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Causal Coding of Stationary Sources and Individual
Sequences With High Resolution
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Abstract—In a causal source coding system, the reconstruction
of the present source sample is restricted to be a function of the
present and past source samples, while the code stream itself may
be noncausal and have variable rate. Neuhoff and Gilbert showed
that for memoryless sources, optimum performance among all
causal source codes is achieved by time-sharing at most two
memoryless codes (quantizers) followed by entropy coding. In
this work, we extend Neuhoff and Gilbert’s result in the limit
of small distortion (high resolution) to two new settings. First,
we show that at high resolution, an optimal causal code for a
stationary source with finite differential entropy rate consists
of a uniform quantizer followed by a (sequence) entropy coder.
This implies that the price of causality at high resolution is ap-
proximately 0.254 bit, i.e., the space-filling loss of the uniform
quantizer. Then, we consider individual sequences and introduce
a deterministic analogue of differential entropy, which we call
“Lempel–Ziv differential entropy.” We show that for any bounded
individual sequence with finite Lempel–Ziv differential entropy,
optimum high-resolution performance among all finite-memory
variable-rate causal codes is achieved by dithered scalar uniform
quantization followed by Lempel–Ziv coding. As a by-product, we
also prove an individual-sequence version of the Shannon lower
bound.

Index Terms—Causal source codes, differential entropy, finite-
memory codes, individual sequences, Lempel–Ziv complexity, sta-
tionary sources, uniform quantizer.

I. INTRODUCTION

THE performance gap between vector and scalar quantiza-
tion is a basic figure of interest in lossy data compression.

On the one extreme, scalar quantizers are the most easy-to-im-
plement and commonly used source coding devices. On the
other extreme, vector quantizers of unbounded dimension yield
the rate-distortion function , the minimum rate theoret-
ically attainable by coding the source with distortion [1].
The performance gain resulting from going to higher quanti-
zation dimensions is attributed to three factors in the quantiza-
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tion literature: ability to exploit memory in the source, ability
to shape the quantizer codebook, and existence of better space-
filling quantization cells [2]. If the quantizer output sequence
is “entropy coded” (jointly encoded with a variable-rate loss-
less code), then most of the gain due to the first two factors can
be achieved even with scalar quantization. In fact, in the limit
of small distortion , known as “high resolution con-
ditions,” the rate loss of an optimum entropy-coded quantizer
(ECQ) with respect to the rate-distortion function is due solely
to the quantizer’s space-filling (in)efficiency. By a classic result
of Gish and Pierce [3], a uniform quantizer is approximately an
optimum scalar ECQ at high resolution, and hence the rate loss
of scalar quantization is asymptotically the space-filling loss of
a cubic cell; i.e., 0.254 bit/sample (as-
suming the squared error distortion measure).

The popularity of scalar quantizers is due not only to their
very simple structure, but also to the fact that scalar quantizers
have no encoding delay. However, scalar quantizers form only
a special subclass of codes having zero delay, which, in gen-
eral, can also have memory. It is an interesting and challenging
problem to determine how much, if any, of the advantage offered
by vector quantization can be realized with codes that introduce
no additional delay, but allow the encoder output to depend also
on the past samples of the source. For memoryless sources, Er-
icson [4] and Gaarder and Slepian [5], [6] showed that optimal
performance among fixed-rate, zero-delay codes is achieved by
optimal scalar quantization, and thus zero-delay coding of mem-
oryless sources does not offer any of the advantages of vector
quantization. For sources with memory, the problem in general
is still unresolved and only partial results are known (see, e.g.,
[6], [7]). Zero-delay codes [8] and limited-delay codes [9] have
also been investigated in the individual-sequence setting. Re-
cently, source coding exponents for zero-delay, finite-memory
coding of memoryless sources have been derived by Merhav and
Kontoyiannis [10].

In the context of entropy-coded quantization, the problem is
also complicated by the fact that with entropy coding the overall
system delay cannot be strictly zero. Neuhoff and Gilbert [11]
proposed an alternative model, called “causal source coding,”
which ignores delays created by the variable-rate coding of the
quantizer output. In a causal source code, the reconstruction
of the present source sample depends only on the present
and the past source samples, but the decoder can generate
the reconstruction with arbitrary delay. The minimum coding
rate achievable with distortion by such systems is denoted

. With this definition, Neuhoff and Gilbert were able to
show that for memoryless sources, causal source coding cannot
achieve any of the vector quantization advantages. Specifically,
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as described in detail in the Section III, the optimum causal
source coder time-shares at most two entropy-coded scalar
quantizers. In essence, this result implies that by looking into
the source’s past one cannot create multidimensional cells that
have better space-filling properties than the cubic cell. In the
limit of high resolution, the loss of causality is
therefore the same as the space-filling loss of the scalar ECQ;
i.e., approximately 0.254 bit/sample.

When trying to extend Neuhoff and Gilbert’s result to sources
with memory, one encounters a substantial difficulty: due to the
dependence between consecutive source samples, the quantized
current and past samples become the “context” for encoding
the next sample. The optimization of such a system requires
the little-understood optimal design of the quantization function
over the entire (correlated) sequence.

In this paper, we extend Neuhoff and Gilbert’s result for two
new settings under high-resolution conditions. Intuitively, the
high resolution assumption allows us to circumvent the diffi-
culty outlined above because the finely quantized past samples
effectively provide an unquantized context for entropy coding.
The first setting we consider is that of probabilistic stationary
sources. Assuming the squared-error distortion measure, we
prove an asymptotic lower bound on the performance of causal
coding of stationary sources with finite differential entropy
rate, and show that an entropy-coded uniform scalar quantizer
asymptotically achieves this bound. Hence, just as in the mem-
oryless case, the rate loss in causal coding is asymptotically the
space-filling loss of the cubic cell.

The second setting is inspired by Ziv and Lempel’s model
of coding an “individual sequence” using a finite-state machine
[12], [13]. We consider encoding a deterministic bounded se-
quence of real numbers using a time-invariant, finite-resolution,
finite-memory causal coder followed by a finite-state lossless
encoder. We prove a converse theorem for the asymptotic per-
formance of such systems. The resulting lower bound is given
in terms of a new quantity, called the “Lempel–Ziv differential
entropy rate,” which, in the context of deterministic sequences
and complexity-constrained encoders, plays a role similar to
Shannon’s differential entropy rate. We show via a direct coding
theorem that a dithered uniform scalar quantizer ([14], [15])
combined with a finite-state lossless coder achieves the lower
bound of the converse theorem. We also derive an individual-se-
quence version of the Shannon lower bound [1] to the rate-dis-
tortion function in which the Lempel–Ziv differential entropy
rate replaces the Shannon differential entropy rate. This bound,
which holds for general noncausal encoders, implies that the
loss of causality for individual sequences at high resolution is
the same as in the probabilistic setting.

The paper is organized as follows. After reviewing some no-
tation and definitions in Section II, we derive the converse and
direct coding theorems for causal coding of probabilistic sta-
tionary sources in Section III. In Section IV, causal coding of de-
terministic sequences is studied. In Section IV-A, we introduce
the notion of Lempel–Ziv differential entropy rate and present
a result which characterizes individual sequences for which this
quantity is finite. The converse and direct coding theorems for
causal coding of individual sequences are given in Section IV-B.
We prove the Shannon lower bound for individual sequences in

Section V. Section VI concludes the paper. Some of the more
technical proofs are relegated to the Appendices .

II. PRELIMINARIES

For any sequence of random variables , where is
either the set of integers or the set of positive integers, and for
any , the segment (vector) will be
denoted by . We allow and to be infinite; for example,
we write for the entire sequence . A similar
convention applies to deterministic sequences which are usually
denoted by lower case letters.

The entropy of an -dimensional discrete random vector
with values in the countable set is defined by

where denotes base- logarithm. If the distribution of the
real random vector is absolutely continuous with respect to
the Lebesgue measure on , having probability density func-
tion (pdf) , the differential entropy of is

provided the integral exists. The normalized versions of
and are denoted by and , respectively;
i.e.,

and

The entropy rate of a stationary sequence of discrete random
variables is

where the limit exists and is finite if is finite [16].
If is stationary and has a pdf and finite differential

entropy for all , then the differential entropy rate
of is defined by

By stationarity, the above limit is either finite or equal to .
Entropy rates and differential entropy rates for double-sided sta-
tionary sequences are defined in a similar way. For example

Entropy rates will also be expressed via conditional entropies
[16], [17]. For any discrete stationary

while if is stationary and has finite differential entropy
rate

A scalar quantizer is a measurable function with a
countable range. A scalar quantizer of particular interest is the
uniform quantizer with step size : Let denote the
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quantizer defined by if
, When is applied componentwise to

, we write to denote the resulting (discrete) random
vector . A similar convention holds for
infinite sequences of random variables; e.g., denotes
the sequence .

The following result by Csiszár [18] shows a fundamental
connection between the differential entropy of a random vector
and the entropy of its finely uniformly quantized version.

Lemma 1: Assume is an -vector of real random vari-
ables such that . If has finite differential
entropy, then

(1)

It is also shown in [18] that the limit is equal to
if or does not have a pdf. Note that

by Jensen’s inequality (recall that
denotes the uniform quantizer with step size ). This
implies that in case is finite,1 possesses a pdf
and finite differential entropy if and only if the limit on the
left-hand side of (1) is finite.

The following extension of Csiszár’s result to stationary pro-
cesses will play an important role in this paper.

Lemma 2: If is stationary, has finite differential en-
tropy rate, and , then

(2)

The proof is given in Appendix A. Combined with the pre-
vious remark, the proof also implies that whenever
is finite, the process has a finite differential entropy rate if and
only if the limit on the left-hand side is finite.

III. CAUSAL CODING OF STATIONARY SOURCES

Consider the following model for causal (nonanticipating) en-
coding a discrete-time real random process .2 The encoder
accepts the source sequence and ap-
plies to it a sequence of reproduction functions , where

maps into the real-valued reproduction symbol

Each is assumed to be a measurable function of one-sided
infinite real sequences and have a countable range (thus,
each is a discrete random variable). The encoder losslessly
encodes the reproduction sequence and thereby
creates the variable-rate binary representation .
The decoder receives and losslessly decodes
the reproduction sequence . The code is called
causal because the reproduction depends only on the

1It is straightforward to show that H(Q (X )) is finite if and only if
H(Q (X )) is finite for all � > 0.

2We follow the model introduced by Neuhoff and Gilbert [11]. They allowed
general source and reproduction alphabets and an arbitrary single-letter distor-
tion measure; we only consider the case of real sources and squared error dis-
tortion measure which is amenable to high-resolution analysis.

present and past source symbols . This means that all
delays are due to the lossless coding part of the code. Note that
although the encoder has access to the entire source sequence

, only is to be represented and reproduced by the
code.

The collection is called a causal reproduction coder.
The distortion of the system is defined by the accumulated ex-
pected mean-squared error

Note that the distortion is determined solely by the reproduction
coder.

The rate of the code is measured by

where is the cumulative number of bits received by
the encoder when it produces . Neuhoff and Gilbert [11]
showed that the infimum of rates for all causal codes with a
given reproduction coder is the limsup entropy rate of the
reproduction process, defined by

where for all . We follow [11] to define
the rate of reproduction coder to be

which makes the rate definition independent of the particular
choice of the lossless code used in the scheme.

An important class of reproduction coders is the class of
sliding-block coders (also called stationary or time-invariant
coders). A causal sliding-block coder is characterized and de-
noted by a real function of one-sided infinite sequences such
that for all . In this case, the distortion
and rate are denoted, respectively, by and . Note that
if is stationary, then and are both
stationary. Thus, is equal to the (ordinary) entropy-rate of

and . If , ,
for a scalar quantizer , then is called a memoryless
reproduction coder, and is given by the entropy rate
of the stationary sequence . Although we do
not restrict our results to time-invariant systems, memoryless
reproduction coders play an important role in the main result
of this section, i.e., Theorem 1.

The optimal performance theoretically attainable (OPTA)
with causal source codes is the minimum rate achievable when
encoding the source by any causal code with distortion

or less. Formally, for all , the causal OPTA function
is defined by

(3)

where the infimum is over all causal reproduction coders with
distortion not exceeding .
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The main result of [11] shows that if is stationary and
memoryless, then

where is the lower convex hull of the OPTA function,
, for memoryless reproduction coders (scalar quantizers),

given by

(4)

Here is a random variable having the common distribution
of the and the infimum is over all scalar quantizers having
squared distortion . is called the
OPTA function for scalar entropy-constrained quantization of
the random variable [19], [20]. Any quantizer such that

and is called an
optimal quantizer.

Since any point on the graph of can be obtained as
the convex combination of at most two points on the graph
of , Neuhoff and Gilbert’s result is equivalent to the
statement that for memoryless sources, optimum performance
among all causal source codes is achieved by time-sharing at
most two optimal entropy-constrained scalar quantizers. The
following shows that this result continues to hold for sources
with memory in the limit of small distortion, in which case
uniform quantizers are known to be (asymptotically) optimal in
the entropy-constrained sense.

Theorem 1: Assume the real stationary source has fi-
nite differential entropy rate and suppose .
Then

(5)

Furthermore, is asymptotically achieved by a uniform
scalar quantizer with step size in the sense
that and

(6)

Remarks:

1. Note that in the uniform quantization scheme that yields
the asymptotically optimal performance (6), only the en-
tropy coder is assumed to know the source distribution (it
needs to losslessly compress the discrete stationary source

to its entropy rate .
By limiting the class of source distributions, the en-
tropy coder can also be made source independent (i.e.,
universal). For example, can be achieved by
Lempel–Ziv coding [12] for all stationary and ergodic
sources whose one-dimensional marginals have a given
bounded support. More generally, a result of [21] implies
that there exists a universal entropy coder for
that achieves for all stationary and ergodic sources

such that and .

2. Let denote the rate-distortion function (with respect
to the squared error distortion) of the stationary source

. The rate loss of causal coding is the difference

Since is the OPTA function of all unrestricted
coding schemes, the rate loss is always nonnegative. We
have the Shannon lower bound [1] on

(7)

which is known to be asymptotically tight [22], [23] under
the present conditions in the sense that

Combining this with Theorem 1 shows that the “price of
causality” at high rates is

0.254 bit/sample

This is the “space-filling loss” of the uniform quantizer;
i.e., the high-resolution rate loss of a uniform scalar
quantizer with respect to an optimal vector quantizer with
asymptotically large dimension [3], [2].

3. The requirement of causality can be relaxed by allowing
finite anticipation for the reproduction coder.
In this case , and causal codes corre-
spond to the case. In view of the (high-resolu-
tion) causal solution, it is tempting to replace the scalar
uniform quantizer by a -dimensional lattice quan-
tizer [24] as a candidate for source coding with anticipa-
tion . Indeed, by quantizing the source in blocks of size

and applying sequence entropy coding, one obtains,
for small distortion, the achievable rate-distortion curve

, where is the normal-
ized second moment of the -dimensional lattice.
Denoting the OPTA for anticipation by , the
rate loss with respect to unlimited anticipation is upper
bounded by (7) as

The lattice scheme and the bound are asymptotically op-
timal for by Theorem 1, and also for large anticipa-
tion since for “good” lattices as
[25]. However, it is not at all clear whether this scheme is
optimal and hence this bound is tight for any finite posi-
tive .

Proof of Theorem 1: We start with proving the second
statement (6). Recall that the (common) marginal distribution of
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the is absolutely continuous (i.e., has a pdf). From high-res-
olution quantization theory [26, Lemma 1], this implies without
any further conditions that

Since is a memoryless reproduction coder,
, and hence we obtain

(8)

The rate of the memoryless reproduction coder is the en-
tropy rate of . Using Lemma 2 with we
obtain

(9)

This proves the second statement of the theorem on the asymp-
totic optimality of .

Since is clearly continuous in , it is easy to see that
(8) and (9) also imply the following asymptotic upper bound on

:

(10)

The rest of the proof is devoted to showing the reverse inequality

(11)

We use the proof technique of [11 (proof of Theorem 3,
steps 1 and 2) ] which needs to be adapted to sources with
memory in the limit of small distortion. The key to this is the
following “conditional” version of a classic result on high-rate
entropy-constrained quantization by Zador [27], [28] and Gish
and Pierce [3]. The lemma is proved in Appendix A.

Lemma 3: Assume is stationary, has finite differential
entropy rate, and suppose . For any
define

where the infimum is over all measurable real functions of
that have countable range and satisfy

Then

The inequality (11) follows once we show that

(12)

for an arbitrary family of causal reproduction coders

such that for all . In the proof

of Theorem 3 in [11], the following lower bound on the rate of
any causal reproduction coder was shown to hold

(13)

where . Define .
Then from the definition of

Now let denote the the lower convex hull of . Since
, and is nonincreasing and

convex (and therefore continuous at any ), we obtain

Together with (13) and the definition of the causal OPTA func-
tion (3), we obtain the bound

(14)

for all . Now, from Lemma 3

As we show in Appendix A, this implies

(15)

Combined with (14), this proves (11) and completes the proof
of the theorem.

IV. CAUSAL CODING OF INDIVIDUAL SEQUENCES

In this section, our aim is to investigate the high-resolution be-
havior of causal codes when no probabilistic assumption is made
on the sequence to be encoded. We introduce the “Lempel–Ziv
differential entropy rate” of a bounded deterministic sequence, a
concept that will prove crucial in characterizing the OPTA func-
tion of finite-memory causal codes for individual sequences.
As well, it will provide an individual sequence version of the
Shannon lower bound.

We begin with introducing some new notation and definitions.
Let denote the set of all probability measures on the Borel
subsets of , and let be the collection of all in
that are absolutely continuous with respect to the -dimensional
Lebesgue measure (i.e., each has a pdf). For any in

, denotes the differential entropy of , and if is
discrete, denotes its entropy. The normalized versions of

and are denoted by and , respectively,
i.e., and . We write if
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a random vector has distribution , so that or
(whichever is appropriate) if .

Given a sequence of real numbers , and
positive integers , let denote the “sliding-window”
empirical distribution of -blocks in the initial segment . That
is, for any Borel set

where if and otherwise.
For simplicity, we always assume in the sequel that (the

sequence to be encoded) is bounded so that each is from the
interval . All results can be trivially extended for arbitrary
bounded sequences of real numbers.

A. Lempel–Ziv Differential Entropy

To define the individual-sequence analogue of differential en-
tropy, we use the concept of finite-state compressibility of an in-
dividual sequence over a finite alphabet introduced by Ziv
and Lempel [12]. A variable-length finite-state lossless coder

is characterized by a next state function
where is a finite set of states, and an encoder function

, where denotes the set of finite-length
binary strings, including the empty string. The sequence is
encoded into the bit stream (a concatenation of fi-
nite-length binary strings) while going through an infinite se-
quence of states , according to

It is assumed that the initial state is a prescribed element of
. The coder is assumed to be information lossless [12]

so that can be losslessly recovered from and .
Let denote the length of the binary string (the empty
string has length zero), and let . The
finite-state compressibility of is defined by

(16)

where is the set of all finite-state coders with the number
of states bounded as . Clearly, and

is an ultimate lower bound on the rate of any finite-
state binary lossless code for .

A fundamental result [12, Theorem 3] states that the finite-
state compressibility of is the limit of the th-order normal-
ized “empirical entropies” of , i.e,

(17)

where

(18)

The limit in (17) exists since is subadditive in [12,
Lemma 1].

Another fundamental characterization of , given in
[12], is that

where denotes the number of phrases obtained via the in-
cremental parsing of ; i.e., when is sequentially parsed
into shortest strings that have not appeared so far. It follows that

can be achieved by the universal Lempel–Ziv algo-
rithm based on incremental parsing.

The following definition provides an individual-sequence
analogue of differential entropy. We adapt Csiszár’s operational
characterization (Lemmas 1 and 2) of differential entropy via
the asymptotic entropy of a uniform quantizer, but replace the
process entropy with the finite-state compressibility of the se-
quence. Recall that denotes the uniformly quantized
sequence .

Definition 1: The Lempel–Ziv differential entropy rate of a
sequence of real numbers , with for all , is
defined by

(19)

Remarks:

1. Note that can take at most values as varies
in , where denotes the smallest integer that is
greater than .3 Thus, , so

, implying

(20)

Consequently, is either finite or
.

2. If each belongs to the same finite set ,
one always has since in this case

is bounded from above by the logarithm
of the size of .

3. Examples where is finite can be generated by
letting be a typical sample path of a stationary and
ergodic process with finite differential entropy
rate . From the ergodic theorem, with probability
one, we have for all ,
for any Borel set . Thus, for almost all realizations

, for all

and hence, from (17)

From Lemma 2

so, for almost all realizations

(21)

3Note that this definition slightly differs from the usual definition of the
ceiling function.
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4. For nonstationary processes, the Lempel–Ziv differential
entropy rate of a typical sample path may not coincide
with the ordinary differential entropy rate of the process
(or the latter may not exist at all). For example, typical
sample paths of a nonstationary discrete process can
have finite Lempel–Ziv differential entropy rate, while
the ordinary differential entropy rate of such a process
does not exist. To construct such a process, let be
a sequence of independent random variables such that

is uniformly distributed in .
Then, for any positive integer , is a se-
quence of independent and identically distributed (i.i.d.)
random variables that are uniformly distributed on a set
with elements. Since the effect of the initial segment

on vanishes as , with
probability one, we have for all

so by (17), . Thus,

Since the left-hand side is always nonpositive (see Re-
mark 1), we obtain that with probability
one, while does not exist.

We need some new definitions to state some important facts
about . If a sequence of probability measures ,

, converges weakly to some , we write
. Let denote the collection of all

for which there is an infinite subsequence of the positive
integers such that . Thus, is the set of sub-
sequential limits (with respect to weak convergence) of the se-
quence , . Also, define

the set of probability measures in that possess a density.
Note that for an arbitrary , both and may
be empty.

We have seen that an individual sequence with finite
Lempel–Ziv differential entropy rate might or might not be a
typical sample path of a stationary and ergodic process. Never-
theless, the next result shows that any such individual sequence
can be characterized via an associated stationary random source
having finite differential entropy rate.

Theorem 2: Assume is a sequence with
for all such that is finite. Then there exists a real-
valued stationary process with finite-dimensional distribu-
tions such that for all . Further-
more, has finite differential entropy rate , and

(22)

The proof is given in Appendix B. The theorem states that for
all with finite , there is a stationary process
with finite differential entropy rate whose finite-dimensional

distributions are the subsequential limits of empirical distribu-
tions of overlapping blocks of . (In particular, is
nonempty for all .) Furthermore, the differential entropy rate
of the process coincides with , and for asymptoti-
cally large , the blocks have maximum differential entropy
among all subsequential limits of empirical distributions of .
Thus, in a sense, represents the entropy-wise dominant
empirical behavior of . This characterization of will
prove crucial in our development of causal coding of individual
sequences.

B. Finite-Memory Causal Coding of Individual Sequences

Consider an infinite bounded sequence of real numbers
, such that for all . A causal, finite-res-

olution, finite-memory (CFRFM) encoder with memory of size
is described by a time-invariant reproduction coder

which, for each , maps the source string into a re-
production letter , and by a finite-state coder which losslessly
encodes into a sequence of variable-length
binary strings. To unambiguously specify for

, we formally define , but
only are reproduced. The reproduction coder is said
to have finite resolution because it is assumed that it only sees a
finely quantized version of the input. Formally,
is called a reproduction coder with input resolution if for
all

(23)

where, as before, is the uniform quantizer with step size .
Thus, the overall CFRFM reproduction coder is in the form

(24)

Since we assume that each is in , the finite input reso-
lution property implies that there are only finitely many possible
values of , the collection of which we denote by

. The reproduction sequence is encoded by a finite-state,
variable-length lossless coder which emits the bit
stream , where the binary string has length . Anal-
ogously to causal codes for random sources, we define the rate
of the system, measured in bits per source letter, by

We eliminate the dependence of the system performance on
the particular choice of the lossless coder by considering the
minimum rate achievable by finite-state, variable-rate lossless
coding of the reproduction sequence. Hence, the rate of the
CFRFM code with reproduction coder is

(25)

where the infimum is taken over all codes with an arbitrary
(but finite) number of states.

Comparing definitions (16) and (25), we clearly have
. On the other hand, the fact that

can be arbitrarily approached by universal finite-state schemes
[12, Theorem 2] implies the reverse inequality, so we have
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The distortion of the CFRFM coder (which only depends on
the reproduction coder ) is given by the average cumulative
squared error

(26)

For and , let denote the family of all
causal reproduction coders with input resolution and memory

; then is the collection of all finite
input resolution reproduction coders having finite memory. The
OPTA function for CFRFM codes with respect to is defined
by

(27)

Thus, is the minimum rate achievable with respect
to at distortion level by any CFRFM code with reproduc-
tion coder having arbitrarily fine input resolution and arbitrarily
large (but finite) memory size, and lossless coder having arbi-
trarily large (but finite) number of states. The following is an in-
dividual-sequence analogue of the converse part of Theorem 1.

Theorem 3 (Converse): Assume is a sequence with
for all for which is finite. Then the OPTA

function for CFRFM codes with respect to satisfies

Remarks:

1. Note that CFRFM coders form a subclass of the set of
all causal reproduction coders we considered in the prob-
abilistic setting. The condition that every coder in is
time invariant is a natural restriction in the individual se-
quence setting in order to avoid unrealistic (i.e., too op-
timistic) rate-distortion results. The other two conditions
are imposed for technical reasons (and are quite heavily
relied on in the proof). The finite-memory requirement,
also assumed in [10] when studying the large-deviations
performance of special classes of causal codes, does re-
strict generality, although codes with long enough (but
finite) memory may well approximate codes with infi-
nite, but rapidly fading memory. On the other hand, the
finite-resolution condition is nonrestrictive from a prac-
tical viewpoint since any coder implemented on a digital
computer must have finite input resolution.

2. In the sequel (Theorem 4), we show an achievability result
corresponding to Theorem 3 (i.e., achievability of the re-
verse inequality) using dithered uniform quantizers, that
is, using a CFRFM coder with common randomization at
the encoder and the decoder. A complete coding theorem
would therefore require extending the converse result of
Theorem 3 to systems with common randomness. One
possible type of randomized (causal, finite-memory) re-
production coder has the form , where

is an abstract random variable available to both the en-
coder and the decoder and has a finite input res-
olution for each value of . This corresponds to dithered
quantization where the dither variable is drawn only once

for the entire encoding process (as in [14]). In this case, for
each realization the resulting system is a CFRFM
coder with rate and distortion ,
so the converse above holds with probability one. Per-
formance, however, may vary with the value of . Ap-
pendix E shows that the expected performance of the ran-
domized CFRFM coder, expectation taken with respect to
the dither , satisfies the asymptotic lower bound of The-
orem 3

(28)
where , the randomized causal OPTA func-
tion of , is defined as in (27) with respect to the ex-
pected rate and the expected distortion

. Theorem 4 shows achievability of the re-
verse inequality in (28) for dithered uniform quantizers
with a single dither.

3. A stronger type of randomization is when the reproduc-
tion coder is in the form for an i.i.d.
dither process . I.i.d. randomization tends to be more
robust in the sense of guaranteeing the same asymptotic
performance for almost all dither realizations. For ex-
ample, as we shall see in Theorem 4, the time-averaged
mean-squared distortion of uniform lattice quantization
with i.i.d. dither converges with probability one to the
second moment of the lattice, independent of the source
sequence. Can a CFRFM with i.i.d. randomization ex-
ceed the lower bound of Theorem 3? The situation is not
clear, as on one hand for each realization of the dither
process the system is time-varying, hence more general
than the kind of CFRFM schemes considered in the the-
orem. On the other hand, the variation statistics are sta-
tionary (i.i.d.). The question thus remains open.

Proof of Theorem 3: Let be the stationary process
associated with via Theorem 2. For convenience, we ex-
tend into a two-sided process by specifying that the

-blocks , have the same distri-
bution as for all . As in Section III, let denote
the causal OPTA function of . We will show that for all

(29)

This and the fact that imply the theorem
since

where the first equality follows from Theorem 1 (whose condi-
tions are clearly satisfied by ) and the second from The-
orem 2.

In the rest of the proof we prove (29). Consider any reproduc-
tion coder with arbitrary input resolution and memory

. Since , where for
all , from (17) and (18)
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where

Fix and define by

for any . Since has input resolution , the range
of the , , is finite. Thus, for all , is

a discrete distribution such that for any

(Recall that by definition.) Hence,
, where for any probability measure

and measurable function ,
denotes the probability measure in induced by and ;
i.e., for any Borel set

(30)

Let denote the distribution of the block . Since
by Theorem 2, there is a subsequence

such that

Clearly, we also have

since the effect of the initial segment vanishes asymp-
totically. By the input resolution property

so is constant on the interior of each of the cells of ,
which are -dimensional hypercubes, and the disconti-
nuities of occur on the faces of the hypercubes. Thus, the set
of discontinuities of have zero probability (recall that

has a pdf), and so

by [29, Theorem 5.1]. Since is discrete with finite
support, this implies

We obtain

where .
Similarly, let be a subsequence such that

Since the set of discontinuities of the bounded function
, , has proba-

bility zero, we obtain

Thus, the rate and distortion of any CFRFM code for are
lower-bounded by the rate and distortion, respectively, of its sta-
tionary causal reproduction coder encoding . Hence,

where denotes the causal OPTA function of the stationary
source . Note that the above inequality holds for any repro-
duction coder having arbitrary input resolution and memory
size. Thus, by definition (27) of the OPTA function for CFRFM
codes, we obtain (29) for all . This completes the proof.

Theorem 2 and the preceding proof suggest that similarly
to the random source case, the asymptotic lower bound for

in Theorem 3 is achievable by a simple scheme
in which the output of a memoryless uniform scalar quantizer

is encoded using a finite-state lossless coder. Indeed, all
one needs to show is that upon substituting in (26),
the finiteness of implies as

(which, according to high-rate quantization theory,
is the typical asymptotic behavior of uniform quantizers for
sources with a density). Then one could conclude directly from
the definition of that

since . However, as the next ex-
ample shows, it is not hard to construct a sequence with
finite whose distortion for uniform quantization does
not exhibit this asymptotic behavior.

(Counter) Example: Let be a sequence of i.i.d.
random variables with each being uniformly distributed on

, and let by a typical sample path of such that
as for all , where denotes the
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uniform distribution on . Let and be an
increasing sequence of positive integers such that

(31)

e.g., . For each and ,
let

(32)

and for , , let be
any sequence with components

for

(33)
We shall show that the subsequence (32) determines the coding
rate while the subsequence (33) determines the distortion. The
condition (31) clearly implies that along the subsequence ,

, the empirical distribution of
dominates in the sense that as

for any . Letting denote the -fold product of , we
thus have

and, since as by
Lemma 1, we obtain

By (20), this yields

so we conclude that has (maximum) Lempel–Ziv differen-
tial entropy rate .

On the other hand, for any fixed integer , if
and for , then
from (33) we have

for all
(34)

Since for all , (34) and (31) imply

for all , . Thus,

so the asymptotic lower bound of Theorem 3 is not achieved by
memoryless uniform scalar quantization.

Note that the preceding example works because the finite-
ness of the Lempel–Ziv differential entropy rate does not guar-
antee that each subsequential limit of empirical distributions of

converges to a distribution with a density (although the en-
tropy-wise dominant one always does). This is because of the
limsup over in the definition of the finite-state compressibility
(16) (see also (18)). One way to handle this issue could be to re-
place limsup by liminf and require that the corresponding def-
inition of “differential entropy” be still finite. However, such a
definition of finite-state compressibility would lead to too opti-
mistic lossless coding and rate-distortion results. We now out-
line an alternative way to overcome this difficulty using random-
ized quantization.

We show that the asymptotic lower bound of Theorem 3 can
be achieved by scalar uniform quantization and subtractive
dithering [14], [15] (followed by Lempel–Ziv coding). Let

be a sequence of random variables with each
uniformly distributed on . Corresponding to the
two types of randomization discussed after Theorem 3, there
are two ways this sequence can be generated. One has the form

(the single dither case), and the other
is when is a sequence of i.i.d. random variables. It is
assumed that is available to both the encoder and the
decoder. The dithered uniform quantizer maps each into

where (so that is uniformly distributed on
, and the sequence is encoded using a finite-

state, variable-length coder. We measure the rate of the system,
, by the minimum rate achievable by finite-state

variable-length coding of

(35)

Note that for any bounded sequence and fixed , is
a sequence from a finite alphabet, so is well defined.
Moreover, the Lempel–Ziv coding of achieves this rate [12].

At the decoder (where is also available) is reproduced
as

and, accordingly, the distortion of the system is measured by

(36)

Note that for the single-dither case

and

Both the rate and the distortion of the dithered scheme are
random quantities which depend on the dither sequence .
Note that our use of subtractive dithering differs from that of
[14] and [15] since in our case the lossless coder is oblivious
of the dither signal, while in [14] and [15] the dither signal is
known to the lossless coder (and decoder) and is used for condi-
tional coding. On the other hand, in the limit of high-resolution
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quantization, dithering is completely unnecessary in the prob-
abilistic setting of [14], [15], while for an individual sequence
dithering is still necessary to avoid excess distortion like in the
“counter example” above. Finally, note that in practice, a pseu-
dorandom sequence can be used as the dither signal.

The next result states that for any fixed input sequence ,
dithered schemes can achieve the asymptotic lower bound of
Theorem 3 in expectation using a single dither, and with proba-
bility one using the same (typical) realization of an i.i.d. dither
sequence for all . The former case matches the randomized
version of the converse theorem (28). Thus, the coding theorem
for this class of randomized CFRFM schemes is complete.

Theorem 4 (Achievability): Assume is a sequence with
for all such that is finite. Then the

dithered scalar uniform quantizer with single dither has asymp-
totic expected performance

implying that (28) holds with equality. Furthermore, for almost
all realizations of the i.i.d. dither sequence , the dithered
scalar uniform quantizer with i.i.d. dither has asymptotic perfor-
mance

Proof: First we consider the distortion. It is well known
[30] that if is uniformly distributed on , then
for any the random variable

is also uniformly distributed on , and therefore,

(37)

(see also [15] for a generalization to dithered lattice quantizers).
This immediately implies

(38)

for any for the single-dither scheme. As for the i.i.d.
dither case, for any , is
a sequence of i.i.d. random variables with common distribution
that is uniform on . Hence, by the strong law of
large numbers, with probability one

which implies

for all rational

It is easy to check that for any , , and
,

It follows that is a continuous function of
with probability one, so we obtain

(39)

Next consider the rate of the dithered uniform quantizer (for
both types of randomization). Recall that by (17)

(40)

where for all . Fix and ,
let be any length sequence such that

for all , and let for .
Consider the joint empirical probability of overlapping -blocks,

, given for all Borel sets by

Furthermore, let and be
random vectors such that the pair has joint distribution

. Then for all with
probability one. Hence, for any and , we have

so that, conditioned on the event that is a given con-
stant, can take at most different values. Con-
sequently

Therefore,

Note that

and, if , then
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Thus, we obtain that with probability one, for any , ,
, and

Taking the limit superior of both sides as and then
the limit as , we obtain from (17) and (40) that with
probability one, for all ,

Thus, for every fixed

which, combined with the definition of , implies, with
probability one

Since is bounded (by ), the
same inequality holds with respect to the expected rate

. Combined with (38) and (39), this proves
both parts of the theorem.

V. A SHANNON LOWER BOUND FOR INDIVIDUAL SEQUENCES

For two sequences of real numbers and , let

If is a bounded sequence of real numbers and , let

where the infimum is over all sequences from some finite
set of reals (so that is well defined) that satisfy

. In analogy to [13], where a similar quantity
was defined with the finite-state fixed-rate complexity of
replacing the finite-state variable-rate complexity , we
call the variable-rate rate-distortion function of .
Intuitively, expresses the minimum achievable rate
in encoding the individual sequence with unbounded delay
using a variable-rate finite-state encoders. Note that we clearly
have for all .

The following lower bound on gives an individual-
sequence version of the Shannon lower bound for stationary
sources with finite entropy rate.

Theorem 5: Assume is a sequence with for
all , and suppose is finite. Then for any

Remarks:

1. Although we do not have a coding theorem showing the
exact operational significance of for individual
sequences, it can be proved using results of Yang and Ki-
effer [32] that with probability one,
for any bounded stationary and ergodic source
with rate-distortion function . Thus, the theorem
gives back the Shannon lower bound for sample paths
of bounded stationary and ergodic sources with finite
differential entropy.

2. A discrete analogue of Theorem 5 has recently been
proved independently by Modha and de Farias [31] for fi-
nite-source and reproduction alphabets and the Hamming
distortion measure.

3. Theorems 4 and 5 imply that for systems that allow
subtractive dithering, the price of causality for small
distortion is upper-bounded by bits
per sample. It can also be shown that the lower bound
of Theorem 5 is asymptotically tight in the sense that it
can be asymptotically achieved with schemes using mul-
tidimensional dithered lattice quantization followed by
Lempel–Ziv coding. Thus, in the limit of small distortion,
the price of causality is the same as in the probabilistic
case; i.e., the rate loss of the cubic quantizer cell.

Proof of Theorem 5: First we note that finite-state com-
pressibility preserves some important properties of (Shannon)
entropy. In particular, if and are finite sets,
is an arbitrary function, is sequence from , and

, then

(41)

Note that equality must hold if has an inverse. Furthermore,
if and are sequences from the finite alphabets and ,
respectively, and (a
sequence from the finite alphabet ), then we have

(42)

These inequalities follow directly from the characterization of
finite-state compressibility of a sequence in terms of the empir-
ical entropies of overlapping blocks, but for completeness they
are proved in Appendix D.

Let and be any sequence over a finite subset of
reals such that . We will show that

(43)

which clearly implies the theorem.
Note that we can assume that for all , since

otherwise we can define

if
if
if

and replace by . The new sequence will satisfy
by (41), and

since for all .
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For let denote the sequence
. First using (42), then applying (41)

with the invertible mapping , and then
using (42) again, we obtain

Note also that by (41), . Hence,

(44)

Let denote the maximum entropy of any discrete
random variable with values in having
second moment at most , i.e.,

We show in Appendix D that
for all , and also that this implies

(45)

Hence, by (44)

We also show in Appendix D that for all

(46)

Since is monotone increasing in for any fixed ,
the preceding implies

Thus,

where the last inequality follows from the definition of
.

VI. CONCLUDING REMARKS

We extended results on causal coding by Neuhoff and
Gilbert to (stationary) sources with memory, and to individual
sequences encoded by complexity-limited systems, under high
resolution conditions. The price of causality was identified in
both cases as the space-filling loss of the cubic lattice cell; i.e.,
approximately 0.254 bit.

For the individual sequence setting we also derived a lower
bound on the performance of noncausal encoding systems. The
bound, which parallels the Shannon lower bound on the rate-
distortion function, is based on the notion of Lempel–Ziv (finite-
state) complexity of a discrete individual sequence. We note that
similar results can be obtained using other sequence complexity
measures (e.g., Kolmogorov complexity), provided they satisfy
the two very intuitive properties used in the proof.

Throughout the paper we assumed the squared-error distor-
tion measure. Intuitively, the results should hold more generally
for a fairly wide class of difference distortion measures in the
form . Indeed, if is an increasing and convex
function of such that , then one can extend the
direct part of Theorem 1 and the achievability result Theorem 4.
In both cases, this generalization follows rather easily once one
establishes (e.g., by using techniques from [26]) that the uni-
form quantizer distortion asymptotics

can replaced with the more general formula

where (note that under our conditions
on , has an inverse ). For example, the direct part (6) of
Theorem 1 can be replaced by the statement that the uniform
scalar quantizer with step size has asymp-
totic performance given by

and

Similarly, the individual-sequence Shannon lower bound of
Theorem 5 can be generalized under the given conditions on
by replacing with

Unfortunately, however, the more difficult converse results (the
converse part of Theorems 1 and 3) seem hard to generalize in a
rigorous manner since their proofs depend on Gish and Pierce’s
classic result [3] on optimal entropy-constrained scalar quanti-
zation. Although Gish and Pierce also considered general dif-
ference distortion measures, to date their result has only been
proved rigorously for the squared-error distortion measure [33].

Our analyses focused on the high-resolution limit, which, in
effect, allowed the decoupling of the quantizer’s rate-distortion
behavior from its ability to form contexts for entropy coding. It
is worth noting that at the other extreme (that of high distortion)
the price of causality is expected to be smaller. For example,
at the maximum distortion the loss is zero since a memoryless
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scalar quantizer with one level (placed at the mean of the source)
achieves optimum rate-distortion performance. At intermediate
distortion values one can always bound the price of causality
by the rate loss of an entropy-coded dithered scalar quantizer,
which is at most (approximately) 0.754 bit [14], [15] at all dis-
tortion values.

In light of these results, one could use similar intuition and
tools to analyze fixed-rate zero-delay encoding with high reso-
lution. The corresponding asymptotic performance limit in this
case should be given in terms of Bennett’s integral (e.g., [20]).
We conjecture that for stationary sources possessing a condi-
tional pdf given the infinite past, a conditional version of Ben-
nett’s integral, calculated with respect to the conditional pdf and
averaged over the condition, gives the minimum distortion in
zero-delay coding with high resolution.

APPENDIX A

Proof of Lemma 2: Since exists and is finite, the
mutual information between and the past is finite

Also, the condition implies that for all
, and

Since for any decreasing sequence with ,
the partitions (quantizer cells) of asymptotically gen-
erate the Borel sigma field on the real line, by [17, Lemma 5.5.5]
we have

Therefore,

where the last equality follows from Lemma 1. Hence, we obtain

To prove a reverse inequality, note that by stationarity

for any . Thus by Lemma 1

As , the right-hand side converges to . Thus,

which completes the proof.

Proof of Lemma 3: We need the following fact character-
izing in the limit of low distortion. The proposition is
essentially due to Zador [27], [28] and Gish and Pierce [3]; it
was proved with the present general conditions in [33].

Proposition 1: If is a real random variable with a pdf such
that and are finite, then the OPTA function for
scalar quantization of satisfies

To prove the lemma, it suffices to show that if the family of
functions satisfies for
all , then

To simplify the notation, let denote , and let denote a
particular realization . Let denote the conditional
distribution of given the infinite past , and note that

exist as a regular conditional probability [34]. Define

Since and by the concavity of the logarithm,
we have

where denotes the distribution of . Thus, it suffices
to show that

(A1)

The finiteness of implies that is abso-
lutely continuous with pdf for -almost all .
For any and let denote the OPTA
of entropy-constrained scalar quantizers for a random vari-
able with distribution and differential entropy

(see definition (4)). Further-
more, define
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By definition, .
Thus, (A1) holds if

(A2)

The rest of the proof is devoted to showing that (A2) holds.
Observe that by the conditions of the lemma, both
and are finite for -almost all . There-

fore, Proposition 1 implies that for -almost all

(A3)

Also, by the Shannon lower bound (7), for -almost all

(A4)

For any positive integer and , define the sets

and

Then, using (A4)

Since is nonnegative and , Markov’s
inequality implies that for all .
Hence,

(A5)

Since

we have for all by (A3). Since
if , the continuity of as a set function

implies that . Thus, letting in
(A5), we obtain

which completes the proof since was arbitrary.

Proof of (15): By appropriate shifting, normalization, and
scaling, it suffices to show that if , is a positive non-
increasing function such that

then its lower convex hull satisfies

(A6)

We prove (A6) by contradiction. If (A6) does not hold, then
there is an and a sequence of decreasing positive numbers

, , with such that

(A7)

for all . Now consider the affine functions

that represent the lines supporting the convex function
at the points (i.e., and

for all ). Let be such that
if . Since is strictly

decreasing and at , by
choosing large enough (so that is small enough) we have

for all . Hence, we have for

and for

Thus, for all . Since is the pointwise
supremum of all affine functions that are majorized by , it
follows that for all . But from (A7) we
have

a contradiction.

APPENDIX B

A. Proof of Theorem 2

First, we construct the desired stationary process. Let
be a decreasing sequence of positive numbers con-

verging to zero such that

From (17) and (18) we have

Recall that is subadditive in . Thus,

so we have for all

(B1)
Now note that is supported in the hypercube , so the

family of probability measures is uni-
formly tight. Therefore, Prokhorov’s theorem [34] implies that
every subsequence of , has a subsubsequence,
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say , converging weakly to some . In

particular, is nonempty for all . It follows that for each
there exists a and a subsequence (which

depends on ) such that

(B2)
The collection thus obtained will play an important
role in the subsequent proof.

Let and denote the uniform distribution
(Lebesgue measure) on . Also, let denote the uniform
distribution on and the -fold product of the uniform
quantizer . Then the induced distribution (re-
call definition (30)), is the uniform distribution on ,
a set of cardinality . Thus, we have

where denotes the relative entropy (Kullback–Leibler
divergence) [16], [17] between two probability measures and

. In Appendix C, we show that implies

(B3)

Since as , it follows similarly that
. Thus, from (B1) and (B2)

(B4)

where is defined in (B2), and the inequality follows from
the lower semicontinuity (with respect to weak convergence)
of the relative entropy [35]. For any supported on

, the relative entropy is finite if and only if
has a pdf and finite differential entropy, in which case

. Hence, (B4) implies that
(thus, is nonempty) and it has finite differential entropy
which is bounded as

(B5)

Now let be arbitrary and a subsequence
such that . Then

where the second equality follows from Lemma 1 and the first
equality holds since has a pdf and the discontinuities of

form a set of Lebesgue measure zero, and so from [29, Theorem
5.1], implies that as

(B6)

Thus, for all . Since
by (B5), this implies

(B7)

Next, using the collection , we construct the
desired stationary process with marginal distributions in

. For , let denote the -dimensional marginal
of corresponding to the first coordinates; i.e.,

for any measurable . Since each is
supported in , for each the family

is uniformly tight. Thus, we can use Cantor’s diagonal method
to pick a subsequence of the positive integers such that
for all

for some (B8)

We show that the marginals define a sta-
tionary process that satisfies the theorem statement. Recall that

is the set of subsequential limits (with respect to weak
convergence) of the sequence . Since the
weak convergence of probability measures on a Euclidean space
is metrizable [34], it follows that is closed under weak
convergence. As shown in Appendix C

for all and (B9)

and hence, implies that . By
construction, the family of finite-dimensional distributions

is consistent in the usual sense: for all
and , for all measurable .
Thus, by the Kolmogorov extension theorem there exists a
stochastic process with marginals . Further-
more, note that means that each is the limit of
sliding-block empirical distributions, and as such is stationary
in the sense that if , then for any , the -blocks

have identical distribution. Hence,
is a stationary process.

We prove the first equality in (22) via matching upper and
lower bounds. Fix and let be
jointly distributed according to (defined in (B2)). Since

, we have for all
. Thus, writing as for integers and

, we have

where the second and third inequalities hold since the differ-
ential entropies are nonpositive since each is supported in
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. Since , we have for all .
Hence, (B5) implies that for all

(B10)

Thus, for the subsequence associated with the in (B8),
similarly to (B4), we obtain

(B11)

where the last equality holds since the preceding inequalities
show that is finite, so . Since

, the above implies

(B12)

To show the reverse inequality, recall that ,
so there is a subsequence such that . Since

has a pdf, similarly to (B6), we have

Hence,

Since , this implies

Thus, we obtain

(B13)

where the last equality holds by Lemma 2. Combined with
(B12), this proves the first equality in (22).

To show the second equality in (22), note that by (B5) and
(B7) we have for all

Conversely, since and

(B10) implies

for all . Thus, the limit exists, and from
(B10) and (B11) we obtain

Combining these bounds with (B12) and (B13) proves the
second equality in (22).

APPENDIX C

A. Proof of (B3)

Recall that if and only if for any
bounded and continuous real function . Pick such a and note
that we can also assume that has a compact support since a
large enough hypercube contains the support of all .

We have

Since is uniformly continuous and

the right-hand side converges to zero as . Thus,
if and only if .

B. Proof of (B9)

We show that for all . Let
be bounded and continuous and define by

for all . Then is bounded and
continuous. Suppose . Then

where and as . Also,

Thus, if , then , and so .

APPENDIX D

A. Proof of (41) and (42)

To show the first inequality, let
for any and . Fix and let be
any -valued random variable with distribution . It is easy
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to check that has distribution , so the well-known
inequality gives

implying

(D1)

To show (42), let be a -valued pair of random
variables with distribution . Then and have distri-

butions and , respectively, so from the corresponding
inequality for the entropy of random variables, for all

from which (42) follows similarly to (D1).

B. Proof of (45)

Since for all , we have for arbitrary

so that

Let for all , and be a subse-
quence such that

and

for some

Since all elements of are from the finite set ,
the , as well as , are concentrated on . Thus, recalling
that is subadditive in , we have

(D2)
and furthermore

Since , it follows that

Combining this with (D2) proves (45).

C. Proof of (46)

We use differential entropy to bound discrete entropy as
in [16, Theorem 9.7.1]. Let be an -valued discrete

random variable achieving . (Although we will not
need the specific form of the distribution, it can be shown that

with constants and such that
.) Let be independent of and uniformly

distributed on the interval . Then, since in each
interval of length centered at , the pdf of is
constant with magnitude , we have

Also, by independence

which implies

since the Gaussian maximizes differential entropy over all pdfs
satisfying a second-moment constraint [16]. Combining these
we obtain

which completes the proof.

APPENDIX E

A. Proof of (28)

From (29) and (14) it follows that for every randomized coder
and dither realization

(E1)

where and are the causal OPTA and the lower
convex hull of its bound (see Lemma 3), respectively, both cal-
culated with respect to the stationary process associated
with via Theorem 2. Since is convex, Jensen’s in-
equality implies that for any randomized coder

where expectation is taken with respect to . It then follows
from the definition of the randomized causal OPTA that for all

The asymptotic lower bound (28) now follows since sat-
isfies

by (15), and by the definition of .
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