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Correspondence 

On the Asymptotic Tightness of the Shannon 
Lower Bound 

Tamas Linder and Ram Zamir 

Abstract-New results are proved on the convergence of the Shannon 
lower bound to the rate distortion function as the distortion decreases to 
zero. The key convergence result is proved using a fundamental property 
of informational divergence. As a corollary, it is shown that the Shannon 
lower bound is asymptotically tight for norm-based distortions, when the 
source vector has a finite differential entropy and a finite (Y th moment 
for some (Y > 0, with respect to the given norm. Moreover, we derive a 
theorem of Linkov on the asymptotic tightness of the Shannon lower 
bound for general difference distortion measures with more relaxed 
conditions on the source density. We also show that the Shannon lower 
bound relative to a stationary source and single-letter difference distor- 
tion is asymptotically tight under very weak assumptions on the source 
distribution. 

Index Terms-Rate distortion theory, Shannon lower bound, differ- 
ence distortion measures, stationary sources. 

I. INTRODUCTION 

The Shannon lower bound (SLB) for difference distortion 
measures (Shannon [l], Berger [2]) is one of the few tools that 
make possible the explicit evaluation of rate distortion functions. 
This lower bound actually achieves the rate distortion function 
only for some special source distributions. However, Linkov [3] 
showed (see also [2]), that for vector sources with sufficiently 
"nice" densities, and distortion measures satisfying some regu- 
larity conditions, the lower bound is asymptotically tight as the 
distortion goes to zero. This result makes it possible to estimate 
the otherwise unknown behavior of the rate distortion function, 
and has fundamental importance in analyzing the rate and 
distortion redundancies of high-resolution quantizers (see, e.g., 
Gish and Pierce [4], Gersho [5], Yamada et al. [6]). 

Binia et al. [7] gave lower and upper bounds on the squared- 
error €-entropy of second-order stochastic processes in terms of 
their relative entropy with Gaussian processes. Their result 
implies, in particular, that the SLB is asymptotically tight for 
squared distortion for vector sources with densities and finite 
differential entropy and finite second moment. 

In asymptotic quantization theory, often more general source 
distributions or distortion measures are considered than the 
ones covered by the above results. Bucklew and Wise [8] estab- 
lished the rate of decrease of the minimum rth-power distortion 
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of a k-dimensional vector quantizer with N codevectors, when 
N grows to infinity. Their only condition on the distribution of 
the source vector X was that E((X(I'+' < 30 for some E > 0. 
Zamir and Feder [9] determined the precise asymptotics of the 
entropy rate of randomized lattice quantizers for all sources with 
densities. With the same conditions, Linder and Zeger [lo] gave 
the exact asymptotics of the entropy rate of tessellating vector 
quantizers of small rth-power distortion. The Shannon lower 
bound is an extremely useful tool to relate these asymptotic 
distortion and rate formulas to the theoretical rate distortion 
limits. However, the existing results are not applicable since they 
give asymptotically tight bounds only for squared distortion or 
when the source density is from a restricted class. 

In this paper, we prove new results on the asymptotic tight- 
ness of the SLB for large classes of difference distortion mea- 
sures and general source densities. Theorem l provides a set of 
very general conditions under which the SLB is asymptotically 
tight. The proof of this result is based on a fundamental prop- 
erty of informational divergence (relative entropy). Two corollar- 
ies of the main result extend the existing results on the asymp- 
totic tightness of the SLB. First, we consider distortion measures 
of the form (Ix - y( l r ,  where I ( .  11 is an arbitrary norm on Sk and 
r > 0. Corollary 1 shows that the SLB converges to the rate 
distortion function, if the source vector X has a finite differen- 
tial entropy and there exists an (Y > 0 such that E( lX( ( "  < x. 
This means that we can have a tight asymptotic bound on the 
rate distortion function even if there exists no quantizer with a 
finite number of codevectors and of finite distortion, i.e., when 

Next, we deal with a more general class of difference distor- 
tion measures. In Corollary 2, we extend Linkov's result for a 
less restrictive class of source densities, namely, to source densi- 
ties with finite differential entropy and finite first moment with 
respect to the given distortion measure. Moreover, the proof 
given is actually simpler than Linkov's original proof. 

In Section IV, the differences between Linkov's theorem and 
our result are discussed. The fact that we could get rid of 
Linkov's tail condition on the source density allows us to state in 
Corollary 3 the asymptotic tightness of the SLB for stationary 
sources with a finite differential entropy rate relative to a large 
class of single-letter difference distortion measures. The main 
point is that our conditions do not involve the multidimensional 
distributions of the stationary source; only the one-dimensional 
marginal of the source distribution must satisfy a moment-type 
condition. 

EllXll' = m. 

11. PRELIMINARIES 

Let X be an g'-valued random vector with a k-dimensional 
probability density f. The distortion measure we consider is a 
so-called difference distortion measure; that is, the measure of 
dissimilarity between the vectors x, y E A'k is given as p(x - y ) ,  
where p: Sk + [0, x) is a (Borel) measurable nonnegative func- 
tion. The rate distortion function R ( D )  of X with respect to p is 
given for D 2 0 by 

R ( D )  = inf{Z(X;Y): E p ( X  - Y )  ID}. (1) 
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Here Z ( X ; Y )  denotes the mutual information between X and 
Y ,  and the infimum is taken over all k-dimensional random 
vectors Y such that the joint distribution of the pair ( X , Y )  
satisfies E p ( X  - Y )  I D. Note that R ( D )  is not normalized by 
the blocklength; it is measured in nats/block. R ( D )  can be 
thought of as the rate distortion function of an independent and 
identically distributed (i.i.d.1 vector source producing vectors 
with the distribution of X .  Alternatively, when X consists of the 
first k coordinates of a real source X , ,  X2;..,  then ( l / k ) R ( D )  
is called the k th-order rate distortion function of the source. 

The Shannon lower bound R,(D) I R ( D )  is given for D > 0 
by 

R, (D)  = h ( f )  + log a ( D )  - D s ( D ) ,  (2) 
where h ( f )  = -/f log f is the differential entropy of X ,  and 
a ( D )  > 0 and s ( D )  > 0 satisfy the following two equations: 

( 3 )  

n ( D ) ~ ~ p ( x ) e - ’ ( ’ ” ) P ( x ) d x  = D .  (4) 

These equations mean that, for each D > 0, there exists a 
probability density g, of the form g , ( x )  = Ae-’”’) which 
satisfies /p(x)g,(x) dx = D. 

It is easy to check that (2) can be written as 
R,(D) = h ( f )  - h(g,), ( 5 )  

where 
g,( x )  = a( D ) e - 5 ( D ) p ( x )  (6) 

is a probability density function by (3). Throughout the paper we 
use base e logarithm, and h ( Z )  as well as h(f,) denote the 
differential entropy of a random vector Z with density fi. 

The Shannon lower bound can be derived in different ways. In 
[2] the parametric representation of R ( D )  is used to obtain (2) 
for scalar sources. R,(D) I R ( D )  always holds if h ( f )  < m and 
(3) and (4) have a solution. The generalization to vector sources 
is straightforward. Gray [11] based the development of Csiszir’s 
general result [12] on the parametric representation of R ( D )  for 
abstract alphabets. 

An alternative derivation (see, e.g., Linkov [3])  results in ( 5 )  
directly, characterizing g, as the probability density having the 
largest differential entropy among the family of probability den- 
sities (g :  / p ( x ) g ( x )  dx I D).  

Of course, the above form of R,(D) makes sense only if the 
integrals in qucstion are finite and the system of equations (3) 
and (4) has solutions for a ( D )  and s (D) .  Linkov [31 established 
precise conditions on f and p under which (2) is valid (see 
Section IV for details) and proved via a tedious argument that, 
with some additional tail condition on the source density, 

( 7 )  

This result is generally referred to as Linkov’s theorem. It was 
independently derived by Gerrish and Schultheiss [13] for 
mean-squared distortion when the source vector has a finite 
second moment and finite differential entropy, and its density is 
bounded and continuous. 

lim ( R ( D )  - R , ( D ) )  = 0.  
D+ 0 

111. THE MAIN RESLILT AND COROLLARIES 

Let & denote the set of all difference distortion measures p 

(i) the equations 

which satisfy the following two conditions: 

have a unique pair of solutions ( a ( D ) ,  s ( D ) )  for all D > 0. 
Moreover, a ( D )  and s ( D )  are continuous functions of D. 

(ii) if Z,  is a random variable with density g,(x) = 

~ z ( D ) e - ’ ( ~ ) ~ ( ’ ” ) ,  then Z ,  + 0 as D -+ 0 in distribution. 

The following theorem is the main result of the paper. It says 
that the SLB for a difference distortion measure p E d  is 
asymptotically tight if there exists an appropriate auxiliary dis- 
tortion measure 6 in the set &’. 

Theorem 1: Suppose that X has a density, and h ( X )  > - x .  
Let p E&, and let Z,  be a random vector independent of X 
and having density given by (6). If there exists a 6 E d  with 
0 < E 6 ( X )  < m, such that lim,+ E 6 ( X  + Z,) = E 6 ( X ) ,  then 

lim ( R ( D )  - R, (D) )  = 0,  (10) 
D +  0 

where R ( D )  and R,(D) are relative to p. 
Note that the only conditions in the above theorem concern- 

ing the source distribution are h ( X )  > --cc and E 6 ( X )  < to. 
There are no tail or smoothness conditions on the density of X .  
Corollaries 1 and 2 will show how the specific choices of 6 and p 
result in general classes of distortions and sources for which the 
SLB converges to the rate distortion function. 

If we take 6 = p in Theorem 1, then the conditions require 
that p E& and 0 < lim,+ E p ( X  + Z,) = E p ( X )  < x .  In 
Lemma 3, lim,+ ,, E p ( X  + Z,) = E p ( X )  is shown to hold for a 
large class of distortions. By a similar proof, it is not hard to see 
that lim,+o E6(X  + Z,) = E 6 ( X )  holds for 8,  p E d  if 6(x) 
I p(x)  and 6 ( x  + y )  I c 6 ( x )  + c S ( y )  for some c > 0, and 6 is 
bounded in a neighborhood of 0. 

The proof of the theorem uses a technique apparently intro- 
duced by Binia et al. [7] for a squared distortion (see also Barron 
[14]). This technique is based on a fundamental property of 
informational diuergence, also called relative entropy. The infor- 
mational divergence (see Kullback [ 151) of two k-dimensional 
probability densities p and q is given as 

( 1 1 )  

When the random vectors X and Y have densities p and 4, 
respectively, then D(pllq)  will be denoted by D(Xl lY) .  The 
definition of D(XIIY)  can be extended to X and Y of arbitrary 
distribution, but in our case X and Y will always have densities. 
We will need the following lower semicontinuity property of the 
informational divergence. 

Lemma 1 (Csiszbr [12]): Suppose we are given two sequences 
of random vectors X,, and %, such that X,, + X and Y,, + Y in 
distribution as n + x for some random vectors X and Y.  Then 

lim inf D(X,IIY,,) L D(XI IY) .  (12)  
I1 + x 

Proof of Theorem 1: Since both p,  6 E d  by condition (i), 
for all D > 0 there exist random vectors Z ,  and Y, with 
densities 

respectively, satisfying 

Ep(Z,) = D and E6(Y,) = D.  (14) 
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Now let Z,  be independent of X .  Since Ep(Z,) = D ,  we have 
from the definition of R ( D )  that 

R ( D )  I I ( X ;  X + Z,) 

= h ( X  + Z D )  - h ( X  + Z,lX) 

= h ( X  + Z,) - h(Z,). 

On the other hand, by (5) we have 

R ( D )  2 R L ( D )  = h ( X )  - h(Z,). 

Thus we can write 

0 5 R ( D )  - RL(D)  5 h ( X  + ZD) - h ( X ) ,  (15) 

and the SLB is asymptotically tight if we can prove that 

limsup h ( X  + Z,) I h ( X ) .  

Now define A ( D )  = E6(X + Z,), and note that hD+ 
A ( D )  = E S ( X )  < 3~ by the condition of the theorem. If we put 
A(0) = E 6 ( X ) ,  then A ( D )  is continuous at 0. Next notice that 
the definition (1 1) of the informational divergence, the special 
form (13) of the density of Yo, and the fact that ES(YA(D,) = 

A ( D )  give the following: 

(16) 
D -  0 

D ( X  + ZDIIG(D)) = h ( Y & D ) )  - h ( X  + ZD) (17) 

and 

D(XIlYA(O)) = h(YA(0)) - h ( X ) .  (18) 

Note that since the informational divergence is nonnegative by 
Jensen's inequality, (18) implies h ( X )  < m. Using (17) and (181, 
we can write 

h ( X  + ZD) - h ( X )  = h ( X  + z,) - h(YA(,)) 

+ h(YA(,,> - h(YA(0)) 

+ h(YA(o)) - h ( X )  

+ h(YAcD)) - h(YA(")) 

= - D ( X  + z,lIyA(D)) 

+ D(XIIYA,O)). (19) 

First consider the term h(YAcD,> - h(YA(,,,). We have that 

h(YA(D,)  = A(D)s,(A(D)> - log a , ( A ( D ) ) .  

Since 6 E&, the parameters sg(.) and a,(.) are continuous 
functions of their arguments. Hence by the continuity of A ( D )  
at 0, we have 

(20) 

For the same reason, the density of YACD, converges pointwise to 
the density of YA(o), which implies that Y,,!, + qCo, in distribu- 
tion as D 3 0 (see Scheffe's theorem in Billingsley [16]). On the 
other hand, since X and Z ,  are independent, and Z ,  - 0 in 
distribution, we have that X + Z,  + X in distribution as D --f 

0. Then Lemma 1 gives 

lim sup (D(XllY&,)) - D ( X  + ZDIIYA(D))) I 0.  (21) 

But this and (20) imply that, by taking the limsup of the 
right-hand side of (19), we get 

limsup h ( X  + Z,) I h ( X ) .  

In view of (15), this proves the theorem along with the statement 

D-. 0 

D +  0 

limD+ h ( X  + Z,> = h ( X ) .  0 

Let us now consider an application of the above result. In 
vector quantization, a rather popular class of difference distor- 
tion measures is the family of norm-based distortions. When the 
distortion is given by 

p ( x  - y )  = Ilx - yll' 

for some norm 1)  . I )  on  Sk and some r > 0, the SLB can be 
evaluated explicitly (see Yamada et al. [6]), resulting in an 
expression that depends on the particular choice of 1 1 - 1 1  only 
through the volume Vk of the "unit sphere" s k  = {x: (IxII I 1). 
In this case, the SLB has the following form: 

where r(.) is the gamma function. The next corollary states that 
if there exists an a > 0 such that E\IXII* < x ,  and h ( X )  > -E, 
then the SLB with respect to p ( x )  = llxllr is asymptotically tight 
for all choices of r > 0. 

Corollary I :  Let p ( x )  = Ilxllr, where I ( .  ( I  is a norm and r > 0. 
Suppose that h ( X )  > -x, and there exists an a > 0 such that 
EJJXJJ" < x. Then 

(22) 

Pruut Put p ( x )  = lIxllr and 6(x) = JJxlJa in Theorem 1. It 
was shown in Yamada et al. [6] that, for difference distortion 
measures in the form (Ix(Ip, p > 0, the parameters 

lim ( R ( D )  - R,(D)) = 0. 
D-. 0 

k 
s ( D )  = - 

PO 
and 

satisfy (8) and (9) for all D > 0. This pair of solutions is clearly 
unique, as the differentiation of the function (IIIxIIpe-sIIxII'l du) 
( /e-sllxllp & ) - I  with respect to s shows. Furthermore, s ( D )  and 
a ( D )  are clearly continuous in D. Now let W have the density 
a ( l ) e - s ( l ) l l x~~p .  Then EIIWI(P = 1. Clearly, W, = D'/PW has den- 
sity a ( D ) e - ' ( D ) ~ ~ ' l ~ P ,  and EllW,llp = D. But W, + 0 as D + 0 
almost surely, and thus also in distribution, and it follows that 
(IxJIp satisfies (i) and (ii) for all p .  In particular, we have p,  
6 €d. 

Since E 6 ( X )  = EIIXI(" < = by our assumption, it only re- 
mains to check the condition E6(X + Z,) + E 6 ( X )  in Theo- 
rem 1. From the argument above, we have Z,  = D'I'Z,. Also, 
we can assume that a I min (1, r ) ,  since otherwise we can put 
a = min(1, v )  without violating the condition EIIXI1" < m. Since 
E ~ ~ Z l ~ l r  = 1, this gives EIIZDI1" < E. But then the triangle in- 
equality and the fact a I 1 imply 

IEIIX + Z,ll" - EIJX(I"/ I EIIZ,II* = D""E((Z,(I" + 0 

as D + 0. 

Next we deal with more general distortion measures. The class 
we consider is very similar to that considered by Linkov [3]. 
However, Theorem 1 will allow us to get rid of Linkov's restric- 
tive tail condition on the source density, replacing it with the 
condition that there exists a y* such that E p ( X  + y * )  < x .  A 
detailed discussion of the differences between Linkov's and our 
conditions is given in Section IV. 

We  consider the class of difference distortion measures that 

This proves the corollary. 0 
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satisfy the following conditions: 
(a) p(x> = 0 if and only if x = 0, l iml l , l l+o  p(x) = 0, and 

limllxll + p ( x >  = -x; 
(b)  t he re  exists a mono tone  increasing funct ion 

T: [O, m) + [O, x), and a norm 1 1 . 1 1  on W k  such that T ( u )  > 0 if 
U > 0 and p ( x )  2 T(/lxll) for all x €9‘; 

(c) l y p k e - ’ ” ( x ) d x  < -X for all s > 0; 
(d) there exists a c > 0 such that p(x + y) I c p ( x )  + c p ( y )  

Corollary 2: If h ( X )  > -a, p satisfies (a)-(d), and there 
for all x, y €9’. 

exists a y* €9‘ such that E p ( X  - y*) < x, then 

The following two lemmas will show that the conditions of 
Theorem 1 are satisfied with the assumptions of the above 
corollary. The proofs are given in the Appendix. 

Lemma 2: If p satisfies conditions (a)-(c), then for each 
D > 0, there is a unique continuous pair of solutions 
( a ( D ) , s ( D ) >  of the defining equations (3) and (4) of the SLB. 
Furthermore, if Z ,  has density g , ( x )  = a(D)e- ‘ (D)P(X) ,  then 
Z, + 0 as D + 0 in distribution. 

Lemma 3: Suppose that conditions (a)-(d) hold and E p ( X )  
< 33, and let 2, be independent of X .  Then 

lim E p ( X  + Z,) = E p ( X ) .  (24) 

Proof of Corollary 2: If we put S = p in Theorem 1, we get 
p ,  S by Lemma 2. But then, by Lemma 3, we have 
lim, (, E S ( X  + Z,) = E S ( X ) ;  thus the conditions of Theorem 
1 are satisfied. 0 

IV. DISCUSSION STATIONARY SOURCES 

D -  0 

Clearly, Corollaries 2 and 2 are not the only possible applica- 
tions of Theorem 1. In general, in order to establish the asymp- 
totic tightness of the SLB, first we have to check whether p €d. 
Then an auxiliary S E ,M has to be found for which E S ( X  + Z,) 
+ E S ( X ) .  

Let us now compare Corollary 2 with Linkov’s result, the only 
one available for distortion measures other than the square 
distortion. The differences can be summarized as follows. 

Conditions on the distortion measure: Of the conditions of 
Corollary 2, Linkov required (b) with Euclidean norm and the 
condition that p ( x )  = 0 iff x = 0 from (a). Moreover he as- 
sumed that 

(A) lp2(x)ep”(”)& < -x; 

(B) limsup,, 

Conditions (A) and (B) combined with (b) clearly imply (a). 
On the other hand, although they are similar, neither (A) nor (c) 
imply the other. This means, in effect, that while we relaxed the 
condition about the behavior of p for small x’s,  we imposed the 
global condition p(x + y )  I c p ( x 1  + c p ( y )  (Condition (d)), and 
we allowed arbitrary norm in (b). 

Conditions on the source density: Linkov assumed h ( X )  > --x 

and the following tail condition: 

(C) there exists a nonnegative monotone nonincreasing func- 
tion 4 of a real variable such that, for some r > 0, we have 
f ( x )  I 4(llxll) for all llxll 2 r and 

p(x)llxllp” < x, for some v > 0. 

We replaced this tail condition with the condition that E p ( X  + 
y * )  < x for some y*. This latter condition is equivalent to 
assuming that there exists a one-level quantizer with finite p 
distortion. This is a usual assumption for the proof of the source 
coding theorem, and is assumed in virtually all works dealing 
with vector quantization. 

One of the advantages of replacing a tail condition with a 
moment condition becomes apparent when single-letter distortion 
measures and stationary sources are considered. Let p k :  Sk  X 
Z k  + [0 , x )  be given as 

1 k  
f k ( X k ,  Y k )  = ; {; Y A  (25) 

where x k  = (xI;.., x,) E sk, y k  = (y!,... , Y k )  E gh ,  and 
p :  9 x 9 + [O, x). The kth-order rate distortion function of 
the stationary source X , ,  X,, ... is defined as 

R, (D)  = inf - I ( x ~ ;  y k ) :  E ~ , ( x ~ ,  y k )  I D , (: i 
where X k  = (X,;.., X , )  and Y k  = (Y1;.., Yk).  Note that with 
the notation of the previous section, X k  = X and R k ( D )  = 

( l / k ) R ( D ) .  The rate distortion function of the stationary source 
is given as 

R ( D ) ~ ~ ~  lim R, (D)  

(see, e.g., Berger [2] for the proof that the limit exists). Let us 
suppose that p is a difference distortion measure, and for 
D > 0, let g , ( x )  = a(D)eps(D)P(x)  satisfying 

k-. = 

b D ( x )  dw = 1 and 1 p(x)g,(x) du = D. 

Then, taking the k-fold product gk ,  , ( x h )  = a(D)ke-ks(n)p(r i ) ,  
we have 

2z 

and 

Thus h ( g k , , )  = kh(g,), and the Shannon lower bound on R k ( D )  
gives 

dcf 1 
R k ( D )  2 Rk, , (D)  = - ( h ( X k >  k - h ( g k , , > )  

1 

k 
= - h ( X k )  - h(g,), (26) 

if X k  has a density, and h ( X k >  < x. Let h = l imk ,x ( l /k )  
h ( X k )  be the differential entropy rate of the source. Then, 
taking the limit as k + a in (26) implies 

dcf 

def 
K(D) 2 h - h(g,) = RL(D1,  

and RL( 0)  is called the generalized Shannon lower bound on the 
rate distortion function of the source (see, e.g., [2, p. 1321). 

Let Z,,,, Z,,,, ... be a sequence of i.i.d. random variables 
with common density g, (implying that Zh = (Z,,,,...,Z,,,) 
has density gk , , ) ,  and let (Z l ,DZ , ,n  and ( X , ,  X,;..) be 
independent. Then by the proof of Theorem 1, we have (see 
(15)) that 

1 1 

k k 0 I: R k ( D )  - R k , , ( C )  I - h ( X k  + 2;) - - h ( X h ) .  (27) 

Since the sequence X ,  + Z,,,, X ,  + Z2,,, ... is stationary, we 
have ( l / n ) h ( X “  + Zk) 2 1imk+= ( I /k )h (Xk  + Z j )  for all n .  
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Thus, by taking the limit as k -+ CO in (271, we get, for all n > 0, 

1 
n 

< - h ( X n  + Z;J )  - h .  - 

Suppose now that, for all n ,  

lim h ( X n  + Z;J)  = h ( X " ) .  (28) 
D -  0 

Then 

1 
limsup ( $ D )  - r i , ( ~ ) >  I - h ( ~ " )  - h 

D -  0 

for all n, which implies 

lim ( I ? ( D )  - I?,<D>) = 0, 
D+ 0 

i.e., the generalized SLB is asymptotically tight. But if the 
one-dimensional difference distortion measure p and XI satisfy 
the conditions of Theorem 1, then clearly pk and X k  = 

(XI;.., X,) will also satisfy these conditions, and (28) holds for 
all n by the proof of Theorem 1. Thus we have proved the 
following. 

Corollary 3: Let k(D)  be the rate distortion function of the 
stationary source X I ,  X,;.., relative to  the single-letter differ- 
ence distortion measure p .  Suppose that the source has differ- 
ential entropy rate h > -a, and p together with XI satisfy the 
conditions of Theorem 1. Then 

lim ( $ D )  - r i , < ~ ) >  = 0, 
D -  0 

where k,(D) = h - h(g,). 
The main point of Corollary 3 is that the tightness of the SLB 

can be deduced even if we have no information whatsoever 
about the higher-dimensional distributions of XI, X2;. . ,  other 
than h > --cc. On the other hand, Linkov's result implies the 
tightness of the SLB for stationary sources only when the 
k-dimensional densities of the X k  = (XI;.., X,)  satisfy the tail 
condition (C) for all k large enough. But this is a strict restric- 
tion on the process statistics. In fact, it is not hard to construct a 
stationary Markov source for which (C) is satisfied by the one-di- 
mensional marginal, but is violated by all the higher-dimensional 
densities. Such an example is given in the Appendix. 

APPENDIX 

p ( x 1 ~ ~ , k _ , f ( x , l x , ~ , )  is greater than A - '  in a small enough 
neighborhood of xt = (x;.., x). It follows that if 4 is to satisfy 
4(llx:ll) 2 f ( x : )  if Ilxfll 2 r for some r > 0, then +(x) 2 A-'  
for x 2 r .  But then Linkov's tail condition is clearly violated 
since the integral in (C) is infinite. 

Proof of Lemma 2: The same statements were proved by 
Linkov with similar, but not identical, conditions to those given 
in Section IV. For this reason, the proof is detailed only in steps 
that are different from Linkov's development. 

For s > 0, define the function l ( s )  by 

where y(s )  = ( / e - ' P ( X ) d x ) - ' .  Then 0 < y ( s )  < x for all s > 0 
by (b) and (c), and it is easy to  see that (a) and (c) imply 
l ( s )  < 33, s > 0. The uniqueness and continuity of the solutions 
a( 0)  and s( D )  (when a solution exists) follow from the fact that 
I ( s )  and y ( s )  arc differentiable in s and y(s )  > 0 and I'(s) < 0 
for all s > 0. The existence of these derivatives is shown by 
using conditions (b) and (c) and the dominated convergence 
theorem. T o  see that the solution exists for all D > 0, we have 
to show that 

Iim [(SI = m,  ( A l l  

(A21 Iim l ( s )  = 0. 

s+ 0 
and 

s + =  

By Fatou's lemma, we have 

S + O  

thus, 
lim y ( s )  = 0 

s + O  

for all x .  Since l i m l , x l l + z  p ( x )  = 3~ by (a), we have that for any 
B > 0, there exists an r > 0 such that p(x> 2 B if IIxII 2 r .  But 
then 

p ( x ) y ( s ) e - ' P ( X ) d x > B  - y(s)e- ' f"")ak2 -03 +B,  ass -0 ,  Lr Lr 
since /llrll < , y ( ~ ) e - ~ ~ ( ~ )  dx = 0 as s 4 0 by (A3). Since B > 0 
can be arbitrarily large, (Al)  is proved. 

To  prove (A2), notice that I im5+% y(s)e-" = 0 for all E > 0, 
s ince  o the rwise  l i m , l r l l +  p ( x )  = 0 w o u l d  imply 
lim sups _ z  /-y(s)e-sPP"' dx = x, a contradiction. But this gives 

Example: We will construct a stationary first-order Markov 
source which satisfies the conditions of Corollary 3 with the 
squared distortion, but violates Linkov's tail condition for each 

for all 
small enough that 

+ o, Thus by l imIlxII  + p ( x )  = o, we haVC for > 0 but 

dimension k 2 2. Let B ~55'~ be defined as B = {(xl, x,) E.R2: 
xl, x2 2 1, x1 2 x 2  - +xY4,  x 2  2 x1 - $x.;'}. Since iB dx = A  < 
x, we can define the two-dimensional probability density f ( x ~ ,  ~ 2 )  

as 

;i% ~ X l , < p ( x ) y ( s ~ e - 3 p ( "  = 0. (A51 

Letting pr = i n f l lL I I  I p ( x )  (note that p, > 0 by (b)), we have 
from (A4) that, for a given so > 0 and all s > so and large 

A - ' ,  
0, otherwise 

if (x l ,  x2>  E B ,  f ( x , ,  x,) = 

This implies 
Let p ( x l )  = l9f(xI, x 2 ) d x ,  and define the conditional density 
f ( x 2 \ x l )  = f ( x l ,  x2)/p(xl>. Then the symmetry of B implies that 
the first-orderMarkovsource XI, X z ,  "' definedbY the marginal 
p(xl)  and the conditional density f ( x 2 1 x l )  is stationary. Since 
E I X , I 2  < a n d  h = h ( X , I X , )  = 

- /f(xI, x 2 )  log f ( x 2 1 x , )  dx, dx, is finite, it follows by Corollary 
3 that the generalized SLB is tight for this source. On  the other 
hand, for any x 2 1, k 2 2, the joint density fL(x1;.., xL) = 

p ( x ) y ( s ) e p s P ( ' )  I p(x)y(s , , )e-S( lP 'X)  (A61 

for all x with llxll 2 r and s large enough. In view of (A41 and 
(A6), the dominated convergence theorem gives 

lim p(x )y ( s )e - 'P (" '  = 0, 
r - - l =  Lr 

which, combined with (A5), proves (A2). 
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The fact that Z,  + 0 in distribution as D + 0 follows from 
the fact that Ep(Z,]) = D (see [2, Theorem 4.3.411, and is shown 
by the following simple argument. For all r > 0, we have 

Since lim. ~ jllfll > , ,>gD(y) dy = 0 for all r > 0 by the proof of 
Lemma 2, both terms on the right-hand side of (A131 tend to 
zero as D + 0. Thus (A9), (Al2), and (A131 imply (A81 and the 

n 
as D + 0. U 

Proof of Lemma 3: Let qn be thc density of X + Z,. Then 
q, = f * g,, where * denotes convolution. We have to prove 
that 

lim 1 kp(x>q, (x>A = 1 p ( x ) f ( x ) h .  

Conditions (a) and (d) imply that p(x> is bounded on compact 
subsets of Sk. In particular, we have p ( ‘ )  = sup l lx l l  ~ I p ( x )  < = 
for all Y > 0. It is well known (see, e.g., [17, Theorem 9.61) that 
if, for all r > 0, 

D - 0  2 Sk 

then q,  = f * g, + f in L ,  norm. Hence, 

and the generalized dominated convergence theorem (see [ 181) 
imp 1 i e s 

It is clear that the lemma will follow from (A7) if we can prove 
that, for any given E > 0, there exist ro > 0 and Do > 0 such 
that 

~ x l l > d x ) q n ( x )  dx < E (A81 

for all r > ro and D < Do. To this end, we can write 

(A91 

@ ( y , r )  = h p(u  + y ) f ( u ) d u .  (A101 

When llyll I r /2 ,  the sphere {U: llull 2 r / 2 )  is contained in the 
sphere ( U :  IIu + yll I r ) ,  and we have by condition (d) that 

where 

u +jI l>r 

c p ( u ) f ( u >  du + c p ( y ) .  ( A l l )  

By E p ( X )  < =, the first term in (All)  is less than ~ / 2  if r is 
large enough. Thus 

lemma is proven. U 
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Rate-Distortion Function When Side-Information 
May Be Present at the Decoder 

Amiram H. Kaspi 

~ y ,  r)g,(y) dy 5 f. + CD. 2 Abstract-A discrete memoryless source {Xk} is to be coded into a 
binary stream of rate K bits / symbol such that {Xk} can be recovered 
with minimum possible distortion. The system is to be optimized for best 
performance with two decoders, one of which has access to side-informa- 
tion about the source. For given levels of average distortion for these two 

When llyll > r / 2 ,  we have 

@ ( y ,  r )  5 i 2 L ~ ( u  + y ) f ( u )  du I c E p ( X )  + c p ( y ) ,  

and we get 

@ ( y ,  r ) g D ( y >  dy I c E p ( X ) /  g,(y) dy + cD. Manuscript received June 15, 1990; revised September 1, 1994. 
The author was with the Israel Ministry of Defense (RAFAEL), Israel. 
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lly I1 > r / 2  
( ~ 1 3 )  He is now deceased. 

0018-9448/94$04.00 0 1994 IEEE 


