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On Source Coding with Side-Information-Dependent
Distortion Measures
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Abstract—High-resolution bounds in lossy coding of a real memory-
less source are considered when side information is present. Let be a
“smooth” source and let be the side information. First we treat the case
when both the encoder and the decoder have access to and we estab-
lish an asymptotically tight (high-resolution) formula for the conditional
rate-distortion function ( ) for a class of locally quadratic distor-
tion measures which may befunctions of the side information. We then con-
sider the case when only the decoder has access to the side information
(i.e., the “Wyner–Ziv problem”). For side-information-dependent distor-
tion measures, we give an explicit formula which tightly approximates the
Wyner–Ziv rate-distortion function ( ) for small under some
assumptions on the joint distribution of and . These results demon-
strate that for side-information-dependent distortion measures the rate loss

( ) ( ) can be bounded away from zero in the limit of
small . This contrasts the case of distortion measures which do not de-
pend on the side information where the rate loss vanishes as 0.

Index Terms—Conditional rate distortion, general distortion measures,
high-resolution theory, Shannon lower bound, side information, source
coding, Wyner–Ziv problem.

I. INTRODUCTION

Consider the source coding scenario depicted in Fig. 1 (see Berger
[1], Wyner and Ziv [2]). The sequencef(Xk; Yk)g consists of indepen-
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Fig. 1. Source coding with side information.

dent and identically distributed copies of a pair of real random variables
(X;Y ), whereX is called thesourceandY is called theside infor-
mation. Encoding and decoding is done in blocks of lengthn, and the
distortionD between the source block(X1; . . . ; Xn) and its reproduc-
tion (X̂1; . . . ; X̂n) is given by

EEE
1

n

n

k=1

d(Xk; X̂k)

whered(x; x̂) is a nonnegative single-letter distortion measure.
When switchesA andB are closed, both the encoder and the decoder

have access to the side information. In this case, letRX jY (D) denote
the minimum rateR such that for any� > 0 and alln large enough
there exists an encoder–decoder pair operating at distortionD and rate
not exceedingR + �.

Under mild regularity conditions,RX jY (D), called theconditional
rate-distortion function, is given by

RX jY (D) = inf
X̂

I(X; X̂ jY ) (1)

where the infimum of the conditional mutual informationI(X; X̂ jY )
is taken over conditional distributions of̂X given (Y;X) such that
EEE[d(X; X̂)] � D (see Berger [1], Gray [3], and Wyner [4]).

If switch A is open and switchB is closed, only the decoder knows
the side information. In this case, let the minimum rate achievable at
distortionD be denoted byRWZ(D). The quantityRWZ(D) was de-
termined by Wyner and Ziv [2] for finite alphabets and by Wyner [4]
for the general case. Assuming thatd satisfies certain mild regularity
conditions [4], we have

R
WZ(D) = inf

Z

I(X;Z j Y ) (2)

whereZ is a random object taking values in an arbitrary measurable
space, and where the infimum is taken over all conditional distribu-
tions ofZ given (X; Y ) such thatY $ X $ Z forms a Markov
chain (i.e.,Y andZ are conditionally independent givenX) and there
exists a measurable functionf(Y; Z) with EEE[d(X; f(Y;Z))] � D.
The Wyner–Ziv rate-distortion functionRWZ(D) finds applications in
coding for communication networks [5] and in systematic data trans-
mission [6].

Although (1) and (2) provide a single-letter characterization1 of the
achievable rates at distortion levelD, more explicit expressions are
desirable. In this correspondence we develop explicit formulas which
approximateRX jY (D) andRWZ(D) with increasing accuracy as
D ! 0. Moreover, we consider the more general situation in which

1Strictly speaking, (2) is not a single-letter characterization since the alphabet
of the auxiliary random objectZ is not fixed. However, ifX andY are real-
valued, one can prove thatZ can be restricted to be a real random variable
without changing the defining infimum.
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the average distortion depends on the side information and is given
for n-blocks by

EEE
1

n

n

k=1

d(Xk; Yk; X̂k)

for a single-letter distortion measured(x; y; x̂). Intuitively, the distor-
tion between the sourceX and its reproduction̂X depends also on the
current value of a “context” random variableY .

The need for such a context-dependent distortion measure may arise,
for example, in video coding where (due to perceptual effects) the vis-
ibility threshold at a given pixel location depends on the luminance
intensity of a pixel at the same location in a previous frame [7]. In this
case, the previous frame can be considered the side information for the
coding of the present frame (switchesA andB are closed). To moti-
vate the use of a side-information-dependent distortion measure in the
Wyner–Ziv problem, suppose in the presence of acoustical background
noise one plays back compressed speech or music. The background
noise cannot be eliminated since it depends on the precise location of
the listener, but if a microphone system feeds to the decoder a signal
Y correlated with the background noise, the perceptual effects (e.g.,
masking effects in frequency and time) may be modeled by a distortion
measure which depends onY . In this case, one can improve the quality
of decoding by making the reconstruction a function of the background
noise. Generally, for an encoder–decoder pair usingn-blocks, given the
received code indexi = fn(X

n) and the side informationY n = yn,
the optimum reconstruction function of the Wyner–Ziv decoder is

x̂
n

opt(i; y
n) = argmin

x̂

EEE[dn(X
n
; y
n
; x̂
n) j i; Y n = y

n]

wheredn is the single-letter distortion measure generated byd. There-
fore, even if the side informationY n is statistically independent of the
sourceXn (as is the case in the above example) the optimum recon-
struction may depend onyn.

In this correspondence, we will assume thatd(x; y; x̂) is a suffi-
ciently smooth function such thatd(x; y; x̂) = 0 if and only if x = x̂,
and if jx� x̂j is small then the behavior ofd(x; y; x̂) is determined by
the second-order term in its Taylor expansion with respect tox̂ around
(x; y; x). That is,

d(x; y; x̂) = m(x; y)(x� x̂)2 + o(jx� x̂j2) (3)

asjx � x̂j ! 0, where

m(x; y) =
1

2

@2d(x; y; x̂)

@x̂2
x̂=x

:

This definition generalizes the notion of locally quadratic input
weighted distortion measures [8] to side-information-dependent
distortion measures. Notice, however, that the dependence on the
side information is only through the coefficient of the quadratic term;
the optimum reconstruction givenx andy is still x, independent of
the side informationy. Locally quadratic input weighted distortion
measures are of particular interest because some important perceptual
distortion measures for speech and image coding fall into this category
[9], [10].

Let RX jY (D) andRWZ(D) denote the obvious extensions of (1)
and (2) to a side-information-dependent distortion measure satisfying
(3). As we discuss later, the operational meaning of these quantities
does not change with the more general definition of the distortion mea-
sure. Theorem 1 in the next section states that for such distortion mea-
sures and for “smooth” sources

RX jY (D)=h(X jY )�
1

2
log(2�eD)+

1

2
EEE[logm(X;Y )]+o(1)

(4)

whereo(1) ! 0 asD ! 0, and whereh(X jY ) denotes the con-
ditional differential entropy of the source given the side information.
This result generalizes a recently derived asymptotic formula [8] for the

rate-distortion function of a smooth source relative to locally quadratic
nondifference distortion measures, to conditional rate-distortion func-
tions and to distortion measures which depend on the side information.

In contrast, determining the asymptotics ofRWZ(D) for distortion
measures of the form (3) appears to be a more difficult problem and we
do not have the complete solution in this case. Assuming that the joint
distribution ofX andY satisfies certain conditions (for example,Y

is generated by passingX through an additive Gaussian noise channel
and then passing the result through an arbitrary memoryless channel),
we prove in Theorem 2 that asD ! 0

R
WZ(D) = h(X jY )�

1

2
log(2�eD) +

1

2
EEE[log �m(X)] + o(1)

(5)

where �m(X) = EEE[m(X;Y ) jX]. In particular, this formula holds
whenX andY are independent. For the general case when the only
condition is thatI(X; Y ) < 1, we prove in Theorem 2 that the
right-hand side of (5) is an asymptotic upper bound, i.e.,

R
WZ(D) � h(X jY )�

1

2
log(2�eD) +

1

2
EEE[log �m(X)] + o(1)

(6)

asD ! 0. We conjecture that the bound in (6) is also asymptotically
tight in this general case (i.e., the reverse inequality also holds) but this
is presently unproven.

Expressions (1) and (2) show thatRWZ(D) � RX jY (D) for all
D, as expected, since knowledge of the side information can only im-
prove the encoder. Thus there is a nonnegative “rate loss”RWZ(D)�
RX jY (D) when the side information is known only to the decoder.
This rate loss was investigated in [11] and it was established there that
for difference distortion measures (i.e., whend(x; x̂) = �(x� x̂)) the
loss becomes asymptotically negligible asD ! 0. Our conclusion for
side-information-dependent distortion measures is different. At least
under the conditions of Theorem 2 on the joint distribution ofX and
Y , we have by (4), (5), and Jensen’s inequality, that

lim
D!0

(RWZ(D)�RX jY (D))

=
1

2
EEE(logEEE[m(X;Y ) jX])�

1

2
EEE[logm(X;Y )] � 0 (7)

where the inequality is strict unlessm(X;Y ) is a function ofX alone
with probability one.

Of course, this rate loss would not be surprising if the value ofx̂

minimizingd(x; y; x̂) for givenx andy depended ony, the side infor-
mation that is not available at the encoder. Note, however, that the min-
imizing x̂ in (3) is equal tox for all y and still the rate loss is positive.
As we will show in Section IV through a companding interpretation of
the encoding–decoding process, the deeper reason for this rate loss is
that the optimum density of the code points of the informed encoder
depends onY , while the uninformed encoder must use a fixed code
point density for all values ofY .

We can support the above conclusion by demonstrating that the zero
asymptotic rate loss pointed out in [11] is due tod(x; x̂) not depending
on y rather than to it being a difference distortion measure. Indeed,
notice that a locally quadratic nondifference distortion measured(x; x̂)
is a special case of a side-information-dependent distortion measure. In
this case,m(X;Y ) = m(X), where

m(x) =
1

2

@2d(x; x̂)

@x̂2
x̂=x

implying that the right-hand sides of (4) and (6) asymptotically coin-
cide. Thus as a corollary of Theorems 1 and 2, we obtain the new result

lim
D!0

R
WZ(D)�RX jY (D) = 0

which states that for locally quadratic side-information-independent
distortion measures the asymptotic rate loss is zero in the Wyner–Ziv
problem.
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II. THE CONDITIONAL RATE-DISTORTION FUNCTION AT HIGH

RESOLUTION

Let (X; Y ) be a pair of real random variables such thatI(X;Y ) <
1 andX has a density and finite differential entropyh(X). It follows
that the conditional differential entropyh(X jY ) is well-defined and
finite. Suppose thatEEE[X2] < 1 and assume the distortion measure
d(x; y; x̂) satisfies the following conditions.

a) d(x; y; x̂) is three times differentiable with respect tôx and
@3d(x; y; x̂)=@x̂3 is uniformly bounded.

b) d(x; y; x̂) � 0; andd(x; y; x̂) = 0 if and only if x = x̂.

c) lim inf
jx̂j!1

d(x; y; x̂) > 0 for all x; y 2 .

d) If m(x; y) is defined by

m(x; y) =
1

2

@2d(x; y; x̂)

@x̂2 x̂=x

thenm(x; y) is continuous on an open subset of2 whose com-
plement has zero Lebesgue measure. Furthermore,

EEEj logm(X;Y )j <1 and EEE[m(X;Y )�3=2] <1: (8)

Note that conditions a) and b) imply that the second-order Taylor ex-
pansion ofd(x; y; x̂) in x̂ aroundx̂ = x has the form

d(x; y; x̂) = m(x; y)(x� x̂)2 + s(x; y; x̂) (9)

where

js(x; y; x̂)j � Cjx� x̂j3; for all x; y 2 (10)

for someC � 0. In particular, it follows from (9) and (10) that
m(x; y) � 0 for all x andy.

Note also that the continuity assumption onm(x; y) in d) does not
rule out discrete side information. In fact, forY having a discrete dis-
tribution with a finite number of outcomesy1; . . . ; ym; only the conti-
nuity ofm(x; yi) in x is required for eachi, since in this case one can
formally redefinem(x; y) to be continuous in both variables.

The conditional rate-distortion functionRX jY (D) is defined for
D > 0 by

RX jY (D) = inf
X̂
I(X; X̂ j Y ) (11)

where the infimum of the conditional mutual informationI(X; X̂ jY )
is taken over all conditional distributions of̂X given(Y;X) such that
EEE[d(X;Y; X̂)] � D.

Theorem 1: Let d be a distortion function satisfying conditions
a)–d) and letX be a real source with a density and finite differential
entropy h(X) such thatEEE[X2] and I(X;Y ) are finite. Then as
D ! 0, the asymptotic behavior ofRX jY (D) is given by

RX jY (D) = h(X jY )�
1

2
log(2�eD)+

1

2
EEE[logm(X;Y )]+o(1):

Remark: To attach operational meaning toRX jY (D), defined in
(11), one needs to extend the proof of the coding theorem from the case
whend depends only onX andX̂ to the case when it also depends on
Y . This extension is relatively straightforward under some regularity
conditions on the distortion measure. For example, if in addition to
conditions a)–d), it is also assumed thatd(x; y; x̂) is bounded, one can
check that the corresponding steps in the proof given in [4, Appendix
A] carry over to our case. But regardless of the operational meaning of
RX jY (D), Theorem 1 always holds ifd(x; y; x̂) satisfies conditions
a)–d).

The proof of the theorem is based on a technique developed in [8].
To prove that

lim sup
D!0

RX jY (D) +
1

2
log(2�eD)

� h(X jY ) +
1

2
EEE[logm(X;Y )] (12)

we letX̂ be the output of the “forward test channel” given by

X̂ = X +
ND

m(X;Y )

whereND is a zero-mean Gaussian random variable with varianceD
which is independent of(X;Y ). Then (8)–(10) readily imply that

lim
D!0

EEE[d(X;Y; X̂)]

D
= lim

D!0

EEE[d(X;Y; X̂)]

EEE[m(X;Y )(X � X̂)2]
= 1:

On the other hand,

I(X; X̂ j Y ) = h X +
ND

m(X;Y )
Y

�h X +
ND

m(X;Y )
X;Y :

By the independence ofND and(X;Y )

h X+
ND

m(X;Y )
X;Y =

1

2
log(2�eD)�

1

2
EEE[logm(X;Y )]:

Lemma 1 in Appendix A proves that

lim sup
D!0

h X +
ND

m(X;Y )
Y � h(X jY )

and (12) follows.
The proof of the converse part, that

lim inf
D!0

RX jY (D) +
1

2
log(2�eD)

� h(X jY ) +
1

2
EEE[logm(X;Y )] (13)

is more involved and is deferred to Appendix B.

III. T HE WYNER–ZIV RATE-DISTORTION FUNCTION

AT HIGH RESOLUTION

ForD > 0 define

RWZ(D) = inf
Z
I(X;Z j Y ) (14)

whereZ is a real random variable, and where the infimum is taken over
all conditional distributions ofZ given(X;Y ) such thatY $ X $ Z
forms a Markov chain and for which there exists a measurable function
f(Y;Z) with EEE[d(X;Y; f(Y; Z))] � D. This definition is more gen-
eral than the one originally given in [2] in that the distortion measure is
allowed to depend onY . A coding theorem for discrete alphabets and
such distortion measures is proved in [12, Corollary 4.6, Ch. 3]. For
general alphabets it can be verified that, with the necessary modifica-
tions, the proof of the coding theorem forRWZ(D) in [4] also works
for side-information-dependent distortion measures (e.g., the convexity
ofRWZ(D) inD and the converse coding theorem are straightforward
extensions2 of [4, App. B] and [4, Sec. 4], respectively).

We make the same assumptions on(X;Y ) andd(x; y; x̂) as in the
previous section. The following theorem provides an asymptotically

2These extensions can be done by copying line-by-line the proofs of [4] and
exchangingd(x; x̂) with d(x; y; x̂) where needed. The technical conditions on
the distortion measure required by Wyner are clearly satisfied, for example, if
d(x; y; x̂) is continuous and bounded.
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tight expression forRWZ(D) under certain conditions on the joint dis-
tribution of the source–side information pair(X; Y ).

Theorem 2: Let d be a distortion function satisfying conditions
a)–d) and letX be a real-valued memoryless source with a density
such thatEEE[X2] < 1. Assume thatI(X; Y ) < 1 andX has finite
differential entropyh(X). Then asD ! 0, we have

RWZ(D) � h(X jY )�
1

2
log(2�eD) +

1

2
EEE[log �m(X)] + o(1)

(15)

where �m(X) = EEE[m(X;Y ) jX]. Furthermore, if there exists a se-
quence of real random variablesfVng1n=1 such that

i) X $ Vn $ Y forms a Markov chain for alln,

ii) Vn ! X in probability asn ! 1,

iii) I(X;Vn) < 1 for all n,

then, asD ! 0, we have

RWZ(D) = h(X jY )�
1

2
log(2�eD)+

1

2
EEE[log �m(X)] + o(1):

(16)

The existence of a sequencefVng satisfying the assumptions of The-
orem 2 can be shown under certain, not very restrictive, conditions. In
the simplest case whenX andY are statistically independent,Vn can
always be chosen asQn(X), whereQn is an (infinite-level) uniform
quantizer of step size1=n. For dependentX andY , the sequencefVng
exists for example in the following two cases:

1) Y is generated by passingX through an additive Gaussian noise
channel and then passing the result through an arbitrary memo-
ryless channel;

2) X is generated by passingY through an arbitrary memoryless
channel and then passing the result through an additive Gaussian
noise channel.

To see how the sequencefVng is constructed in these examples, let
N be a zero-mean Gaussian random variable with variance�2 > 0,
and forn � 1 let Nn andN 0n be independent zero-mean Gaussian
random variables with variance�2=n and(1� 1=n)�2, respectively,
such thatNn + N 0n = N . Then in case 1) the assumption is thatX
andN are independent andY is the output of an arbitrary memoryless
channel whose input isX + N . In this case, we can let(Nn; N 0n) be
independent ofX and setVn = X + Nn. In case 2) the assumption
is thatY andN are independent andX = Y 0 + N , whereY 0 is the
output of a memoryless channel whose input isY . In this case, we can
choose(Nn; N 0n) to be independent ofY and we setVn = Y 0 +N 0n.
Conditions i)–iii) are obviously satisfied in both cases.

Note that the variance�2 > 0 of the Gaussian noise in both cases
can be arbitrarily small, and therefore this noise can be interpreted as
a small Gaussian perturbation of the (otherwise arbitrary) joint dis-
tribution of (X;Y ). Note also that the assumption that the additive
channel is Gaussian is not essential. The examples also work under the
more general assumption that the distribution ofN is infinitely divis-
ible [13], that is, for alln � 1 there existn independent and identically
distributed random variablesN (n)

1 ; . . . ; N
(n)
n such thatN (n)

1 + � � � +

N
(n)
n = N .

Proof of Theorem 2:To prove (15), letZ be the output of the test
channel given by

Z = X +
ND

�m(X)

whereND is a Gaussian random variable with zero mean and variance
D which is independent of(X;Y ). With this choice,Z andY are
conditionally independent givenX. Lettingf(y; z) = z, we have for
smallD

EEE[d(X;Y; Z)]�EEE[m(X;Y )(X�Z)2]=D �EEE
m(X;Y )

�m(X)
=D

and, therefore,RWZ(D) � I(X;Z jY ) + o(1) asD ! 0. The rest
of the proof of (15) follows the corresponding steps in the proof of
Theorem 1 withm(X;Y ) replaced by�m(X).

Assume now that there existsfVng satisfying conditions i)–iii)
of the theorem. Then (15) holds and we only have to prove the
reverse inequality to show (16). Assume, for simplicity, that
d(x; y; x̂) = m(x; y)(x � x̂)2. The extension of the derivation
to the general case is straightforward using the proof technique of
[8, Proposition 2]. We will also make the assumption thatm(x; y)
is uniformly continuous and bounded away from zero on2. This
assumption onm(x; y) can be relaxed (so thatm(x; y) need only
satisfy condition d)) by using the proof technique of the converse part
of Theorem 1 in Appendix B.

Since the structures of the two proofs are similar, in the following
derivation we will be able to use (without additional justification) some
of the bounds developed in proving the converse part of Theorem 1.

Let ZD andf be such thatY $ X $ ZD forms a Markov chain,
I(X;ZD j Y ) < 1 and

EEE[m(X;Y )(X � f(Y;ZD))2] � D: (17)

The basic idea of the upcoming derivation is that ifn is large enough,
thenVn, andX are very close with large probability and, therefore,
the distortionm(X;Y )(X � f(Y;ZD))2 is well approximated by the
distortionm(Vn; Y )(X � f(Y;ZD))2 and thus the latter can be used
in place of the former. On the other hand,m(Vn; Y )(X� f(Y; ZD))2

becomes quadratic inX when conditioned on the event(Vn = v; Y =
y). This and the Markov chain conditionX $ Vn $ Y allow us
to apply the Shannon lower bound [1] “locally.” The desired lower
bound will follow through Jensen’s inequality after averaging these
local bounds.

To make this more precise, for allk; n � 1 define the binary random
variablesB(k)

n by

B(k)
n =

0; if jX � Vnj � 1=k

1; otherwise.

Then by condition ii),PPP (B
(k)
n = 0)! 1 asn ! 1 for all k. Notice

that the assumptions onm(x; y) imply that if jx � x0j � 1=k, then

m(x; y)

m(x0; y)
� 1 � �k (18)

for some�1; �2; . . . ; in such a way thatlimk!1 �k = 0. It follows that

EEE m(X;Y )(X � f(Y;ZD))2 jVn = v; B(k)
n = 0

� (1� �k)EEE m(Vn; Y )(X � f(Y;ZD))2 jVn = v; B(k)
n = 0 :

(19)

Now we have

EEE (X � f(Y; ZD))2 jY = y; Vn = v; B(k)
n = 0

� EEE (X �EEE[X jZD; Y; Vn])
2 j Y = y; Vn = v; B(k)

n = 0

�
= VarVarVar X jZD; Y = y; Vn = v; B(k)

n = 0 : (20)
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The key step in the proof is the observation that the Markov chain con-
ditions Y $ X $ ZD andX $ Vn $ Y imply that the joint
distributions of(Y;X;ZD) and(X;Vn; Y ) can be coupled such that
the Markov chain conditionY $ Vn $ X $ ZD is satisfied. Thus
we have

VarVarVar X jZD; Y = y; Vn = v; B(k)
n = 0

= VarVarVar X jZD; Vn = v; B(k)
n = 0

(the conditioning onY can be dropped) and therefore by (20) we obtain

EEE m(Vn; Y )(X � f(Y;ZD))2 jY = y; Vn = v; B(k)
n = 0

= m(v; y)EEE (X � f(Y;ZD))2 jY = y; Vn = v; B(k)
n = 0

� m(v; y)VarVarVar X jZD; Vn = v; B(k)
n = 0 :

Combining this with (19) we get

D(v)
�
= EEE m(X;Y )(X � f(Y; ZD))2 j Vn = v; B(k)

n = 0

� (1� �k)EEE m(Vn; Y ) jVn = v; B(k)
n = 0

�VarVarVar X jZD ; Vn = v; B(k)
n = 0 : (21)

We will now use (21) to lower-bound the conditional mutual infor-
mationI(X;ZD jY ). SinceI(X;Vn) is finite, the chain rule implies
(see (B.1))

I(X;ZD jY ) = h(X j Y )� h(X jY; ZD; Vn)� I(X;Vn jY; ZD):

(22)

Sincef(Y; ZD)! X in probability asD ! 0, Lemma 2 in Appendix
C shows that

lim
D!0

I(X;Vn jY; ZD) = 0: (23)

Now an argument analogous with (B.4) implies

h(X jY; ZD ; Vn) � h X jY; ZD; Vn; B
(k)
n = 0 PPP B(k)

n = 0

+ h X jY; ZD ; Vn; B
(k)
n = 1

� PPP B(k)
n = 1 +H B(k)

n (24)

whereH(B
(k)
n ) is the Shannon entropy of theB(k)

n . Using inequality
(B.5) and the fact thatlimn PPP (B

(k)
n = 1) = 0 for all k � 1, we obtain

lim sup
D!0

h X jY; ZD ; Vn; B
(k)
n = 1 PPP B(k)

n = 1 H + B(k)
n

= �n;k (25)

where limn!1 �n;k = 0 for all k. On the other hand, since con-
ditioning reduces entropy, using Jensen’s inequality and the fact that
h(U) � 1

2
log(2�eVarVarVar(U)) for any real random variableU with a

density, we obtain

h X jY; ZD; Vn = v; B(k)
n = 0

�
1

2
log 2�eVar X jZD; Vn = v; B(k)

n = 0

�
1

2
log(2�eD(v))

�
1

2
logEEE m(Vn; Y ) jVn = v; B(k)

n = 0 �
1

2
log(1� �k)

where the second inequality follows by (21). SinceEEE[D(Vn)] �

D=PPP (B
(k)
n = 0), another application of Jensen’s inequality gives

h X jZD ; Vn; B
(k)
n = 0

�
1

2
log(2�eD)�

1

2
EEE logEEE m(Vn; Y ) jVn; B

(k)
n = 0

�
1

2
logPPP B(k)

n = 0 �
1

2
log(1� �k): (26)

Thus (24) and (25) yield

lim sup
D!0

h(X j Y; ZD; Vn)�
1

2
log(2�eD)

�
1

2
EEE logEEE m(X;Y ) jVn; B

(k)
n = 0 + �̂n;k + bk (27)

wherelimn �̂n;k = 0 for all k andlimk bk = 0. The assumption that
m(x; y) is uniformly continuous and bounded away from zero and the
facts thatVn ! X in probability andlimn PPP (B

(k)
n = 0) = 1 imply

lim
n!1

EEE logEEE m(Vn; Y ) jVn; B
(k)
n = 0 = EEE[log �m(X)]

where �m(X) = EEE[m(X;Y ) jX]. Thus letting firstn ! 1 in (27)
and thenk ! 1, we get

lim sup
n!1

lim sup
D!0

h(X jY; ZD; Vn)�
1

2
log(2�eD)

�
1

2
EEE[log �m(X)]:

Combining this with (22) and (23) proves the theorem.

IV. CONCLUSION

It should be noted that the asymptotic formulas of Theorems 1 and 2
suggest a companding realization of source coding with side informa-
tion. Consider first the conditional rate-distortion problem. Let

c(t; y) =
t

0

m(x; y)1=2 dx

where the integral is defined using the conventionb
a

= �
a

b
if

a > b. Assumingm(x; y) > 0 for all x andy, c(�; y) has an inverse
c�1(�; y) for fixed y. Using c(�; y) and c�1(�; y) as a side-informa-
tion-dependent compressor–expander pair, we can construct a coding
scheme where first eachXi is passed through the companderc(�; Yi),
then the output is quantized with a lattice vector quantizer, and then
the quantizer output is entropy-coded conditioned onfYig. Since
the decoder knowsfYig, it can decode the entropy code and then
apply the expanderc�1(�; Yi). For large enough lattice quantizer
dimensions and small distortion, the rate of this scheme will approach
the conditional rate-distortion function.

Similarly, for the Wyner–Ziv problem we can define the compander
by

c(t) =
t

0

�m(x)1=2 dx

where �m(x) = EEE[m(X;Y ) jX = x]. Let c(�) and its inversec�1(�)
be the compressor–expander pair, which we combine with lattice quan-
tization and Slepian–Wolf coding (instead of entropy coding condi-
tioned onY ). The performance of this scheme will be arbitrarily close
to the upper bound of Theorem 2. Under the conditions for asymptotic
tightness in Theorem 2, the coding rate will asymptotically achieve
RWZ(D) for small distortions. A rigorous proof of both of these claims
can be given using the techniques developed in [14].
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APPENDIX A

Lemma 1: Let ND denote a zero-mean Gaussian random variable
with varianceD which is independent of(X; Y ). If EEE[X2],h(X), and
EEE[m(X;Y )�1] are finite, then

lim sup
D!0

h X +
ND

m(X;Y )
Y � h(X j Y ): (A.1)

Proof: By [8, Appendix B], if n : ! [0;1) is such that
EEE[n(X)�1] < 1, then

lim sup
D!0

h(X + (ND=n(X)))� h(X):

Sinceh(X jY = y) is finite a.e.[PY ], this implies that

lim sup
D!0

h X+
ND

m(X;Y )
Y =y �h(X jY =y) a.e.[PY ]:

Assume now that there existsD0 > 0 and a measurableg such that
EEE[g(Y )] < 1 and for all positiveD � D0

h X +
ND

m(X;Y )
Y = y � g(y) a.e.[PY ]:

Then Fatou’s lemma [15] proves (A.1) since

lim sup
D!0

h X +
ND

m(X;Y )
Y

= lim sup
D!0

h X +
ND

m(X;Y )
Y = y PY (dy)

� lim sup
D!0

h X +
ND

m(X;Y )
Y = y PY (dy)

= h(X jY ):

To demonstrate the existence of an appropriateg, let X̂D = X +
m(X;Y )�1=2ND and notice that

h(X̂D jY = y) �
1

2
log 2�eEEE X̂2

D Y = y a.e.[PY ]:

By the independence of(X;Y ) andND

EEE X̂2

D Y = y

= EEE[X2 jY = y] +DEEE[m(X;Y )�1 j Y = y] <1 a.e.[PY ]:

Define

gD(y) =
1

2
log(2�eEEE[X̂2

D jY = y]):

Thenh(X̂D jY = y) � gD (y) a.e.[PY ] for D � D0. On the other
hand,

EEE [gD (Y )] �
1

2
log 2�eEEE X̂2

D <1

by Jensen’s inequality.

APPENDIX B

Proof of the Converse Part of Theorem 1:Let fX̂D : D > 0g
be an arbitrary collection of random variables each jointly distributed
with (X;Y ) such that

EEE[d(X;Y; X̂D)] � D and I(X; X̂D jY ) <1:

Our proof technique will be similar to that of [8, Proposition 2]. The
new element in the proof is the introduction of the auxiliary random
variableVa = Qa(X), whereQa is an infinite level uniform quan-
tizer of step sizea > 0. This will substantially ease the technical
complications introduced by the conditioning onY . In fact, using the
upcoming derivation, one could give a simpler proof of [8, Proposi-
tion 2]. The basic idea is that for small values ofa, for all x such that
Qa(x) = v, we havem(x; y)(x � x̂)2 � m(v; y)(x � x̂)2. On the
other hand,m(v; y) is constant inx in each quantization cell. There-
fore,m(Va; Y )(X�X̂D)2 becomes quadratic inX when conditioned
on the event(Va = v; Y = y), and thus we can apply the Shannon
lower bound “locally.” The desired lower bound will follow through
Jensen’s inequality after averaging these local bounds.

For anya > 0 let Qa be the uniform quantizer with codepoints
f0;�a;�2a; . . .g. Define the discrete random variableVa by

Va = Qa(X):

SinceI(X;Va) is finite, the chain rule gives

I(X; X̂D jY ) = I(X;Va j Y ) + I(X; X̂D jVa; Y )

� I(X;Va jY; X̂D)

= h(X jY )� h(X jY; X̂D; Va)

� I(X;Va jY; X̂D): (B.1)

Thus to prove the claim of the theorem it suffices to show that

lim sup
a!0

lim sup
D!0

h(X jY; X̂D; Va)�
1

2
log(2�eD)

� �
1

2
EEE[logm(X;Y )] (B.2)

and that

lim
D!0

I(X;Qa(X) j Y; X̂D) = 0: (B.3)

It can be easily verified that conditions c) and b) together with the fact
thatEEE[d(X;Y; X̂D)] � D imply that X̂D ! X in probability as
D ! 0. Now lettingV = Qa(X), ZD = X̂D, andf(Y; ZD) =
ZD = X̂D in Lemma 2 in Appendix C, the limit (B.3) holds. The rest
of the proof is devoted to establishing (B.2).

Let A � 2 be an open set such thatm(x; y) is continuous onA
and the complement ofA has zero Lebesgue measure (suchA exists
by condition d)). IfU is defined by

U = A \ f(x; y) : m(x; y) > 0g

thenU is open andPPP ((X;Y ) 2 U) = 1. By a standard result of
measure theory (see, e.g., [16]), there exist compact setsCk � U , for
k = 1; 2; . . . such that

lim
k!1

PPP ((X;Y ) 2 Ck) = 1:

Let T > 0 be fixed and define the binary random variableBk;T by

Bk;T =
0; if (X;Y ) 2 Ck and jX � X̂Dj < T

1; otherwise.

Note that the dependence ofBk;T onD is hidden in the notation. Using
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Bk;T , we can upper-boundh(X jY; X̂D; Va) as

h(X j Y; X̂D; Va)

= h(X jY; X̂D; Va; Bk;T ) + I(X;Bk;T jY; X̂D; Va)

� h(X jY; X̂D; Va; Bk;T = 1)PPP (Bk;T = 1)

+ h(X jY; X̂D; Va; Bk;T = 0)PPP (Bk;T = 0) +H(Bk;T )

(B.4)

whereH(Bk;T ) denotes the Shannon entropy ofBk;T .
If the random variableZ has a density andEEE[Z2] < 1, then

h(Z) � 1
2
log(2�eEEE[Z2]). Since conditioning reduces differential

entropy, this implies

h(X j Y; X̂D; Va; Bk;T = 1) � h(X jBk;T = 1)

�
1

2
log(2�eEEE[X2 jBk;T = 1 ])

�
1

2
log 2�e

EEE[X2]

PPP (Bk;T = 1)
: (B.5)

In the next part (until (B.13)) of the proof the appropriate upper
bound on

h(X j Y; X̂D; Va; Bk;T = 0)

is developed. For eachy 2 , letCk(y) denote the section ofCk aty,
defined byCk(y) = fx : (x; y) 2 Ckg. ThenCk(y) is compact for
all y. LetS(a)

x denote the cell ofQa in whichx falls. For(x; y) 2 Ck
define the functionmk;a(x; y) by

mk;a(x; y) = max
x 2S \C (y)

m(x0; y): (B.6)

Note thatmk;a(x; y) is positive for all(x; y) 2 Ck. Thus we have

h(X j X̂D; Y; Va; Bk;T = 0)

= h(X � X̂D j X̂D; Y; Va; Bk;T = 0)

� h(X � X̂D j Y; Va; Bk;T = 0)

= h( mk;a(X;Y )(X � X̂D) jY; Va; Bk;T = 0)

�
1

2
EEE[log(mk;a(X;Y )) jBk;T = 0] (B.7)

� h( mk;a(X;Y )(X � X̂D) jBk;T = 0)

�
1

2
EEE[log(mk;a(X;Y )) jBk;T = 0]

�
1

2
log(2�eEEE[mk;a(X;Y )(X � X̂D)2 jBk;T = 0])

�
1

2
EEE[log(mk;a(X;Y )) jBk;T = 0]: (B.8)

In (B.7) we used the formulah(�Z) = h(Z)+log�, valid for any� >
0 and random variableZ with a finite differential entropy, combined
with the fact that if(X;Y ) 2 Ck, thenmk;a(X;Y ) is a function of
(Va; Y ). In (B.8), we used the same bound as in (B.5).

Sincem(x; y) is uniformly continuous and positive onCk, we have

mk;a(x; y)

m(x; y)
� 1

�
supx ;x 2C (y):jx �x j�a jmk;a(x

0; y)�m(x00; y)j

inf(x;y)2C m(x; y)

= �(k; a)

wherelima!0 �(k; a) = 0 for all k. Thus for all(x; y) 2 Ck

1� �(k; a) �
mk;a(x; y)

m(x; y)
� 1 + �(k; a): (B.9)

Let �A denote the indicator of an eventA. Then the expansion of
d(x; y; x̂) given in (9) and (10) implies

EEE m(X;Y )(X � X̂D)2�fB =0g

� D +EEE CjX � X̂Dj
3�fB =0g : (B.10)

If (x; y) 2 Ck andjx � x̂j < T , then

Cjx� x̂j3 � TC(x� y)2

� �(k; T )m(x; y)(x� y)2

where

�(k; T ) = TC sup
(x;y)2C

m(x; y)�1:

Note that�(k; T ) <1 for all k andT , andlimT!0 �(k; T ) = 0 for
each fixedk. SettingT such that�(k; T ) < 1, (B.10) gives

EEE m(X;Y )(X � X̂D)2�fB =0g �
D

1� �(k; T )
: (B.11)

From this, (B.9), and (B.8) we obtain

h(X j X̂D; Y; Va; Bk;T = 0)

�
1

2
log(2�eEEE[m(X;Y )(X � X̂D)2 jBk;T = 0])

�
1

2
EEE[log(m(X;Y )) jBk;T = 0] +

1

2
log

1 + �(k; a)

1� �(k; a)

�
1

2
log(2�eD)�

1

2
EEE[log(m(X;Y )) jBk;T = 0]

+
1

2
log

1 + �(k; a)

1� �(k; a)
�

1

2
log((1� �(k; T ))PPP (Bk;T = 0)):

Therefore,

lim sup
D!0

h(X j X̂D; Y; Va; Bk;T =0)PPP (Bk;T = 0)�
1

2
log(2�eD)

� lim sup
D!0

h(X j X̂D; Y; Va; B = 0)

�
1

2
log(2�eD) PPP (Bk;T = 0)

� �
1

2
EEE[log(m(X;Y )) jBk;T = 0]PPP (Bk;T = 0)

�
1

2
PPP (Bk;T = 0) logPPP (Bk;T = 0)

+
1

2
log

1 + �(k; a)

1� �(k; a)
PPP (Bk;T = 0)

�
1

2
PPP (Bk;T = 0) log(1� �(k; T )): (B.12)

SinceX̂D ! X in probability asD ! 0, we have

PPP (Bk;T = 0)! PPP ((X;Y ) 2 Ck)

asD ! 0. Combining this with (B.4), (B.5), and (B.12) we obtain

lim sup
D!0

h(X j X̂D; Y; Va)�
1

2
log(2�eD)

� �
1

2
EEE[log(m(X;Y )) j (X;Y ) 2 Ck]PPP ((X;Y ) 2 Ck)

+
1

2
PPP ((X;Y ) =2 Ck) log(2�eEEE[X2])

+
3

2
Hb(PPP ((X;Y ) 2 Ck))

+
1

2
PPP ((X;Y ) 2 Ck) log

1 + �(k; a)

1� �(k; a)

�
1

2
PPP ((X;Y ) 2 Ck) log(1� �(k; T )) (B.13)

whereHb(�) is the binary entropy function. We have

lim
a!0

�(k; a) = 0

and

lim
T!0

�(k; T ) = 0

for all k, and

lim
k!1

PPP ((X;Y ) 2 Ck) = 1:



2704 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 7, NOVEMBER 2000

Let a ! 0 andT ! 0 first, and then letk ! 1 to obtain

lim sup
a!0

lim sup
D!0

h(X j X̂D; Y; Va)�
1

2
log(2�eD)

� �
1

2
EEE[logm(X;Y )]

which was to be proved.

APPENDIX C

Lemma 2: Assume thatI(X;V ) < 1 and for anyD > 0, Y $
V $ X $ ZD forms a Markov chain. Suppose further that there is
a measurable functionf(Y;ZD) (which may depend onD) such that
f(Y; ZD) ! X in probability asD ! 0. Then

lim
D!0

I(X;V j Y; ZD) = 0:

Proof: Use the chain rule twice to obtain

I(X;V jY; ZD) = I(X;ZD; V jY )� I(ZD;V jY )

= I(X;V j Y ) + I(ZD; V jY;X)� I(ZD; V jY )

= I(X;V j Y )� I(ZD; V jY ) (C.1)

where all quantities are finite sinceI(X;V ) < 1, and the third
equality holds becauseI(ZD;V j Y;X) = 0 by the Markov chain
conditionY $ V $ X $ ZD . Since

I(ZD; V jY ) = I(Y;ZD ;V j Y ) � I(f(Y;ZD);V j Y )

we have

lim inf
D!0

I(ZD;V jY ) � lim inf
D!0

I(f(Y;ZD);V jY ): (C.2)

Now the lower semicontinuity of the mutual information [17] and the
condition thatf(Y; ZD) ! X in probability imply that

lim inf
D!0

I(f(Y;ZD);V jY = y) � I(X;V jY = y) a.e.[PY ]

and therefore by Fatou’s lemma [15] we have

lim inf
D!0

I(f(Y;ZD);V jY ) � I(X;V j Y ):

The lemma now follows by (C.1) and (C.2).
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Optimal Entropy-Constrained Scalar Quantization of a
Uniform Source

András György and Tamás Linder, Senior Member, IEEE

Abstract—Optimal scalar quantization subject to an entropy constraint
is studied for a wide class of difference distortion measures including

th-power distortions with 0. It is proved that if the source is
uniformly distributed over an interval, then for any entropy constraint

(in nats), an optimal quantizer has = interval cells such
that 1 cells have equal length and one cell has length .
The cell lengths are uniquely determined by the requirement that the
entropy constraint is satisfied with equality. Based on this result, a
parametric representation of the minimum achievable distortion ( )
as a function of the entropy constraint is obtained for a uniform source.
The ( ) curve turns out to be nonconvex in general. Moreover, for the
squared-error distortion it is shown that ( ) is a piecewise-concave
function, and that a scalar quantizer achieving the lower convex hull of

( ) exists only at rates = log , where is a positive integer.

Index Terms—Constrained optimization, difference distortion measures,
entropy coding, scalar quantization, uniform source.

I. INTRODUCTION

Scalar (or zero-memory) quantization is the simplest method for the
lossy coding of an information source with real-valued outputs. A scalar
quantizer followed by variable-length lossless coding (entropy coding)
can perform remarkably well, which makes this method popular in ap-
plications where implementation complexity is a decisive factor.
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