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High-Resolution Source Coding for Non-Difference
Distortion Measures: The Rate-Distortion Function

Tamds Linder,Member, IEEE and Ram ZamirMember, |IEEE

Abstract—The problem of asymptotic (i.e., low-distortion) be- compression. In general, difference distortion measures are
havior of the rate-distortion function of a random vector is popular because of their intuitive nature, and also because they
|nv.est|gated.f0r a class of n.on-dlﬁ.erence dlsto.rtlon measures. The are often mathematically tractable and simple to compute.
main result is an asymptotlcally tight expression which parallels However, in many “real-life” applications the true distortion
the Shannon lower bound for difference distortion measures. For o - A A
example, for aninput-weightedsquared error distortion measure Measure is not a function of the difference between the signal
d(x,y) = |W(x)(y — )|%, y, 2 € R*, the asymptotic expression and its reconstruction. For example, a common perceptual
for the rate-distortion function of X € R™ at distortion level D  ¢riterion for quantizing the linear predictive coding (LPC)
equals parameters in speech coding is they spectral distortion

hX) - g log (2meD/n) + Elog|det W(X)| (LSD) [2]

1 /7
where h(X) is the differential entropy of X. Extensions to  d(z,y) = %/ (201log, o |V(w)| — 201log,, | X (w)])? dw

staionary sources and to high-resolution remote (“noisy”) source -

coding are also given. In a companion paper in this issue these (2)
results are applied to develop a high-resolution quantization

theory for non-difference distortion measures. where X(w) and Y(w) are the frequency responses of the

Index Terms—Asymptotic quantization theory, Shannon lower corresponding linear prediction filters, i.e.,
bound, non-difference distortion measures, rate-distortion func-

tion, remote source coding. X(w) s ook
(w)=1-— Zxke_
k=1

I. INTRODUCTION AND SUMMARY OF RESULTS and

— —jwk
A. Background Vw)y=1- Zyke gk
k=1

fundamental component in the design and analysis of

analog signal coding schemes is the choice of an agemote (or “noisy”) source coding provides another example
propriate fidelity criterion. The most commonly used fidelitwhere the effective criterion for quantization may be a non-
criteria measure the distortioP of a coding scheme by the difference distortion measure even if the original distortion
expected value of a nonnegative functiprof the difference measure for the “clean” source is a difference distortion
between the sourc& € R™ and its reconstructiod” € R®, measure [3]. In contrast to the case of difference distortion
ie., measures, for non-difference distortion measures it is possible

that the noisy sourc& and the reconstructiori have different
D =Ep(Y - X). (1)  dimensions.

A large body of literature considers quantization under
igerence distortion measures. High-resolution quantization
: . . . ory provides simple asymptotic expressions for the rate-
mean—_squared error (MSE)’2'S a difference distortion _meas%gtor}':iopn performancF:Je of f?:(eg- and vgriable-rate guantizers,
for which p(y — ) = [ly — «||", where|| || denotes Euclidean o\ ;10 15 gifference distortion measures. For example, the
norm. MSE and its Va”"?‘“o"s' such as the frequency—we@héprﬁ!nimum possible entropy of a scalar quantizer that encodes
squared error [1], are widely used in speech, picture, and vi IEOMSE level D a sourceX ¢ R! having a smooth density,
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MSE level D (so that the per-dimension distortionf¥/») is corollaries is given. Exact statements and proofs are deferred

given for smallD by [5]-[7] until Sections Il and IIl.
n

H(Qn(X)) = h(X) = 5 log (D/(nGr)) (4) B. Main Result and Corollaries
where G, denotes the normalized second moment of the Our main result is a generalization of the asymptotic formula
lattice. Also, Shannon’s rate-distortion function [3] for the rate-distortion function (7) to a fidelity criterion of the

form
R(D)=inf{I(X,)Y): E[d(X,Y)]| <D 5
(D) =if{I(X.Y): EdX, )| <D} (5) D= EdX.V) -

characterizing the minimum achievable rate at distortion leve

D by any (multidimensional) quantizer, can be Iower-boundewcxkere d is a non-difference distortion measure satisfying

by the Shannon lower bound (SLB) [3] i is a difference certain regularity conditions. The basic requirement is that for

distortion measure. For the MSE criterion this lower boun%ﬂxedx’ the nonnegatwg funCtIOdﬂ(x,.y) is locally quadratic

states that aroundy = r(x) = arg min, d(z,y), i.e.,

d(z,y) = duin(@) + (y — r(2))" M (2)(y — r(2))
+O(lly = r(=)II°)

where (by Taylor expansion)/(z) is half then x n matrix
R(D) = h(X) — n log (2reD/n) @) of second-order partial derivatives dfz, %) with respect to
2 y aty = r(x), anddy, (2) = d(z,r(z)). Note thatM (z)
provided h(X) is finite and E||X|? < oo [8] (see also must be nonnegative-definite. The fact that certain useful
[9]). Properties (4) and (7) imply that the asymptotic ratdistortion measures can be expanded this way for the purpose

redundancy of an entropy-coded lattice quantizer above fhe@Symptotic analysis was first pointed out by Gardner and
rate-distortion function ist log (2reG,,) bit per dimension, R@0 [2], who considered the casgxr) = x.
(Note thatG; = 1/12.) The ‘main re_s_ult of thls_ paper ShOW§ that l_mder some
The importance of the asymptotic expressions and boundd§@ularity conditions (specified in detail in Section 1I), the
(3)~(7) is in providing simple explicit formulas for quantitied @t€-distortion function () is given &8 — Duin by
which are in general hard (or impossible) to compute analyt- R(D) ~ h(r(X)) — n log (21¢(D — Dyin)/n)
ically. In fact, the SLB is the only known tool for relating 2
the high-resolution performance of entropy-coded quantizers + 1 Ellog det M(X)] (9)
to the rate-distortion function. 2
Although many other useful formulas and bounds for thehere D,,,;,, = E[dyin(X)] and det denotes matrix determi-
high-resolution performance of fixed- and variable-rate codingint. The formal statement and the proof of (9) are given in
schemes relative to specific difference distortion measurgsction Il. Possible extensions of this result to more general
exist [10], [5], [11]-[13], there are significantly fewer resultsi(z,v) is discussed in Section IV.
in the literature on the high-resolution performance for sourceFor example, consider th#& (z)-weighted mean-squared
coding under non-difference distortion measures. The fitstror (W-WMSE) criterion
results extending bounds in [5] and [11] to locally quadratic
non-difference distortion measures were given in [2]. The®:¥) = IW(@)(y - 2)I* = (y = ) W' (@)W (2)(y - 2)
log spectral distortion and the Itakura—Saito distortion are (10)

examples of s_uch.mea.sures. A more formal treatment \%ereW(x) is some source-dependent weighting matrix, and
these bounds is given in [14], where a new lower boung,;

h ble-rate (i ‘ ded ‘ i (z) denotes the transpose Wf(x). In this case we have
on the variable-rate (.e., entropy-code ) vector quantize ) = #, Doin = 0, and M(z) = W(z)W(z), so that as
performance is developed using optimal point densities.

R(D) > h(X) — glog (2reD/n). (6)

The SLB becomes tight in the limit a® goes to zero, i.e.,

is also pointed out in [14] that some important “perceptual n
distortion measures” in image coding are locally quadratic. R(D) ~ h(X) — B log (2neD/n) + Ellog | det W(X)|].

In this work we take a rigorous approach to generalize (11)
some of the fundamental concepts of high-resolution source
coding theory to locally quadratic non-difference distortiolNote that foriW(x) = I (the identity matrix), (11) coincides
measures. In Section I, the small distortion behavior &fith the regular MSE case (7) as expected.
the rate-distortion function is studied for a large class of For the log-spectral distortion(2) we haver(z) = =z,
non-difference distortion measures and sources. Theoremli, = 0, and the elements d¥/(x) are (see the “sensitivity
the main result of the paper, gives an asymptotically tightatrix” in [2])
formula for the rate-disto_rtion_funcf[ion relative to a “inpu_t- (10/1n (10))2 [~ ciw(i—k)
weighted locally quadratic” distortion measure. In Section;.(z) = /

icati - : ™ —r [X (W)

lll, an application of this result to remote source coding
is given and examples are provided. In the rest of thiEhus the asymptotic expression f&{( D) can be calculated
Introduction, an informal description of the main results and itda (9) if the source distribution is known.

dw, 1<, E<n.
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In Section Il we also extend our asymptotic analysis taith respect toUU. Clearly, it is only possible to achieve
stationary sources and per-letter distortion measures. For distortion levels that are not less than
ample, if d(z,y) = [w(x)(y — z)]?, then the rate-distortion

function of a real stationary sourc&;,X,,--- is given Dunin = EplU,r(X)] (16)
asymptotically asD — 0 by where
- 1
h— 3 log (2meD) + E log | w(X1)] r(z) = arg min E{p(U,y) | X = =} 17
Y
whereh = lim, (1/n)h(X1,---, X,)) denotes the differential is an optimal estimation function @&f from X. Typically, the
entropy rate of the source. coding rate must go to infinity a® — D,,;,,. It is a classical

Two interesting corollaries follow from (9). Lek(Z,d, D) result [16], [3] that indirect coding of the remote sourge
denote the rate-distortion function of a vector soutcender under the distortion measugeis equivalent to direct coding
the locally quadratic distortion measutat distortion levelD. of the “noisy” sourceX under the modified distortion measure
Let M (x) be the matrix of second derivatives associated with
the distortion measurd, and letr(z) = arg min, d(z, ). d(z,y) = E{p(U,y) | X = z}. (18)

Suppose that there exisid(x) satistyingM (z) = M(r(z)) | particular, the indirect rate-distortion function Gfunderp,
(this is possible, e.g., if is invertible). LetW (x) denote any

: R - characterizing the minimum possible rate in the remote coding
nx n matrix for whichW*(z)W (x) = M (). Then, from (9) gcenario, is equal to the ordinary rate-distortion functiotkof
and (11) we have a® — Dy underd of (18).

R(X,d, D) ~ R(T(X),W—WMSE, D — D) (12) In the c_ontext_of this paper, !t is important to note _that
, even if p is a difference distortion measure, the modified
where W -WMSE is the WMSE distortion measure defined imlistortion measuré is in general not. Furthermore, the optimal
(10). reconstruction and the minimum distortion associated with
For the second corollary, suppose th&j is invertible, and d get here the “physical” meanings of optimal estimation
there exists an invertible and continuously differentiable vectéunction and minimum estimation error, respectively. Our
function g : R* — R™ whose derivative matriy’ satisfies formula (9) thus gives the asymptotic form of the indirect
rate-distortion function, using the modified distortion measure

/ _ —1
g (t) =W () (13) 4 provided thatd satisfies the regularity conditions given in
where Wt(z)W (z) = M(z), that is, Section II. _
In the special case wher(y, u) = ||y — u||* is the squared
[d (O]'g'(t) = M(r~H(t)). error, Wolf and Ziv [17] showed that the optimal indirect

encoder has the following intuitive structure; it first estimates

For example, under the regularity condition given in Sectiog optimally from X, i.e

II, such a functiong always exists form = 1 (scalar case).

For the general case see [15]. Then, substitutilg X)) as 7 =r(X)=E{U| X} (19)
the source in (7) and using the identityg(Z)) = h(Z) + ) . ] ]
Elog|det ¢'(Z)|, we have asD — Dy, and then it encode§ with MSE-distortionD — D.,;, (Where
now D, is the conditional covariance of/ given X).
R(X,d, D) =~ R(g[r(X)], MSE, D — Dyyin). (14)  However, this very efficient encoding structure does not apply

Corollaries (12) and (14) are actually implied by the foIIowEO a general distortion measupe (The separation theorem of

. . . ) . [17] follows from the orthogonality principle which applies
ing stronger statement. At high resolution, optimal encod|r{ o ) L
of X with d-distortion levelD results by optimally encoding s%ecmcally to second-order estimation.) Nevertheless, our

o e E . . . results show that a “Wolf-Ziv-type” encoderasvays optimal
?(‘X) with W-WMSE-distortion levelD — Dyin. Moreover, at high-resolution conditionsprovided thatd satisfies the
if the function g of (13) exists, then optimal encoding of regularity conditions andy/(x) can be written as\/(x) —
with d-distortion D results by optimally encoding(r(X)) °d Y N

with MSE-distortion levelD — D, and then applying the M(r(x)), as discussed in (12). This fact follows from the

. o . : structure of the “test channel” which realizd®(X,d, D
function g=1(-). This interpretation of our main result have §%.X, d, D)

. . S . . asymptotically asD — D,,;, (in the sense of achieving the
important implications in the context of remote source COdmgninimum in (5)). This asymptotically optimal test channel has
and for quantizing via a companding model, as discussedthne form '
the next two subsections.

X =Y =r(X)+W YX)N =r(X)+ W L X)N
C. A Wolf-Ziv-Type Encoder for Remote Source Coding (20)

Consider the following indirect source-coding problem. An . . . . .
encoder observes a noisy versiah of a “clean” sourcel/. where N is a white Gaussian vector (independent’oy with

The encoder’s objective is to encodein such a way that the variance (D — 13111111)/71 per component, andV () i_s_ SUCh.
reconstructiont” satisfies the fidelity criterion that M(z) = W*(«)W(z) (see the proof of Proposition 1 in
Section II). We conclude that asymptotically optimal indirect

Ep(U,Y)< D (15) encoding ofX with d-distortion levelD can be obtained by
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first optimally estimatingf] = r(X), and then encodin@ has asymptotic distortior> (with respect to the distortion
with W-WMSE-distortion levelD — D,,;, using the encoder measurel), and thus by (22) its rate-distortion performance is
induced by the test channel of (20) (e.g., via random coding).wthin 3 log (27¢/12) bit of the rate-distortion function oX..
more efficient scheme using companding is briefly discussedA detailed treatment of high-resolution variable-rate com-
in the next subsection. panding for non-difference distortion measures is given in
Section Il discusses in detail under what conditions tH&5], where it is shown thay above is the optimal compand-
asymptotic expression for the rate-distortion function (9) ajng function for a uniform scalar quantizer, and where the
plies to the remote-coding problem. Specific examples wheanalysis above is made rigorous and is extended to sources
these conditions are proven to be satisfied are also given. with memory, to lattice quantizers, and to vector distortion
measures.
D. A Variable-Rate Companding Model

In the case wher is a difference distortion measure, the test Il. MAIN RESULT
channel of (20) specializes to a regular additive noise channel
(see [3] and [8]) A. Statement of the Main Result

X—>Y=X+N Let X be ann-dimensional random vector. Given a dis-

tortion measured : R® x R* — [0,0), the rate-distortion
where for the MSE cas¥ is Gaussian with variancB. Inthis  fynction of X is defined for allD > 0 by

regard it was demonstrated in [6] and [18] tlestropy-coded

randomized (dithered) uniform/lattice quantizatigECDQ) R(D) =inf{I(X;Y) : E[d(X,Y)] < D}.
simulates (in the rate-distortion sense) an additive noise t
channel. In [7] it was shown that at high resolution, th
randomization of ECDQ is not necessary, and its redun-
dancy above the rate-distortion function is asymptotical
L log (2meG,,) bit per dimension.

For a non-difference distortion measure, the additive noi
N in the the asymptotically optimal test channel (20) is mul?
tiplied by the source-dependent factdf(X). In light of the
analogy above, this motivates the application of a companding
model [5], i.e., a combination of nonlinear mapping and . o .
uniform quantization, for efficient finite-dimensional variable@nd that.X' has an absolutely continuous distribution with
rate coding, under the non-difference distortion meagure 7-dimensional densityf. _ _

To explain this idea, let us consider the scalar case, i.e./Athough our analysis ofi(D) will not rely on its opera-
n = 1, and assume thab,... = 0. In this case the test tional meaning, we mention here thB{D) is the minimum
channel (20) become¥ = r(X) + N//m(X), where N achievable rate in coding with distortio? a memoryless

is Gaussian with variancd, and m(z) = 182d(x, )/ vector sourcg X;,i = 1,2,---}, where theX; are distributed

- 2
evaluated ay = (). Further, the functior of (13) becomes S X

g(t) = t m(r—(y))dy. The functiong plays the role In SOTe |r|n_|portant atpr)]ph(f:altllon_stm > 0 Its g n:illtural
of the compressor mapping in our companding model. Frofyoumption. However, the foflowing argumen [3] allows us

ére the infimum of the mutual information betwe&hand
e n-dimensional random vectadr is taken over all possible
nditional distributions o} given X such thatE[d(X,Y)] <
. If no suchY exists, thenR(D) = ~o by definition. It is
gésumed thaf is Borel measurable, thaf can be represented
ith finite distortion, i.e.,

Dyin=F [min d(X, y)} < 00,
y

high-resolution quantization theory (3) we know that if a> use_th; more cgnvcelnlent qrshsump.t Im]gzli“ N _0 l;et
uniform scalar quantize®,, with step-size\/12D, is applied (x’y)a;d (2,y) — min, d(z,y). Thenmin, d(z,y) = 0 for
'/L'y

to g(r(X)), its entropy is given for smalD by

H(Qu(g(r(X))) = h(g(r(X))) — % log (12D).  (21)

Using the identityh(g(%)) = h(Z) + E log|¢(%)|, and
comparing with (9), we obtain

R(D)= R(D — Dyn)

for all D > D,n, Whereﬁ.(D) is the rate-distortion function
of X with respect tod. The conditions imposed in the
sequel ond will also hold for d. Therefore, to determine the
1 1 asymptotic behavior aR(D) asD tends toD,,:, from above
H (X)) & h(r(X)) — = log (12D) + —E logm(X) : A min ’
(@ulg(r(X)) () 2 og (12D) + 2 ogm(X) it suffices to studyR(D) as D — 0. Thus we can assume
1 H H n
~ R(X,d, D) + 5 log (2¢/12). (22) without loss of generality that for alt € R
Namely, the entropy of a uniform quantizer exceeds the rate- Irﬂn d(z,y) =0
distortion function of X relative tod by 3 log(2me/12) ~
0.254 bit in the limit asD — 0. Further derivation shows
that the entropy-coded companding quantization scheme
the form

X = () = g0) = Qi) —

and thatD,;, = 0.

e say that a mapping : R* — R™ is piecewise-invertible
ifothere exist a finite number of disjoint open sets, - - -, A,
such thatp is one-to-one on each;, the union of the closures
entr_opy‘ Sy =X of the A4;’s coversR™, and the boundary of each; has zero
coding Lebesgue measure. b is also continuously differentiable
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on U;4;, then we say thaky is piecewise-invertible and The following is the main result of the paper.
continuously differentiable. LeE(x) = {¢;;(z)} be ann x n
matrix whose elements are real functions : R — R. We
say thatF(x) is continuously differentiable on an open skt lim [R(D) + 2 log(%ep/n)}
if eache;; has a continuous derivative of. D=0 2

If Eis ann x n matrix, ||£|| will denote its norm induced = h(r(X)) + EE[IOg det M (X))
by the Euclidean norm{E|| = max,j—1 || E|. 2

We assume that the distortion measure satisfies the followiwere and A/ are defined in conditions b) and d) above.
regularity conditions. The main theorem is a consequence of the following two

results.

Theorem 1: Supposei(z,y) and X satisfy a)—g). Then

Cond|t|0ns_ond(x,y): _ ) ] Proposition 1 (Achievability): Supposed(z,y) and X sat-
a) For all fixedx € R”, d(z,y) is three times continuously isfy a)-g). Then

differentiable in the variablg and the third-order partial

derivatives lim sup [R(D) + g log (27TCD/7’L):|
D—0
Pd(,y) g kel n} 1 i
y; 0y, Oyr,” T o < h(r(X))+ §E[10gdet M(X)].

are uniformly bounded.

b) For allz € R, d(z,y) has a unique minimum iy at Proposition 2 (Converse)Supposed(z,y) and X satisfy

r(z) = arg min, d(z,y). Thus a)-f). Then
. . n
d(z,y) >0 with equality if and only ify = r(x). lim inf [R(D) + 5 log (2meD /n):|
We assume that: R — R™ is piecewise-invertible and > h(r(X))+ %E [log det M(X)].

continuously differentiable (see the definition above).

c) Forallz € R" The proofs of the two propositions are given in the next

liminf d(z,y) > 0. subsect.ion. We now brjgfly discuss our hypotheses.
llyll—oo The first set of conditions a)-d) contain, for the most part,
rather natural assumptions on the smoothness and regular
behavior of the distortion measuréis assumed to be regular
in the sense that for a given input there is a unique
_ 1 3%d(=,y) reproductiony = (z) minimizing the distortion (condition
2 Oy 0y, b)), and all other reproduction values produce distortion
o ] . ] ] _which is bounded away from zero 4fis bounded away from
ThenM (z) is piecewise continuously differentiable W|th7,($) (condition d)). As for smoothness, the assumption that
respect toz. r(z) be piecewise-differentiable is quite mild. Also note that
Note thatM (x) is symmetric for allz by condition a). Since if d(x,y) itself is three times continuously differentiable (as
d(x,y) has a unique minimum at = r(z), it follows that ~ a functiond : R** — R), then condition d) holds. Two extra
ad(z, ) co_nditions here are hard to jusFify on 'intu.itive _grounds: the
a—y|y=7‘(w) =0 uniform boundedness of the third derivatives in a) and the
requirement that(x) be piecewise-invertible in b). Both of
and thusM (z) is also nonnegative-definite for all. There- these conditions are imposed for technical reasons and are not

d) LetM(z) = {m;;(x)} be then x n matrix with entries
m;;(x), where

y=r(z)

fore, we havedet M (z) > 0 for all z. believed necessary for the validity of the main result.
Next we state the conditionsand the distribution ofX are Conditions e)—g) further specializé. Most importantly,
assumed to satisfy jointly. E|logdet M(X)| < oo implies that the locally quadratic
Conditions onX and d(z,y): behavior
e)

d(z,y) = (y = () M(z)(y — r(x))

dominates the higher order terms for alin a neighborhood
f) The random vector(X) has ann-dimensional density of 7(z). This follows since e) implies that/(x) is positive-

and a finite differential entropj(»(X)) and definite for allz except for a set oKX -probability zero. Again,
we were forced to introduce two technical conditions. The

E|logdet M(X)] < cc.

E|r(X)|* < oo finiteness ofE ||r(X)||? is required by our proof technique,
9) while E [(tr {M~*(X)})¥/?] < oc is an assumption we have
not managed to eliminate.
E[(tr {M1(X)})*? < = It is instructive to observe what the conditions mean for the

wheretr { M~1(X)} denotes the trace of the inverse OWMSE distortion measure
M(X) (which exists almost surely by e)). d(z,y) = [|W(z)(z — v)|?
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where W(z) is ann x n matrix that depends on the input(23) is equivalent to

: R -
x. Ip this _cas_e,M(aa;zl(;y)W (z)W(z) and the Fhll’d 9rd_er lim lim F,(D) = lim lim F,(D).
partial derivatives; — -~ are all zero, so a) is satisfied. D=S0n—o0 R0 D50
Conditions b) and c) obviously hold, and d) is also satisfieghig exchange of limits is legitimate if, as — oo, F,(D)
if the elements of(z) are (piecewise) continuously dif- converges to its limit uniformly inD. But this uniform
ferentiable. We conclude that iX' has a finite differential convergence holds if and only i, (D) converges inn to
entropy and second moment, théhllog |det W(X)|] < oo (D) uniformly in D, which is known to be true because the

and E[(tr {W~(X)})’] < oo are sufficient conditions for we|l-known lower bound of Wyner and Ziv [20], [3] implies
the validity of the main theorem. In particular, consider thghat for all D > 0 andn > 1
magnitude weighted distortion measure (see [19]) B 1 -
) R(D) < Ry(D) < R(D)+ ~W(X") ~h.  (24)
_ =4l n
d(e,y) = =5
]
C. Proofs
_ -1 e fini
We haveW(z) = ||z[|="1. Suppose thab(X) is finite. Then 0 proofs we will need the following simple fact.

: no. _ _ ) Suppose conditions a) and b) hold. Then there exists
ggo[R(D)+ ; 103(2mp/n)] hX) B flog [X]) - SHPPOSE COnCHOY

provided E [log ||X||] > —co and E||X|]* < oo (conditions d(z,y) = (y — (@) M(z)(y — r(z)) +s(z,y)  (25)
e) and g)) hold.

where
B. Stationary Sources |s(z, )| < Clly — r(z)]]>.

Assume that{ X;} is a real-valued stationary source an
consider a single-letter distortion measudie RxR — [0, 0o)
such thatd, (x, ) = 0 for all z. Thend; generates the family
of distortion measures

%onsider the second-order Taylor expansiond@f,y) as a
function of 4 aroundy = r(z). Then (25) follows since
%’,};’y)b:r(m) = 0 and the remainder term is controlled by
" the uniform boundedness of the third derivatives.
1 g . .
d(@,y) = ~ Zdl(ﬂci,yi), n=1,2,- P_roof of Proposition 1.Th¢ asymptc_)tlc upper bound on _
n = R(D) is proved by demonstrating the existence of an appropri-
. ) ate (not necessarily optimal) forward test channeinle R
betweenn blocks of the source and their reproductions. Lethdois a symmetric nonnegative-definitex n matrix, then
X" = (X, -+, Xp) and assume thartl the differential entropy; , v, ') denotes am-dimensional random vector which
rate of the sourcé = lim,,_o, ; A(X") is finite. Let (D)  paq normal distribution with meam and covariance’. For
be the rate-distortion function dfX;} relative tod,, defined any D > 0, let Zp ~ N(0,(D/n)I) be independent of
by R(D) = limy, o R (D), where X, where I is the n x n identity matrix. Letl/ = {z :
Ro(D) =inf {n ' I(X™;Y") : E[d,(X",Y")] < D} det M(z) > 0}. Then P(X € U) = 1 by e). Let W(z)
denote anyn x n matrix-valued (measurable) function of
is thenth-order rate-distortion function dfX; } [3]. Note that such thatiW*(z)W (x) = M(z). For the sake of convenience,
if {X;} is ergodic, (D) is the minimum achievable rate indefine W —*(z) = 0 for all z ¢ U. Set
fixed-rate coding of X, } with distortion D. .
In what follows we show that ifd; and X; satisfy the Yp =r(X)+ W (X)Zp

conditions of Theorem 1, then &3 — 0 and consider the test chann&l — Yp. Then W(X)(Yp —
r(X)) = Zp almost surely, and

E((Yp — r(X))'M(X)(Yp — r(X))]

R(D) ~ h — % log (2reD) + %E log m(X1)]  (23)

wherem(z) = 40| = E|W(X)(Yp — r(X))|]?
To prove this claim first notice that ifl; and X; satisfy — E|Zp|? = D.
the conditions of Theorem 1, then so dg and X" for each
n > 1. In particular, if F,,(D) is defined by Thus
def
Fo(D) = Ry(D) + 3 log (2meD) E[d(X,Yp)] = D + E[s(X,Yp)] = (D) (26)

where s(x,y) = d(z,) — (y — r(@))'M(z)(y — r(z)). In
Appendix B it is shown thaf( D) is continuous at all> > 0,
and E[s(X,Yp)] = o(D) so thaté(D) = D + o(D) as
D — 0. Moreover,

then we have by Theorem 1 that

lim F,(D) = %/L(X") + %E[Iog m(X1)].

D—0

Since Lh(X") — h asn — oo, and I(X;Yp) = [(X;7(X)+ W H(X)Zp)
= h(r(X) + W H(X)Zp) - (W~ H(X)Zp | X)
(27)

n—0o00

_ 1
lim F,(D)= R(D)+ 3 log (2mweD)
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where the decomposition is possible becaudd 1 (X)Zp | w(x)(y — x). By conditions i) and ii) above, fox in some
X) is finite as shown below. SinceV~!(z)Zp ~ small neighborhood of (i.e., for|z — y| < ¢ for somee > 0)
N(0,(D/n)M~(x)) for all z € U, and sinceX and the derivative of the functiog, () with respect tar satisfies

Zp are independent, we obtain
¢y () = w'(@)(y — x) — w(z) = —w(@) + O(e).
RWHX)Zp | X =x) = (W z)Zp)
_n log (2reD/n) It follows that ¢, () is invertible inx in this neighborhood

if ¢ is small enough. It is not hard to see thatias— 0 the

+ 1 log det M~1(x) el probability that|Y, — X| > ¢ must go to zero for any > 0.

’ Thus by the identity:(¢(Z)) = h(Z) + E log |¢/(Z)], which
(see, e.g., [21, p. 230]). Thus holds if ¢ is invertible and continuously differentiable, we have

h(W—l(X)ZD | X):g 10g (27(6D/7‘L)—%E [10g det M(X)] h(w(X)(YD - X) | YD) = h(X | YD) + E 10g w(X) - 0(1)
28) (30)

whereE [log det M(X)] is finite by condition e). Thus by the Whereéo(1) — 0 as D — 0. The asymptotic equality (30) is

definition of the rate-distortion function and by (26)—(28) Made precise by conditioning on the evelp — X| > «.
Furthermore,

Mw(X)(Yp — X) [ Yp) < h(w(X)(Yp — X))
% log (2meD) (31)

R(§(D)) < h(r(X) + W HX)Zp) — g log (2weD/n)
+ %E[log det M (X))

In Appendix B it is proved that L : . L
PP P where the first inequality follows since conditioning reduces

limsup A(r(X) + W™HX)Zp) < h(r(X)) entropy, and the second follows from the distortion constraint
D—0 and the fact thath(Z) < ilog(2meE[Z?]). Combining
and nowé§(D) = D + o(D) implies (29)—(31) gives
1 n - e e 1 e
hgli%p [R((S(D)) +3 log (27r66(D)/n)} I(X;Yp) 2 MX) - 3 log (2neD) + FE log w(X) — o(1)
1
< h(r(X)) + 5E [log det M(X)]. for any collection ofYp as above. Specifically the inequality

holds for R(D) as desired.

S_inceé(D) is continuous and(D) — 0 asD — 0, the above  The following lemma is proved in Appendix A.
ives
g Lemma 1: Let W(z) be the square root ai{(z), i.e., the

limsup [R(D) + n 1Og(27rep/n)} unique symmetric, nonnegative-definites n. matrix for which
D—o0 2 W(z)W(x) = M(x). If M(z) is continuously differentiable
< h(r(X)) + EE log det M(X)]. O ©nanopen sefl, thenW (x) is continuously differentiable on
2 An{z : det M(z) > 0}.
Proof of Proposition 2:Let {Yp : D > 0} be an arbi-

Before giving the somewnhat involved proof of Propositiog 5y coliection of random-vectors jointly distributed with
2, we briefly go over the main idea. X so that for allD > 0

Sketch of the proof of Proposition 2fo simplify things,

consider thescalar WMSE distortion measure E[d(X,Yp] <D and I(X;Yp) < oo

d(z,y) = [w(z)(y — 31;)]2 Let Ay, ---, A be the open sets on whiehis one-to-one and

) o continuously differentiable (see condition b)) and define the
and assume that(z) has a continuous derivative’(x) and gjscrete random variabl€(X) by

that i) [«/(z)| < a < oc; and ii) w(x) > b > 0. Note that

i) and ii) are stronger versions of conditions d), e), and g) of O(X) = {i, if X €A, 1=1,---k
Theorem 1. Let{Yp : D > 0} be an arbitrary collection of 0, otherwise

random variables, jointly distributed with the random variable

X so that the(X,Yp) palrs satisfy the distortion constraintNote that P(C(X) = 0) = 0 and there exists a function
Ed(X,Yp) = E[w(X)*(Yp — X)?] < D for all D > 0. w(e,r) such thatw(C(X), (X)) = X almost surely sinc&l

Assumingh(X) is finite, we have has a density. Thus we have

H{X;Yp)=h(X) - h(X | YD) (29) I(X;Yp) =I{(C(X),r(X);Yp)
whenever! (X;Yp) is finite. As in the proof of the Shannon = [(C(X);Yp) + I(n(X); Yp | (X))
lower bound (see, e.g., [22, Theorem 23]), we want to upper- = I(C(X);Yp) + h(r(X) | C(X))
boundh(X | Yp) using the distortion constraint. Leéf,(z) = — h(r(X) | Yp,C(X)) (32)
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where the above information quantities are finite sincd;. This allows us to drop the conditioning on the event
h(r(X)) is finite by condition f). Let {C(X) = i}. Thus we have to prove that

D, =FE[dX,Yp) |C(X)=1 )

[d(X, Yp) | O(X) =1] lim sup [h(T(X) | Yp)) — g log (27T6D/7’L):|
and suppose we can prove that for al> 1 D=0 1
n < ——E[logdet M(X)] (37)
limsu [h(r(X) | Yp,C(X)=i)— 2 10>(27reDi/n)} 2

p ) 2 S
D—0

where E[d(X,Yp)] < D for all D > 0, and wherer(z) is

1 .
< _QE[logdet MX)[C(X) =14 B3) now invertible and continuously differentiable on the entire

and that support 4;.
Let A be the open set such that(x) is continuously
liminf I(C(X); Yp) = I(C(X);7(X)). (34) differentiable ond andR™\ A has zero Lebesgue measure (see
D50 = )

condition d)). Letr’ denote the derivative of on A;, and let
Then, on the one hand,

B; = {z:|det7'(z)| > 0} N A;.
I(C(X);7(X)) 4+ h(r(X) | C(X)) = h(r(X)).  (39)

On the other hand, by the convexity of the logarithm, we haJd'eN Bi is open sincer’ is continuous onA;, and by the
assumption that(X') has ann-dimensional density, we have
kon P(X € B;) = 1. Setting
> 5 log (2reDi/n)P(C(X) = i)

i=1

n U=AnB;N{z:det M(z) > 0} (38)
< 3 log (2meE[d(X,Yp)]/n)
< ™ loe (2reD we have that/ is open sinceV (x) is continuous ord. Also,
=2 og (2meD/n). M(z) and its square rootV(x) are positive-definite or/,
Th and they are continuously differentiable there (see Lemma 1).
us . : ) : . L
Moreover,r is continuously differentiable and its derivative
lim sup [h(r(X) | Yp, C(X)) — n log (gmp/n)} 7’ is nonsingular or/, andr has an inversg with the same
D—o0 2 properties. Finally,P(X € U) = 1.
] k : : ) By a standard result of measure theory (see, e.g., [24]), there
< hglsgp Z (h(T(*X) | Yp,C(X) =) exist compact set,,,, m = 1,2, -, such that
- i=1
— g log(2 WGDi/n))P(C(X) = L)] Km U and nll_lgop(X € Km) =1

Then by [24, Theorem 2.7], for eadk,,, there is an open set

1
< _§E[10g det M(X)] V,, with compact closurd/,,, such that
and by (32), (34), and (35) K cV.cVcU
lim inf [I(X, Yp)+ n log(2 WGD/TL):|
b=0 2 Fix T > 0 and define the binary random variable =

> h(r(X)) + %E log det M(X)]  B(D,T,m) by

which implies the statement of the proposition. Thus it suffices _fo, if [[r(X)=Yp||<T and X €V,
to prove (33) and (34). First consider (34). In Appendix C we 11, otherwise
prove that

The dependence aB on the parameter§D, T, m) will be
hidden in the notation. Until the very last step in the proof,
m Will be fixed and the choice df’ will depend only onV,,.
Using B, we can upper-bounfl(r(X) | Yp) as

Jim P(Ir(X) = Yol > ) = 0 (36)

for all e > 0, i.e., Yp — »(X) in probability. Then

C(X),Yp) — (C(X), (X
(R R) = (G070 h(r(X) | Yp) = h(r(X) | Yp, B) + I(r(X); B | YD)
(

in probability also, and therefore, (34) holds by the lower < h(r(X) | Yp,B=1)P(B =1)

semicontinuity property of the information divergence (see, - ’

e.g. [23]). +h(r(X) | Yp, B=0)P(B =0)+ H(B)
To prove (33) we will assume without loss of generality (39)

that P(X € A;) =1, i.e., we replaceX by a random variable
which is distributed as the conditional distribution 8fgiven where H(B) is the Shannon entropy d8.
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BoundingH (B):
lim P(|[r(X)

We have

—Yp|| > T, X € V) =0

for all 7, > 0 by (36). Thus

]%iglo P(B=0)=P(X €V,) (40)
and
Jim H(B) = Hy(P(X € Vi) (41)

where H, denotes the binary entropy function
Hy(a) = —aloga — (1 — a)log(l — «).

Boundingh(»(X) | Yp,B =1)P(B = 1): If the random
vector Z has a density an&|| Z||? < oo, then

WZ) < g log (n~L2rcE|| Z||?).

Since conditioning reduces differential entropy, this implies

h(r(X) | Yp, B=1) < h(r(X) | B=1)
< 2 log (n™" 2weB[|[r(X)|* | B=1])
"o g Bl QO]
< 5 log <n 12W6m> (42)

and, therefore, by (40)

limsup h(r(X) | Yp,B=1)P(B=1)
D—0

EJr(X)]?
Hx¢mﬂ'“”

Boundingh(X | Yp,B=0)P(B=0): LetG = r(U) =
{r(z) : z € U}, wherel/ is defined in (38), and leg = »—!
be the inverse of. Consider the mapping : G x R® — R™
defined by

g (X g Vi) 10g< “L2re

W(g(z))(z — v)
where W(z) the square root ofM/(z). Then g(z) is con-

o(z,y) =

tinuously differentiable and its derivative is nonsingular o .
its open domain@ = »(U) (G is open sincer is an open
mapping onl/). Thus by Lemma 1W (g(=)) is continuously
differentiable, sop(z,y) is continuously differentiable with

respect toz on G for all y € R™. Its derivative® is

of O
O(z,y) 87<P(z,y)

where R(z,y) is then x n matrix with entries

Enj <87k wij(g ))(Zj —v;)  (45)

j=1

Zn) andy = (y17 T

=R(z,y)+W(g(z)) (44)

ik (2, Y)
wherez = (24, - -,
R™ x R™ by

Sma ={(zy) 2 €r(Vin), ||z =
and for anyy € R™ let S,,, +(y) C R™ be defined by
Sm,r(y) ={z:(2,9) € Sm,r}.

,yn). DefinesS,,  C

yll <T}  (46)

541

It is proved in Appendix C that for all’ small enough, and for

a fixedy such thatS,,, r(y) is nonempty(z, y) is one-to-one
and continuously differentiable ia on the open se§,,, r(y).
Recall now that by change of variables (see, e.g., [24, Theorem
7.26)), if ¢(=) is invertible and continuously differentiable on
an open set?, and if Z has a density and finite differential
entropy, andP(Z € G) = 1, then

W¢(Z)) = M(Z) + E[log | det ¢/ (Z)]].

SinceP(r(X) € Sy, r(y) | B=0,Yp =y) = 1 for ae.y
conditioned on the evertB = 0}, the above imply

We(r(X),Yp) | B=0,Yp =y)

=h(r(X)[B=0,Yp =y)
+ Elog | det ®(r(X),Yp)| | B =0,Yp = 4]
so that
h{o(r(X),Yp) | B=10,Yp)
= h(r(X) | B=0,Yp)
+ Ellog |det®(r(X),Yp)| | B =0].

From this and the identity
O(z,y) = W(g(=) W™ (g(2)) B(z,y) + 1]
valid for all (z,y) € S, +, we obtain
h(r(X) | Yp, B = 0)
—h( (X)(r(X) =Yp) | Yp,B =0)
- §E[10g det M(X)| B =0]
— E[log|det (W™ HX)R(r(X),Yp) +1)|| B=0].
(47)

Let x4 denote the indicator function of the evest Then
by (25)
E[||W(X)(r(X) = Yp)II*x (B=0}]
< D+ E[C||r(X) = Yp|’x{B=0}]-
€ Vi, and||r(z) — y|| < T, then
Clir(z) — ylI> < TO||r(x) — y|I?
< Blm, T[W (@) (r(x) — w)|1?

where 3(m,T’) = T'Csup,cv, o) - 0asT — 0

for all fixed m. Thus

W

E[|[W(X)(r(X) (48)

b
1-8(m,T)

where we have assumed thatin the definition of B is small
enough to makd — 3(m,T) positive. Using the same bound
as in (42), we obtain

= YD)|Px(8=0}] <
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and, therefore, by (40) T — 0 first and thenm — oo we finally obtain
hgliup [h(W(X)(T(X) —Yp)[¥p,B=0) lim sup [h(T(X) | Yp) — g log (27T6D/7’L):|
D—0

X P(B =0) - = log (2neD/n)] < _% Ellogdet M(X)]. O

< limsup[(h(W(X)(r(X) —Yp) | Yp,B =0)
DEO lll. HIGH-RESOLUTION REMOTE SOURCE CODING
_n 10g(27reD/n))P(B - 0)} _ .
2 In the remote source-coding problem (also called noisy
< —EP(X € V) log (1 = B(m, T)P(X € V). source coding) [16], [3], [25] the sourc& is corrupted
2 (50) by noise before the encoding operation. Thus the encoder

_ _ has access only to the outpit of a noisy channel whose
For the second term on the right-hand side of (47) we havénput is /. In this context,l/ and X are usually called the

lim E[logdet M(X)x(p=0] clean and the noisy source, respectively. We assume that the
D=0 decoder operates on the noise-free output of the encoder and
= lm E [log det M(X)x{xev,., |In(X)=Yol<T}] that U and X are bothn-dimensional random vectors. The

(51) channel connecting/ to X is characterized by the condi-

=FE |log det M(X . : P
[ 0 det M( )X[Xd”}] tional probability distribution”x ;. For the memoryless case,

sincelog det M(X) has a finite expectation and the operational rate-distortion function is defined as follows.
P(X € Vo, |Ir(X) = Yp|| <T) — P(X € V) Let (U1, X1), (U2, X2),- -~ be an independent and identically
asD — 0 for all m, T > 0 by (40). dlstnbuted (i.i.d.) sequence, each pair having the same joint
stribution as(U, X). Let (U, -, U) = g(Xy,---, X) be

As for the last term on the right-hand side (47), the eIeme
of W=*(g(2))R(z,y) tend to zero agz — || — 0, uniformly
on S,, r. This follows from (45) and from the fact shown
in Appendix C thatS,, r has a compact closure which is 1k
contained inG x G for T' small enough. Thus for sucH, D= E[— > U, )
log |det (W =1(g(2))R(z,) + I)| is bounded orb,, ;- and k

e output of the decoder for blocklengthThe f|deI|ty of the
reproductlon is measured relative to the clean source as

=1
lim log|det (W (g(2)R(z,y)+ 1) =0 wherep : R* x R* — [0,00) is a distortion measure between
ll=—ull—0 n-vectors. The rate of this encoding scheme is given by the

logarithm of the number of output values gf normalized

by the blocklengthk. Let R(D,p,U, Px|y) be the OPTA of

this scheme defined in the usual sense of lossy source coding,

lim E[log|det(W_1(X)R(T(X),YD) +I)|X{B=o}] —g e, R(DpU, PX_|U) is the rr_linim_um rate asymptotically

D=0 (52) (as & — oo0) achievable at d|stort|en _IeveD > 0. Thus
R(D, p,U, Px|i;) depends on the distribution df, on the

channel connectindd with U, and on the original distortion

measurep. It is a classical result of rate-distortion theory [3]

uniformly on S,,, . It follows thatY,, — »(X) in probability
implies

In summary, (47), (50), (51), and (52) show that

lim sup [/L(T(X) | Yp,B=0)P(B=0)— g log (27TCD/7’L):|

P—0 that
1
< —§E[10gdet MX)| X e V,|P(X € V) R(D,p,U, Pxy) = R(D,d, X) (53)
n
— o PX € Vi) log (1 = B(m, T)) P(X € Vin)). where R(D, d, X) is the ordinary rate-distortion function of
N o _ the sourceX with respect to a modified distortion measute
Combining this with (39) and (43) we obtain defined by the conditional expectation
lim sup [h(T(X) | Yp) — g log (27T6D/7’L):| d(z,y) = Elp(U,y) | X = 2l. (54)
D—0
< — - E[logdet M(X) | X € V] P(X € Vi) The mednﬁed distortion meaeudss in general notadn‘ferepce
2 distortion measure even p is, so that our Theorem 1 is a
n o 1 Ellr(X)|? natural tool to evaluatéi(D, p, U, Px ;) for high resolution.
+ P E Vi) log <n 2mP(X Z Vi) Note that¥ [inf, d(X,y)] = Dmin > 0 in all nontrivial cases.

3 o

n 1 Let a(D) = b(D) meanlimp_.o(a(D) — b(D)) = 0. Then by
2P(X € Vim)log (1 = A(m, D) P(X € Vin)) Theorem 1 and (53) we can formally write
+ H,(P(X € V,.)).
R(D + Dminv 12 U7 PX|U)
Note that the above inequality holds for all fixed and 1 ) n,
T = T(m) small enough. Sincg(m,T) — 0 asT — 0 ~ h(r(X)) + 5 Eflogdet M(X)] — 5 log (2meD /n)

for all m, and sinceP(X € V;,,) — 1 asm — oo, by letting (55)
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where Theorem 2:Let U ~ N(0,0%) and letX = U + Z, where

Z ~ N(0,0%) is independent of/. Assume that
r(x) = argmin E[p(U, y) | X = «],
Y

Dpin = E[p(U’ 7(X))]a

p(u,y) = m(u)(u — y)?

wheren(u) > 0 is bounded, symmetric to zero, monotone

and decreasing if0, co)
o2 . m(u+h)
M(.’E) = a—yQE[p(U’ y) | X = $]|y=1(w) u11_1){.10 —ﬁl(u) =1, forall h >0 (58)
provided the above quantities are well defined and satis‘?’?d
conditions a)—g). lizn sup m{u/2) < . (59)

As it turns out, the condition that is piecewise-invertible u—soo (1)
and r(X) has a finite differential entropy is the hardest to
check. Indeed, ifp itself satisfies conditions a) and c), then' N€
so doesd, as one can see using standard arguments fgrp 4 p
exchanging the order of differentiation and integration. If, 1 1
furthermore,p(u, y) is assumed to be strictly convex infor ~ h(r(X)) + 2 Elog m(X)] — 2 log (27eD)
all «, thend(z,y) has a uniqgue minimum ipy for all = by
[26, Lemma A], and thus(z) is well defined. Also, if the Wherem and+ are defined in (57) above, and
conditional densityf;; x (v | ) exists and satisfies appropriate o la RN
differentiability and |boundedness conditions, the@) and Dimin = Elif(U)(U = r(X))]
M(z) are easily seen to be continuously differentiable. The -
integrability conditions e)—g) can be taken care of by th Remark; Note that (58) andA(59) are satisfied, f.of ex‘f"”?p'e’
convexity assumption and by assuming that the distribution ! fhere existsp > 0 such thati(u)u” tends to a finite limit
X has a light enough tail. Unfortunately, these quite naturdf “ — o Thus the above result holds for
conditions do not imply that is piecewise-invertible. In () = 1
what follows we show a specific class of original distortion ¢+ |ulP
measures and clean-noisy source pairs for which we cap

o ¢,p > 0. In general, (58) and (59) hold #: is of regular
check (_axact_ly all condltlons of Theorem 1. To keep th\%riation, i.e., for some finite positive functian(t), we have
discussion simple, we consider the scalar case 1.

m(tu)/m(u) — oft) asu — oo for all ¢ > 0. In this case,

Let the scalar WMSE distortion measure (10) be defined k[Were exists? > 0 such thata(t) — t—* (see [29]) and thus

n

min; £, U7 PX|U)

plu, ) = (u)(u — y)? (58) and (59) are easy to obtain.
Proof of Theorem 2Let ¢, (u) = (v2ro)~te"/(20%),
where7 is a positive function, Then the conditional density df given X = x is o(u — az),
One can easily show that in this case (see [27]) that  whereo = (1/02 +1/02)"tanda = (1+0% /02 ). Since
Aw.9) = dosnla) + mi@)(y - (@) () " PO
m(x) = /ﬁz(u)g@(u —ax)du
where
() = Eln(U) | X = a] e 1
m(x) = B|\m =z,
1 ) (57) r(x) = ) /uﬁz(u)w(u —ax)du
r(x) = ——E[Un(U) | X = 4],
m(z) are finite for allz. By the form (56) ofd(x, ), conditions a)
and and c) are satisfied. Clearlyr(x) corresponds taVf (z) of
Theorem 1. Sincen is uniformly bounded, an application
din(z) = E[n(U)(U —r(X))? | X = 1] of the dominated convergence theorem shows thatis

continuously differentiable, and thus d) holds. To see that
assuming all these quantities are well definedalfu) = 1, E|logm(X)] is finite, we note that (58) readily implies that
we get back the well-known decomposition result [28], [1&here existsy > 0 such thati(u) > ¢l for |u| > 0 large
for remote coding with mean-square original distortion enough. This implies

d(w,y) = dmin(r) + (y = 7’(37))2 m(x) = /m(v + az)pq (v) dv > ce~alz]

wherer(z) is the regression functio®[U | X = z], which ¢ some. . g if |z| is large enough. Sinc& is Gaussian,
leads to the “Wolf-Ziv encoder” discussed in the IntroductioqhiS implies

If U is Gaussian andx|;; is an additive Gaussian channel,
we obtain the following. E|logm(X)| < oo
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and An interesting question is to find a usah@wver bound
1 on the rate-distortion function for non-difference distortion
E(m(X)3/2> <00 measures. Note that we did not claim
_ . . 1
hence e) and g) are satisfied. It remains to prove thit L log 27meD/n) + h(r(X)) + §E[10gdet M(X)]

piecewise-invertible and continuously differentiable and that S
f) holds. In Appendix D we show that'(z) is continuous, t0 be a lower bound o&(D) for any D > 0. In this direction,

positive for all z, and it is not hard to prove (following the proof of Proposition 2)
] , that for the scalar case and WMSE distortion measure with
lellinoo r(e) =a. a “nice” weighting functionw(z), the difference between the

asymptotic expression am{ D) is upper-bounded b@(v/ D
Thusr is invertible. Since is continuous, it is bounded andasyD p_) 0. P D) Is upp VD)

bounded away from zero. ThereforE,|logr'(X)| is finite
and thush(r(X)) is finite. Since E[r(X)?] < oc trivially

- . APPENDIX A
follows, condition f) holds and the proof is complete. O
Proof of Lemma 1l:Let U = AN {z : |[det M(z)| > 0}.
IV. CONCLUDING REMARKS ThenU is open sincél(z) is continuous oM. Consider the

. . . : _power series expansion
We have studied the asymptotic (low-distortion) behavior

of the rate-distortion function for a class of non-difference ——— i

distortion measures. Our main result (Theorem 1) presents\/; =Vit-1)= Zai(z -

an asymptotically tight expression which can play the same =0 (A1)

very useful role in high-resolution source-coding theory for

non-difference distortion measures as does the Shannon loRerall that M (x) is positive definite for allx € /. Fix

bound for difference distortion measures. Some applicationsaf arbitraryzo, € U and letec > 0 be small enough such

this result are dealt with informally in Section I. These includthat the largest eigenvalue of{(xo) is less thanl, so that

the study of structure of the optimal forward channel realizing — cM(xz¢)) is positive-definite and|/ — cM(x)|| < 1 in an

the rate-distortion function at high resolution, the computatiarpen ballV C U centered atry. Then for allz € V

of the (high-resolution) rate-distortion function in the remote oo

source-coding problem, and high-resolution quantization th@cM(x))lﬂ = (I +(cM(z)— I))l/2 — Zai(cM(w) _ I)i

ory for non-difference distortion measures. Some aspects of i=0

these implications for remote source coding are explored (A.2)

rigorously in Section IIl. A full and rigorous treatment of . i

the application of the main result to high-resolution vectd¥here thea; are the same as in (A.1), since the power

quantization is given in [15]. series in (A.1) converges a_\bsolutel_y for_ aH - 1] < L
Further research can be done for relaxing the conditions M}preover, the convergence in (A.2) is uniform in any closed

the class of distortion measures considered here. Namely, aR&il £ C V' centered at,. We will prove that the elements of
ogous expressions are likely to hold for distortion measur¥ matrix-valued function defined by the above power series

for which r(z) = arg min, d(z,y) is not piecewise-invertible have continuous partial derivatives. Without loss of generality

— d Y 9 . . .
Furthermore, the case wherandy have different dimensions W& can assume that = 1. For any matrix-valued function
(as can be the case for remote source coding) needs also staty?) = {@i;(x)} with differentiable entries let
Another nontrivial problem is to consider distortion measures g g
for which the quadratic behavioi(z, y) & duw(z) + (y - 92, @) =\ g5, (@)
r(z))M(z)(y — r(x)) is not dominant for “almost allz, ‘ _ _ .
i.e., when M(X) is singular with positive probability. For The elements ofM () —I)" are differentiable by assumption
example, consider the relatively simple scalar case whet@d it is easy to see that
d(z,y) = 0 iff & = y and for some* > 0, the limit H 9

d(z,y)

lim ——~ =m(z
you |z —y|" (=)

z—1] < 1.

(M @)~ 1| <] 5

1M (@) = 1)

8a:k

It follows that 372 a; 52— (M (x) — I)" converges absolutely
is finite and positive for all. Then, assuming some technicaln V' and uniformly in any closed balk C V centered
conditions hold, using a modification of the proof of the maig,. Thus the same argument which proves the term-by-term

result it is not hard to show that differentiability of real power series applies and we obtain
1 1 o
R(D) = h(X)+ —F [log m(X)| — — log (reD .
( ) ( )+7’ [08 m( )] r 08(76 ) ﬂW(x):Zazﬂ(M(a:)—IY
= 9T

—log (2I°(1 4 1/7)) Ay,

wherel is the gamma function. This formula generalizes Gragt x = z¢, for all 1 < & < n. The continuity of%W(x) at
etal’s expression [11] for the SLB for thegh-power distortion zy is obvious since it is the limit of a uniformly convergent
measure. series of continuous functions. O
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APPENDIX B where M~1(z) = {m;(x)}. Thus

Proof thatlimsup , o h(r(X)+ W= X)Zp) < h(r(X)): 3
Recall that we have define !(z) = M ~1(z) = 0 on |8(D) = D| < CD*E (e {M~H(X)1)*?1E| Z|°

{z : det M(z) = 0}. Define ) ) .
i o ) .., Which proves the statement sindg[(tr {M~Y(X)})*?] is
A(D) = E||r(X) + W= (X)Zp[|” and A(0) = E[|~(X)[”.  finite by assumption.
Then, by the independence af and Zp Proof Thaté(D) Is Continuous: Fix Dy > 0. ThenY), =
D _ (X)) +VDW-YX)Z — Yp, almost surely adD — D,.
_ . 2 ind 1 0
A(D) = E|lr (X" + E[tr (03 Sinced(z,y) is continuous iny, d(X,Yp) — d(X,Yp,) a.s.
wheretr { A} denotes the trace of the mattik A(D) is finite The continuity ofEd(X, Yp) now follows from the dominated
for all D by conditions f) and g). Thug\(D) is continuous Convergence theorem since

at 0. Let ZA(D) ~ N(O,?’LilA(D)I) ThenEHZA(D)H 9 3/9 1 3/9 3
A(D). If U and V are n-dimensional random vectors let X, Yp) < DI|Z]] + CD¥ 2 (i {M~Y(X)})¥?)| 2|

D(UJ|V) denote their information divergence (relative en—I v wh h ht-hand side h .
tropy). By a well-known identity for normal distributions and® most surely, where the right-hand side has a finite expecta-
information divergence (see, e.g., [21]), for BlI> 0, we have tion. O

W(r(X) +WH(X)Zp) — h(Zap))

_ APPENDIX C
=-D(r(X)+W HX)Zp||Zap))- : .
Proof ThatYp — »(X) in Probability asD — 0: For any
Therefore, ¢ > 0 define
hr(X) + W™ (X) Zp) = h(r(X) B it e
_ (x) = 11 ,Y).
= D(r(X)| Zagy) — Dr(X) + W (X)Zp| Za(py) g slly=rimlize Y
+h(Zapy) — h(Zac0))- (B.1)

Since d(x,y) is continuous iny by condition a), it follows
Now r(X) + W 1(X)Zp — r(X) in distribution since from conditions b) and c) thaf.(x) > 0 for all z € R™ and
E|lW-YX)Zp|* — 0 asD — 0. Also, we have by ¢ > 0. Let x4 denote the indicator function of the event
the continuity of A(D) at zero thatZapy — Zaw) IN  Since

distribution. Thus the lower semicontinuity property of the

divergence [23] implies that E[d(X, YD)X{||1*(X)—YD||>5} | X = x]
lilljni%fD(T(X) + W X)Zp||Zapy) = D(r(X)|| Zaq))- > ge(x)P(| X = Yp|| > e| X =2)
Since h(Za(py) — M Za(o)), we obtain denotingP(|| X — Yp|| > €| X = ) = hp (z), we have
limsup A(r(X) + W X)Zp) < h(r(X))
b0 D> / 6e (£ ()t () (c.1)
which was to be proved. O
Proof Thaté(D)=D+o(D): Since we assume Where . denotes the probability measure induced.by For
d(z,r(z)) = 0, by (25) all 8 >0
[d(, ) = [W(@)(r(@) = )| < Clr(x) =yl [0 antaz)
Let Z ~ N(0,n~1I) be independent of. Then
— [ hpdou)+ [ b (o)
6(D) = D| = |Bd(X, Yp) — E[W(X)(r(X) - Yp) |} iy {ar()>9)
< CE|r(X) - YpIP < llaca) < 8D + 5 [ adobo (o)
= CB|W4(X)Zp|?
= CD*E|W—Y(X)Z|? and, therefore, by (C.1)
< CD*PE|WH(X)IP1Z)1*] .
_ CD3/2E||W_1(X)||3E||Z||3. 1lgligp/hD c(@)p(dr) < p({ge(w) < 6}).

Let «@;;(z) denote the elements 6 ~!(z). By the well- Sinceg.(x)> 0 for all z, we havelims_o pu({gc(x)<8})=0
known bound on the matrix norm and thus

1/2 1/2 lim P(||X —Yp| >e€) = lim [ hp(2)n(dz) =
W)l < (Z@“(x)2> = <Zﬁl”($)> P=0 D—>0/

for all ¢ > 0. O



546 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 2, MARCH 1999

Proof Thaty(z,y) Is Invertible inz on S, v(y): We have T < é/4. It follows that forZ” > 0 small enough (C.2) is
satisfied onS,, r. By definition, the set
o(z,) = W(g(2))(z — )

forall z € G = r(U) andy € R™, whereU is defined in Smaa(y) =14z (:9) € Smx}
(38) andg = ! is continuously differentiable and invertibleis the open ball{~ : Unys/40
on the open set? and has nonsingular derivative thereand ¢(z,v) is an |nvert|ble and contmuously differentiable
By Lemma 1, W (z) is nonsingular and it is continuouslyfunction of z in S, (y). Since Spr C Sy, it follows
differentiable onl/. We obtain that that for each fixedy, the functiony(z,y) is invertible and
der O continuously differentiable as a function sfon the open set
(z.y) = o-w(zy) = R(z,y) + W(g(2))

Oz rnT( )—{7 (“7y)€ST7%T}
where R(z,y) = {ru(z,y)} and

for any y such thatS,,, r(y) is nonempty. O

rie(z,y) Z < ww ))(Zj — ) APPENDIX D
= Properties ofr () in Theorem 2:We have

Note that®(y,y) = W (g(y)) is nonsingular ify € G. Let
¢ : G — R™ be a continuously differentiable mapping with r(x) =
derivative ¢’(z), and assume thal = ¢'(z) is nonsingular
for a givenz, € G. Then by the proof of the inverse functionSinces is bounded, we can exchange the order of integration

Jum(u)p, (u — az) du

S m(uw)ps(u — az)du

theorem (see [30)), if and differentiation with respect to by standard arguments.
) 1 After some calculus we obtain that the derivativer¢f/a)
ll¢' () — Al < AT is given by
on an open ball centered &, then¢(z) is invertible on this (r(z/a)) = f2u w)pq (u = @) du
ball. Fixy € G. It follows thaty(z,y) is an invertible function o? [ ri(u)po(u — z) du
of z on an open ball centered atand contained ir, if on fum Wpo(u—z)du \’
this ball o2 [n(u)p,(u— x) du
|12(z,y) — ©(y,v)|| + Clearly, »(x) is continuous. By the change of variable=
2|2y, )l w—
or , Jwtu)?iv+u)e,(v)dv
1 (rlafa) = =g :
122, 4) — (v, y)l| < m (C.2) o2 [ (v + u)pa(v) dv
9y J (v +w)ym(v+u)ps(v)dv ?
Recall thatV,,, C U is an open set such that its closure is N 02 [ (v +w)p, (v) dv
compact and/,,, C U. LetU,, = r(V,,) = {z: g(») € Vin}. Var (V,,)
ThenU,, c G is compact. For ang, E' ¢ R” andz € R" let =—>5 >0 (D.1)

p(E,z) = 'CE where Var (V,.) denotes the variance of the random variable

V. whose density is

p(E,E") = ,.lenlf“’p( z). Fulv) = ; Th(v——: 37)900(( ))d )
m(u+ 2)ps(u) du

SinceG* is closed, it follows thap(U,,, G°) = & > 0. Let  sincelim, o m(u 4 x)/m(z) = 1 for all u by (58), we
Urn e = {7 p( 1 ) < 6} have that

and

L L . m(u—+ z) B
ThenU,, . is open and/,, . C G if ¢ < 6. Moreover,U,, . wlggo/ 77;1(35) Po(u)du =1

is compact for alle. For 7’ < §/4 define )
if we can prove that

Srn,,T = {(zay) Yy € Urn,é/4a ||y - Z” < T} . m(u+x) B . m(u+x)
lim | ———¢,(u)du= lim ————= |, (u) du.
Since||W ~*(g(z))|| is continuous on the compact 9éf, 5,4, “ m(z) w00 ()
we have (D.2)
sup ||[W(g(y)|| < oc. (C.3) Letz > 0andM = (0) = max,n(u). If —co <u <
Y€l 5/ —x/2, then
On the other hand®(z,y) is (uniformly) continuous on the m(A“ + ) AM < - M (D.3)
compact closure of,,  which is contained irG' x @, since m(x) T on(z) T m(2u)
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since/(u) is monotone decreasing df, o). On the other
hand, if —z/2 < u < oo, then for allz large enough we have
by (59) that

(6]

(7]
m(u+ z)

n(z/2)
) =

<c (D.4)

(8]

for some finitec. As we have observed before, (58) implies
that there existsy > 0 such thati(u) > e~ if |u| > 0

is large enough. Thugy(2u)~* < ¢*?l“l and we obtain from
(D.3) and (D.4) that there exisig«) such that for allz > 0 (0]
large enough and for alk

El

[11]
m(u + x
L) o)
() [12]
and
[13]
/g(u)(pa(u) du < . [14]

Thus (D.2) holds by the dominated convergence theorem. It
can be shown the same way that (15

lim /uw ¢o(u)du = lim /ugaa (w)du=0 (16]
and (17]
mlgrolo/ﬁ%wa(u) du = mlgrolo/uQ(pa(u) du=0o". [18]

Since the above holds it — —oc also by symmetry, we [19]
conclude from (D.1) that

[20]
Var (V,,
lim +(x) = lim a rLrQ( ):a.
|z]|— 00 |z|— o0 g [21]
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