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whered(x, &) is a nonnegative single-letter distortion measure.

When switche#\ andB are closed, both the encoder and the decoder
have access to the side information. In this caseRlet , (D) denote
the minimum rateR such that for ang > 0 and alln large enough
there exists an encoder—decoder pair operating at distditiand rate
not exceedingR + e.

Under mild regularity conditiond? x| v (D), called theconditional
rate-distortion functionis given by
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Abstract—High-resolution bounds in lossy coding of a real memory-
less source are considered when side information is present. L&X be a
“smooth” source and let Y be the side information. First we treat the case
when both the encoder and the decoder have access ¥6 and we estab-
lish an asymptotically tight (high-resolution) formula for the conditional
rate-distortion function Rx |y (D) for a class of locally quadratic distor-
tion measures which may bdunctions of the side informationWe then con-
sider the case when only the decoder has access to the side information
(i.e., the “Wyner-Ziv problem”). For side-information-dependent distor-

tion measures, we give an explicit formula which tightly approximates the  istortion D be denoted by%WZ(D). The quantityRWZ(D) was de-
Wyner-Ziv rate-distortion function RY“#(D) for small D under some

assumptions on the joint distribution of X and Y. These results demon- termined by Wyner and Ziv [2] for finite alphabets and by Wyner [4]

strate that for side-information-dependent distortion measures the rate loss  for the general case. Assuming thiasatisfies certain mild regularity
RWY?(D) — Rx,y(D) can be bounded away from zero in the limit of ~conditions [4], we have

small D. This contrasts the case of distortion measures which do not de-
pend on the side information where the rate loss vanishes @& — 0.

Rx|y(D)=inf I(X;X|Y) @)
X
where the infimum of the conditional mutual informatibnX ; X | Y')
is taken over conditional distributions of given (Y, X) such that
E[d(X, f()] < D (see Berger [1], Gray [3], and Wyner [4]).
If switch A is open and switclB is closed, only the decoder knows
the side information. In this case, let the minimum rate achievable at

RY*(D) = inf I(X: Z|Y) )

Index Terms—Conditional rate distortion, general distortion measures,
high-resolution theory, Shannon lower bound, side information, source whereZ is a random object taking values in an arbitrary measurable
coding, Wyner-Ziv problem. space, and where the infimum is taken over all conditional distribu-
tions of Z given (X,Y) such that” «— X « Z forms a Markov
chain (i.e.,Y andZ are conditionally independent given) and there
exists a measurable functigY, Z) with E[d(X, f(Y,Z))] < D.
Consider the source coding scenario depicted in Fig. 1 (see Bergae Wyner—Ziv rate-distortion functioR"* % (D) finds applications in
[1], Wyner and Ziv [2]). The sequendg X, Y% ) } consists of indepen- coding for communication networks [5] and in systematic data trans-
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the average distortion depends on the side information and is givae-distortion function of a smooth source relative to locally quadratic
for n-blocks by nondifference distortion measures, to conditional rate-distortion func-
tions and to distortion measures which depend on the side information.
In contrast, determining the asymptotics®f Z (D) for distortion
measures of the form (3) appears to be a more difficult problem and we
do not have the complete solution in this case. Assuming that the joint
for a single-letter distortion measufer, y, ). Intuitively, the distor-  gistripution of X andY” satisfies certain conditions (for examplé,
tion between the sourcE and its reproductioX’ depends also on the jg generated by passidg through an additive Gaussian noise channel

current value of a “context” random varialie. and then passing the result through an arbitrary memoryless channel),
The need for such a context-dependent distortion measure may akjg€ prove in Theorem 2 that @3 — 0

for example, in video coding where (due to perceptual effects) the vis- w7, o 1 1 ~

ibility threshold at a given pixel location depends on the luminancefi™ " (D) = h(X |Y) — Slog(2meD) + 5 Eflog m(X)] + o(1)
intensity of a pixel at the same location in a previous frame [7]. In this (5)
case, the previous frame can be considered the side information forthe _ N . .

coding of the present frame (switch@sand B are closed). To moti- wherem(X) = E[m(X,Y)|X]. In particular, this formula holds

vate the use of a side-information-dependent distortion measure in W]%enX and)” are independent. For the general case when the only

Wyner—Ziv problem, suppose in the presence of acoustical backgro@ﬁc?]dltlon Is that/ (X;17) < oo, we prove in Theorem 2 that the

noise one plays back compressed speech or music. The backgrou(':rlldt_hand side of (5) is arl asymptotic up;i)er bound, i.e.,
noise cannot be eliminated since it depends on the precise location @™ (D) < h(X |Y) — = log(2reD) + = E[log m(X)] + o(1)
the listener, but if a microphone system feeds to the decoder a signal 2 2 ©6)
Y correlated with the background noise, the perceptual effects (e.g., ) ) ) :
masking effects in frequency and time) may be modeled by a distortiBh” — 0- We conjecture that the bound in (6) is also asymptotically
measure which depends bh In this case, one can improve the qua"tflght in this general case (i.e., the reverse inequality also holds) but this
of decoding by making the reconstruction a function of the backgroufiPresently unproven. vy
noise. Generally, for an encoder—decoder pair usipcks, giventhe _ EXPressions (1) and (2) show that (D) > Rxy(D)forall
received code indek= f,(X") and the side informatio™ = y", D, as expected, since knowled_ge of the S|de_ mformatlor]vcan only im-
the optimum reconstruction function of the Wyner—Ziv decoder is  Prove the encoder. Thus there is a nonnegative “rate BSS* (D) —
an e my N Rx v (D) when the side information is known only to the decoder.
Fopi(tsy") = arg I%%JLE[‘I"(X YA YT =y This rate loss was investigated in [11] and it was established there that
whered,, is the single-letter distortion measure generated.byhere- for difference distortion measures (i.e., whn:, &) = p(x — &)) the
fore, even if the side informatiori” is statistically independent of the loss becomes asymptotically negligiblelas— 0. Our conclusion for
sourceX " (as is the case in the above example) the optimum recaside-information-dependent distortion measures is different. At least
struction may depend oy’ . under the conditions of Theorem 2 on the joint distributionYofind
In this correspondence, we will assume thét, v, &) is a suffi- Y, we have by (4), (5), and Jensen’s inequality, that
cient]y smvot.h function such thaf ., &) =0 iann.d only if =& im (RV"(D)— Ry v (D))
and if|x — 2| is small then the behavior df . y, &) is determined by 7—0

1 n ; N
E [; I;d(xmk,)m

the second-order term in its Taylor expansion with respegtamound = %E(log E[m(X,Y)|X]) - %E[log m(X,Y)] >0 (7)
(#,y,x). That's, A . AZ where the inequality is strict unless(X,Y) is a function ofX alone
d(,y, &) = m(z.y) (@ — &) + o|e — &[7) (3 with probability one.
as|z — | — 0, where Of course, this rate loss would not be surprising if the valué of
) 18%d(w,y, &) minimizingd(z, y, &) for givenz andy depended op, the side infor-
m(x,y) = 27 a2 : mation that is not available at the encoder. Note, however, that the min-

This definition generalizes the notion of locally quadratic inpd{nizing 2 in (3) is equal tar for all y and still the rate loss is positive.

weighted distortion measures [8] to side-information-dependefyf We Will show in Section IV through a companding interpretation of

distortion measures. Notice, however, that the dependence on i@ €ncoding—decoding process, the deeper reason for this rate loss is

side information is only through the coefficient of the quadratic terniat the optimum density of the code points of the informed encoder

the optimum reconstruction given andy is still =, independent of depends oer, while the uninformed encoder must use a fixed code

the side informatiory. Locally quadratic input weighted distortion POINt density for all values df". _ _

measures are of particular interest because some important perceptu{e can support the above conclusion by demonstrating that the zero

distortion measures for speech and image coding fall into this categ@ymPptotic rate loss pointed out in [11] is due/te:, i) not depending

[9], [10]. ony rather than to it being a diffe_rence dist_ortion measure. Indeed,

Let Ry v (D) and RV%(D) denote the obvious extensions of (1)10tice thgtalocally qugdra_\tlc nond_lfference dlstortlgn mga&(nfe;%)

and (2) to a side-information-dependent distortion measure satisfy#ig special case of a side-information-dependent distortion measure. In

(3). As we discuss later, the operational meaning of these quantitB casem(X,Y) = m(X), where

does not change with the more general definition of the distortion mea- m(z) = 1 O*d(x, #)

sure. Theorem 1 in the next section states that for such distortion mea- 2 9z |,_,

sures and for “smooth” sources implying that the right-hand sides of (4) and (6) asymptotically coin-
Rx|y(D)=h(X|Y)- % log(2weD)+ %E[log m(X,Y)]+o(1) cide. Thus as a corollary of Theorems 1 and 2, we obtain the new result

’ o (011 0) =

whereo(1) — 0 asD — 0, and whereh(X |Y) denotes the con- which states that for locally quadratic side-informatiodependent
ditional differential entropy of the source given the side informatiorlistortion measures the asymptotic rate loss is zero in the Wyner—Ziv
This result generalizes a recently derived asymptotic formula [8] for tipeoblem.
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Il. THE CONDITIONAL RATE-DISTORTION FUNCTION AT HIGH The proof of the theorem is based on a technique developed in [8].
RESOLUTION To prove that

Let (X,Y) be a pair of real random variables such thaX; Y) < .. 1.
0 ancSX has a density and finite differential entrobe).Glt follows h%l’:lglp Bxiv(D)+ 2 log(2meD)
that the conditional differential entropy( X | Y") is well-defined and

finite. Suppose thaE[X?] < oc and assume the distortion measure
d(x,y, ) satisfies the following conditions.

<RX|Y)+ %E[log m(X,Y)] (12)

we letX be the output of the “forward test channel” given by

a) d(z,y, ) is three times differentiable with respect foand v _x Np
*d(x,y, &)/04° is uniformly bounded. A=At m(X.Y)
b) d(x,y.&) > 0;andd(x,y, &) = 0 ifand only ifx = &. whereN, is a zero-mean Gaussian random variable with varidhce
c) l‘igflinnf d(z,y,&) > 0forallz,y € R. which is independent dfX, Y"). Then (8)—(10) readily imply that
d) If m(x,y) is defined by fy BUX.Y.X) . EAXY.X)]
1 2d(a.y, &) o P PO B (XL = X7
m(x,y) = 5 972 On the other hand,

F=x

thenm (x, y) is continuous on an open subseffwhose com- IX;X|YV)=h|X+ __No v
plement has zero Lebesgue measure. Furthermore, Vm(X,Y)

Ellogm(X,Y)| < oo and E[m(X, Y);J/z] <oo. (8) _h <X i Np ‘ ¥ Y) .

vm(X,Y)

Note that conditions a) and b) imply that the second-order Taylor eéy the independence 6, and(X,Y")
pansion ofd(z,y, #) in £ aroundz = = has the form o
Np

d(z,y, &) = m(z,y)(x — &)° + sz, y, &) © 7N <X+ ()

Lemma 1 in Appendix A proves that

X,Y) = %log(QTrcD)—%E[log m(X,Y)].
where

.y, )| < Clz — A‘3. €, N
[s(2,y, )| < Cle— 27, foralle,y € R (10) limsuph | X + Ao
D—0 m(X*E/)

Y) < h(X]|Y)
for someC > 0. In particular, it follows from (9) and (10) that
m(x,y) > 0 forall x andy. and (12) follows.

Note also that the continuity assumptioneriz, y) in d) does not  1h€ proof of the converse part, that
rule out discrete side information. In fact, fbrhaving a discrete dis-
tribution with a finite number of outcomes, . . . , y, only the conti-
nuity of m(x, y;) in x is required for each, since in this case one can
formally redefinem (z, y) to be continuous in both variables.

The conditional rate-distortion functioRx |y (D) is defined for
D > 0by

. 1 o
lllr%lil(}f |:R)< vy (D)+ 3 log(ZueD):|

>h(X|Y)+ %E[log m(X,Y)] (13)

is more involved and is deferred to Appendix B.

Ill. THE WYNER-ZIV RATE-DISTORTION FUNCTION

Ry y(D)= IEH(X?)‘ 1Y) 11) AT HIGH RESOLUTION

where the infimum of the conditional mutual informatibnX ; X | V') ForD > 0 define

is taken over all conditional distributions &f given (Y, X) such that RYY(D)=infI(X;Z
E[d(X.Y,X)] < D. 7

Y) (14)

whereZ is areal random variable, and where the infimum is taken over
Theorem 1:Let d be a distortion function satisfying conditionsall conditional distributions of given(X,Y) suchthat” < X « Z
a)—d) and letX be a real source with a density and finite differentialorms a Markov chain and for which there exists a measurable function
entropy h(X) such thatE[X?] and I(X;Y) are finite. Then as f(Y, Z) with E[d(X.,Y, f(Y, Z))] < D. This definition is more gen-
D — 0, the asymptotic behavior dtx |y (D) is given by eral than the one originally given in [2] in that the distortion measure is
1 1 allowed to depend ol". A coding theorem for discrete alphabets and
V) = 5log(2reD) + 5 Ellog m(X,Y)]+0(1).  such distortion measures is proved in [12, Corollary 4.6, Ch. 3]. For
- general alphabets it can be verified that, with the necessary modifica-
Remark: To attach operational meaning fox |y (D), defined in tions, the proof of the coding theorem f&"” (D) in [4] also works
(11), one needs to extend the proof of the coding theorem from the c&@¥eside-information-dependent distortion measures (e.g., the convexity
whend depends only ok’ and_X to the case when it also depends o®f BV #(D) in D and the converse coding theorem are straightforward
Y. This extension is relatively straightforward under some regularigxtension of [4, App. B] and [4, Sec. 4], respectively).
conditions on the distortion measure. For example, if in addition to We make the same assumptions(di Y') andd(x, y, &) as in the
conditions a)—d), it is also assumed thét, y, ) is bounded, one can previous section. The following theorem provides an asymptotically

check that the corresponding steps in the proof given in [4, AppendixZT . N .

. . hese extensions can be done by copying line-by-line the proofs of [4] and
A] carry over to our case. But regardlgss of tl:]e opt_ara.ltlonal me_amnge%hangingl(.u #) with d(«, y, ) where needed. The technical conditions on
Rx v (D), Theorem 1 always holds if(x, y, &) satisfies conditions the distortion measure required by Wyner are clearly satisfied, for example, if
a)—d). d(z,y, %) is continuous and bounded.

R/\' | V(D) = }L(_X
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tight expression foR"VZ (D) under certain conditions on the joint dis-whereNp is a Gaussian random variable with zero mean and variance
tribution of the source-side information paik, Y"). D which is independent of X, Y"). With this choice,Z andY are

Theorem 2: Let d be a distortion function satisfying conditionsconditionally independent givel. Letting f(y, z) = =, we have for
a)-d) and letX be a real-valued memoryless source with a densiﬁma"D
such thatE[X?] < co. Assume thaf (X;Y) < oo andX has finite

N m(X,Y
differential entropyh(X ). Then asD — 0, we have E[d(X.Y,Z)]=E[m(X,Y)(X-2)"]=D-E {mﬁ(l(i,())} =D

RVZ(D) < h(X|Y) = log(2reD) + L Ellogm(X)] +o(1)  and, thereforeR™*(D) < I(X:Z|Y) + o(1) asD — 0. The rest
2 2 of the proof of (15) follows the corresponding steps in the proof of
(15 Theorem 1 withn (X, Y") replaced bymn (X).

Assume now that there existd/,} satisfying conditions i)iii)
wherem (X) = E[m(X,Y)|X]. Furthermore, if there exists a se-of the theorem. Then (15) holds and we only have to prove the
quence of real random variablg¥;, };Z, such that reverse inequality to show (16). Assume, for simplicity, that

) X &V, — Y forms a Markov chain for alk, d(z,y, &) = m(;t,y?(;v - _;%)2. The exte_nsion of the deriva_tion
to the general case is straightforward using the proof technique of
[8, Proposition 2]. We will also make the assumption thatr, y)
i) I(X;V,) < oo foralln, is uniformly continuous and bounded away from zeroRh This
then, asD — 0, we have assumption onn(x,y) can be relaxed (so thak(x,y) need only
satisfy condition d)) by using the proof technique of the converse part
W7y v vy L 1 - of Theorem 1 in Appendix B.
R7D) = MX|Y) = 2 log(2meD) + §E[10g M1+ of1)- Since the structures of the two proofs are similar, in the following
(16)  derivation we will be able to use (without additional justification) some
of the bounds developed in proving the converse part of Theorem 1.

The existence of a sequenE, } satisfying the assumptions of The- Let Zp andf be such that” «— X « Zp forms a Markov chain,
orem 2 can be shown under certain, not very restrictive, conditions. 10X ; Zp | Y) < oc and
the simplest case whek andY” are statistically independent,, can

i) V, — X in probability asn — oc,

always be chosen &3, (X), whereQ,, is an (infinite-level) uniform Em(X.Y)(X — f(Y,Z»))’] < D. (17
quantizer of step size/n. For dependent” andY’, the sequencgV;, }
exists for example in the following two cases: The basic idea of the upcoming derivation is that i large enough,

) ) N ) _ thenV,, andX are very close with large probability and, therefore,
1) Y is generated by passingj through an additive Gaussian nois&ne distortionn (X, Y )(X — (Y, Zp))? is well approximated by the

channel and then passing the result through an arbitrary memgstortionim (V,,Y)(X — £(Y, Z»))? and thus the latter can be used
ryless channel; in place of the former. On the other hand(V,,, Y )(X — f(Y, Zp))?

2) X is generated by passirig through an arbitrary memorylessbecomes quadratic ik when conditioned on the evefit,, = v, Y =
channel and then passing the result through an additive GausgjanThis and the Markov chain conditioN < V,, < Y allow us
noise channel. to apply the Shannon lower bound [1] “locally.” The desired lower

L . bound will follow through Jensen'’s inequality after averaging these
To see how the sequeng®, } is constructed in these examples, le 9 quaity ging

N be a zero-mean Gaussian random variable with variarice- 0 local bounds. ; . .
) h . . ' . To make this more precise, for &l » > 1 define the binary random
and forn > 1 let N, and N,, be independent zero-mean Gaussiapn_. . (k)

. . . . 5 . variablesB;,"”’ by
random variables with varianee’ /n and(1 — 1/n)c?, respectively,
such thatV,, + N, = N. Then in case 1) the assumption is tfat ) 0, if | X — V| <1/k
andN are independent arld is the output of an arbitrary memoryless B, = {
channel whose input i& + V. In this case, we can I¢tV,,, NV),) be
ﬁndependent of{ an_d seft,, = X + N,. In case 2) the assgmption Then by condition ii),P(B{*) = 0) — 1 asn — o for all k. Notice
is thatY and NV are independent anf = Y’ + N, whereY” is the  ihat the assumptions on(z, y) imply that if |+ — 2’| < 1/k, then
output of a memoryless channel whose input'idn this case, we can
choose(N,,, N),) to be independent &f and we set’, =Y’ + N,..
Conditions i)—iii) are obviously satisfied in both cases.

Note that the variance® > 0 of the Gaussian noise in both cases
can be arbitrarily small, and therefore this noise can be interpretedf@ssomees, ez, . ..., in such away thatmy. .. e = 0. It follows that
a small Gaussian perturbation of the (otherwise arbitrary) joint dis- )
tribution of (X,Y). Note also that the assumption that the additivé [’m(XaY)(X - f(Y.Zp))* | Ve = v. B = 0]

1, otherwise.

m(x,y) 1‘ <e (18)

7n’(‘t’ay) a

channel is Gaussian is not essential. The examples also work under the ’ v i St k)
more general assumption that the distributiomofs infinitely divis- = (1-e)E [’”(V"’i WX = (¥, 20))" |V = v, B, = 0] :
ible [13], that s, for alln. > 1 there exist independent and identically (29)
distributed random variable¥'™, ..., N{") such thatv{™ + ... +

N = N, Now we have

Proof of Theorem 2:To prove (15), leZ be the output of the test g [(X — f(Y. Zp)?|Y =y, V, = v, BF = 0]
channel given by ’
> E (X - EIX| Zp, Y.V’ |V = . Vo = v, B = 0]
IVD

Z=X+ Jn(x) 2 Var(X | Zp,Y =y, Vi = v, B = 0) . (20)
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The key step in the proof is the observation that the Markov chain comhere the second inequality follows by (21). SinEgD(V,,)] <
ditionsY <« X « Zp andX < V,, < Y imply that the joint D/P(B,Sk) = 0), another application of Jensen’s inequality gives
distributions of(Y, X, Zp) and(X,V,,Y) can be coupled such that
the Markov chain conditiod” — V,, « X « Zp is satisfied. Thus & (X | Zp, Vo, BYY = 0)
we have 1 1
/ < 3 log(2meD) — EE (logE [m(V,L,Yk) | Ve, Bilk) = 0])
Var(X | Zp,Y =y, Vi = v, B =0) 1 A 1
- §logP (Bfl") = ) -3 log(1 — e). (26)
- Va.r(X | Zp. V= 0.B® =0
Thus (24) and (25) yield

(the conditioning o®t” can be dropped) and therefore by (20) we obtain )

, ) lim sup <h(X |Y. Zp, Vo) — = log(QTrcD))
E |:7n(‘,rnﬂy-)(X - f(yvv ZD))‘ |)r =Y, Vi = v, Bilk) = 0:| b=o 2

< %E (108 B [m(X.¥) Vo BO = 0] ) + b0 456 (27)

=m(v,y)E [(X —f(YV.Zp))’|Y = 4.V =0, B = 0] =

> m('v,y)Var(X | Zp,Vy, = v, B = O) . wherelim,, 4, » = 0 for all k andlim; bx = 0. The assumption that

m(x, y) is uniformly continuous and bounded away from zero and the

Combining this with (19) we get facts thatl;, — X in probability andim,, P(B,(f’) =0)=1imply

D(0) 2 E [m(X,Y)(X = [(Y, Z0))* | Vo = v, BY) = 0] lin E (log E (Vi Y) |V, BY = 0] ) = Eflog (X))
> (1—e)E [m(VmY) Vo=0.B" = 0] wherem(X) = E[m(X,Y)|X]. Thus letting first: — oo in (27)
x Var(X | Zp. V. = v, B =0). (1) Aandthem: = oo, we get
. . A
We will now use (21) to lower-bound the conditional mutual infor! $1p lim sup <h (XY, Zp.Ve) = 5 log(%eD))

mationI(X; Zp |Y). Sincel (X; V},) is finite, the chain rule implies 1 ~

(see (B.1)) < §E[log m(X)].

I(X:Zp |Y)=h(X|Y)=h(X|Y,Zp, Vo) — I(X;V, |Y,Zp). Combining this with (22) and (23) proves the theorem. O

(22)

IV. CONCLUSION

Sincef (Y, Zp) — X in probability asD — 0, Lemma 2 in Appendix |t should be noted that the asymptotic formulas of Theorems 1 and 2
C shows that suggest a companding realization of source coding with side informa-

tion. Consider first the conditional rate-distortion problem. Let
lim I(X; Vo |Y. Zp) =0.

. T c(t,y) = ! m(x y)l/2 dx
Now an argument analogous with (B.4) implies ’ o ’

WX |Y.Zp. V) < h (1\’|KZD,T/”,1,B£’“) - 0)P (BSL“ - 0) where the integral is defined using the conventifh = — [ if
a > b. Assumingm(z,y) > 0 for all z andy, c(-,y) has an inverse
+h (X Y. Zp, Va, B = 1) ¢ (-, y) for fixed y. Using c(-,y) andc *(-,y) as a side-informa-
) _ ) tion-dependent compressor—expander pair, we can construct a coding
x P (B - 1) +H (B ) (24)  scheme where first eacky; is passed through the compandeét Y;),

then the output is quantized with a lattice vector quantizer, and then
WhereH(Bf7k)) is the Shannon entropy of ') . Using inequality the quantizer output is entropy-coded conditioned {3f;}. Since
(B.5) and the fact thdtm,, P(B" = 1) =0forallk > 1, we obtain the decoder knowgY;}, it can decode the entropy code and then
apply the expander~'(-,Y;). For large enough lattice quantizer
lim sup (h (X Y. Zp, Ve, Bff“) = 1) P (B,(f) = 1) H+ (Bff)» dimensions and small distortion, the rate of this scheme will approach
D=0 the conditional rate-distortion function.

=bui (29) Similarly, for the Wyner—Ziv problem we can define the compander

wherelim, .. 6, + = 0 for all k. On the other hand, since con-by
ditioning reduces entropy, using Jensen’s inequality and the fact that o 172
MU) < Llog(2me Var(U)) for any real random variabl& with a e(t) = /0 m(x) " dx
density, we obtain
wherem (2) = E[m(X,Y)| X = «]. Lete(+) and its inverse ' (-)

h (X |Y.Zp. Vs = v, Bff”) = ()) be the compressor—expander pair, which we combine with lattice quan-
1 tization and Slepian—Wolf coding (instead of entropy coding condi-
< 5 log (Qﬁe, Var (X | Zp, Vo = v, B{M = ())) tioned onY’). The performance of this scheme will be arbitrarily close

1 ’ to the upper bound of Theorem 2. Under the conditions for asymptotic

<35 log(2meD(v)) tightness in Theorem 2, the coding rate will asymptotically achieve

1 1 RY*(D) for small distortions. A rigorous proof of both of these claims
log E |m(V,,Y) |V, =0, B =0 log(1 i i i i
T8 [m( o, Y) [V =0, B, =0| = 5 og(l — €x) can be given using the techniques developed in [14].
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APPENDIX A APPENDIX B

Lemma 1: Let N, denote a zero-mean Gaussian random variable Proof of the Converse Part of Theorem 1et {X, : D > 0}
with varianceD which is independent ¢fX, Y). If E[X?],2(X),and be an arbitrary collection of random variables each jointly distributed
E[m(X.Y)™'] are finite, then with (X,Y") such that

E[d(X,Y,Xp)]< D and I(X;Xp|Y) < cc.

Y). (A1)

limsuph | X + AiD_
D—0 m(X,Y)

Y) <h(X

Our proof technique will be similar to that of [8, Proposition 2]. The
new element in the proof is the introduction of the auxiliary random
variableV, = Q.(X), where(., is an infinite level uniform quan-
tizer of step sizex > 0. This will substantially ease the technical
complications introduced by the conditioning ®n In fact, using the
upcoming derivation, one could give a simpler proof of [8, Proposi-
tion 2]. The basic idea is that for small valuesaoffor all = such that
Q.(x) = v, we havem(z,y)(z — #)> = m(v,y)(x — #)%. On the
other handi (v, y) is constant inz in each quantization cell. There-

. fore,m(V,, Y ) (X — XD)Z becomes quadratic il when conditioned

lim sup <X+ Np _ Y:y) <h(X|YV=y) ael[Py]. OntheeventV, =Y = y), and thus we can apply the Shannon

D—0 vVm(X,Y) lower bound “locally.” The desired lower bound will follow through
Jensen’s inequality after averaging these local bounds.

Assume now that there exisf3, > 0 and a measurable such that ~ For anya > 0 let Q. be the uniform quantizer with codepoints

Proof: By [8, Appendix B], ifn : R — [0,00) is such that
En(X) ! < oo, then

limsup h(X + (Np/n(X))) < h(X).
D—0

Sinceh(X | Y = y) is finite a.e.[Py], this implies that

E[y(Y)] < oo and for all positiveD < D {0,+a, +2a,...}. Define the discrete random variafile by
W(x+ 22|y <gly) aelPy] K
[ 2 — | Y = y) a.e. .
m(X,Y) v =9 v

Sincel(X; V) is finite, the chain rule gives

Then Fatou’s lemma [15] proves (A.1) since .
Y)+I(X:Xp|V,.Y)

I(X:Xp|Y)=I(X;V,

v ~I(X;V,|Y,Xp)
limsuph | X + =P |y . S -
D—o0 m(X,Y) =h(X [} )_h()fuaXDy‘/a)
_I(X:VL|Y.Xp). (B.1)

a N
=lim sup/ h <X + % Y = y) Py (dy)
b0 m(X,Y) Thus to prove the claim of the theorem it suffices to show that

< / ‘ lilgil;p h (X + % Y= y) Py (dy) 111;531) 1ig1jgp XY, Xp,Va) — %log(?rreD)
=hE ). < —3Ellogm(X.Y)] (82)
To demon;s/tgate the existence of an approprigteet Xp = X + andthat
m(X,Y) Np and notice that }}5‘0 1(X:0u(X)|Y, X0) = 0. (B.3)
(XD 1Y =9) < %log (27r€E [Af) Y= y]) a.e.[Py]. It can be easily verified that conditions c) and b) together with the fact

that E[d(X,Y,Xp)] < D imply that X, — X in probability as
D — 0. Now lettingV = Q.(X), Zp = Xp, andf(Y,Zp) =
Zp = Xp in Lemma 2 in Appendix C, the limit (B.3) holds. The rest
of the proof is devoted to establishing (B.2).

Y= y] Let A C R* be an open set such thait(, y) is continuous om
and the complement ol has zero Lebesgue measure (suckxists
by condition d)). IfU is defined by

U=An{(z,y) : m(x,y) >0}

By the independence ¢fX,Y") and Np

E [Xf)
= E[X°|Y =y|+ DEm(X.Y) "|Y =y] < ael|Py]

Define
1 R thenU is open andP((X,Y) € U) = 1. By a standard result of
gp(y) = 3 log(27eE[X} | Y = y]). measure theory (see, e.g., [16]), there exist compactiets U, for

k = 1,2,... such that

Thenh(Xp |Y = y) < gn,(y) a.e[Py] for D < D,. On the other klinl P(X,Y)eCy) =1.

hand, e
LetT > 0 be fixed and define the binary random variaBlg by

_ 1 o . = - -
E[gn, (V)] < Jlog (QmeE [x,%o]) < oo By = {0 TEY)eC and X -Xp|<T
1, otherwise.

by Jensen’s inequality. OO Note that the dependenceBf r on D is hidden in the notation. Using
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By, we can upper-bountl( X | Y, Xp, V,) as If (x,y) € Cr and|z — &| < T, then
WX Y, XD, Vi) Cle =&’ <TC(x —y)*
=X |Y,Xp,Va.Brr)+ I(X: Ber | V. Xp.,Va) < Bk, T)m(z,y)(x — y)*
<WX|Y,Xp,Va,Brr =1)P(Brr =1) where
R(X|Y,Xp,Va, Ber = 0)P(Bpy = H(By o _
+ MY, X0, Va, Ber = 0)P(Bir = 0) + H(Byr) Bk, T)=TC sup m(zx,y) '
(B4) (z,y)ECY
whereH (Bj. r) denotes the Shannon entropyf 7. Note thatj3(k,T) < oc for all k andT’, andlimy o 3(k, T') = 0 for

If the random variableZ has a density andZ[Z°] < oo, then each fixedk. SettingT” such thati (k. T) < 1, (B.10) gives

hZ) < ilog(2meE[Z%]). Since conditioning reduces differential . D
entropy, this implies E [771(X~Y)(X -Xbp) X{B,\,T:o}] < =3 T) (B.11)
WX |Y.Xp.Va, Brr =1) < WX |Ber = 1) From this, (B.9), and (B.8) we obtain
1 .
<5 log(27eE[X” | Brr = 1]) WX |Xp,Y,Va, By =0)

< %log(?ﬂcE['m(X., Y)NX — XD)'2 | Be,w = 0])

IN

1. (- E[X?]
510g <2W8m . (B.5)

In the next part (until (B.13)) of the proof the appropriate upper
bound on

1 . ~ _ 1, [(1+4e(k,a)
— §E[log(m(X.,S )| Be,w =0] 4+ 3 log <m
) < Yiog2reD) = LEllog(m(X,Y))| Bes = 0]
MX|Y,Xp,V.,Br7=0) 2 ’
4 +110~<M)—110 (1= B(k,T))P(Bi.qx = 0))
is developed. For eagh€ R, let C(y) denote the section df}, aty, 2B \1 - e(k,a) 9 6 FAT k1 :
defined byC.(y) = {z : (z,y) € Ci}. ThenCy(y) is compact for Therefore,

all y. Let 5. denote the cell of),, in which z falls. For(xz, y) € C ) 1
lim sup |:h(X | Xp,Y, Vo, By =0)P(Bypr = 0)— 5 log(27re,D):|

define the functionny (x,y) by FEis
!
mialz,y) = max m(z,y). B.6 . RN s
k(@) +€5$ N (y) @) (86 < hlﬁl)ligp{(h()& | Xp,Y,V,,B=0)
Note thatm .(z, y) is positive for all(x, y) € Cj. Thus we have 1 ,
WX |Xp,Y,Va, Bpr = 0) -5 10g(2W6D)> P(Bi.r = 0)}
= (X — "va | Xp,Y, Vi, Bir = 0) < _%E[log('rn(X,Y)) | Be,r = 0]P(By,r = 0)
<AMX—-Xp|Y,Va,Bir=0) 1
= h(/mea(X.Y)(X = Xp)|Y.Va. By = 0) — 5 P(Bi.r = 0)log P(Bi.m = 0)
Ll pnoe vy o 1. [1+e(k,a)
ZE[IOD(”nk'ya(‘X?Y))J Bk‘[ - 0] (B7) + E ]Og<m> P(BL:,T = 0)
< h(4/ JX Y (X — X Brr =0
= (1 mi,a (X, Y ; P Bir =0) - %P(BM =0)log(1 — A(k,T)). (B.12)
— —Ellog(mi,(X,Y)) | Br,r = 0] R
1 2 SinceXp — X in probability asD — 0, we have
< 3 log(2meE[my o (X, Y )(X — XD)Z | Br..r = 0]) P(Bir =0)— P(X,Y) € Cy)
_ %E[log(mk,u(X, Y))| B = 0). (B.8) asD — 0. Combining this with (B.4), (B.5), and (B.12) we obtain
. N
In (B.7) we used the formula(«Z) = h(Z)+log «, valid for anyoa > limsup | A(X | Xp, Y, V,) - 3 log(2meD)
0 and random variabl& with a finite differential entropy, combined p=0 1
with the fact that if( X,Y) € Cj, thenm; .(X,Y) is a function of < —§E[log(7n(X, Y| (X,Y) e Cy]P(X,Y) € Cy)
(Va,Y). In (B.8), we used the same bound as in (B.5). 1 )
Sincem (x, y) is uniformly continuous and positive @, we have + 5 PUX,Y) € Ci)log(2meB[X7])
Mme,a(x,y) B 3 I
(o) 1{ + QHZ,(P((A,Y) e Cy))
<SP erecy (et —ari<a [P (2, y) — Mz y)] +1P(XY) e Ck)10g<1 +—€<k’a))
- inf(, yec, m(z,y) ii 1—e(k,a)
=e(k,a) - 5P((X,Y) € Cr)log(l — gk, T)) (B.13)
wherelim, —o €(k, a) = 0 for all k. Thus for all(, y) € Ci whereH,(-) is the binary entropy function. We have
L= e(hya) < etV g 4 ), (B.9) limy e(k,a) =0
777(],‘, y) a—0

Let x4 denote the indicator of an evedt Then the expansion of and
d(z,y, &) given in (9) and (10) implies
E [m(X,Y)(X = X0)*\(5, 70 for all k, and

<D+E [C|X - XDPX{BM:O}] . (B.10) Jim P((X.Y) € Cy) = 1.

%1210 Bk, T)=0
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Leta — 0 andT — 0 first, and then let: — oc to obtain [9] W. R. Gardner and B. D. Rao, “Theoretical analysis of the high-rate
vector quantization of LPC parameter$EEE Trans. Speech, Audio
Processingvol. 3, pp. 367-381, Sept. 1995.

[10] J.Li, N. Chaddha, and R. M. Gray, “Asymptotic performance of vector
guantizers with the perceptual distortion measure Piac. IEEE Int.
Symp. Information TheoryJim, Germany, June 1997, p. 55.

[11] R. Zamir, “The rate loss in the Wyner—Ziv problemEEE Trans. In-
form. Theoryvol. 42, pp. 2073-2084, Nov. 1996.

[12] 1. Csiszéar and J. Kérnemformation Theory: Coding Theorems for Dis-
crete Memoryless SystemsNew York: Academic , 1981.

[13] Y. S. Chow and H. TeicheRrobability Theory, Independence, Inter-

Lemma 2: Assume thaf (X; V) < oo and foranyD > 0,Y <« changeability, Martingales New York: Springer-Verlag, 1988.

V < X < Z; forms a Markov chain. Suppose further that there is[14] T. Linder, R. Zamir, and K. Zeger, “High-resolution source coding for
a measurable functiofi(Y, Zp) (which may depend o®) such that

lim sup lim sup | A(X | Xp, Y. V,) — % log(2meD)
D—0

a—0
< - %E[log m(X,Y)]

which was to be proved. O

APPENDIX C

IEEE Trans. Inform. Theoryol. 45, pp. 548-561, Mar. 1999.

f(Y,Zp) — X in probability asD — 0. Then [15] R.B.Ash,Real Analysis and Probability New York: Academic, 1972.
; V|V — [16] W. Rudin,Real and Complex Analysi8rd ed. New York: McGraw-

i (X5 V]Y, Zp) = 0. Hill, 1087.
Proof: Use the chain rule twice to obtain [17] 1. Csiszar, “On an extremum problem of information theorgtudia

Scient. Math. Hungpp. 57-70, 1974.

I(X:V|Y,Zp) = (X, Zp;V|Y) = I(Zp: V|Y)
=I(X;V|Y)+ I(Zp:V|Y.X) = I(Zp; V |Y)
=I(X;V|Y) = I(Zp; V|Y) (C.1)

where all quantities are finite sindg X;V) < oo, and the third
equality holds becausE Z,; V' |Y,X) = 0 by the Markov chain
conditionY <~ V « X < Zp. Since

HZp; VI V) =LY, Zp;V|Y) > I(f(Y,Zp); V|Y)
we have
hlrjnil(}f I(Zp:V|Y) > llgqi{)li I(f(Y,Zp);V

Optimal Entropy-Constrained Scalar Quantization of a
Uniform Source

Andras Gyoérgy and Tamas LindeSenior Member, IEEE

Y). C.2 . o . .
) (€.2) Abstract—Optimal scalar quantization subject to an entropy constraint

Now the lower semicontinuity of the mutual information [17] and thés studied for a wide class of difference distortion measures including

L . i S rth-power distortions with » > 0. It is proved that if the source is

condition thatf(Y, Zn) — X in probability imply that uniformly distributed over an interval, then for any entropy constraint
- - - B

lminf I(F(Y, Zp):V|Y =y) > [(X:;V|Y = a.e.Py R (in nats), an optimal quantizer hasIN = [e™] interval cells such
1]1%:11& (fV.Zp) V] y) 2 I( | y) [Pv] that N — 1 cells have equal lengthd and one cell has lengthe < d.

The cell lengths are uniquely determined by the requirement that the

entropy constraint is satisfied with equality. Based on this result, a
Y). parametric representation of the minimum achievable distortion.D;, (R)

‘ as a function of the entropy constraint R is obtained for a uniform source.

and therefore by Fatou’s lemma [15] we have
liminf 7(f(Y. Zp): V' |¥) > I(X:V

The lemma now follows by (C.1) and (C.2). 0  The D,(R) curve turns out to be nonconvex in general. Moreover, for the
squared-error distortion it is shown that D, (R) is a piecewise-concave
function, and that a scalar quantizer achieving the lower convex hull of
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