par-
tition has the least NMI among all partitions of . In this correspondence,
we show that the effective NMI of the WP partition is larger than that of
the truncated octahedron partition. We also show that if the WP partition
is used as the partition of a three-dimensional (3-D) vector quantizer (VQ),
with the corresponding codebook consisting of the centroids of the cells,
then the resulting quantization error is white. We then show that the effec-
tive NMI of the WP partition cannot be reduced by passing it through an
invertible linear transformation. Another contribution of this correspon-
dence is a proof of the fact that the quantization error corresponding to an
optimal periodic partition is white, which generalizes a result of Zamir and
Feder.

Index Terms—Gersho’s conjecture, normalized moment of inertia
(NMI), periodic partition, quantization error.

I. INTRODUCTION

Consider a source uniformly distributed over a large ballB in
RRRk, centered at the origin. Suppose that this source is quantized
using ak-dimensional vector quantizer (VQ) specified by a parti-
tion S = fS1; S2; . . . ; SNg of B, and corresponding codebook
C = fccc1; ccc2; . . . ; cccNg of points inRRRk. Let Vi denote the volume of
the cellSi, so thatvol (B) = N

i=1 Vi, and let

M(Si; ccci) =
S

kxxx� cccik
2
dxxx

denote the moment of inertia (MI) of the cellSi about the pointccci.
The mean-squared error (MSE) or distortion, per dimension, of this
quantizer is then given by

D =
1

k

N

i=1 S

kxxx� cccik
2 1

vol(B)
dxxx

=
1

k

N

i=1

M(Si; ccci)

N

i=1

Vi

=
1

k

1

N

N

i=1

M(Si; ccci)

1

N

N

i=1

Vi

1+2=k

vol(B)

N

2=k

=m(S; C)
vol(B)

N

2=k

: (1)
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