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Empirical Quantizer Design in the Presence
of Source Noise or Channel Noise

Tamás Linder,Member, IEEE, Gábor Lugosi, and Kenneth Zeger,Senior Member, IEEE

Abstract—The problem of vector quantizer empirical design
for noisy channels or for noisy sources is studied. It is shown
that the average squared distortion of a vector quantizer designed
optimally from observing clean independent and identically dis-
tributed (i.i.d.) training vectors converges in expectation, as the
training set size grows, to the minimum possible mean-squared
error obtainable for quantizing the clean source and transmitting
across a discrete memoryless noisy channel. Similarly, it is shown
that if the source is corrupted by additive noise, then the average
squared distortion of a vector quantizer designed optimally from
observing i.i.d. noisy training vectors converges in expectation,
as the training set size grows, to the minimum possible mean-
squared error obtainable for quantizing the noisy source and
transmitting across a noiseless channel. Rates of convergence are
also provided.

Index Terms—Empirical vector quantizer design, lossy source
coding, training sets, convergence rates, channel noise.

I. INTRODUCTION

T HE design of quantizers has been studied over the last
four decades from various perspectives. On the practical

side, the Lloyd–Max [1], [2] algorithm provides an efficient
iterative method of designing locally optimal quantizers from
known source statistics or from training samples. The general-
ized Lloyd algorithm [3], [4] similarly is useful for designing
vector quantizers. A theoretical problem motivated by practice
is the question of consistency: if the observed training set size
is large enough, can one expect a performance nearly as good
as in the case of known source statistics? The consistency
of design based on global minimization of the empirical
distortion was established with various levels of generality
by Pollard [5], Abaya and Wise [6], and Sabin [7]. The finite
sample performance was also analyzed by Pollard [8], Linder,
Lugosi, and Zeger [9], and Chou [10]. The consistency of the
generalized Lloyd algorithm was also established by Sabin [7]
and Sabin and Gray [11]. An interesting interpretation of the
quantizer design problem was given by Merhav and Ziv [12],
who obtained lower bounds on the amount of side information
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a quantizer design algorithm needs to perform nearly optimally
for all sources.

Less is known about the more general situation when the
quantized source is to be transmitted through a noisy channel
(joint source and channel coding), or when the source is
corrupted by noise prior to quantization (quantization of a
noisy source). In the noisy channel case, theoretical research
has mostly concentrated on the questions of optimal rate-
distortion performance in the limit of large block length either
for separate [13], or joint [14] source and channel coding, as
well as for high-resolution source-channel coding [15], [16].
Practical algorithms have also been proposed to iteratively
design (locally) optimal source and channel coding schemes
[17], [18].

For the noisy source quantization problem, the optimal
rate-distortion performance was analyzed by Dobrushin and
Tsybakov [19] and Berger [20]. The structure of the optimal
noisy source quantizer for squared distortion was studied
by Fine [21], Sakrison [22], and Wolf and Ziv [23]. The
framework of these works also included transmission through a
noisy channel. Properties of optimal noisy source quantizers as
well as a treatment of Gaussian sources corrupted by additive
independent Gaussian noise were given by Ayanoglu [24].
A Lloyd–Max-type iterative design algorithm was given by
Ephraim and Gray [25] for the design of vector quantizers
for noisy sources. A design approach based on deterministic
annealing was reported by Raoet al. [26]. No consistency
results have yet been proved for empirical design of noisy
channel or noisy source vector quantizers.

In empirical design of standard vector quantizers one can
observe a finite number of independent samples of the source
vector. The procedure chooses the quantizer which minimizes
the average distortion over this data. One is interested in the
expected distortion of the designed quantizer when it is used
on a source which is independent of the training data. An
empirical design procedure is calledconsistentif the expected
distortion of the empirical quantizer approaches the distortion
of the quantizer which is optimal for the source, as the size of
the training data increases. If consistency is established, one
can investigate the rate of convergence of the algorithm, i.e.,
how fast the expected distortion of the empirically optimal
quantizer approaches the optimal distortion. Tight conver-
gence rates have practical significance, since consistency alone
gives no indication of the relationship between the resulting
distortion and the size of the training data.

In this paper, we investigate the consistency of vector
quantizers obtained by global empirical error minimization
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for noisy channels and noisy sources. In both cases, the
notion of empirical (sample) distortion is not as simple as
in standard vector quantizer design. For noisy channels, the
channel transition probabilities are assumed to be known,
and the empirical distortion is defined as the expected value
of the distortion between a source symbol and its random
reproduction, where the expectation is taken with respect to
the channel. For sources corrupted by noise, the density of the
noise is assumed to be known and the estimation-quantization
structure (see, e.g., [23]) of the optimal quantizer is used. Here
the sample distortion has no unique counterpart. Although
a modified distortion measure can be introduced [25] which
converts the problem into a standard quantization problem,
this modified measure cannot directly be used since it is a
function of the unknown source statistics. The main difficulty
lies in the fact that, in general, the encoding regions of a
noisy source vector quantizer need not be either convex or
connected. Thus the set of quantizers to be considered in the
minimization procedure is more complex than in the clean
source or noisy channel case.

In this paper, Section II gives the necessary definitions
for noisy channel and noisy source quantization problems.
In Section III, consistency of the empirical design for noisy
channel quantization is established. In particular, Theorem
1 proves that the expected squared error distortion of the
quantizer minimizing the appropriately defined empirical dis-
tortion over training vectors is within
of the distortion of the quantizer which is optimal for the
given source and channel. This is the same rate as that
obtained in [9] for the standard vector quantizer problem. In
Section IV, empirical design for sources corrupted by additive
noise is considered. A method is presented which combines
nonparametric estimation with empirical error minimization.
Theorem 2 proves that if the conditional mean of the clean
source given the noisy source can be consistently estimated,
then the method is consistent. Based on this result, Corollary
1 establishes the consistency of empirical design for additive,
independent noise. We conjecture that the noisy source design
problem is likely to be more difficult than the noisy channel
quantizer design problem, when only noisy source samples
are available. In Theorem 3 it is shown that consistency and
convergence rates can be obtained under much more general
conditions on the noise, if training samples from the clean
source are also available.

II. PRELIMINARIES

A. Vector Quantizers for Noisy Channels

An -level noisy-channel vector quantizeris defined via
two mappings. Theencoder maps into the finite set

, and thedecoder maps onto
the set of codewords by the rule

, for . The rate of the quantizer is
bits per source symbol. The quantizer takes an

-valued random vector as its input, and produces the
index . The index is then transmitted through
a noisy channel, and the decoder receives the index

, a random variable whose conditional distribution
given is

where the are the channel transition probabilities. The
channel is assumed to be discrete withinput and output
symbols, with known transition probabilities, and the channel
is assumed to work independently of the source. The output
of the quantizer is

and the joint distribution of is determined by the
source distribution and the conditional distribution

We will use the notation as for an ordinary
vector quantizer, but now is not a deterministic mapping.
The performance of will be measured by the mean-squared
distortion , where denotes the Euclidean
norm of the vector . The quantizer distortion can be written as

(1)

where the encoding regions , for
completely determine the encoder . It is

obvious from (1) that given the decoder , the encoder
regions

determine an encoder (with ties broken arbitrarily) which mini-
mizes the distortion over all encoders. The above encoding rule
is sometimes called theweighted nearest neighbor condition
(see, e.g., [14], [17], [27], [28]). Note that some of the
may be empty in an optimal noisy channel vector quantizer
(in contrast to the noiseless channel case).

Assuming that , there always exists an -
level quantizer minimizing the distortion over all -level
quantizers. This is easily seen by adapting an argument for
deterministic quantizers by Pollard [5]. Let us denote the
distortion of such an optimal quantizer by
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where the minimum is taken over all (-level) encoders and
decoders operating on the fixed channel and source. Thus

depends on , the source statistics, and on the channel
transition probabilities, which we will assume to be fixed and
known throughout this paper.

B. Vector Quantizers for Noisy Sources

Assume that is the noisy version of the source. can
be viewed as the output of a channel whose input is. The
noisy source is to be quantized by an -level quantizer
such that the mean-squared distortion

is as small as possible. In this problem, an-level quantizer
is characterized by its codevectors

and the measurable sets ,
, calledencoding regions. As was noted in several

papers dealing with this problem (see, e.g., [19], [21]–[23]),
the structure of the optimal -level quantizer can be obtained
via a useful decomposition. Let denote a
version of the conditional expectation . Then

(2)

where the cross term disappears after taking iterated expec-
tations, first conditioned on . Thus to minimize

, the quantizer has to minimize .
If the codevectors are given, then the encoding
regions minimizing the distortion must satisfy

for if (3)

This means that for any

where is an ordinarynearest neighborquantizer which has
the same codevectors as. Thus by (2) we have

where the second infimum is taken over all-level nearest
neighbor quantizers . Since , it
follows from, e.g., Pollard [5] that an optimal quantizer

exists. Therefore, the quantizer minimizing
is obtained by first transforming by and then

quantizing by a nearest neighbor quantizer , that is,

Furthermore

(4)

III. EMPIRICAL DESIGN FORNOISY CHANNELS

In most applications one does not know the actual
source statistics, but instead can observe a sequence of
independent and identically distributed (i.i.d.) copies

of . These “training samples” induce
the empirical distribution which assigns probability to
every measurable according to the rule

where is the indicator function of the event of its argument.
When the source statistics are not known, one cannot directly
search for an optimal quantizer . Instead, one generally
attempts to minimize the empirical distortion, which is a func-
tional of rather than of the true source distribution. The
empirical distortion is the expected value (expectation
taken over the channel use) of the average distortion of the
quantizer when is quantized

(5)

The empirical distortion can be rewritten in the simple form

where is a function which depends on the
quantizer as

(6)

Note that the empirical distortion is a random variable, a
function of the training data . We remark here that by
using the function , the expected distortion of in (1) can
be rewritten as

Assume we design a quantizer based on the training data
by minimizing the empirical distortionover all possible quan-
tizers. This minimization can be carried out in principle, since
given and the channel transition probabilities, we can
calculate for any quantizer using weighted nearest
neighbor encoding.

Let be the quantizer minimizing ,

and let

where is independent of . Then is the average
distortion of the empirically optimal quantizer when it is
used on data independent of the training set. A fundamental
question is how close this distortion gets to the optimal
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as the size of the training data increases, and therefore as the
source statistics are more and more revealed by the empirical
distribution.

One goal in this paper is to investigate how fast the
difference between the expected distortion of the empirically
optimal quantizer and the optimal distortion

decreases as the training set sizeincreases. An upper bound
on this difference, converging to zero as , is given
which indicates how large the training set size should be so
that the designed quantizer has a distortion near the optimum.

In what follows we assume that the source is bounded
almost surely (a.s.), so that for some

. With this assumption we have the following theorem.
Theorem 1: Assume that a source is bounded

as for some , and let
, where the are i.i.d. copies of . Sup-

pose an -level noisy channel vector quantizer is
designed by using empirical distortion minimization over the
training set . Then the average distortion of this quantizer
is bounded above as

where is the distortion of the -level quantizer that is
optimal for the source and the channel, and .

Proof: The proof of the theorem is based on a technique
often used in the statistical and learning theory literature (see,
e.g., [29]). First we note that the condition
a.s. implies that both (the globally optimal quantizer)
and (the empirically optimal quantizer) must have
codevectors lying inside the sphere of radius centered at
the origin, since projecting any codevector outside this sphere
back to the surface of the sphere clearly reduces the distortion.
Let be a quantizer for the noisy channel and introduce the
notation

where is defined in (6). Let be the class of all func-
tions , where ranges through all -level noisy channel
quantizers whose codepoints lie inside the sphere

. These quantizers can be assumed to
use the weighted nearest neighbor encoding rule since both

and use such encoders. For a fixed arbitrary
, let be an -covering of , i.e., let be a set

of functions such that for each , there exists an

-level noisy channel quantizer with satisfying

Let be an arbitrary fixed optimal quantizer (i.e., has
codevectors and distortion ), and let denote a quantizer
such that satisfies

(7)

Then

a.s.

where in the inequality we used (7) and the fact that
is minimized by the empirically optimal quantizer. Thus we
have that

a.s. (8)

The right-hand side of the above inequality is a random
variable whose expectation gives an upper bound on

. To upper-bound this expectation
we will use Hoeffding’s [30] probability inequality which says
that if are i.i.d. real-valued random variables such
that for some and , then

(9)

Bounding the Cardinality of a Minimal-Covering: In order
to use the facts above, we derive an upper bound on the
cardinality of a minimal -covering of the class

, where is the set of all -level noisy channel vector
quantizers with weighted nearest neighbor encoders and whose
codevectors have norm at most . Since the all lie in
the sphere , the set of functions has a constant
envelope of . Let us assume now that we are given the
quantizers having codevectors and

, respectively, such that for some , we have
for all . For a given ,

assume without loss of generality that .
Setting

and

we have by the weighted nearest neighbor property that

(10)



616 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 43, NO. 2, MARCH 1997

If we consider a rectangular grid of widthin , then
for any there is a point on this grid such
that . Thus letting be the set of all noisy
channel quantizers which have all their codepoints on this grid
and which use weighted nearest neighbor encoding, we obtain
from (10) that for any there exists a such
that

This implies that is an -covering of
for . Letting denote the volume of

we thus obtain

With this we obtain from (8), the union bound, and Hoeffding’s
inequality that for any such that

(11)

This inequality holds for all . Choose .
The difference inside the probability on the left-hand side is
a.s. upper-bounded by . Using the simple bound

, valid for any and random variable
such that , we obtain

Finally, if we choose with constant
, then the second term on the right-hand side

of the above inequality is on the order of , and the proof
of the theorem is complete.

IV. EMPIRICAL DESIGN FORNOISY SOURCE

In the noisy source quantizer design problem we are given
the samples drawn independently from
the distribution of . We also assume that the conditional
distribution of the noisy source given is known (i.e., the
channel between and is known), and that

for some known constant . In this situation the
method of empirical distortion minimization cannot be applied
directly, since we only have the indirect (noisy) observations

about . However, the decomposition (4) sug-
gests the following method for noisy source quantizer design:

i) Split the data into two parts,

and (assume is even) and

estimate from the first half of
the samples and theknownconditional distribution

. The estimate is required
to be consistent:

as
(12)

Since the upper bound on is known we also
require that

(13)

ii) Using the second half of the training data define a new
set of training vectors

and consider a nearest neighbor quantizer minimiz-
ing the empirical distortion

(14)

Here the minimization is over all -level nearest neigh-
bor quantizers. The quantizer for the noisy source de-
signed from the noisy samples is then obtained from

and as

The following theorem gives an estimate for the difference
between the distortion of and the minimum achievable
distortion .

Theorem 2: Assume that a source is bounded as
for some and let

be i.i.d. samples of the noisy source. Suppose, furthermore,
that the conditional distribution of given , and the constant

are known, and that the estimator of
has error

and is bounded as

Then the -level quantizer designed in steps i) and ii)
above satisfies

where is the distortion of the optimal -level quantizer
for the noisy source problem, and .
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Additive Independent Noise:Before proving the theorem
we show how it can be applied to the special (but very
important) case when , where the noise is
independent of . Theorem 2 implies that if there exists an
consistent estimate of , then the quantizer design procedure
using this estimate will be consistent, i.e.,

Such consistent estimators exist, for example, when has
a density , has aboundeddensity , and the characteristic
function of is nonzero almost everywhere. To see this, we
use the following lemma (proved in the Appendix).

Lemma 1: Let be a random vector in ,
where and are independent absolutely continuous random
variables. Assume that the densityof is known, and its
characteristic function is nonzero for almost
all . Assume that i.i.d. copies of
are observed. Then for every densityof there exists an
estimator of such that

a.s.

Take in Lemma 1. The estimator in the lemma
integrates to one, but it may take negative values. Also, even
though has a bounded support, can have an unbounded
support since it is obtained by deconvolving a kernel density
estimate of the densityof . Let . Then

is a probability density with support contained in .
Moreover, by [31, pp. 12–13] we have

so that is also strongly consistent, and we can actually
use the notation instead of . Since

we have

for all such that . We define our estimate as

It is immediate that since

is a probability density in , with support contained in the
convex set , and thus . We also have

a.s. (15)

where . Thus

a.s. (16)

that is, is pointwise strongly consistent. Letting
we have by (15) and (16) that for all

and every ,

a.s.

since both and vanish outside . It follows that

a.s.

for almost every . Fubini’s theorem and the dominated
convergence theorem then imply that

The consistency of the design procedure now follows from
Theorem 2. Thus we have proved the following.

Corollary 1: Assume the conditions of Theorem 2 and
suppose , where is independent of and
has a bounded density whose characteristic function is almost
everywhere nonzero. Then there exists a bounded estimator

of such that

and the noisy source design procedure is consistent, i.e.,

Proof of Theorem 2:Using the same decomposition as in
(2), the distortion of can be written

(17)

Then, by the Cauchy–Schwarz inequality, one obtains

(18)
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where . Recall now that
depends only on the samples but is

independent of . With this in mind,
we introduce an auxiliary -level quantizer (used only in
the analysis) which minimizes the conditional distortion

Note that depends on . By defi-
nition, is an -level quantizer minimizing the empirical
distortion over the samples for

a given . This fact and the independence of , and
imply that for the conditional probability

can be upper-bounded using the same technique as in the
proof of Theorem 1. In fact, if the channel is made noiseless
by substituting the transition probabilities in
Theorem 1, then the quantizers there become ordinary nearest
neighbor quantizers. Since , for a fixed ,
the inequality (11) implies, after replacing by , that
for a.e. ,

(19)

Since the upper bound is independent of, it follows that

and one obtains in the same way as in Theorem 1 that

(20)

where .
Now recall that is an optimal nearest neighbor quantizer

for and that is an optimal nearest neighbor quan-
tizer for the conditional distribution of given .
Thus

where the first inequality holds because is optimal for the
distribution of given , and the second inequality
follows because is a nearest neighbor quantizer. Therefore,

In the last inequality the uniform boundedness ofand ,
and the triangle inequality were used. It follows that

Combining this with (18) and (20) gives

and since , one finally gets from (17) that

and the proof is complete.

V. EMPIRICAL DESIGN FROM CLEAN SOURCE SAMPLES

So far we have assumed that the training data consisted of
samples from the noisy source. In practice, it is often the case
that there might be samples available from the clean source. In
what follows this situation is explored and the consistency of
empirical design is proved. Moreover, it will be shown that, as
opposed to the case of empirical design from noisy samples,
in this case the convergence rate of is easily
achievable.

Assume that we are given as training data the i.i.d. samples
drawn from the distribution of the clean source

, and that the conditional distribution of given is
known. For the sake of concreteness suppose thathas
a conditional density given . Then is
estimated again using the first half of the samples and .
The empirical design of Theorem 2 can be used with the
modification that now is defined as

(21)

where the minimization is over all -level nearest neighbor
vector quantizers whose codepoints lie inside . The
following result states that the procedure is consistent in
general, and if satisfies some additional conditions, then
we can obtain the convergence rate .

Theorem 3: Assume that source is bounded as

and let be i.i.d. copies of . Suppose that
and the conditional density of , given , are known.
Then the quantizer is consistent, i.e.,
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where the estimator is

and

arg min

If, additionally, is uniformly bounded and is
almost surely bounded, then

where .
Proof: To prove the consistency of , we first show

that is consistent. Introduce the notation

and

(note that is the density of ). Then by the strong law of
large numbers, for every we have and

a.s. Thus for all such that ,
we obtain

a.s.

Since a.s., it follows that a.s. for
all . Then the dominated convergence theorem implies that

is consistent, i.e.,

(22)

To finish the consistency part of the theorem, we copy the
proof of Theorem 2 after redefining the training data as

and .
Clearly, one need only check that the defined in (21)
satisfies (19), i.e.,

(23)

This is seen by noticing that according to (21), the empirically
optimal has to minimize the functional

where is defined as

Let and be -level nearest neighbor vector quantizers
whose codevectors and lie inside

and satisfy for all . Since
, the nearest neighbor property implies that

and therefore,

Thus for fixed , the family of functions parame-
terized by has the same-covering as between (10)
and (11). It follows from Theorem 1 that of (21) satisfies
(23). The rest of the proof is identical to that of Theorem 2,
and we obtain that

(24)

where . Since by
(22), the consistency part of the theorem is proved.

To obtain the convergence rate it suffices to prove that

(25)

for some constant , since the boundedness of implies that
and thus

The term in (24) comes from the upper bound
on

in the proof of Theorem 3, and can be replaced by
. Substituting this and (25) in-

to (24) gives the stated convergence rate.
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Finally, the estimate (25) is proved. For all such that
we have

The expectation of the first term can be upper-bounded as

Var

for a constant , where the first inequality follows from
the fact that the a.s., and last inequality holds
because is uniformly bounded. For the second term,
we similarly have

for some constant . By the assumption on the distribution
of , outside some compact set, so that

for a constant , which proves (25).

VI. CONCLUSION

We have investigated the problem of empirical vector quan-
tizer design for noisy channels or noisy sources. The notion of
empirical distortion minimization was suitably defined for both
cases, and proofs of consistency of the methods were given.
For the noisy channel problem it was shown that the average
squared distortion of an optimal vector quantizer designed
from observing clean i.i.d. training vectors converges, in
expectation, as the training set size grows, to the minimum
possible mean-squared error obtainable for quantizing the
clean source and transmitting across a discrete memoryless
noisy channel. The convergence rate was also
obtained. The comparison of this rate with that obtained in
[9] for empirical design for ordinary vector quantizers shows
that noisy channel vector quantizer design is not a harder

problem from a statistical viewpoint. Consistency of an em-
pirical design method for sources corrupted by noise was also
proved under some regularity conditions. Determining a good
convergence rate is an open problem for the case when only
noisy training samples are available. The estimation problem
involved in the design indicates that, in general, this problem
is significantly harder than ordinary vector quantizer design.
When training samples from the clean source are available, we
can obtain the same convergence rate as for the standard vector
quantizer design problem or for the noisy channel problem
under mild conditions on the noise distribution.

The method of empirical distortion minimization (searching
for a quantizer globally optimal over the training samples)
is computationally prohibitive in practice. It is therefore of
practical significance to carry out analyses similar to what we
presented here for suboptimal, but computationally feasible
methods of design. Such an analysis of consistency was given
for the generalized Lloyd–Max algorithm in ordinary vector
quantizer design by Sabin and Gray [11]. An interesting area
of future research would be to provide convergence rates for
suboptimal algorithms for ordinary, as well as noisy channel
or noisy source vector quantizer design.

APPENDIX

PROOF OF LEMMA 1

The estimate with the required property is a-dimensional
extension of the estimator proposed by Devroye [33]. The
proof is based on [33], where convergence in expectation was
proved. First some notation is introduced. and

are the characteristic functions of and
, respectively, and the empirical characteristic function of

the data is denoted by

The estimator uses akernel function with
, such that its Fourier transform

satisfies and
if for some constant , where denotes
the -dimensional ball of radius centered at the origin. We
also define asmoothing parameter , a tail parameter

, and anoise-control parameter . All of these
parameters may change with the sample size. Introduce the
set , and let denote the real part of
the complex number. Our estimate is defined as follows:

if

if

We claim that this estimate satisfies the required consistency
property if the parameters vary with as follows:

(26)

(27)
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(28)

(29)

where denotes the Lebesgue measure.
To see why the estimate is consistent, we introduce the

notation and

Next define the auxiliary function

and write the decomposition

where denotes the volume of the unit ball in . It is now
shown that each of the four terms tends to zero as ,
almost surely.

Clearly by (26). Since and
by (27), we have by the well-known “approximation of the
identity” property of the family that
(see, e.g., [34, Theorem 9.6]). Also,

which converges to zero by (28). To show that , we
introduce the random variables

Then

(by Parseval’s identity)

constant

which converges to zero by (29). Summarizing, we have
proved that for every density

To prove convergence with probability one, recall a powerful
inequality of McDiarmid [35] (see also Devroye [36]). Accord-
ing to this inequality, if is an arbitrary function
satisfying the boundedness condition

then for any independent random variables

We apply this inequality to the -error

It suffices to obtain a good upper bound on the variability of
the -error if we replace by an arbitrary . Denote the
modified estimate by . Then (see (30) at the top of the
following page). Therefore, McDiarmid’s inequality implies
that

The upper bound is summable for every if

which is satisfied by (29). Thus by the Borel–Cantelli lemma,
with probability one. To complete the proof
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(by the Cauchy–Schwarz inequality)

(by Parseval’s identity)

constant (30)

of the lemma, it suffices to demonstrate the existence of the
parameters of the estimate satisfying the conditions (26)–(29).

For each positive integer, set and

To see that such an exists, note that since almost
everywhere, the continuity of the Lebesgue measure implies
that for any fixed , as . Let

for . For all ,
define and to be the same as their values for. Then as

, , and , and therefore (27) is satisfied.
Also, , and if , then

. Define

Then (so (26) is satisfied) and ,
so that (28) is satisfied. Finally, , which
implies (29).
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