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For sources with infinite ranges, several approaches have bee(l) There exists a sequence bfary truncated Huffman codes for
taken to construct optimal codes [3]-[7], but in each case somg which converges to an optimal code far.
condition on the tail of the probability mass function of the source () The average codeword lengths in any sequenceDséry
random variable was assumed. To the best of our knowledge thergrifacated Huffman codes converge to the minimum possible average
no known proof in the literature that optimal codes always exist figdeword length forX.
sources with infinite ranges. (I Any optimal D-ary prefix code forX must satisfy the Kraft

In this correspondence we present such a proof for sources V\mléquality with equality
finite entro_py. In particular, we sho_w that a subsequence of Huﬁman Proof: For eachn > 1, let C,, be aD-ary truncated Huffman
codes designed for truncated versions of the source random vamabl(eé1 . -
- . AP - - - code of sizen for X, and denote the sequencerotodeword lengths
X leads to an optimal infinite code fof. We provide an existence (ol db b
proof and cannot, however, specify which Huffman code subsequer%e n (followed by zeros) by
is needed. Still, this theorem does suggest that recursive Huffman
code construction algorithms might exist for any source, regardless of
how fast the tail of its probability mass function decays. We also show

that any sequence of truncated Huffman codes indeed converges dh 7 denote the set of all sequences of positive integers. For:gach
the average length sense, whereas only a subsequence is guaram%egverage lengtl:2, 15" of Huffman codeC:, is not larger

to converge in the code sense. _ _ than H(X,) + 1, where the entropy of,, is
If a source random variable has a finite range then an optimal binary

code satisfies Kraft's condition with equality, but not necessarily for n

D-ary codes wherD > 3. In contrast, our theorem also establishes H(X,)=- Zpg") 10gpg">

that for allD > 2 an optimalD-ary code for a source with an infinite i=1

range must satisfy the Kraft inequality with equality. 1 & 1
In [6] it was noted that an optimal code for a source with an infinite == 5. sz log p; — log 5.

range must have a full encoding tree. However, a full encoding tree =1

does not guarantee that Kraft's inequality is satisfied with equality.
A simple counterexample to demonstrate this fact for= 2 is

given next. For any4, B C {0,1}" let

I(n) = {lin)lén)ﬂ o 'JELn)-/O,ﬂOva o }

— H(X),

as n — oo

n
sinceS, = > p; — 1 asn — oco. Hence
=1

AB={ab€{0,1}": a € A,b € B}.
H(X,)+1<HX)+2
Forn > 0, let 7., = {0,1}" \ {0" }be the set of all-bit binary

words excluding the all-zeros word, and Ktdenote binary word for » sufficiently large. For each positive integer we have
concatenation. Define the prefix code

o/ k > pidi™ < (H(Xa)+1)Sn
C = <U <H Tn>0k“> U {00} i=1

k=2

={00,01000,10000,11000, - - -}

n=2

and, therefore,

and note that the Kraft sum fdf' is pil,f") <(HXR)+1)S, < H(X,)+1

[=S] k . . .
9=l(w) _ 1 < T,,,)O"“ 2_2§:+21i for all i. This implies that
o ek v S (H(X)+2)/pi
=ity =) ][e -1
k=2 n=2 for n sufficiently large.
<1y S o¥E pig—utili Thus for eachi, the sequence of codeword lengthg",1”,
4 = 153),---} is bounded and therefore the corresponding sequence of
oo codewords can only take on a finite set of possible values. Hence,
= Z 2~ (k+D) for eachi, there is a convergent subsequence of codewords. In fact,
k=1 every infinite indexed subset of this sequence of codewords has a
=1/2. convergent subsequence of codewords. We conclude (using a minor
modification of [8, Theorem 7.23]) that there exists a subsequence
Thus the Kraft inequality is strict in this case and it is easy to sed codesC,,,,C..,,Cn,.- -, that converges to an infinite code.

that the encoding tree of the codéis full.

II. MAIN RESULT

Clearly,C is a prefix code since it is a limit of finite Huffman codes.
Furthermore, the subsequengé"*'}, of elements ofF, converges
to a sequenceé= {i,,l»,---} € F, inthe sense that for eacte Z*,
the sequencég”’“) converges td;.

Theorem 1: Let X be a random variable with a countably infinite To show the optimality of, let A1, Aa, A3, - -+, be the codeword
set of possible outcomes and with finite entropy. Then for evelgngths of an arbitrary prefix code. For evérythere exists g > k
D >1, the following hold:

such thati; = 1" for everyi < k provided thatn > j. Thus for
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all m > j, the optimality of Huffman codes implies Dl <§foralli > k. Let j be an integer such that > I,.. Define
a collectiqn of integerg,, l2,--- such that/; = [, for all 7 # j and
such thatl; = ;. Then

k k
pOf = 37 ) = § ) )
;p ;p Zz

o Nom N S —I; — S =l _ p-l =l S =1; S
= Sk g 7 7 = Sk g 1 L 1= 1= 1=
Theref Thus the integerél,ig, -+ -, satisfy Kraft's inequality, so that there
eretore, exists a prefix code having them as codeword lengths. Sincd;,
such a prefix code will have a strictly smaller average codeword
o n o length for X than the optimal code whose codeword lengths are
i< 1) < i < i N me
Zp Z]] Zp Zp (1) l1,12,++-. This is a contradiction. O
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The sequence‘i;"zlp,;ll(") is thus an increasing sequence which is
bounded above b (X)+ 2 and has a limit. It follows from (1) that

Sopidi < lim ST pa"™ = dim 3 pal™. A New Bound for the Data Expansion of Huffman Codes
i—1 = e
Roberto De Prisco and Alfredo De Santis
Next by the optimality of Huffman codes

lim ip_](n) = lm S, Zp(,, ]( ) Abstr_acp—ln this correspondence, we prove that the maximum data
e 4 1ty s gxpansmné of Huffme_in codes is upper-bounded by < 1.39. This bou_nd
i=1 i=1 improves on the previous best known upper bound < 2. We also provide
n . some characterizations of the maximum data expansion of optimal codes.
<M&ZWE _ _
T n—oo = Index Terms—DPata expansion of optimal codes, Huffman codes, redun-
. - dancy of optimal codes, source coding.
=Y i
i=1
|. INTRODUCTION
Thus Huffman encoding is one of the most widely used compression
Lo techniques. LeF" be a data file of siz¢F'| over anN-ary source al-
lim pr")lﬁn) = lim n Z A = ZpL ;. phabet(a:, as, - -, axn). We assume that the original uncompressed
= ' "=l file F is encoded usinglog N bits per source letter. Huffman’s
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