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High-Resolution Source Coding for Non-Difference
Distortion Measures: The Rate-Distortion Function

Tamás Linder,Member, IEEE, and Ram Zamir,Member, IEEE

Abstract—The problem of asymptotic (i.e., low-distortion) be-
havior of the rate-distortion function of a random vector is
investigated for a class of non-difference distortion measures. The
main result is an asymptotically tight expression which parallels
the Shannon lower bound for difference distortion measures. For
example, for an input-weightedsquared error distortion measure
d(x; y) = kW (x)(y � x)k2; y; x 2 n, the asymptotic expression
for the rate-distortion function of X 2 n at distortion level D
equals

h(X)�
n

2
log (2�eD=n) +EEE log jdetW (X)j

where h(X) is the differential entropy of X. Extensions to
staionary sources and to high-resolution remote (“noisy”) source
coding are also given. In a companion paper in this issue these
results are applied to develop a high-resolution quantization
theory for non-difference distortion measures.

Index Terms—Asymptotic quantization theory, Shannon lower
bound, non-difference distortion measures, rate-distortion func-
tion, remote source coding.

I. INTRODUCTION AND SUMMARY OF RESULTS

A. Background

A fundamental component in the design and analysis of
analog signal coding schemes is the choice of an ap-

propriate fidelity criterion. The most commonly used fidelity
criteria measure the distortion of a coding scheme by the
expected value of a nonnegative functionof the difference
between the source and its reconstruction ,
i.e.,

(1)

Distortion measures of this type are calleddifferencedistortion
measures. The single most popular distortion measure, the
mean-squared error (MSE), is a difference distortion measure
for which , where denotes Euclidean
norm. MSE and its variations, such as the frequency-weighted
squared error [1], are widely used in speech, picture, and video
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compression. In general, difference distortion measures are
popular because of their intuitive nature, and also because they
are often mathematically tractable and simple to compute.

However, in many “real-life” applications the true distortion
measure is not a function of the difference between the signal
and its reconstruction. For example, a common perceptual
criterion for quantizing the linear predictive coding (LPC)
parameters in speech coding is thelog spectral distortion
(LSD) [2]

(2)

where and are the frequency responses of the
corresponding linear prediction filters, i.e.,

and

Remote (or “noisy”) source coding provides another example
where the effective criterion for quantization may be a non-
difference distortion measure even if the original distortion
measure for the “clean” source is a difference distortion
measure [3]. In contrast to the case of difference distortion
measures, for non-difference distortion measures it is possible
that the noisy source and the reconstruction have different
dimensions.

A large body of literature considers quantization under
difference distortion measures. High-resolution quantization
theory provides simple asymptotic expressions for the rate-
distortion performance of fixed- and variable-rate quantizers,
relative to difference distortion measures. For example, the
minimum possible entropy of a scalar quantizer that encodes
at MSE level a source having a smooth density,
is given for small by [4]

(3)

where and denote regular and differential entropies,
respectively, log denotes baselogarithm, and means that
the difference between the corresponding quantities goes to
zero as . More generally, the entropy of a lattice
quantizer that encodes a smooth source with
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MSE level (so that the per-dimension distortion is ) is
given for small by [5]–[7]

(4)

where denotes the normalized second moment of the
lattice. Also, Shannon’s rate-distortion function [3]

(5)

characterizing the minimum achievable rate at distortion level
by any (multidimensional) quantizer, can be lower-bounded

by the Shannon lower bound (SLB) [3] if is a difference
distortion measure. For the MSE criterion this lower bound
states that

(6)

The SLB becomes tight in the limit as goes to zero, i.e.,

(7)

provided is finite and [8] (see also
[9]). Properties (4) and (7) imply that the asymptotic rate
redundancy of an entropy-coded lattice quantizer above the
rate-distortion function is bit per dimension.
(Note that .)

The importance of the asymptotic expressions and bounds in
(3)–(7) is in providing simple explicit formulas for quantities
which are in general hard (or impossible) to compute analyt-
ically. In fact, the SLB is the only known tool for relating
the high-resolution performance of entropy-coded quantizers
to the rate-distortion function.

Although many other useful formulas and bounds for the
high-resolution performance of fixed- and variable-rate coding
schemes relative to specific difference distortion measures
exist [10], [5], [11]–[13], there are significantly fewer results
in the literature on the high-resolution performance for source
coding under non-difference distortion measures. The first
results extending bounds in [5] and [11] to locally quadratic
non-difference distortion measures were given in [2]. The
log spectral distortion and the Itakura–Saito distortion are
examples of such measures. A more formal treatment of
these bounds is given in [14], where a new lower bound
on the variable-rate (i.e., entropy-coded) vector quantizer
performance is developed using optimal point densities. It
is also pointed out in [14] that some important “perceptual
distortion measures” in image coding are locally quadratic.

In this work we take a rigorous approach to generalize
some of the fundamental concepts of high-resolution source
coding theory to locally quadratic non-difference distortion
measures. In Section II, the small distortion behavior of
the rate-distortion function is studied for a large class of
non-difference distortion measures and sources. Theorem 1,
the main result of the paper, gives an asymptotically tight
formula for the rate-distortion function relative to a “input-
weighted locally quadratic” distortion measure. In Section
III, an application of this result to remote source coding
is given and examples are provided. In the rest of this
Introduction, an informal description of the main results and its

corollaries is given. Exact statements and proofs are deferred
until Sections II and III.

B. Main Result and Corollaries

Our main result is a generalization of the asymptotic formula
for the rate-distortion function (7) to a fidelity criterion of the
form

(8)

where is a non-difference distortion measure satisfying
certain regularity conditions. The basic requirement is that for
a fixed , the nonnegative function is locally quadratic
around , i.e.,

where (by Taylor expansion) is half the matrix
of second-order partial derivatives of with respect to

at , and . Note that
must be nonnegative-definite. The fact that certain useful
distortion measures can be expanded this way for the purpose
of asymptotic analysis was first pointed out by Gardner and
Rao [2], who considered the case .

The main result of this paper shows that under some
regularity conditions (specified in detail in Section II), the
rate-distortion function (5) is given as by

(9)

where and denotes matrix determi-
nant. The formal statement and the proof of (9) are given in
Section II. Possible extensions of this result to more general

is discussed in Section IV.
For example, consider the -weighted mean-squared

error ( -WMSE) criterion

(10)

where is some source-dependent weighting matrix, and
denotes the transpose of . In this case we have

, , and , so that as

(11)

Note that for (the identity matrix), (11) coincides
with the regular MSE case (7) as expected.

For the log-spectral distortion(2) we have ,
, and the elements of are (see the “sensitivity

matrix” in [2])

Thus the asymptotic expression for can be calculated
via (9) if the source distribution is known.
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In Section II we also extend our asymptotic analysis to
stationary sources and per-letter distortion measures. For ex-
ample, if , then the rate-distortion
function of a real stationary source is given
asymptotically as by

where denotes the differential
entropy rate of the source.

Two interesting corollaries follow from (9). Let
denote the rate-distortion function of a vector sourceunder
the locally quadratic distortion measureat distortion level .
Let be the matrix of second derivatives associated with
the distortion measure, and let .
Suppose that there exists satisfying
(this is possible, e.g., if is invertible). Let denote any

matrix for which . Then, from (9)
and (11) we have as

-WMSE (12)

where -WMSE is the WMSE distortion measure defined in
(10).

For the second corollary, suppose that is invertible, and
there exists an invertible and continuously differentiable vector
function whose derivative matrix satisfies

(13)

where , that is,

For example, under the regularity condition given in Section
II, such a function always exists for (scalar case).
For the general case see [15]. Then, substituting as
the source in (7) and using the identity

, we have as

MSE (14)

Corollaries (12) and (14) are actually implied by the follow-
ing stronger statement. At high resolution, optimal encoding
of with -distortion level results by optimally encoding

with -WMSE-distortion level . Moreover,
if the function of (13) exists, then optimal encoding of
with -distortion results by optimally encoding
with MSE-distortion level and then applying the
function . This interpretation of our main result have
important implications in the context of remote source coding,
and for quantizing via a companding model, as discussed in
the next two subsections.

C. A Wolf–Ziv-Type Encoder for Remote Source Coding

Consider the following indirect source-coding problem. An
encoder observes a noisy version of a “clean” source .
The encoder’s objective is to encodein such a way that the
reconstruction satisfies the fidelity criterion

(15)

with respect to . Clearly, it is only possible to achieve
distortion levels that are not less than

(16)

where

(17)

is an optimal estimation function of from . Typically, the
coding rate must go to infinity as . It is a classical
result [16], [3] that indirect coding of the remote source
under the distortion measureis equivalent to direct coding
of the “noisy” source under the modified distortion measure

(18)

In particular, the indirect rate-distortion function ofunder ,
characterizing the minimum possible rate in the remote coding
scenario, is equal to the ordinary rate-distortion function of
under of (18).

In the context of this paper, it is important to note that
even if is a difference distortion measure, the modified
distortion measure is in general not. Furthermore, the optimal
reconstruction and the minimum distortion associated with

get here the “physical” meanings of optimal estimation
function and minimum estimation error, respectively. Our
formula (9) thus gives the asymptotic form of the indirect
rate-distortion function, using the modified distortion measure

, provided that satisfies the regularity conditions given in
Section II.

In the special case when is the squared
error, Wolf and Ziv [17] showed that the optimal indirect
encoder has the following intuitive structure; it first estimates

optimally from , i.e.,

(19)

and then it encodes with MSE-distortion (where
now is the conditional covariance of given ).
However, this very efficient encoding structure does not apply
to a general distortion measure. (The separation theorem of
[17] follows from theorthogonality principle, which applies
specifically to second-order estimation.) Nevertheless, our
results show that a “Wolf–Ziv-type” encoder isalways optimal
at high-resolution conditionsprovided that satisfies the
regularity conditions and can be written as

, as discussed in (12). This fact follows from the
structure of the “test channel” which realizes
asymptotically as (in the sense of achieving the
minimum in (5)). This asymptotically optimal test channel has
the form

(20)

where is a white Gaussian vector (independent of) with
variance per component, and is such
that (see the proof of Proposition 1 in
Section II). We conclude that asymptotically optimal indirect
encoding of with -distortion level can be obtained by
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first optimally estimating , and then encoding
with -WMSE-distortion level using the encoder
induced by the test channel of (20) (e.g., via random coding). A
more efficient scheme using companding is briefly discussed
in the next subsection.

Section III discusses in detail under what conditions the
asymptotic expression for the rate-distortion function (9) ap-
plies to the remote-coding problem. Specific examples where
these conditions are proven to be satisfied are also given.

D. A Variable-Rate Companding Model

In the case when is a difference distortion measure, the test
channel of (20) specializes to a regular additive noise channel
(see [3] and [8])

where for the MSE case is Gaussian with variance. In this
regard it was demonstrated in [6] and [18] thatentropy-coded
randomized (dithered) uniform/lattice quantization(ECDQ)
simulates (in the rate-distortion sense) an additive noise test
channel. In [7] it was shown that at high resolution, the
randomization of ECDQ is not necessary, and its redun-
dancy above the rate-distortion function is asymptotically

bit per dimension.
For a non-difference distortion measure, the additive noise
in the the asymptotically optimal test channel (20) is mul-

tiplied by the source-dependent factor . In light of the
analogy above, this motivates the application of a companding
model [5], i.e., a combination of nonlinear mapping and
uniform quantization, for efficient finite-dimensional variable-
rate coding, under the non-difference distortion measure.

To explain this idea, let us consider the scalar case, i.e.,
, and assume that . In this case the test

channel (20) becomes , where
is Gaussian with variance , and
evaluated at . Further, the function of (13) becomes

. The function plays the role
of the compressor mapping in our companding model. From
high-resolution quantization theory (3) we know that if a
uniform scalar quantizer , with step-size , is applied
to , its entropy is given for small by

(21)

Using the identity , and
comparing with (9), we obtain

(22)

Namely, the entropy of a uniform quantizer exceeds the rate-
distortion function of relative to by

bit in the limit as . Further derivation shows
that the entropy-coded companding quantization scheme of
the form

entropy
coding

has asymptotic distortion (with respect to the distortion
measure ), and thus by (22) its rate-distortion performance is
within bit of the rate-distortion function of .

A detailed treatment of high-resolution variable-rate com-
panding for non-difference distortion measures is given in
[15], where it is shown that above is the optimal compand-
ing function for a uniform scalar quantizer, and where the
analysis above is made rigorous and is extended to sources
with memory, to lattice quantizers, and to vector distortion
measures.

II. M AIN RESULT

A. Statement of the Main Result

Let be an -dimensional random vector. Given a dis-
tortion measure , the rate-distortion
function of is defined for all by

Here the infimum of the mutual information betweenand
the -dimensional random vector is taken over all possible
conditional distributions of given such that

. If no such exists, then by definition. It is
assumed that is Borel measurable, that can be represented
with finite distortion, i.e.,

and that has an absolutely continuous distribution with
-dimensional density .
Although our analysis of will not rely on its opera-

tional meaning, we mention here that is the minimum
achievable rate in coding with distortion a memoryless
vector source where the are distributed
as .

In some important applications, is a natural
assumption. However, the following argument [3] allows us
to use the more convenient assumption . Let

. Then for
all , and

for all , where is the rate-distortion function
of with respect to . The conditions imposed in the
sequel on will also hold for . Therefore, to determine the
asymptotic behavior of as tends to from above,
it suffices to study as . Thus we can assume
without loss of generality that for all

and that .
We say that a mapping is piecewise-invertible

if there exist a finite number of disjoint open sets
such that is one-to-one on each , the union of the closures
of the ’s covers , and the boundary of each has zero
Lebesgue measure. If is also continuously differentiable
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on , then we say that is piecewise-invertible and
continuously differentiable. Let be an
matrix whose elements are real functions . We
say that is continuously differentiable on an open set,
if each has a continuous derivative on.

If is an matrix, will denote its norm induced
by the Euclidean norm: .

We assume that the distortion measure satisfies the following
regularity conditions.

Conditions on :

a) For all fixed , is three times continuously
differentiable in the variable and the third-order partial
derivatives

are uniformly bounded.
b) For all , has a unique minimum in at

. Thus

with equality if and only if

We assume that is piecewise-invertible and
continuously differentiable (see the definition above).

c) For all

d) Let be the matrix with entries
, where

Then is piecewise continuously differentiable with
respect to .

Note that is symmetric for all by condition a). Since
has a unique minimum at , it follows that

and thus is also nonnegative-definite for all. There-
fore, we have for all .

Next we state the conditionsand the distribution of are
assumed to satisfy jointly.

Conditions on and :

e)

f) The random vector has an -dimensional density
and a finite differential entropy and

g)

where denotes the trace of the inverse of
(which exists almost surely by e)).

The following is the main result of the paper.

Theorem 1: Suppose and satisfy a)–g). Then

where and are defined in conditions b) and d) above.
The main theorem is a consequence of the following two

results.

Proposition 1 (Achievability):Suppose and sat-
isfy a)–g). Then

Proposition 2 (Converse):Suppose and satisfy
a)–f). Then

The proofs of the two propositions are given in the next
subsection. We now briefly discuss our hypotheses.

The first set of conditions a)–d) contain, for the most part,
rather natural assumptions on the smoothness and regular
behavior of the distortion measure.is assumed to be regular
in the sense that for a given input there is a unique
reproduction minimizing the distortion (condition
b)), and all other reproduction values produce distortion
which is bounded away from zero if is bounded away from

(condition d)). As for smoothness, the assumption that
be piecewise-differentiable is quite mild. Also note that

if itself is three times continuously differentiable (as
a function ), then condition d) holds. Two extra
conditions here are hard to justify on intuitive grounds: the
uniform boundedness of the third derivatives in a) and the
requirement that be piecewise-invertible in b). Both of
these conditions are imposed for technical reasons and are not
believed necessary for the validity of the main result.

Conditions e)–g) further specialize. Most importantly,
implies that the locally quadratic

behavior

dominates the higher order terms for allin a neighborhood
of . This follows since e) implies that is positive-
definite for all except for a set of -probability zero. Again,
we were forced to introduce two technical conditions. The
finiteness of is required by our proof technique,
while is an assumption we have
not managed to eliminate.

It is instructive to observe what the conditions mean for the
WMSE distortion measure
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where is an matrix that depends on the input
. In this case, and the third-order

partial derivatives are all zero, so a) is satisfied.
Conditions b) and c) obviously hold, and d) is also satisfied
if the elements of are (piecewise) continuously dif-
ferentiable. We conclude that if has a finite differential
entropy and second moment, then
and are sufficient conditions for
the validity of the main theorem. In particular, consider the
magnitude weighted distortion measure (see [19])

We have . Suppose that is finite. Then

provided and (conditions
e) and g)) hold.

B. Stationary Sources

Assume that is a real-valued stationary source and
consider a single-letter distortion measure
such that for all . Then generates the family
of distortion measures

between blocks of the source and their reproductions. Let
and assume that the differential entropy

rate of the source is finite. Let
be the rate-distortion function of relative to , defined
by , where

is the th-order rate-distortion function of [3]. Note that
if is ergodic, is the minimum achievable rate in
fixed-rate coding of with distortion .

In what follows we show that if and satisfy the
conditions of Theorem 1, then as

(23)

where .
To prove this claim first notice that if and satisfy

the conditions of Theorem 1, then so do and for each
. In particular, if is defined by

then we have by Theorem 1 that

Since as , and

(23) is equivalent to

This exchange of limits is legitimate if, as ,
converges to its limit uniformly in . But this uniform
convergence holds if and only if converges in to

uniformly in , which is known to be true because the
well-known lower bound of Wyner and Ziv [20], [3] implies
that for all and

(24)

C. Proofs

In the proofs we will need the following simple fact.
Suppose conditions a) and b) hold. Then there exists

such that

(25)

where

Consider the second-order Taylor expansion of as a
function of around . Then (25) follows since

and the remainder term is controlled by
the uniform boundedness of the third derivatives.

Proof of Proposition 1: The asymptotic upper bound on
is proved by demonstrating the existence of an appropri-

ate (not necessarily optimal) forward test channel. If
and is a symmetric nonnegative-definite matrix, then

denotes an -dimensional random vector which
has normal distribution with mean and covariance . For
any , let be independent of

, where is the identity matrix. Let
. Then by e). Let

denote any matrix-valued (measurable) function of
such that . For the sake of convenience,
define for all . Set

and consider the test channel . Then
almost surely, and

Thus

(26)

where . In
Appendix B it is shown that is continuous at all ,
and so that as

. Moreover,

(27)
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where the decomposition is possible because
is finite as shown below. Since

for all , and since and
are independent, we obtain

(see, e.g., [21, p. 230]). Thus

(28)

where is finite by condition e). Thus by the
definition of the rate-distortion function and by (26)–(28)

In Appendix B it is proved that

and now implies

Since is continuous and as , the above
gives

Before giving the somewhat involved proof of Proposition
2, we briefly go over the main idea.

Sketch of the proof of Proposition 2:To simplify things,
consider thescalar WMSE distortion measure

and assume that has a continuous derivative and
that i) ; and ii) . Note that
i) and ii) are stronger versions of conditions d), e), and g) of
Theorem 1. Let be an arbitrary collection of
random variables, jointly distributed with the random variable

so that the pairs satisfy the distortion constraint
for all .

Assuming is finite, we have

(29)

whenever is finite. As in the proof of the Shannon
lower bound (see, e.g., [22, Theorem 23]), we want to upper-
bound using the distortion constraint. Let

. By conditions i) and ii) above, for in some
small neighborhood of (i.e., for for some )
the derivative of the function with respect to satisfies

It follows that is invertible in in this neighborhood
if is small enough. It is not hard to see that as the
probability that must go to zero for any .
Thus by the identity , which
holds if is invertible and continuously differentiable, we have

(30)

where as . The asymptotic equality (30) is
made precise by conditioning on the event .
Furthermore,

(31)

where the first inequality follows since conditioning reduces
entropy, and the second follows from the distortion constraint
and the fact that . Combining
(29)–(31) gives

for any collection of as above. Specifically the inequality
holds for as desired.

The following lemma is proved in Appendix A.

Lemma 1: Let be the square root of , i.e., the
unique symmetric, nonnegative-definite matrix for which

. If is continuously differentiable
on an open set , then is continuously differentiable on

.
Proof of Proposition 2: Let be an arbi-

trary collection of random -vectors jointly distributed with
so that for all

and

Let be the open sets on whichis one-to-one and
continuously differentiable (see condition b)) and define the
discrete random variable by

if
otherwise

Note that and there exists a function
such that almost surely since

has a density. Thus we have

(32)
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where the above information quantities are finite since
is finite by condition f). Let

and suppose we can prove that for all

(33)

and that

(34)

Then, on the one hand,

(35)

On the other hand, by the convexity of the logarithm, we have

Thus

and by (32), (34), and (35)

which implies the statement of the proposition. Thus it suffices
to prove (33) and (34). First consider (34). In Appendix C we
prove that

(36)

for all , i.e., in probability. Then

in probability also, and therefore, (34) holds by the lower
semicontinuity property of the information divergence (see,
e.g., [23]).

To prove (33) we will assume without loss of generality
that , i.e., we replace by a random variable
which is distributed as the conditional distribution ofgiven

. This allows us to drop the conditioning on the event
. Thus we have to prove that

(37)

where for all , and where is
now invertible and continuously differentiable on the entire
support .

Let be the open set such that is continuously
differentiable on and has zero Lebesgue measure (see
condition d)). Let denote the derivative of on , and let

Then is open since is continuous on , and by the
assumption that has an -dimensional density, we have

. Setting

(38)

we have that is open since is continuous on . Also,
and its square root are positive-definite on ,

and they are continuously differentiable there (see Lemma 1).
Moreover, is continuously differentiable and its derivative

is nonsingular on , and has an inverse with the same
properties. Finally, .

By a standard result of measure theory (see, e.g., [24]), there
exist compact sets such that

and

Then by [24, Theorem 2.7], for each there is an open set
with compact closure such that

Fix and define the binary random variable
by

if and
otherwise

The dependence of on the parameters will be
hidden in the notation. Until the very last step in the proof,

will be fixed and the choice of will depend only on .
Using , we can upper-bound as

(39)

where is the Shannon entropy of .
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Bounding : We have

for all by (36). Thus

(40)

and

(41)

where denotes the binary entropy function

Bounding : If the random
vector has a density and , then

Since conditioning reduces differential entropy, this implies

(42)

and, therefore, by (40)

(43)

Bounding : Let
, where is defined in (38), and let

be the inverse of . Consider the mapping
defined by

where the square root of . Then is con-
tinuously differentiable and its derivative is nonsingular on
its open domain ( is open since is an open
mapping on ). Thus by Lemma 1, is continuously
differentiable, so is continuously differentiable with
respect to on for all . Its derivative is

(44)

where is the matrix with entries

(45)

where and . Define
by

(46)

and for any let be defined by

It is proved in Appendix C that for all small enough, and for
a fixed such that is nonempty, is one-to-one
and continuously differentiable in on the open set .
Recall now that by change of variables (see, e.g., [24, Theorem
7.26]), if is invertible and continuously differentiable on
an open set , and if has a density and finite differential
entropy, and , then

Since for a.e.
conditioned on the event , the above imply

so that

From this and the identity

valid for all , we obtain

(47)

Let denote the indicator function of the event. Then
by (25)

If and , then

where as
for all fixed . Thus

(48)

where we have assumed thatin the definition of is small
enough to make positive. Using the same bound
as in (42), we obtain

(49)
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and, therefore, by (40)

(50)

For the second term on the right-hand side of (47) we have

(51)

since has a finite expectation and

as for all by (40).
As for the last term on the right-hand side (47), the elements

of tend to zero as , uniformly
on . This follows from (45) and from the fact shown
in Appendix C that has a compact closure which is
contained in for small enough. Thus for such,

is bounded on and

uniformly on . It follows that in probability
implies

(52)
In summary, (47), (50), (51), and (52) show that

Combining this with (39) and (43) we obtain

Note that the above inequality holds for all fixed and
small enough. Since as

for all , and since as , by letting

first and then we finally obtain

III. H IGH-RESOLUTION REMOTE SOURCE CODING

In the remote source-coding problem (also called noisy
source coding) [16], [3], [25] the source is corrupted
by noise before the encoding operation. Thus the encoder
has access only to the output of a noisy channel whose
input is . In this context, and are usually called the
clean and the noisy source, respectively. We assume that the
decoder operates on the noise-free output of the encoder and
that and are both -dimensional random vectors. The
channel connecting to is characterized by the condi-
tional probability distribution . For the memoryless case,
the operational rate-distortion function is defined as follows.
Let be an independent and identically
distributed (i.i.d.) sequence, each pair having the same joint
distribution as . Let be
the output of the decoder for blocklength. The fidelity of the
reproduction is measured relative to the clean source as

where is a distortion measure between
-vectors. The rate of this encoding scheme is given by the

logarithm of the number of output values of normalized
by the blocklength . Let be the OPTA of
this scheme defined in the usual sense of lossy source coding,
i.e., is the minimum rate asymptotically
(as ) achievable at distortion level . Thus

depends on the distribution of , on the
channel connecting with , and on the original distortion
measure . It is a classical result of rate-distortion theory [3]
that

(53)

where is the ordinary rate-distortion function of
the source with respect to a modified distortion measure
defined by the conditional expectation

(54)

The modified distortion measureis in general not a difference
distortion measure even if is, so that our Theorem 1 is a
natural tool to evaluate for high resolution.
Note that in all nontrivial cases.
Let mean . Then by
Theorem 1 and (53) we can formally write

(55)
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where

and

provided the above quantities are well defined and satisfy
conditions a)–g).

As it turns out, the condition that is piecewise-invertible
and has a finite differential entropy is the hardest to
check. Indeed, if itself satisfies conditions a) and c), then
so does , as one can see using standard arguments for
exchanging the order of differentiation and integration. If,
furthermore, is assumed to be strictly convex infor
all , then has a unique minimum in for all by
[26, Lemma A], and thus is well defined. Also, if the
conditional density exists and satisfies appropriate
differentiability and boundedness conditions, then and

are easily seen to be continuously differentiable. The
integrability conditions e)–g) can be taken care of by the
convexity assumption and by assuming that the distribution of

has a light enough tail. Unfortunately, these quite natural
conditions do not imply that is piecewise-invertible. In
what follows we show a specific class of original distortion
measures and clean-noisy source pairs for which we can
check exactly all conditions of Theorem 1. To keep the
discussion simple, we consider the scalar case .

Let the scalar WMSE distortion measure (10) be defined by

where is a positive function,
One can easily show that in this case (see [27]) that

(56)

where

(57)

and

assuming all these quantities are well defined. If ,
we get back the well-known decomposition result [28], [17]
for remote coding with mean-square original distortion

where is the regression function , which
leads to the “Wolf–Ziv encoder” discussed in the Introduction.
If is Gaussian and is an additive Gaussian channel,
we obtain the following.

Theorem 2: Let and let , where
is independent of . Assume that

where is bounded, symmetric to zero, monotone
decreasing in

for all (58)

and

(59)

Then

where and are defined in (57) above, and

Remark: Note that (58) and (59) are satisfied, for example,
if there exists such that tends to a finite limit
as . Thus the above result holds for

if . In general, (58) and (59) hold if is of regular
variation, i.e., for some finite positive function , we have

as for all . In this case,
there exists such that (see [29]) and thus
(58) and (59) are easy to obtain.

Proof of Theorem 2:Let .
Then the conditional density of given is ,
where and . Since

is bounded

and

are finite for all . By the form (56) of , conditions a)
and c) are satisfied. Clearly, corresponds to of
Theorem 1. Since is uniformly bounded, an application
of the dominated convergence theorem shows thatis
continuously differentiable, and thus d) holds. To see that

is finite, we note that (58) readily implies that
there exists such that for large
enough. This implies

for some if is large enough. Since is Gaussian,
this implies
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and

hence e) and g) are satisfied. It remains to prove thatis
piecewise-invertible and continuously differentiable and that
f) holds. In Appendix D we show that is continuous,
positive for all , and

Thus is invertible. Since is continuous, it is bounded and
bounded away from zero. Therefore, is finite
and thus is finite. Since trivially
follows, condition f) holds and the proof is complete.

IV. CONCLUDING REMARKS

We have studied the asymptotic (low-distortion) behavior
of the rate-distortion function for a class of non-difference
distortion measures. Our main result (Theorem 1) presents
an asymptotically tight expression which can play the same
very useful role in high-resolution source-coding theory for
non-difference distortion measures as does the Shannon lower
bound for difference distortion measures. Some applications of
this result are dealt with informally in Section I. These include
the study of structure of the optimal forward channel realizing
the rate-distortion function at high resolution, the computation
of the (high-resolution) rate-distortion function in the remote
source-coding problem, and high-resolution quantization the-
ory for non-difference distortion measures. Some aspects of
these implications for remote source coding are explored
rigorously in Section III. A full and rigorous treatment of
the application of the main result to high-resolution vector
quantization is given in [15].

Further research can be done for relaxing the conditions on
the class of distortion measures considered here. Namely, anal-
ogous expressions are likely to hold for distortion measures
for which is not piecewise-invertible.
Furthermore, the case whenand have different dimensions
(as can be the case for remote source coding) needs also study.
Another nontrivial problem is to consider distortion measures
for which the quadratic behavior

is not dominant for “almost all” ,
i.e., when is singular with positive probability. For
example, consider the relatively simple scalar case where

iff and for some , the limit

is finite and positive for all . Then, assuming some technical
conditions hold, using a modification of the proof of the main
result it is not hard to show that

where is the gamma function. This formula generalizes Gray
et al.’s expression [11] for the SLB for theth-power distortion
measure.

An interesting question is to find a usablelower bound
on the rate-distortion function for non-difference distortion
measures. Note that we did not claim

to be a lower bound on for any . In this direction,
it is not hard to prove (following the proof of Proposition 2)
that for the scalar case and WMSE distortion measure with
a “nice” weighting function , the difference between the
asymptotic expression and is upper-bounded by
as .

APPENDIX A

Proof of Lemma 1:Let .
Then is open since is continuous on . Consider the
power series expansion

(A.1)

Recall that is positive definite for all . Fix
an arbitrary and let be small enough such
that the largest eigenvalue of is less than , so that

is positive-definite and in an
open ball centered at . Then for all

(A.2)

where the are the same as in (A.1), since the power
series in (A.1) converges absolutely for all .
Moreover, the convergence in (A.2) is uniform in any closed
ball centered at . We will prove that the elements of
the matrix-valued function defined by the above power series
have continuous partial derivatives. Without loss of generality
we can assume that . For any matrix-valued function

with differentiable entries let

The elements of are differentiable by assumption
and it is easy to see that

It follows that converges absolutely
in and uniformly in any closed ball centered

. Thus the same argument which proves the term-by-term
differentiability of real power series applies and we obtain

at , for all . The continuity of at
is obvious since it is the limit of a uniformly convergent

series of continuous functions.
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APPENDIX B

Proof that :
Recall that we have defined on

. Define

and

Then, by the independence of and

where denotes the trace of the matrix. is finite
for all by conditions f) and g). Thus is continuous
at . Let . Then

. If and are -dimensional random vectors let
denote their information divergence (relative en-

tropy). By a well-known identity for normal distributions and
information divergence (see, e.g., [21]), for all , we have

Therefore,

(B.1)

Now in distribution since
as . Also, we have by

the continuity of at zero that in
distribution. Thus the lower semicontinuity property of the
divergence [23] implies that

Since , we obtain

which was to be proved.

Proof That : Since we assume
, by (25)

Let be independent of . Then

Let denote the elements of . By the well-
known bound on the matrix norm

where . Thus

which proves the statement since is
finite by assumption.

Proof That Is Continuous: Fix . Then
almost surely as .

Since is continuous in , a.s.
The continuity of now follows from the dominated
convergence theorem since

almost surely, where the right-hand side has a finite expecta-
tion.

APPENDIX C

Proof That in Probability as : For any
define

Since is continuous in by condition a), it follows
from conditions b) and c) that for all and

. Let denote the indicator function of the event.
Since

denoting , we have

(C.1)

where denotes the probability measure induced by. For
all

and, therefore, by (C.1)

Since for all , we have
and thus

for all .
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Proof That Is Invertible in on : We have

for all and , where is defined in
(38) and is continuously differentiable and invertible
on the open set and has nonsingular derivative there.
By Lemma 1, is nonsingular and it is continuously
differentiable on . We obtain that

where and

Note that is nonsingular if . Let
be a continuously differentiable mapping with

derivative , and assume that is nonsingular
for a given . Then by the proof of the inverse function
theorem (see [30]), if

on an open ball centered at, then is invertible on this
ball. Fix . It follows that is an invertible function
of on an open ball centered atand contained in , if on
this ball

or

(C.2)

Recall that is an open set such that its closure is
compact and . Let .
Then is compact. For any and let

and

Since is closed, it follows that . Let

Then is open and if . Moreover,
is compact for all . For define

Since is continuous on the compact set ,
we have

(C.3)

On the other hand, is (uniformly) continuous on the
compact closure of which is contained in , since

. It follows that for small enough (C.2) is
satisfied on . By definition, the set

is the open ball for all ,
and is an invertible and continuously differentiable
function of in . Since , it follows
that for each fixed , the function is invertible and
continuously differentiable as a function ofon the open set

for any such that is nonempty.

APPENDIX D

Properties of in Theorem 2: We have

Since is bounded, we can exchange the order of integration
and differentiation with respect to by standard arguments.
After some calculus we obtain that the derivative of
is given by

Clearly, is continuous. By the change of variable

(D.1)

where denotes the variance of the random variable
whose density is

Since for all by (58), we
have that

if we can prove that

(D.2)

Let and . If
, then

(D.3)
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since is monotone decreasing on . On the other
hand, if , then for all large enough we have
by (59) that

(D.4)

for some finite . As we have observed before, (58) implies
that there exists such that if
is large enough. Thus and we obtain from
(D.3) and (D.4) that there exists such that for all
large enough and for all

and

Thus (D.2) holds by the dominated convergence theorem. It
can be shown the same way that

and

Since the above holds if also by symmetry, we
conclude from (D.1) that
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