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On Optimal Zero-Delay Coding
of Vector Markov Sources

Tamás Linder, Fellow, IEEE, and Serdar Yüksel Member, IEEE

Abstract— Optimal zero-delay coding (quantization) of a
vector-valued Markov source driven by a noise process is consid-
ered. Using a stochastic control problem formulation, the exis-
tence and structure of optimal quantization policies are studied.
For a finite-horizon problem with bounded per-stage distortion
measure, the existence of an optimal zero-delay quantization
policy is shown provided that the quantizers allowed are ones
with convex codecells. The bounded distortion assumption is
relaxed to cover cases that include the linear quadratic Gaussian
problem. For the infinite horizon problem and a stationary
Markov source, the optimality of deterministic Markov coding
policies is shown. The existence of optimal stationary Markov
quantization policies is also shown provided randomization that
is shared by the encoder and the decoder is allowed.

Index Terms— Real-time source coding, Markov source,
quantization, stochastic control, Markov decision processes.

I. INTRODUCTION

A. Zero-Delay Coding

WE CONSIDER a zero-delay (sequential) encoding
problem where a sensor encodes an observed informa-

tion source without delay. It is assumed that the information
source {xt }t≥0 is a time-homogenous R

d -valued discrete-time
Markov process. The initial distribution π0 (i.e., the distrib-
ution of x0) and the transition kernel P(dxt+1|xt) uniquely
determine the distribution of {xt}t≥0. In Assumption 1 below
we will make explicit assumptions about the transition kernel.

The encoder encodes (quantizes) the source samples and
transmits the encoded versions to a receiver over a dis-
crete noiseless channel with input and output alphabet
M := {1, 2, . . . , M}, where M is a positive integer. Formally,
the encoder is specified by a quantization policy �, which
is a sequence of Borel measurable functions {ηt }t≥0 with
ηt : Mt × (Rd)t+1 → M. At time t , the encoder transmits
the M-valued message

qt = ηt (It )

with I0 = x0, It = (q[0,t−1], x[0,t ]) for t ≥ 1, where we
have used the notation q[0,t−1] = (q0, . . . , qt−1) and x[0,t ] =
(x0, x1, . . . , xt ). The collection of all such zero-delay policies
is called the set of admissible quantization policies and is
denoted by �A.

Manuscript received January 30, 2014; revised August 3, 2014; accepted
August 5, 2014. Date of publication August 12, 2014; date of current version
September 11, 2014. This work was supported by the Natural Sciences and
Engineering Research Council of Canada. This paper was presented at the 51st
IEEE Conference on Decision and Control in 2012 and the 2013 Workshop
on Sequential and Adaptive Information Theory.

The authors are with the Department of Mathematics and Statistics, Queen’s
University, Kingston, ON K7L 3N6, Canada (e-mail: linder@mast.queensu.ca;
yuksel@mast.queensu.ca).

Communicated by J. Chen, Associate Editor for Shannon Theory.
Digital Object Identifier 10.1109/TIT.2014.2346780

Observe that for fixed q[0,t−1] and x[0,t−1], as a function
of xt , the encoder ηt (q[0,t−1], x[0,t−1], · ) is a quantizer, i.e.,
a Borel measurable mapping of R

d into the finite set M. Thus
any quantization policy at each time t ≥ 0 selects a quantizer
Qt : R

d → M based on past information (q[0,t−1], x[0,t−1]),
and then “quantizes” xt as qt = Qt (xt ).

Upon receiving qt , the receiver generates its reconstruc-
tion ut , also without delay. A zero-delay receiver policy is
a sequence of measurable functions γ = {γt }t≥0 of type
γt : Mt+1 → U, where U denotes the reconstruction alphabet
(usually a Borel subset of R

d ). Thus

ut = γt (q[0,t ]), t ≥ 0.

For the finite horizon setting the goal is to minimize the
average cumulative cost (distortion)

Jπ0(�, γ, T ) := E�,γ
π0

[
1

T

T −1∑
t=0

c0(xt , ut )

]
, (1)

for some T ≥ 1, where c0 : R
d × U → R is a nonnegative

Borel measurable cost (distortion) function. Here E�,γ
π0

denotes expectation under initial distribution π0 for x0; the
superscript signifies that the argument is a function of {xt}
which depends on the quantization policy � and receiver
policy γ . (Later we will use the notation E�

π0
for expectations

where the argument is a function of {xt } that depends only
on �, and the notation Eπ0 when the argument has no
dependence on either � or γ .) We assume that the encoder
and decoder know the initial distribution π0.

We also consider the infinite-horizon average cost problem
where the objective is to minimize

Jπ0(�, γ ) := lim sup
T →∞

Jπ0(�, γ, T )

= lim sup
T →∞

E�,γ
π0

[
1

T

T −1∑
t=0

c0(xt , ut )

]
. (2)

Our main assumption on the Markov source {xt} is the
following.

Assumption 1: The evolution of {xt } is given by

xt+1 = f (xt , wt ), t = 0, 1, 2, . . . , (3)

where f : R
d × R

d → R
d is a Borel function and {wt }

is an independent and identically distributed (i.i.d.) vector
noise sequence which is independent of x0. It is assumed that
for each fixed x ∈ R

d , the distribution of f (x, wt ) admits
the (conditional) density function φ( · |x) (with respect to the
d-dimensional Lebesgue measure) which is positive every-
where. Furthermore, φ( · |x) is bounded and Lipschitz
uniformly in x.
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The above model includes the linear systems with Gaussian
noise. Further conditions on f and the cost c0, and the
reconstruction alphabet U will be given in Sections III and IV
for the finite-horizon problem (these include the case of a
linear system and quadratic cost) and in Section V for the
infinite-horizon problem.

Before proceeding further with formulating the results, we
provide an overview of structural results for finite-horizon
optimal zero-delay coding problems as well as a more general
literature review.

B. Revisiting Structural Results for Finite-Horizon Problems

Structural results for the finite horizon control problem
described in the previous section have been developed in
a number of important papers. Among these the classic
works by Witsenhausen [37] and Walrand and Varaiya [35],
using two different approaches, are of particular relevance.
Teneketzis [34] extended these approaches to the more general
setting of non-feedback communication and [38] extended
these results to more general state spaces (including R

d ).
The following two theorems summarize, somewhat informally,
these two important structural results.

Theorem 1 (Witsenhausen [37]): For the finite horizon
problem, any zero-delay quantization policy � = {ηt } can
be replaced, without any loss in performance, by a policy
�̂ = {η̂t } which only uses q[0,t−1] and xt to generate qt , i.e.,
such that qt = η̂t (q[0,t−1], xt ) for all t = 1, . . . , T − 1.

For a complete and separable (Polish) metric space X and
its Borel sets B(X), let P(X) denote the space of probability
measures on (X,B(X)), endowed with the topology of weak
convergence (weak topology). This topology is metrizable with
the Prokhorov metric making P(X) itself a Polish space. Given
a quantization policy �, for all t ≥ 1 let πt ∈ P(Rd) be the
regular conditional probability defined by

πt (A) := P(xt ∈ A|q[0,t−1])

for any Borel set A ⊂ R
d .

The following result is due to Walrand and Varaiya [35]
who considered sources taking values in a finite set. For the
more general case of R

d -valued sources the result appeared
in [38].

Theorem 2: For the finite horizon problem, any zero-delay
quantization policy can be replaced, without any loss in per-
formance, by a policy which at any time t = 1, . . . , T −1 only
uses the conditional probability measure πt = P(dxt |q[0,t−1])
and the state xt to generate qt . In other words, at time t such
a policy η̂t uses πt to select a quantizer Qt = η̂(πt ) (where
Qt : R

d → M), and then qt is generated as qt = Qt (xt ).
A policy of the type suggested by Theorem 2 (a so-called

Walrand-Varaiya-type policy) is called stationary if η̂t = η̂ for
all t , where η̂ is a fixed policy mapping elements of P(Rd)
to the set of M-level quantizers. Stationary policies will play
an important role in Section V.

As discussed in [38], the main difference between the
two structural results above is the following: In the setup
of Theorem 1, the encoder’s memory space is not fixed and
keeps expanding as the encoding block length T increases.

In the setup of Theorem 2, the memory space of an optimal
encoder is fixed (note that πt can be computed from πt−1,
Qt−1, and qt−1; see equation (4)). Of course, in general the
space of probability measures is a very large one. However, it
may be the case that different quantization outputs lead to the
same conditional probabilities πt , leading to a reduction in the
required memory. More importantly, the setup of Theorem 2
allows one to apply the powerful theory of Markov Decision
Processes on fixed state and action spaces, thus greatly facil-
itating the analysis.

In this paper, we show that under quite general assumptions
on the Markov process, the cost function, and the admissible
quantization policies there always exists a Walrand-Varaiya-
type policy that minimizes the finite horizon cost (1). For
the infinite horizon problem (2), we show that there exists an
optimal Walrand-Varaiya-type policy if the source is stationary.
We also show that in general an optimal (possibly randomized)
stationary quantization policy exists in the set of Walrand-
Varaiya-type policies.

The rest of the paper is organized as follows. The next
section gives a brief review of the literature. Section II contains
background material on quantizers and the construction of a
controlled Markov chain for our problem. Section III estab-
lishes the existence of optimal policies for the finite horizon
case for bounded cost functions. Section IV considers the
quadratic costs under conditions that cover linear systems.
Section V considers the more involved infinite horizon case.
Section VI contains concluding discussions. Most of the proofs
are relegated to the Appendix.

C. Literature Review and Contributions

The existence of optimal quantizers for a one-stage
(T = 1) cost problem has been investigated in [1], [30],
and [41], among other works.

An important inspiration for our work is Borkar et al. [11]
which studied the optimal zero-delay quantization of Markov
sources. For the infinite horizon setting, this paper provided
a stochastic control formulation of the optimal quantization
problem with a Lagrangian cost that combined squared distor-
tion and instantaneous entropy, and gave an elegant proof for
the existence of optimal policies.

It should be noted that [11] restricted the admissible quan-
tizers Qt at each time stage t to so-called nearest neighbor
quantizers whose reconstruction values were also suboptimally
constrained to lie within a fixed compact set. Furthermore,
some fairly restrictive conditions were placed on the dynamics
of the system. These include requirements on the system
dynamics that rule out additive noise models with unbounded
support such as the Gaussian noise (see [11, p. 138]), and
a uniform Lipschitz condition on the cost functions (see the
condition on f̂ on p. 140 in [11]). These conditions made it
possible to apply the discounted cost approach (see [3]) to
average cost optimization problems.

Furthermore, the encoder-decoder structure in [11] has been
specified a priori, whereas in this paper, we only relax global
optimality when we restrict the quantizers to have convex
codecells (to be defined later), which is a more general
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condition than assuming the nearest neighbor encoding rule.
On the other hand, we are unable to claim the optimality of
deterministic stationary quantization policies for the infinite-
horizon problem, whereas [11] establishes optimality of such
policies. However, as mentioned, the conditions on the cost
functions, systems dynamics, and the uniform continuity con-
dition over all quantizers are not required in our setting.

To our knowledge, the existence of optimal quantizers for a
finite horizon setting has not been considered in the literature
for the setup considered in this paper.

Other relevant work include [10] which considered opti-
mization over probability measures for causal and non-causal
settings, and [23], [24], [34] and [38] which considered
zero-delay coding of Markov sources in various setups.
Structural theorems for zero-delay variable-rate coding of
discrete Markov sources were studied in [21]. Recently [5]
considered the average cost optimality equation for coding of
discrete i.i.d. sources with limited lookahead and [20] studied
real-time joint source-channel coding of a discrete Markov
source over a discrete memoryless channel with feedback.

A different model for sequential source coding, called causal
source coding, is studied in [22], [29] and [36]. In causal
coding, the reconstruction depends causally on the source
symbols, but in the information transmission process large
delays are permitted, which makes this model less stringent
(and one might argue less practical) than zero or limited-delay
source coding.

For systems with control, structural results have also been
investigated in the literature. In particular, for linear systems
with quadratic cost criteria (known as LQG optimal control
problems), it has been shown that the effect of the control
policies can be decoupled from the estimation error without
any loss. Under optimal control policies, [39] has shown the
equivalence with the control-free setting considered in this
paper (see also [6] and [28] for related results in different
structural forms, where in contrast with [39] the encoders have
memory). We also note that the design results developed here
can be used to establish the existence of optimal quantization
and control policies for LQG systems [39].

Contributions: In view of the literature review, the main
contributions of the paper can be summarized as follows.
(i) We establish a useful topology on the set of quantizers,

building on [41], among other works, and show the
existence of optimal coding policies for finite horizon
optimization problems, under the assumption that the
quantizers used have convex codecells. Notably, the set
of sources considered includes LQG systems, i.e., linear
systems driven by Gaussian noise under the quadratic
cost criterion. The analysis requires the development of
a series of technical results which facilitate establish-
ing measurable selection criteria, reminiscent of those
in [17].

(ii) We establish, for the first time to our knowledge, the
optimality of Markov (i.e., Walrand-Varaiya type) coding
policies for infinite-horizon sequential quantization prob-
lems, using a new approach. The prior work reviewed
above strictly build on dynamic programming (which is
only suitable for finite-horizon problems) or does not

consider the question of global optimality of Markov
policies.

(iii) We show the existence of optimal stationary, possibly
randomized, policies for a large class of sources including
LQG systems. As detailed above, the assumptions are
weaker than those that have appeared in prior work.

II. QUANTIZER ACTIONS AND CONTROLLED MARKOV

PROCESS CONSTRUCTION

In this section, we formally define the space of quantizers
considered in the paper building on the construction in [41].
Recall the notation M = {1, . . . , M}.

Definition 1: An M-cell quantizer Q on R
d is a (Borel)

measurable mapping Q : R
d → M. We let Q denote the

collection of all M-cell quantizers on R
d .

Note that each Q ∈ Q is uniquely characterized by its
quantization cells (or bins) Bi = Q−1(i) = {x : Q(x) = i},
i = 1, . . . , M which form a measurable partition of R

d .
Remark 1:

(i) We allow for the possibility that some of the cells of the
quantizer are empty.

(ii) In source coding theory (see [15]), a quantizer is a
mapping Q : R

d → R
d with a finite range. In this

definition, Q is specified by a partition {B1, . . . , BM } of
R

d and reconstruction values {c1, . . . , cM } ⊂ R
d through

the mapping rule Q(x) = ci if x ∈ Bi . In our definition,
we do not include the reconstruction values.

In view of Theorem 2, any admissible quantization policy
can be replaced by a Walrand-Varaiya-type policy. The class
of all such policies is denoted by �W and is formally defined
as follows.

Definition 2: An (admissible) quantization policy � = {ηt }
belongs to �W if there exist a sequence of mappings {η̂t } of
the type η̂t : P(Rd) → Q such that for Qt = η̂t (πt ) we have
qt = Qt (xt ) = ηt (It ).

Suppose we use a quantizer policy � = {η̂t } in �W .
Let P(dxt+1|xt ) denote the transition kernel of the process
{xt} determined by the system dynamics (3) and note
that P(qt |πt , xt ) is determined by the quantizer policy as
P(qt |πt , xt ) = 1{Qt (xt )=qt }, where Qt = η̂t (πt ) and 1A

denotes the indicator of event A. Then standard properties
of conditional probability can be used to obtain the following
filtering equation for the evolution of πt :

πt+1(dxt+1) = P(dxt+1, qt |q[0,t−1])
P(qt |q[0,t−1])

=
∫
Rd πt (dxt )P(qt |πt , xt )P(dxt+1|xt)∫

Rd

∫
Rd πt (dxt)P(qt |πt , xt )P(dxt+1|xt )

= 1

πt (Q−1(qt ))

∫
Q−1(qt )

P(dxt+1|xt)πt (dxt). (4)

Hence πt+1 is determined by πt , Qt , and qt , which implies that
πt+1 is conditionally independent of (π[0,t−1], Q[0,t−1]) given
πt and Qt . Thus {πt } can be viewed as P(Rd)-valued con-
trolled Markov process [17], [18] with Q-valued control {Qt }
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and average cost up to time T − 1 given by

E�
π0

[
1

T

T −1∑
t=0

c(πt , Qt )

]
= inf

γ
Jπ0(�, γ, T ),

where

c(πt , Qt ) :=
M∑

i=1

inf
u∈U

∫
Q−1

t (i)
πt (dx)c0(x, u). (5)

In this context, �W corresponds to the class of deterministic
Markov control policies. Note that this definition of average
cost assumes that the decoder uses an optimal receiver policy
for encoder policy � given by (5); thus our focus is on the
encoding operation.

Recall that by Assumption 1 the density φ( · |x) of f (x, wt )
for fixed x is bounded, positive, and Lipschitz, uniformly in x .
By (3) and (4) πt admits a density, which we also denote by
πt , given by

πt (z) =
∫

Rd
φ(z|xt−1)P(dxt−1|q[0,t−1]), z ∈ R

d , t ≥ 1.

Thus for any policy �, with probability 1 we have
0 < πt (z) ≤ C for all z and t ≥ 1, where C is an upper
bound on φ. Also, if φ(z|x) is Lipschitz in z with constant
C1 for all x , then the bound

|πt (z) − πt (z
′)|

≤
∫

Rd

∣∣φ(z|xt−1) − φ(z′|xt−1)
∣∣P(dxt−1|q[0,t−1]),

implies that {πt }t≥1 is uniformly Lipschitz with constant C1.
The collection of all densities with these properties will play
an important part in this paper.

Definition 3: Let S denote the set of all probability mea-
sures on R

d admitting densities that are bounded by C and
Lipschitz with constant C1.

Note that viewed as a class of densities, S is uniformly
bounded and equicontinuous. Lemma 3 in the Appendix shows
that S is closed in P(Rd). Also, the preceding argument
implies the following useful lemma.

Lemma 1: For any policy � ∈ �W , we have πt ∈ S for all
t ≥ 1 with probability 1.

For technical reasons in most of what follows we restrict
the set of quantizers by only allowing ones that have convex
cells. Formally, this quantizer class Qc is defined by

Qc = {Q ∈ Q : Q−1(i) ⊂ R
d is convex for i = 1, . . . , M},

where by convention we declare the empty set convex. Note
that each nonempty cell of a Q ∈ Qc is a convex polytope
in R

d . The class of policies �C
W is obtained by replacing Q

with Qc in Definition 2:
Definition 4: �C

W denotes the set of all quantization poli-
cies � = {η̂t } ∈ �W such that η̂t : P(Rd) → Qc, i.e.,
Qt = η̂t (πt ) ∈ Qc for all t ≥ 0.

Remark 2:

(i) The assumption of convex codecells is adopted for tech-
nical reasons: the structure of Qc detailed below will
let us endow it with a well-behaved topology. Qc is a
fairly powerful class; for example, it includes as a proper

subset the class of nearest-neighbor quantizers considered
in [11]. Furthermore, it was proved in [16] that Qc

contains all M-level optimal entropy-constrained quan-
tizers when the source has a density, while the set of all
M-level nearest neighbor quantizers is clearly suboptimal
in this sense. On the other hand, it is likely that the
convex codecell assumption results in a loss of system
optimality in our case. This can be conjectured from the
results of [2] where it was shown that in multiresolution
quantization, requiring that quantizers have convex code-
cells may preclude system optimality even for continuous
sources. We note that the convex codecell assumption is
often made when provably optimal and fast algorithms
are sought for the design of multiresolution, multiple
description, and Wyner-Ziv quantizers; see [13] and [27].

(ii) As opposed to general quantizers in Q, any Q ∈ Qc

has a parametric representation. Let such a Q have cells
{B1, . . . , BM }. As discussed in [16], by the separating
hyperplane theorem, there exist pairs of complementary
closed half spaces {(Hi, j , H j,i) : 1 ≤ i, j ≤ M,
i 	= j} such that Bi ⊂ ⋂

j 	=i Hi, j for all i . Since
B̄i := ⋂

j 	=i Hi, j is a closed convex polytope for each
i , if P ∈ P(Rd) admits a density, then P(B̄i \ Bi ) = 0
for all i . We thus obtain a P-almost sure representation
of Q by the M(M −1)/2 hyperplanes hi, j = Hi, j ∩ H j,i .
One can represent such a hyperplane h by a vector
(a1, . . . , ad , b) ∈ R

d+1 with
∑

k |ak|2 = 1 such that h =
{x ∈ R

d : ∑
i ai xi = b}, thus obtaining a parametrization

over R
(d+1)M(M−1)/2 of all quantizers in Qc.

In order to facilitate the stochastic control analysis of the
quantization problem we need an alternative representation of
quantizers. As discussed in [10] and [41], a quantizer Q with
cells {B1, . . . , BM } can also be identified with the stochastic
kernel (regular conditional probability), also denoted by Q,
from R

d to M defined by

Q(i |x) = 1{x∈Bi}, i = 1, . . . , M.

We will endow the set of quantizers Qc with a topology
induced by the stochastic kernel interpretation. If P is a prob-
ability measure on R

d and Q is a stochastic kernel from R
d

to M, then P Q denotes the resulting joint probability measure
on R

d × M defined through P Q(dx dy) = P(dx)Q(dy|x).
For some fixed P ∈ P(Rd) let

�P := {P Q ∈ P(Rd × M) : Q ∈ Qc}
It follows from [41, Theorem 5.8] that �P is a compact subset
of P(Rd × M) if P admits a density. If we introduce the
equivalence relation Q ≡ Q′ if and only if P Q = P Q′, then
the resulting set of equivalence classes, denoted by (Qc)P , can
be equipped with the quotient topology inherited from �P .
In this topology Qn → Q if and only if (for representatives
of the equivalence classes) P Qn → P Q weakly. Also, if
P Q = P Q′ for P admitting a positive density, then the
(convex polytopal) cells of Q and Q′ may differ only in their
boundaries, and it follows that (Qc)P = (Qc)P ′ for any P ′ also
admitting a positive density. From now on we will identify Qc

with (Qc)P and endow it with the resulting quotient topology,
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keeping in mind that this definition does not depend on P as
long as it has a positive density. Lemma 3 in the Appendix
shows that Qc is compact. Note that πt for t ≥ 1 always has
a positive density due to Assumption 1. However, in some of
the results we will allow π0 to violate this assumption (e.g.,
by letting π0 be a point mass at a given x0 ∈ R

d ).
For a given policy � ∈ �C

W , we will consider {(πt , Qt )} as
an S × Qc-valued process.

III. EXISTENCE OF OPTIMAL POLICIES:
FINITE HORIZON SETTING

For any quantization policy � in �W and any T ≥ 1 we
define

Jπ0(�, T ) := inf
γ

Jπ0(�, γ, T ) = E�
π0

[
1

T

T −1∑
t=0

c(πt , Qt )

]
,

where c(πt , Qt ) is defined in (5).
Assumption 2:

(i) The cost c0 : R
d × U → R is nonnegative, bounded,

and continuous.
(ii) U is compact.

Theorem 3: Under Assumptions 1 and 2 an optimal
receiver policy always exists, i.e., for any � ∈ �W there exist
γ = {γt } such that Jπ0(�, γ, T ) = Jπ0(�, T ).

Proof: At any t ≥ 0 an optimal receiver has to minimize∫
P(dxt |q[0,t ])c0(xt , u) in u. Under Assumption 2, the exis-

tence of a minimizer then follows from a standard argument,
see, e.g., [41, Theorem 3.1]. �

The following result states the existence of optimal policies
in Qc for the finite horizon setting. The proof is given in
Section VII-B of the Appendix.

Theorem 4: Suppose π0 admits a density or it is a point
mass π0 = δx0 for some x0 ∈ R

d . For any T ≥ 1, under
Assumptions 1 and 2, there exists a policy � in �C

W such that

Jπ0(�, T ) = inf
�′∈�C

W

Jπ0(�
′, T ). (6)

Let J T
T ( · ) := 0 and define J T

t (π) for t = T −1, T −2, . . . , 1,
π ∈ S and t = 0, π = π0, by the dynamic programming
recursion

J T
t (π)= min

Q∈Qc

(
1

T
c(π, Q)+E

[
J T

t+1(πt+1)|πt =π, Qt = Q
])

.

(7)

Then

J T
0 (π0) = min

�∈�C
W

Jπ0(�, T ).

IV. THE FINITE HORIZON PROBLEM

FOR QUADRATIC COST

Linear systems driven by Gaussian noise are important in
many applications in control, estimation, and signal process-
ing. For such linear systems with quadratic cost (known
as LQG optimal control problems), it has been shown that
the effect of the control policies can be decoupled from
the estimation error without any loss (see [33], [39] and
for a review [40]). In this section we consider the finite

horizon problem under conditions that cover LQG systems.
Let ‖x‖ denote the Euclidean norm of x ∈ R

d . We replace
Assumption 2 of the preceding sections with the following.

Assumption 3:

(i) The function f in the system dynamics (3) satisfies
‖ f (x, w)‖ ≤ K

(‖x‖ + ‖w‖) for some K > 0 and all
x, w ∈ R

d .
(ii) U = R

d and the cost is given by c0(x, u) = ‖x − u‖2.
(iii) The common distribution νw of the wt satisfies∫ ‖z‖2νw(dz) < ∞.
(iv) π0 admits a density such that Eπ0[‖x0‖2] < ∞ or it

is a point mass π0 = δx0 .
Remark 3:

(i) The above conditions cover the case of a linear-Gaussian
system

xt+1 = Axt + wt , t = 0, 1, 2, . . . ,

where {wt } is an i.i.d. Gaussian noise sequence with zero
mean, A is a square matrix, and π0 admits a Gaussian
density having zero mean.

(ii) Assumption 3(i) implies

‖xt‖2 ≤ K̂

(
‖x0‖2 +

t−1∑
i=0

‖wi‖2
)

for some K̂ that depends on t (see (34)). Together with
Assumptions 3(iii) and (iv), this implies Eπ0

[‖xt‖2
]
< ∞

for all t ≥ 0 under any quantization policy . Therefore∫
Rd

‖xt‖2 P(dxt |q[0,t ]) dx < ∞
and an optimal receiver policy exists and is given by

γt (q[0,t ]) =
∫

Rd
xt P(dxt |q[0,t ]). (8)

The following is a restatement of Theorem 4 under con-
ditions that allow unbounded cost. The proof is relegated to
Section VII-C of the Appendix.

Theorem 5: Under Assumptions 1 and 3, for any T ≥ 1
there exists an optimal policy in �C

W in the sense of (6) and
the dynamic programming recursion (7) for J T

t (πt ) also holds.

V. INFINITE HORIZON SETTING

For the infinite horizon setting, one may consider the
discounted cost problem where the goal is to find policies
that achieve

V β(π0) = inf
�∈�C

W

Jβ
π0

(�) (9)

for some β ∈ (0, 1), where

Jβ
π0

(�) = inf
γ

lim
T →∞ E�,γ

π0

[ T −1∑
t=0

β t c0(xt , ut )

]
.

The existence of optimal policies for this problem follows
from the results in the previous section. In particular, it is
well known that the value iteration algorithm (see [25]) will
converge to an optimal solution, since the cost function is
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bounded and the measurable selection hypothesis is applicable
in view of Theorem 4. This leads to the fixed point equation

V β(π)

=min
Q∈Qc

(
c(π, Q)+β

∫
Rd

P(dπt+1|πt =π, Qt = Q)V β(πt+1)

)
.

The more challenging case is the average cost problem
where one considers

Jπ0(�) = inf
γ

lim sup
T →∞

E�,γ
π0

[
1

T

T −1∑
t=0

c0(xt , ut )

]
(10)

and the goal is to find an optimal policy attaining

Jπ0 := inf
�∈�A

Jπ0(�). (11)

For the infinite horizon setting the structural results in
Theorems 1 and 2 are not available in the literature, due to
the fact that the proofs are based on dynamic programming
which starts at a finite terminal time stage and optimal policies
are computed backwards. Recall that π∗ ∈ P(Rd) is called
an invariant measure for {xt } if setting π0 = π∗ results in
P(xt ∈ B) = π∗(B) for every t and Borel set B (in this case
{xt } is a strictly stationary process). The next result proves
an infinite-horizon analog of Theorem 2 under the assumption
that an invariant measure π∗ for {xt} exists and π0 = π∗.

Theorem 6: Assume the cost c0 is bounded and an invariant
measure π∗ exists. If {xt } starts from π∗, then there exists an
optimal policy in �W solving the minimization problem (11),
i.e., there exists � ∈ �W such that

lim sup
T →∞

E�
π∗

[
1

T

T∑
t=0

c(πt , Qt )

]
= Jπ∗ .

The proof of the theorem relies on a construction that
pieces together policies from �W that on time segments of
appropriately large lengths increasingly well approximate the
minimum infinite-horizon cost achievable by policies in �A.
Since the details are somewhat tedious, the proof is relegated
to Section VII-D of the Appendix. We note that the condition
that c0 is bounded is not essential and, for example, the
theorem holds for the quadratic cost if the invariant measure
has a finite second moment.

Remark 4:

(i) If the source is a positive Harris recurrent Markov
chain [26], then the policy constructed in the proof of
Theorem 6 achieves the optimal average cost correspond-
ing to the stationary source even when the chain is not
started from the invariant distribution π∗. This can be
shown by inspecting the details of the proof and using the
continuity of the value function as stated by Theorem 10
in the Appendix, combined with the fact that P(xt ∈ ·)
→ π∗ in total variation as t → ∞ for any initial
distribution π0.

(ii) The proof of Theorem 6 demonstrates that for every
ε > 0 there exists a finite memory encoding policy whose
performance is within ε of the optimum value Jπ∗ . This
scheme can be computed using finite horizon dynamic
programming, giving the result practical relevance.

The optimal policy constructed in the proof of Theorem 6
may not be stationary. In general, a stationary policy in a
given class of policies is called optimal if it performs as
well as any other policy in that class. In the next section we
establish the existence of an optimal stationary policy in �C

W
if randomization is allowed.

A. Classes of Randomized Quantization Policies

We will consider two classes of randomized policies.
1) Randomized Walrand-Varaiya-Type (Markov) Policies:

These policies, denoted by �̄C
W , are randomized over �C

W , the
Walrand-Varaiya-type Markov policies with quantizers having
convex cells (Definition 4). Each � ∈ �̄C

W consists of a
sequence of stochastic kernels {η̄t } from P(Rd) to Qc. Thus,
under �, for any t ≥ 0,

P�
(
Qt (xt) = qt |q[0,t−1], Q[0,t−1], π[0,t ]

)

=
∫
Qc

(∫
Rd

1{Q(x)=qt}πt (dx)

)
η̄(d Q|πt ).

It follows from [14] or [31] that an equivalent model
for randomization can be obtained by considering an i.i.d.
randomization sequence {rt }, independent of {xt } and uni-
formly distributed on [0, 1], and a sequence of (measurable)
randomized encoders {η̂t } of the form η̂t : P(Rd) × [0, 1] →
Qc and Qt such that Qt = η̂t (πt , rt ). In this case the induced
stochastic kernel encoder η̄t is determined by

η̄t (D|πt ) = u
{
r : η̂(πt , r) ∈ D

}
for any Borel subset D of Qc, where u denotes the uniform
distribution on [0, 1]. For randomized policies we assume
that all the randomization information is shared between the
encoder and the decoder, that is

I r
t := (q[0,t−1], r[0,t−1])

is known at the decoder which can therefore track πt

given by

πt (A) := P(xt ∈ A|q[0,t−1], r[0,t−1])

for any Borel set A ⊂ R
d .

We note that the cost c(πt , Qt ) is still defined by (5) since
the decoder, having access to I r

t can also track Qt . Also, in

computing the cost E�
π0

[
1
T

∑T −1
t=0 c(πt , Qt )

]
of policy � ∈

�̄C
W after T time stages, the expectation is also taken with

respect to the randomization sequence {rt }.
2) Randomized Stationary Walrand-Varaiya-Type (Markov)

Policies: Denoted by �̄C
W,S , this class consists of all policies

in �̄C
W that are stationary, i.e., the stochastic kernels η̄t

or the randomized encoders η̂t do not depend on the time
index t .

B. Existence of Optimal Stationary Policies

1) The Bounded Cost Case: In the infinite horizon
setting, we add the following assumption, in addition to
Assumptions 1 and 2.
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Assumption 4: The chain {xt } is positive Harris recurrent
(see [26]) with unique invariant measure π∗ such that for all
x0 ∈ R

d ,

lim
t→∞ Eδx0

[‖xt‖2] =
∫

Rd
‖x‖2π∗(dx) < ∞.

Remark 5: A sufficient condition for Assumption 4 to
hold is that f (x, w) in (3) is continuous in x and satisfies
‖ f (x, w)‖ ≤ K

(‖x‖ + ‖w‖) for some K < 1, and wt has
zero mean and second moment E

[‖wt‖2
]

< ∞. This follows
since the upper bound on f and a straightforward calculation
imply that the drift condition [26]

E[V (xt+1)|xt = x] ≤ V (x) − g(x) + b1{x∈C}
holds with V (x) = ‖x‖2, g(x) = (1 − (K 2 + ε))‖x‖2,
0 < ε < 1 − K 2, and C = {‖x‖ ≤ M} (a compact set),
where

M = K 2 E[‖w‖] + √
(K 2 E[‖w‖])2 + K 2εE[‖w‖2]

ε

and b = K 2(E[‖w‖2] + 2E[‖w‖]M). The continuity of
f (x, w) in x implies that the chain is weak Feller [26]. This
and the drift condition imply through [42, Theorem 2.2] that
there exists an invariant probability measure with a finite
second moment. The irreducibility and aperiodicity [26] of
the chain under Assumption 1 implies the uniqueness of the
invariant probability measure and positive Harris recurrence,
leading to Assumption 4.

To show the existence of an optimal stationary policy, we
adopt the convex analytic approach of [8] (see [3] for a detailed
discussion). Here we only present the essential steps.

Fix a policy � ∈ �̄C
W and an initial distribution π0 . Let

vt ∈ P(P(Rd) ×Qc) be the sequence of expected occupation
measures determined by

vt (D) = E�
π0

(
1

t

t−1∑
i=0

1{(πi ,Qi )∈D}
)

for any Borel subset D of P(Rd) × Qc.
Let P(dπt+1|πt , Qt ) = P�(dπt+1|πt , Qt ) be the transition

kernel determined by the filtering equation (4) and note that it
does not depend on � and t . Also note that P(S|π, Q) = 1
for any π and Q, where S ⊂ P(Rd) is the set of probability
measures, defined in Definition 3, which admit densities that
satisfy the same upper bound and Lipschitz condition as the
density of the additive noise wt (S contains the set of reachable
states for {πt } under any quantization policy).

If X is a topological space, let Cb(X) denote the set of
all bounded and continuous real-valued functions on X. Let
G be the set of so-called ergodic occupation measures on
P(Rd) × Qc, defined by

G =
{
v ∈ P(P(Rd) × Qc) :

∫
f (π)v(dπ d Q)

=
∫∫

f (π ′)P(dπ ′|π, Q)v(dπ d Q) for all f ∈ Cb(P(Rd))

}
.

Note that any v ∈ G is supported on S × Qc.
Any v ∈ G can be disintegrated as v(dπ d Q) =

v̂(dπ)η̄(d Q|π), where η̄ is a stochastic kernel from P(Rd)

to Qc which corresponds to the randomized stationary policy
� = {η̄t } in �̄C

W,S such that η̄t = η̄ for all t . Then the
transition kernel of the process {(πt , Qt )} induced by � does
not depend on t and is given by

P�(dπt+1 d Qt+1|πt , Qt ) = P(dπt+1|πt , Qt )η̄(d Qt+1|πt ).

In fact, it directly follows from the definition of G that∫
g(π, Q)v(dπ d Q)

=
∫ ∫

g(π ′, Q′)P�(dπ ′ d Q′|π, Q)v(dπ d Q) (12)

for all g ∈ Cb(P(Rd)×Qc), i.e., v is an invariant measure for
the transition kernel P�.

The following proposition, proved in Section VII-E, will
imply the existence of optimal stationary policies.

Proposition 1: (a) For any initial distribution π0 and pol-
icy � ∈ �̄C

W , if {vtn } is a subsequence of the expected
occupation measures {vt } such that vtn → v̄ weakly, then
v̄ ∈ G. Furthermore

lim
n→∞

∫
P(Rd )×Qc

c(π, Q)vtn (dπ d Q)

=
∫
P(Rd )×Qc

c(π, Q)v̄(dπ d Q). (13)

(b) For any x0 ∈ R
d , initial distribution π0 = δx0 , and policy

� ∈ �̄C
W , {vt } is relatively compact.

(c) G is compact.
For any initial distribution δx0 and policy � ∈ �̄W ,

we have

lim inf
T →∞ E�

δx0

[
1

T

T −1∑
t=0

c(πt , Qt )

]

= lim inf
T →∞

∫
P(Rd )×Qc

c(π, Q)vT (dπ d Q).

Let {vTn } be a subsequence of {vT } such that

lim inf
T →∞

∫
P(Rd )×Qc

c(π, Q)vT (dπ d Q)

= lim
n→∞

∫
P(Rd )×Qc

c(π, Q)vTn (dπ d Q).

By Proposition 1(b) there exists a subsequence of {vTn },
which we also denote by {vTn }, weakly converging to some v̄ .
By Proposition 1(a) we have v̄ ∈ G and

∫
c dvTn → ∫

c d v̄.
Therefore

lim inf
T →∞ E�

δx0

[
1

T

T −1∑
t=0

c(πt , Qt )

]
=

∫
P(Rd )×Qc

c(π, Q)v̄(dπ d Q)

≥ inf
v∈G

∫
P(Rd )×Qc

c(π, Q)v(dπ d Q).

In addition, since c is continuous on S × Qc (by Lemma 4)
and each v ∈ G is supported on S × Qc, the mapping
v �→ ∫

c dv is continuous on G. Since G is compact by Propo-
sition 1(c), there exists v∗ ∈ G achieving the above infimum.
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Hence

c∗ :=
∫
P(Rd )×Qc

c(π, Q)v∗(dπ d Q)

= min
v∈G

∫
P(Rd )×Qc

c(π, Q)v(dπ, d Q) (14)

provides an ultimate lower bound on the infinite-horizon cost
of any policy.

The following theorem shows the existence of a stationary
policy achieving this lower bound if we consider the initial
distribution π0 as a “design parameter” we can freely choose.

Theorem 7: Under Assumptions 1, 2 and 4, there exists a
stationary policy �∗ in �̄C

W,S that is optimal in the sense that
with an appropriately chosen initial distribution π∗

0 ,

lim
T →∞ E�∗

π∗
0

[
1

T

T −1∑
t=0

c(πt , Qt )

]
≤ lim inf

T →∞ E�
δx0

[
1

T

T −1∑
t=0

c(πt , Qt )

]

for any x0 ∈ R
d and � ∈ �̄C

W .
Proof: We must prove the existence of �∗ ∈ �̄C

W,S which
achieves infinite horizon cost c∗ for some initial distribution
π∗

0 . Consider v∗ achieving the minimum in (14), disintegrate it
as v∗(dπ d Q) = v̂∗(dπ)η̄∗(d Q|π), and let �∗ ∈ �̄C

W,S be the
policy corresponding to η̄∗. Since v∗ is an invariant measure
for the transition kernel P�∗

(see (12)), for any T ≥ 1,

c∗ = E�∗
v̂∗

[
1

T

T −1∑
t=0

c(πt , Qt )

]
,

where the notation E�∗
v̂∗ signifies that the initial distribution

π0 is picked randomly with distribution v̂∗. Thus

c∗ = lim
T →∞ E�∗

v̂∗

[
1

T

T −1∑
t=0

c(πt , Qt )

]
. (15)

From the individual ergodic theorem (see [19]) the limit

f (π0) := lim
T →∞ E�∗

π0

[
1

T

T −1∑
t=0

c(πt , Qt )

]

exists for v̂∗-a.e. π0 and∫
P(Rd )

f (π0)v̂
∗(dπ0) = c∗.

Hence for some π0 in the support of v̂∗ we must have

lim
T →∞ E�∗

π0

[
1

T

T −1∑
t=0

c(πt , Qt )

]
≤ c∗

Any such π0 can be picked as π∗
0 so that the claim of the

theorem holds. �
In the preceding theorem the initial state distribution π0 is

a design parameter which is chosen along with the quanti-
zation policy to optimize the cost. This assumption may be
unrealistic. However, consider the fictitious optimal stationary
policy in (15) which is allowed to pick the initial distribution
π0 according to v̂∗. It follows from the analysis in the proof of
Proposition 1 (see (51)) that the expectation of π0 according
to v̂∗ is precisely the invariant distribution π∗ for {xt}. Based
on this, one can prove the following, more realistic version of

the optimality result. The proof, which is not given here, is an
expanded and more refined version of the proof of Theorem 7.

Theorem 8: Under the setup of Theorem 7, assume that {xt}
is started from the invariant distribution π∗. If the optimal
stationary policy �∗ ∈ �̄C

W,S is used in such a way that the
encoder and decoder’s initial belief π0 is picked randomly
according to v̂∗ (but independently of {xt} ), then �∗ is still
optimal in the sense of Theorem 7.

Remark 6: We have not shown that an optimal station-
ary policy is deterministic. In the convex analytic approach,
the existence of an optimal deterministic stationary policy
directly follows if one can show that the extreme points of
ergodic occupation measures satisfy the following: (i) They are
induced by deterministic policies; and (ii) under these policies
the state invariant measures are ergodic. This property of the
extreme points of the set of ergodic occupation measures has
been proved by Meyn in [25, Proposition 9.2.5] for countable
state spaces and by Borkar in [4] and [8] for a specific case
involving R

d as the state space and a non-degeneracy condition
which amounts to having a density assumption on the one-
stage transition kernels. Unfortunately, these approaches do
not seem to apply in our setting.

2) The Quadratic Cost Case: In the infinite horizon setting
for the important case of the (unbounded) quadratic cost
function, we add the following assumption, in addition to
Assumption 3.

Assumption 5: The chain {xt} is positive Harris recurrent
with unique invariant measure π∗ such that for some ε > 0
and all x0 ∈ R

d ,

lim
t→∞ Eδx0

[‖xt‖2+ε
] =

∫
Rd

‖x‖2+επ∗(dx) < ∞.

Remark 7: Assumption 5 holds for the LQG case xt+1 =
Axt + wt , with A being a d × d matrix having eigenvalues
of absolute value less than 1 and wt having a nondegenerate
Gaussian distribution with zero mean.

Theorem 9: Under Assumptions 3 and 5, there exists a
stationary policy �∗ in �̄C

W,S that is optimal in the sense
that with an appropriately chosen initial distribution π∗

0 ,

lim
T →∞ E�∗

π∗
0

[
1

T

T −1∑
t=0

c(πt , Qt )

]
≤ lim inf

T →∞ E�
δx0

[
1

T

T −1∑
t=0

c(πt , Qt )

]

for any x0 ∈ R
d and � ∈ �̄C

W . Furthermore, if {xt} is started
from the invariant distribution π∗ and the optimal stationary
policy �∗ ∈ �̄C

W,S is used in such a way that the encoder
and decoder’s initial belief π0 is picked randomly according
to v̂∗ (but independently of {xt } ), then �∗ is still optimal in
the above sense (with π∗ replacing π∗

0 ).
Proof: The proof is almost identical to that of Theo-

rems 7 and 8, with the following minor adjustments, which are
needed to accommodate the unboundedness of the quadratic
cost function. This modification is facilitated by Assumption 5
which implies that, similar to (49) and (52) in the proof
of Proposition 1, for the sequence of expected occupation
measures {vt } corresponding to any initial distribution δx0 , we
have

sup
t≥0

∫
P(Rd )×Qc

(∫
Rd

‖x‖2+επ(dx)

)
vt (dπ d Q) < ∞,
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as well as for all v ∈ G,∫
P(Rd )×Qc

(∫
Rd

‖x‖2+επ(dx)

)
v(dπ d Q)

=
∫

Rd
‖x‖2+επ∗(dx) < ∞.

These uniform integrability properties of {vt } and G allow us
to use the continuity result Lemma 8 for c(π, Q). All other
parts of the proof remain unchanged. �

VI. CONCLUDING REMARKS

In this paper we established structural and existence results
concerning optimal quantization policies for Markov sources.
The key ingredient of our analysis was the characterization
of quantizers as a subset of the space of stochastic kernels.
This approach allows one to introduce a useful topology with
respect to which the set of quantizers with a given number of
convex codecells is compact, facilitating the proof of existence
results. We note that both our assumption of convex-codecell
quantizers and the more restrictive assumption of nearest
neighbor-type quantizers in Borkar et al. [11] may preclude
global optimality over all zero-delay quantization policies. The
existence and finer structural characterization of such globally
optimal policies are still open problems.

The existence and the structural results can be useful for the
design of networked control systems where decision makers
have imperfect observation of a plant to be controlled. The
machinery presented here is particularly useful in the context
of optimal quantized control of a linear system driven by
unbounded noise: For LQG optimal control problems it has
been shown that the effect of the control policies can be
decoupled from the estimation error and the design results here
can be used to establish existence of optimal quantization and
control policies for LQG systems.

The approach developed in this paper can also be applied
to the case where {xt } is a Markov chain with finite state
space X. In this case stronger results can be obtained with
significantly less technical complications. In particular, when
the state space is finite one does not need the convex
codecell assumption since there are only a finite number
of M-level quantizers on X. Also, the global optimality of
Walrand-Varaiya type policies for the infinite horizon dis-
counted cost problem can be easily proved if X is finite.
In addition, one can prove the optimality of deterministic
stationary policies for the average cost problem under the
irreducibility condition P(xt+1 = b|xt = a) > 0 for all a, b ∈
X. Similar to [11], such an optimality result follows from a
vanishing discount argument (see [17, Theorem 5.2.4]) using
arguments similar to [11, Lemmas 4.1 and 4.2] and the fact
that the filtering process forgets its initial state exponentially
fast under the irreducibility condition.

A further research direction is the formulation of the
communication problem over a channel with feedback.
The tools and the topological analysis developed in this
paper could be useful in establishing optimal coding and
decoding policies and the derivation of error-exponents with
feedback. Relevant efforts in the literature on this topic
include [32].

VII. APPENDIX

A. Auxiliary Results

Recall that a sequence of probability measures {μn} in
P(X) converges to μ ∈ P(X) weakly if

∫
X c(x)μn(dx) →∫

X c(x)μ(dx) for every continuous and bounded c : X → R.
For μ, ν ∈ P(X) the total variation metric is defined by

dT V (μ, ν) := 2 sup
B∈B(X))

|μ(B) − ν(B)|

= sup
g: ‖g‖∞≤1

∣∣∣∣
∫

g(x)μ(dx)−
∫

g(x)ν(dx)

∣∣∣∣, (16)

where the second supremum is over all measurable real
functions g such that ‖g‖∞ := supx∈X |g(x)| ≤ 1.

Definition 5 ([41]): Let P ∈ P(Rd). A quantizer sequence
{Qn} converges to Q weakly at P (Qn → Q weakly at P)
if P Qn → P Q weakly. Similarly, {Qn} converges to Q in
total variation at P (Qn → Q in total variation at P) if
P Qn → P Q in total variation.

The following lemma will be very useful in the upcoming
optimality proofs.

Lemma 2: (a) Let {μn} be a sequence of probability den-
sity functions on R

d which are uniformly equicontinuous
and uniformly bounded and assume μn → μ weakly.
Then μn → μ in total variation.

(b) Let {Qn} be a sequence in Qc such that Qn → Q weakly
at P for some Q ∈ Qc. If P admits a density, then Qn →
Q in total variation at P. If the density of P is positive,
then Qn → Q in total variation at any P ′ admitting a
density.

(c) Let {Qn} be a sequence in Qc such that Qn → Q weakly
at P for some Q ∈ Qc where P admits a positive density.
Suppose further that P ′

n → P ′ in total variation where P ′
admits a density. Then P ′

n Qn → P ′ Q in total variation.
Proof: (a) We will denote a density and its induced

probability measure by the same symbol. By the Arzelà-Ascoli
theorem the sequence of densities {μn}, when restricted to
a given compact subset of R

d , is relatively compact with
respect to the supremum norm. Considering the sequence
of increasing closed balls Ki = {x : ‖x‖ ≤ i} of radius
i = 1, 2, . . ., one can use Cantor’s diagonal argument as in
[41, Lemma 4.3] to obtain a subsequence {μnk } and a non-
negative continuous function μ̂ such that μnk (x) → μ̂(x) for
all x , where the convergence is uniform over compact sets.
Since

∫
B |μnk (x) − μ̂(x)| dx → 0 for any bounded Borel set

B , and since {μn} is tight by weak convergence, it follows that
μ̂ is a probability density. Since μnk converges to μ̂ pointwise,
by Scheffe’s theorem [7] μnk converges to μ̂ in the L1 norm,
which is equivalent to convergence in total variation. Since
μn → μ weakly, we must have μ = μ̂.

The preceding argument implies that any subsequence of
{μn} has a further subsequence that converges to μ in
(the metric of) total variation. This implies that μn → μ in
total variation.

(b) It was shown in the proof of [41, Theorem 5.7] that

dT V (P Qn , P Q) ≤
M∑

i=1

P(Bn
i � Bi ), (17)
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where Bn
1 , . . . , Bn

M and B1, . . . , BM are the cells of Qn and
Q, respectively, and Bn

i � Bi := (Bn
i \ Bi )∪(Bi \ Bn

i ). Since Q
has convex cells, the boundary ∂ Bi of each cell Bi has zero
Lebesgue measure, so P(∂ Bi ) = 0 because P has a density.
Since ∂(Bi ×{ j}) = ∂ Bi ×{ j}, and P Q(A×{ j}) = P(A∩B j ),
we have

P Q(∂(Bi × { j})) = P(∂ Bi ∩ B j ) = 0,

for all i and j . Thus if P Qn → P Q weakly, then P Qn

(Bi × { j}) → P Q(Bi × { j}) by the Portmanteau theorem,
which is equivalent to

P(Bi ∩ Bn
j ) → P(Bi ∩ B j )

for all i and j . Since {Bn
1 , . . . , Bn

M } and {B1, . . . , BM } are both
partitions of R

d , this implies P(Bn
i � Bi ) → 0 for all i , which

in turns proves that P Qn → P Q in total variation via (17).
If P has a positive density and P ′ admits a density,

then P ′ is absolutely continuous with respect to P and so
P(Bn

i � Bi) → 0 implies P ′(Bn
i � Bi ) → 0. Combined with

the preceding argument this proves the second statement in
part (b).

(c) For any A ∈ B(X × M) let A(x) := {y : (x, y) ∈ A}.
Then

|P ′
n Qn(A) − P ′ Qn(A)|
=

∣∣∣∣
∫

Rd
Qn(A(x)|x)P ′

n(dx) −
∫

Rd
Qn(A(x)|x)P ′(dx)

∣∣∣∣
≤ dT V (P ′

n, P ′),

where the inequality is due to (16). Taking the supremum over
all A yields

dT V (P ′
n Qn, P ′ Qn) ≤ dT V (P ′

n, P ′).

Hence

dT V (P ′
n Qn, P ′ Q)

≤ dT V (P ′
n Qn, P ′ Qn) + dT V (P ′ Qn, P ′ Q)

≤ dT V (P ′
n, P) + dT V (P ′ Qn, P ′ Q).

From part (b) we know that Qn → Q in total varia-
tion at P ′. Since P ′

n → P in total variation, we obtain
dT V (P ′

n Qn, P ′ Q) → 0. �
Recall from Definition 3 in Section II the set S ⊂ P(Rd)

of probability measures admitting densities that are uniformly
bounded and uniformly Lipschitz (with constants determined
by the conditional density φ( · |x) of xt+1 = f (xt , wt ) given
xt = x). In Lemma 1 we showed that S contains all reachable
states, i.e., πt ∈ S for all t ≥ 1 with probability 1 under any
policy � ∈ �W .

Lemma 2(a) immediately implies that for any sequence {μn}
in S and μ ∈ S, μn → μ weakly if and only if μn → μ in
total variation. In this case we simply say that {μn} converges
to μ in S.

As discussed in Section II, we can define the (quotient)
topology on Qc induced by weak convergence of sequences
at a given P admitting a positive density. Lemma 2(b) implies
that any sequence in Qc converging in this topology will
converge both weakly and in total variation at any P ′ admitting

a density. In the rest of this section, to say that {Qn} converges
in Qc will mean convergence in this topology. We equip S×Qc

with the corresponding product topology, and continuity of any
F : S×Qc → R will be meant in this sense, unless specifically
stated otherwise.

Lemma 3: (a) S is closed in P(Rd).
(b) Qc is compact.
(c) If {(μn, Qn)} converges in S × Qc to (μ, Q) ∈ S ×

Qc then μn Qn → μQ in total variation. Thus any F :
S × Qc → R is continuous if F(μn, Qn) → F(μ, Q)
whenever μn Qn → μQ in total variation.

Proof: (a) Recall that S is a uniformly bounded and
uniformly equicontinuous family of densities. Lemma 2(a)
shows that if {μn} is a sequence in S and μn → μ weakly,
then μ has a density. The proof also shows that some subse-
quence of (the densities of) {μn} converges to (the density of)
μ pointwise. Thus μ must admit the same uniform upper
bound and Lipschitz constant as all densities in S, proving
that μ ∈ S.

(b) The compactness of Qc was shown in [41, Theorem
5.8].

(c) If {(μn, Qn)} converges in S ×Qc to (μ, Q) ∈ S ×Qc

then μn → μ in total variation. Since μ has a density,
Qn → Q in Qc implies that Qn → Q in total variation at μ.
Thus μn Qn → μQ in total variation by Lemma 2(c). �

B. Proof of Theorem 4

The first statement of the following theorem immediately
implies Theorem 4.

Theorem 10: For t = T −1, . . . , 0 define the value function
J T

t at time t recursively by

J T
t (π)= inf

Q∈Qc

(
1

T
c(π, Q) + E[J T

t+1(πt+1)|πt =π, Qt = Q]
)

with J T
T := 0 and c(π, Q) defined in (5). Then for any t ≥ 1

and π ∈ S or t = 0 and π ∈ S∪{π0}, the infimum is achieved
by some Q in Qc. Moreover, J T

t (π) is continuous on S.
The rest of this section is devoted to proving Theorem 10.

The proof is through backward induction in t combined with
a series of lemmas that show the continuity of both c(π, Q)
and E[J T

t+1(πt+1)|πt = π, Qt = Q] in (π, Q).
Lemma 4: c(π, Q) is continuous on S × Qc.

Proof: If {(πn, Qn)} converges in S ×Qc then πn Qn →
π Q in total variation by Lemma 3(c). We have to show that
in this case

c(πn, Qn) = inf
γ

∫
Rd

πn(dx)

M∑
i=1

Qn(i |x)c0(x, γ (i))

→ inf
γ

∫
Rd

π(dx)

M∑
i=1

Q(i |x)c0(x, γ (i))

= c(π, Q).

This follows verbatim from the proof of [41, Theorem 3.4]
where for any bounded c0 the convergence for a fixed π and
Qn → Q was shown. �

We now start proving Theorem 10. At t = T − 1 we have

J T
T −1(π) = inf

Q∈Qc

c(π, Q).
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By Lemma 4 and the compactness of the set of quantizers Qc

(Lemma 3(b)) there exists an optimal quantizer that achieves
the infimum. The following lemma will be useful.

Lemma 5: If F : S × Qc → R is continuous then
inf Q∈Qc F(π, Q) is achieved by some Q in Qc and
min

Q
F(π, Q) is continuous in π on S.

Proof: The existence of an optimal Q in Qc achieving
inf Q∈Qc F(π, Q) is a consequence of the continuity of F and
the compactness of Qc. Assume πn → π in S and let Qn be
optimal for πn and Q optimal for π . Then∣∣min

Q ′ F(πn, Q′) − min
Q ′ F(π, Q′)

∣∣
≤ max

(
F(πn, Q) − F(π, Q), F(π, Qn) − F(πn, Qn)

)
.

The first term in the maximum converges to zero since F
is continuous. To show that the second converges to zero,
suppose to the contrary that for some ε > 0 and for a
subsequence {(πnk , Qnk )},

|F(π, Qnk ) − F(πnk , Qnk )| ≥ ε. (18)

By Lemma 3(a), there is a further subsequence {n′
k} of

{nk} such that {Qn′
k
} converges to some Q′ in Qc. Then

{(π, Qn′
k
)} and {(πn′

k
, Qn′

k
)} both converge to (π, Q′), which

contradicts (18) since F is continuous. �
As a consequence of Lemmas 4 and 5, J T

T −1(π) is con-
tinuous on S, proving Theorem 10 for t = T − 1. To prove
the theorem for all t = T − 2, . . . , 0, we apply backward
induction. Assume that the both statements of the theorem
hold for t ′ = T − 1, . . . , t + 1. We want to show that the
minimization problem

J T
t (π)= min

Q∈Qc

(
1

T
c(π, Q)+E

[
J T

t+1(πt+1)|πt =π, Qt = Q
])

(19)

has a solution and J T
t (π) is continuous on S.

Consider the conditional probability distributions given by

π̂(m, π, Q)(C) := P(xt+1 ∈ C|πt = π, Qt = Q, qt = m)

= 1

π(Q−1(m))

∫
C

( ∫
Rd

π(dx)1{x∈Bm}φ(z|x)

)
dz (20)

(if π(Q−1(m)) = 0, then π̂(m, π, Q) is set arbitrarily). Note
that

E
[
J T

t+1(πt+1)|πt = π, Qt = Q
]

=
M∑

m=1

J T
t+1

(
π̂(m, π, Q)

)
π

(
Q−1(m)

)
, (21)

where

π
(
Q−1(m)

) = P(qt = m|πt = π, Qt = Q).

The following lemma will imply that if (πn, Qn) → (π, Q)
in S × Qc, then

J T
t+1

(
π̂(m, πn, Qn)

)
πn

(
Q−1

n (m)
)

→ J T
t+1

(
π̂(m, π, Q)

)
π

(
Q−1(m)

)
(22)

for all m.

Lemma 6: If πn Qn → π Q in total variation, then
π̂(m, πn, Qn) → π̂(m, π, Q)) in total variation for every
m = 1, . . . , M with π(Q−1(m)) > 0.

Proof: Let B1, . . . , BM and Bn
1 , . . . , Bn

M denote the cells
of Q and Qn , respectively. Since for any Borel set A,
πn Qn(A × { j}) = πn(A ∩ Bn

j ), the convergence of πn Qn

to π Q implies that πn(A ∩ Bn
m) → π(A ∩ Bm). This implies

πn(Bi ∩ Bn
j ) → π(Bi ∩ B j ) for all i and j , from which we

obtain for all m = 1, . . . , M ,

πn(Bn
m) → π(Bm), πn(Bn

m � Bm) → 0, (23)

where Bn
m � Bm = (Bn

m \ Bm) ∪ (Bm \ Bn
m).

If π(Bm) > 0, the probability distribution π̂(m, π, Q) has
density

π̂(m, π, Q)(z) = 1

π(Bm)

∫
Bm

π(dx)φ(z|x)

so by Scheffe’s theorem [7] it suffices to show that
π̂(m, πn, Qn)(z) → π̂(m, π, Q)(z) for all z. As π(Bm) > 0
by assumption and πn(Bn

m) → π(Bm), it is enough to establish
the convergence of vm

n (z) := ∫
Bn

m
πn(dx)φ(z|x) to vm(z) :=∫

Bm
π(dx)φ(z|x).

For any z ∈ R
d we have

|vm
n (z) − vm (z)|

≤
∣∣∣∣
∫

Rd
πn(dx)

(
1{x∈Bn

m} − 1{x∈Bm}
)
φ(z|x)

∣∣∣∣
+

∣∣∣∣
∫

Rd
1{x∈Bm}

(
πn(x) − π(x)

)
φ(z|x) dx

∣∣∣∣
≤

∫
Bn

m�Bm

πn(dx)φ(z|x) +
∫

Rd

∣∣πn(x) − π(x)
∣∣φ(z|x) dx

≤ C

[
πn(Bn

m � Bm) + dT V (πn, π)

]
, (24)

where C is a uniform upper bound on φ. Since both terms
in the brackets converge to zero as n → ∞, the proof is
complete. �

Now if (πn, Qn) → (π, Q) in S × Qc, then by Lemma 3
and (23) we have πn

(
Q−1

n (m)
) → π

(
Q−1(m)

)
for all m.

If π̂ (m, π, Q) > 0 for some m, then Lemma 6 implies that
π̂(m, πn, Qn) → π̂(m, π, Q) in total variation; hence (22)
holds in this case by the continuity of J T

t+1. If π
(
Q−1(m)

)=0,
then by (23) and the boundedness of the cost (22) holds
again. In view of (21), we obtain that E

[
J T

t+1(πt+1)|πt = π,

Qt = Q
]

is continuous on S × Qc.
We have shown that both expressions on the right side of

(19) are continuous on S×Qc. By Lemma 5 the minimization
problem (19) has a solution and J T

t (π) is continuous on S,
proving the induction hypotesis for t ′ = t .

To finish the proof we have to consider the last step t = 0
separately. For t = 0 we have that if π admits a positive
density, then there exists a minimizing Q for

J T
0 (π) = inf

Q∈Qc

(
1

T
c(π0, Q) + E[J T

1 (π1)|π0 = π, Qt = Q]
)

by Lemma 5 since the preceding proofs readily imply that both
c(π, Q) and E[J T

1 (π1)|π0 = π, Qt = Q] are continuous in
Q as long as π admits a positive density. If π is a point mass
on x0, then any Q is optimal. This establishes Theorem 10.�
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C. Proof of Theorem 5

The first statement of the following counterpart of
Theorem 10 immediately implies Theorem 5.

Theorem 11: Consider Assumption 3. For t = T −1, . . . , 0
define the value function J T

t at time t recursively by

J T
t (π)= inf

Q∈Qc

(
1

T
c(π, Q) + E

[
J T

t+1(πt+1)|πt = π, Qt = Q
])

with J T
T := 0 and c(π, Q) defined in (5). Then for any t ≥ 1

and π ∈ S or t = 0 and π ∈ S ∪{π0} the infimum is achieved
by some Q in Qc.

Moreover, J T
t (π) is continuous on S in the sense that if

πn → π and {πn} satisfies the uniform integrability condition

lim
L→∞ sup

n≥1

∫
{‖x‖2≥L}

‖x‖2πn(dx) = 0, (25)

then J T
t (πn) → J T

t (π).
To prove Theorem 11 we need to modify the proof of

Theorem 10 only in view of the unboundedness of the cost,
which affects the proof of the continuity of c(π, Q) and
E

[
J T

t+1(πt+1)|πt = π, Qt = Q
]
.

We first establish the continuity of c(π, Q) in a more
restricted sense than in Lemma 4. We know from (8) that
given πt = π and Qt = Q with cells B1, . . . , BM , the
unique optimal receiver policy is given, for any m such that
π(Bm) > 0, by

γ (m) =
∫

Bm

xπ(dx).

If π(Bm) = 0, then γ (m) is arbitrary. Using this optimal
receiver policy, define Q̄ : R

d → R
d by

Q̄(x) = γ (Q(x)).

Note that c(π, Q) = ∫ ∥∥x − Q̄(x)
∥∥2

π(dx) and that for all m,∫ ∥∥x − Q̄(x)
∥∥21{x∈Bm}π(dx) =

∫
Bm

‖x − γ (m)‖2π(dx)

≤
∫

Bm

‖x‖2π(dx) (26)

which implies

c(π, Q) ≤
∫

‖x‖2π(dx). (27)

Lemma 7: Assume (πn, Qn) → (π, Q) in S × Qc and
{πn} satisfies the uniform integrability condition (25). Then
c(πn, Qn) → c(π, Q).

Proof: If Bn
1 , . . . , Bn

M denote the cells of Qn and let
B1, . . . , BM be the cells of Q. By (23) we have πn(Bn

m) →
π(Bm) and πn(Bn

m � Bm) → 0. Let I = {
m ∈ {1, . . . , M} :

π(Bm) > 0
}
. We have for any L > 0 and m ∈ I ,∫

Bn
m

x1{‖x‖2<L}πn(dx) →
∫

Bm

x1{‖x‖2<L}π(dx).

This and a standard truncation argument that makes use of
(25) imply∫

Bn
m

xπn(dx) →
∫

Bm

xπ(dx), m ∈ I

so the optimal receiver policy γn for Qn satisfies
γn(m) → γ (m) for all m ∈ I . In particular, this implies that
for all m ∈ I ,

Dm := sup
n≥1

sup
x∈Bn

m

‖Q̄n(x)‖2 = sup
n≥1

γn(m) < ∞.

In turn, the parallelogram law gives for m ∈ I and x ∈ Bn
m ,

‖x − Q̄n(x)‖2 ≤ 2‖x‖2 + 2‖Q̄n(x)‖2 ≤ 2‖x‖2 + 2Dm (28)

so for m ∈ I we obtain

lim
L→∞ sup

n≥1

∫
Bn

m

πn(dx)
∥∥x − Q̄n(x)

∥∥21{‖x‖2≥L}

≤ lim
L→∞ sup

n≥1

∫
Rd

πn(dx)
(
2‖x‖2 + 2Dm

)
1{‖x‖2≥L}

= 0, (29)

where the second limit is zero due to (25).
Since πn → π in total variation, πn(Bn

m) → π(Bm) and
πn(Bn

m � Bm) → 0, and since ‖x − Q̄n(x)‖2 is uniformly
bounded if ‖x‖2 < L by (28), we have∫

Bn
m

πn(dx)
∥∥x − Q̄n(x)

∥∥2
1{‖x‖2<L}

→
∫

Bm

π(dx)
∥∥x − Q̄(x)

∥∥21{‖x‖2<L}.

Then uniform integrability (29) and a standard truncation
argument yield for m ∈ I∫

Bn
m

πn(dx)
∥∥x − Q̄n(x)

∥∥2 →
∫

Bm

π(dx)
∥∥x − Q̄(x)

∥∥2
. (30)

Assume m /∈ I . Then we have∫
Bn

m

‖x‖2πn(dx) ≤
∫

{‖x‖2≥L}
‖x‖2πn(dx) + Lπn(Bn

m) → 0

from (25) and since πn(Bn
m) → 0. In view of (26) we obtain∫

Bn
m

πn(dx)
∥∥x − Q̄n(x)

∥∥2 → 0.

This and (30) give

c(πn, Qn) =
∫

Rd
πn(dx)

∥∥x − Q̄n(x)
∥∥2

→
∫

Rd
π(dx)

∥∥x − Q̄(x)
∥∥2 = c(π, Q)

which proves the lemma. �
The following variant of Lemma 5 lemma will be useful.
Lemma 8: Assume F : S × Qc → R is continuous in the

sense that if (πn, Qn) → (π, Q) in S ×Qc and {πn} satisfies
the uniform integrability condition (25), then F(πn, Qn) →
F(π, Q). Then inf Q∈Qc F(π, Q) is achieved by some Q in
Qc and minQ F(π, Q) is continuous in π in the sense that
if πn → π in S and {πn} is uniformly integrable, then
minQ F(πn, Q) → minQ F(π, Q).

Proof: The existence of an optimal Q for any π ∈ S is a
consequence of the compactness of Qc. The rest of the proof
follows verbatim the proof of Lemma 5 with the convergence
sequence {πn} also assumed to be uniformly integrable. �
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Lemmas 7 and 8 prove Theorem 11 for t = T −1. To prove
the theorem for all t , we apply backward induction. Assume
that the both statements of the theorem hold for t ′ = T −
1, . . . , t + 1.

Recall the conditional distribution π̂(m, π, Q) defined
in (20). The following lemma shows that the uniform inte-
grability condition is inherited in the induction step.

Lemma 9: Assume (πn, Qn) → (π, Q) in S×Qc and {πn}
satisfies the uniform integrability condition (25). If cell Bm

of Q satisfies π(Bm) > 0, then {π̂(m, πn, Qn)} is uniformly
integrable in the sense of (25).

Proof: Let Bn
m denote the mth cell of Qn . Since

π(Bm)>0, we have πn(Bn
m) > 0 for n large enough, so∫

Rd
‖z‖2π̂(m, πn, Qn)(z)1{‖z‖2≥L} dz = 1

π(Bn
m)∫

Rd

∫

Rd

‖ f (x, w)‖21{‖ f (x,w)‖2≥L}1{x∈Bn
m}πn(dx)νw(dw).

Since ‖ f (x, w)‖2 ≤ 2K 2
(‖x‖2 + ‖w‖2

)
by Assumption 3(i),

we have

1{‖ f (x,w)‖2≥L} ≤ 1{‖x‖2≥L/(4K 2)} + 1{‖w‖2≥L/(4K 2)}

and so∫
Rd

‖z‖2π̂(m, πn, Qn)(z)1{‖z‖2≥L} dz

≤ 1

π(Bn
m)

∫
Rd

∫
Rd

2K 2(‖x‖2 + ‖w‖2)

×(
1{‖x‖2≥L/(4K 2)} + 1{‖w‖2≥L/(4K 2)}

)
πn(dx)νw(dw)

= 2K 2

π(Bn
m)

∫
Rd

‖x‖21{‖x‖2≥L/(4K 2)}πn(dx)

+ 2K 2

π(Bn
m)

(∫
Rd

‖x‖2πn(dx)

)(∫
Rd

1{‖w‖2≥L/(4K 2)}νw(dw)

)

+ 2K 2

π(Bn
m)

(∫
Rd

‖w‖2νw(dw)

) (∫
Rd

1{‖x‖2≥L/(4K 2)}πn(dx)

)

+ 2K 2

π(Bn
m)

∫
Rd

‖w‖21{‖w‖2≥L/(4K 2)}νw(dw).

Recall that πn(Bn
m) → π(Bm). Thus the first term in

sum above converges to zero as L → ∞ uniformly in n
by (25). The uniform convergence to zero of the other three
terms in the sum follows since

∫ ‖w‖2νw(dw) < ∞ and
supn≥1

∫ ‖x‖2πn(x) dx < ∞ by (25). This proves

lim
L→∞ sup

n≥1

∫
Rd

‖z‖2π̂(m, πn, Qn)(z)1{‖z‖2≥L} dz = 0

as claimed. �
The next lemma shows the continuity of E

[
J T

t+1(πt+1)|πt =
π, Qt = Q

]
.

Lemma 10: E
[
J T

t+1(πt+1)|πt = π, Qt = Q
]

is continuous
on S × Qc in the sense of Lemma 8.

Proof: Assume (πn, Qn) → (π, Q) in S × Qc and
{πn} satisfies the uniform integrability condition (25). Let
B1, . . . , BM and Bn

1 , . . . , Bn
M denote the cells of Q and Qn ,

respectively. In view of (21) and the fact that πn(Bn
m) →

π(Bm), we need to prove that for all m with π(Bm) > 0,

J T
t+1(π̂(m, πn, Qn)) → J T

t+1(π̂ (m, π, Q)) (31)

and for m with π(Bm) = 0,

J T
t+1(π̂(m, πn, Qn))πn(Bn

m) → 0. (32)

The convergence in (31) follows from Lemmas 6 and 9,
and the induction hypothesis that J T

t+1( · ) is continuous along
convergent and uniformly integrable sequences in S.

To prove (32) first note that from (27) we have

J T
t+1(πt+1) ≤ E

[
1

T

T −1∑
i=t+1

‖xi‖2
]
,

where xt+1 has distribution πt+1 and xi = f (xi−1, wi−1),
where wt+1, . . . , wT −1 are independent of xt+1. Accordingly,

J T
t+1(π̂(m, πn, Qn))πn(Bn

m)

≤ E

[
1

T

( T −1∑
i=t+1

‖xi,n‖2
)

1{xt,n∈Bn
m}

]
, (33)

where xt,n has distribution πn .
Now note that the assumption ‖ f (x, w) ≤ K

(‖x‖ + ‖w‖)
and the inequality ‖x + y‖2 ≤ 2‖x‖2 +2‖y‖2 imply the upper
bound

‖xt+ j,n‖2 ≤ (2K 2) j‖xt,n‖2 +
j−1∑
i=0

(2K 2) j−i‖wt+i‖2. (34)

Thus for any j = 1, . . . , T − t − 1 we have

E
[‖xt+ j,n‖21{xt,n∈Bn

m}
]

≤ (2K 2) j E

[
‖xt,n‖21{xt,n∈Bn

m}

+
j∑

i=1

(2K 2)1−i‖wt+i−1‖21{xt,n∈Bn
m}

]

= (2K 2) j
(

E
[∥∥xt,n

∥∥21{xt,n∈Bn
m}

]

+
j∑

i=1

(2K 2)1−i E
[∥∥wt+i−1

∥∥2]
πn(Bn

m)

)
,

where we used the independence of wt , . . . , wT −1 and xt,n.
The first expectation in the last equation converges to zero as
n → ∞ since {πn} is uniformly integrable and πn(Bm

n ) →
π(Bm) = 0, while the second one converges to zero since
πn(Bm

n ) → 0. This proves that the right side of (33) converges
to zero, finishing the proof of the lemma. �

Lemmas 7 and 10 show that

Ft (π, Q) := 1

T
c(π, Q) + E

[
J T

t+1(πt+1)|πt = π, Qt = Q
]

satisfies the conditions of Lemma 8, which in turn proves the
induction hypothesis for t ′ = t . For the last step t = 0 a similar
argument as in the proof of Theorem 10 applies (but here we
also need the condition Eπ0

[‖x0‖2
]

< ∞). This finishes the
proof of Theorem 11. �
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D. Proof of Theorem 6

Define

Jπ∗(T ) := inf
�∈�A

inf
γ

E�,γ
π∗

[
1

T

T −1∑
t=0

c0(xt , ut )

]

and note that lim supT →∞ Jπ∗(T ) ≤ Jπ∗ . Thus there exists
an increasing sequence of time indices {Tk} such that for all
k = 1, 2, . . .,

Jπ∗(Tk) ≤ Jπ∗ + 1

k
. (35)

A key observation is that by Theorem 2 for all k there exists
�k = {η̂(k)

t } ∈ �W (a Markov policy) such that

Jπ∗(�k, Tk) := E�k
π∗

[
1

Tk

Tk−1∑
t=0

c(πt , Qt )

]
≤ Jπ∗(Tk) + 1

k
. (36)

Now let n1 = 1 and for k = 2, 3, . . ., choose the positive
integers nk inductively as

nk =
⌈

k · max

(
Tk+1

Tk
,

nk−1Tk−1

Tk

)⌉
, (37)

where �x� denotes the smallest integer greater than equal to x .
Note that the definition of nk implies nk Tk ≥ knk−1Tk−1. Thus
letting T ′

k = nk Tk for all k we have

T ′
k ≥ kT ′

k−1, (38)

and hence

lim
k→∞

∑k
l=1 T ′

l

T ′
k

= 1. (39)

Now let N0 = 0, Nk = ∑k
i=1 T ′

k for k ≥ 1, and
define the policy � = {η̂t } ∈ �W by piecing together,
in a periodic fashion, the initial segments of �k as
follows:

(1) For t = Nk−1 + j Tk, where k ≥ 1 and 0 ≤ j < nk , let
η̂t ( · ) ≡ η̂

(k)
0 (π∗);

(2) For t = Nk−1 + j Tk + i , where k ≥ 1, 0 ≤ j < nk , and
1 ≤ i < Tk , let η̂t = η̂

(k)
i .

In the rest of the proof we show that � is optimal. First
note that by the stationarity of {xt} we have, for all k ≥ 1 and
j = 0, . . . , nk − 1,

E�
π∗

[ Nk−1+( j+1)Tk−1∑
t=Nk−1+ j Tk

c(πt , Qt )

]
= Tk Jπ∗(�k, Tk).

Hence, for T = Nk−1 + j Tk + i , where k ≥ 3, 0 ≤ j < nk ,
and 0 ≤ i < Tk , we have

E�
π∗

[
1

T

T −1∑
t=0

c(πt , Qt )

]

= E�
π∗

[
1

T

Nk−2−1∑
t=0

c(πt , Qt )

]
+ E�

π∗

[
1

T

T −1∑
t=Nk−2

c(πt , Qt )

]

= 1

T

k−2∑
l=1

T ′
l Jπ∗(�l , Tl) (40)

+ 1

T

(
T ′

k−1 Jπ∗(�k−1, Tk−1) + j Tk Jπ∗(�k, Tk)
)

(41)

+ E�
π∗

[
1

T

T −1∑
t=Nk−1+ j Tk

c(πt , Qt )

]
(42)

(the last sum is empty if i = 0).
Let Ĉ be a uniform upper bound on the cost c0. Since T ≥

Nk−1, (40) can be bounded as

1

T

k−2∑
l=1

T ′
l Jπ∗(�l , Tl) ≤ Ĉ

1

Nk−1

k−2∑
l=1

T ′
l = Ĉ

Nk−2

Nk−1

= Ĉ

Nk−2
T ′

k−2

Nk−2
T ′

k−2
+ T ′

k−1
T ′

k−2

→ 0 (43)

as k → ∞ since Nk−2
T ′

k−2
→ 1 from (39) and

T ′
k−1

T ′
k−2

≥ k − 1
from (38).

Since T ′
k−1 + j Tk ≤ T , (41) can be upper bounded as

1

T

(
T ′

k−1 Jπ∗(�k−1, Tk−1) + j Tk Jπ∗(�k, Tk)
)

≤ max
(

Jπ∗(�k−1, Tk−1), Jπ∗(�k, Tk)
)
. (44)

Finally, the expectation in (42) is upper bounded as

E�
π∗

[
1

T

T −1∑
t=Nk−1+ j Tk

c(πt , Qt )

]
≤ Ĉ

Tk

T
≤ Ĉ

Tk

T ′
k−1

≤ Ĉ

k − 1
→ 0 (45)

as k → ∞, where the last inequality holds since by (37) we
have T ′

k = nk Tk ≥ kTk+1 for all k.
Combining (40)–(45) we obtain

lim sup
T →∞

E�
π∗

[
1

T

T −1∑
t=0

c(πt , Qt )

]
≤ lim sup

k→∞
Jπ∗(�k, Tk) ≤ Jπ∗

which proves the optimality of �.

E. Proof of Proposition 1

Proof of (a): Here we show that any weak limit of {vt } must
belong to G. For v ∈ P(P(Rd)×Qc) and g ∈ Cb(P(Rd)×Qc)
or f ∈ Cb(P(Rd)) define

〈v, g〉 :=
∫

g(π, Q)v(dπ d Q), 〈v, f 〉 :=
∫

f (π)v(dπ d Q).

Also define v P ∈ P(P(Rd)) by

v P(A) :=
∫

P(πt+1 ∈ A|πt = π, Qt = Q)v(dπ d Q)

for any measurable A ⊂ P(Rd). Note that v ∈ G is equivalent
to

〈v P, f 〉 = 〈v, f 〉 for all f ∈ Cb(P(Rd)). (46)

From the definition of vt P , we have for any f ∈ Cb(P(Rd)),

〈vt , f 〉 − 〈vt P, f 〉 = 1

t
Eπ0

[ t−1∑
i=0

f (πi ) −
t∑

i=1

f (πi )

]
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= 1

t
Eπ0

[
f (π0) − f (πt )

] → 0 (47)

as t → ∞. Now suppose that vtk → v̄ weakly along a
subsequence of {vt }. Then 〈vtk , f 〉 → 〈v̄ , f 〉 for all f ∈
Cb(P(Rd)), and (47) implies

〈vtk P, f 〉 → 〈v̄ , f 〉. (48)

The following lemma is proved at the end of this section.
Lemma 11: The transition kernel P(dπt+1|πt , Qt ) is con-

tinuous in the weak-Feller sense, i.e., for any f ∈ Cb(P(Rd)),

P f (π, Q) :=
∫
P(Rd )×Qc

f (π ′)P(dπ ′|π, Q)

is continuous on S × Qc,
The lemma implies that P f ∈ Cb(S ×Qc), so 〈vtk , P f 〉 →

〈v̄ , P f 〉. However, since for all v,

〈v P, f 〉=
∫
P(Rd )×Qc

f (π)P(dπ ′|π, Q)v(dπ d Q)=〈v, P f 〉,

this is equivalent to 〈vtk P, f 〉 → 〈v̄ P, f 〉. Combining this
with (48) yields 〈v̄ P, f 〉 = 〈v̄ , f 〉 which finishes the proof
that v̄ ∈ G.

Although c(π, Q) is continuous on S × Qc by Lemma 4,
the limit relation (13) does not follow immediately since π0
may not be in S and thus vt may not be supported on S×Qc.
However, since πt ∈ S for all t ≥ 1 with probability 1, we
have vt (S × Qc) ≥ 1 − 1/t , and we can proceed as follows:
Recall that S × Qc is a closed subset of P(Rd) × Qc by
Lemma 3 and the topology on P(Rd)×Qc is metrizable. Thus
by the Tietze-Urysohn extension theorem [12] there exists c̃ ∈
Cb(P(Rd) × Qc) which coincides with c on S × Qc. Then
since vtn (S × Qc) ≥ 1 − 1/tn and both c and c̃ are bounded,

lim
n→∞

∫
P(Rd )×Qc

∣∣c̃(π, Q) − c(π, Q)
∣∣vtn (dπ d Q) = 0.

On the other hand, vtn → v̄ implies

lim
n→∞

∫
P(Rd )×Qc

c̃(π, Q)vtn (dπ d Q)

=
∫
P(Rd )×Qc

c̃(π, Q)v̄(dπ d Q)

=
∫
P(Rd )×Qc

c(π, Q)v̄(dπ d Q),

where the last equality holds since v̄ ∈ G is supported on
S × Qc. This proves (13).

Proof of (b): We need the following simple lemma.
Lemma 12: Let H be a collection of probability measures

on P(Rd) × Qc such that

R := sup
v∈H

∫
P(Rd )×Qc

(∫
Rd

‖x‖2π(dx)

)
v(dπ d Q) < ∞

Then H is tight and is thus relatively compact.
Proof: For any α > 0 let

Kα :=
{
π ∈ P(Rd) :

∫
Rd

‖x‖2π(dx) ≤ α

}
.

Then π({x : ‖x‖2 > L}) ≤ α/L for all π ∈ Kα by Markov’s
inequality. Hence Kα is tight and thus relatively compact.

A standard truncation argument shows that if πk → π
(weakly) for a sequence {πk} in Kα , then

α ≥ lim sup
k→∞

∫
Rd

‖x‖2πk(dx) ≥
∫

Rd
‖x‖2π(dx)

so Kα is also closed. Thus Kα is compact.
Let f (π) := ∫

Rd ‖x‖2π(dx). Then∫
P(Rd )×Qc

f (π)v(dπ d Q) ≤ R for all v ∈ H

Again by Markov’s inequality,∫
P(Rd )×Qc

f (π)v(dπ d Q) ≥ αv
(
(Kα)c × Qc

)

implying, for all v ∈ H ,

v(Kα × Qc) ≥ 1 − R

α
.

Since Qc is compact and Kα is compact for all α > 0, we
obtain that H is tight. �

Let � be an arbitrary fixed policy in �̄C
W , fix the initial

distribution δx0 , and consider the corresponding sequence of
expected occupation measures {vt }. Then∫

P(Rd )×Qc

(∫
Rd

‖x‖2π(dx)

)
vt (dπ d Q)

= Eδx0

[
1

t

t−1∑
k=0

‖xk‖2
]

→
∫

Rd
‖x‖2π∗(dx) < ∞

by Assumption 4. Hence

sup
t≥0

∫
P(Rd )×Qc

(∫
Rd

‖x‖2π(dx)

)
vt (dπ d Q) < ∞. (49)

Thus {vt } is relatively compact by Lemma 12, proving part (b)
of the proposition.

Proof of (c): We will show that G is closed and relatively
compact. To show closedness, let {vn} be a sequence in G
such that vn → v̄ . Using the notation introduced in the proof
of part (a), we have for any f ∈ Cb(P(Rd)) by (46),

〈vn P, f 〉 = 〈vn, f 〉 → 〈v̄ , f 〉.
But we also have

〈vn P, f 〉 = 〈vn, P f 〉 → 〈v̄ , P f 〉 = 〈v̄ P, f 〉,
where the limit holds by the weak-Feller property of P
(Lemma 11). Thus 〈v̄ P, f 〉 = 〈v̄ , f 〉, showing that v̄ ∈ G.
Hence G is closed.

To show relative compactness, recall from (20) the condi-
tional distributions

π̂(m, π, Q)(dxt+1) = P(dxt+1|πt = π, Qt = Q, qt = m)

for m = 1, . . . , M . For any (π, Q) and Borel set A ⊂ R
d ,∫

P(Rd )
π ′(A)P(dπ ′|π, Q)

=
M∑

m=1

π̂(m, π, Q)(A) P
(
π̂(m, π, Q)|π, Q

)
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=
M∑

m=1

(
1

π(Q−1(m))

∫

Q−1(m)

P(xt+1 ∈ A|xt )π(dxt)

)
π(Q−1(m))

=
∫

Rd
P(xt+1 ∈ A|xt)π(dxt ). (50)

Now let v ∈ G and consider the “average” πv under v
determined by

πv(A) =
∫
P(Rd )×Qc

π(A)v(dπ d Q) =
∫
P(Rd )

π(A)v̂(dπ),

where v̂ is obtained from v(dπ d Q) = η̄(d Q|π)v̂(dπ). Recall
that v is supported on S × Qc. If A has boundary of zero
Lebesgue measure, the mapping π �→ π(A) is continuous on
S and the definition of G implies

πv(A) =
∫
P(Rd )×Qc

π(A)v(dπ d Q)

=
∫
P(Rd )×Qc

∫
P(Rd )

π ′(A)P(dπ ′|π, Q)v(dπ d Q)

=
∫

P(Rd )

∫
Qc

∫

P(Rd )

π ′(A)P(dπ ′|π, Q)η̄(d Q|π)v̂(dπ).

(51)

Substituting (50) into the last integral, we obtain

πv(A) =
∫

P(Rd )

∫
Qc

∫

Rd

P(xt+1 ∈ A|xt)π(dxt)η̄(d Q|π)v̂(dπ)

=
∫

Rd
P(xt+1 ∈ A|xt)πv (dxt).

Since the Borel sets in R
d having boundaries of zero Lebesgue

measure form a separating class for P(Rd), the above holds for
all Borel sets A, implying that πv = π∗, the unique invariant
measure for {xt}. Thus∫

P(Rd )×Qc

(∫
Rd

‖x‖2π(dx)

)
v(dπ d Q)

=
∫

Rd
‖x‖2πv(dx) =

∫
Rd

‖x‖2π∗(dx) (52)

for all v ∈ G. Since the last integral is finite by Assumption 4,
Lemma 12 implies that G is relatively compact. �

Proof of Lemma 11: Consider a sequence {(πn, Qn)} con-
verging to some (π, Q) in S × Qc. Then for any f ∈
Cb(P(Rd)),∫

P(Rd )×Qc

f (π ′)P(dπ ′|πn, Qn) −
∫

P(Rd )×Qc

f (π ′)P(dπ ′|π, Q)

=
M∑

m=1

(
f (π̂(m, πn, Qn))P(π̂ (m, πn, Qn)|πn, Qn)

− f (π̂(m, π, Q))P(π̂ (m, π, Q)|π, Q)
)

=
M∑

m=1

(
f (π̂(m, πn, Qn))πn

(
Q−1

n (m)
)

− f (π̂(m, π, Q))π
(
Q−1(m)

))
.

From Lemma 3 we have that πn Qn → π Q in total vari-
ation which implies via Lemma 6 that π̂(m, πn, Qn) →
π̂(m, π, Q) in total variation and thus weakly for all m with
π

(
Q−1(m)

)
> 0. The proof of the same lemma shows that

πn
(
Q−1

n (m)
) → π

(
Q−1(m)

)
for all m = 1, . . . M . Since f

is continuous and bounded, the last sum converges to zero as
n → ∞, proving the claim of the lemma. �
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