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Rate-Constrained Simulation and
Source Coding i.i.d. Sources
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Abstract—Necessary conditions for asymptotically optimal
sliding-block or stationary codes for source coding and rate-con-
strained simulation of memoryless sources are presented and used
to motivate a design technique for trellis-encoded source coding
and rate-constrained simulation. The code structure has intuitive
similarities to classic random coding arguments as well as to “fake
process” methods and alphabet-constrained methods. Experi-
mental evidence shows that the approach provides comparable or
superior performance in comparison with previously published
methods on common examples, sometimes by significant margins.

Index Terms—Rate-distortion, simulation, source coding, trellis
source encoding.

I. INTRODUCTION

T HE basic goal of Shannon source coding with a fidelity
criterion or lossy data compression is to covert an infor-

mation source into bits which can be decoded into a good
reproduction of the original source, ideally the best possible
reproduction with respect to a fidelity criterion given a con-
straint on the rate of transmitted bits. Memoryless discrete-time
sources have long been a standard benchmark for testing source
coding or data compression systems. Although of limited in-
terest as a model for real world signals, independent identically
distributed (i.i.d.) sources provide useful comparisons among
different coding methods and designs. In addition, specific ex-
amples such as Gaussian and uniform sources can provide intu-
itive interpretations of how coding schemes yield good perfor-
mance and they can serve as building blocks for more compli-
cated processes such as linear models driven by i.i.d. processes.

A separate, but intimately related, topic is that of rate-con-
strained simulation — given a “target” random process such as
an i.i.d. Gaussian process, what is the best possible imitation
of the process that can be generated by coding a simple dis-
crete i.i.d. process with a given (finite) entropy rate? Here “best”
can be quantified by a metric on random processes such as the
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generalized Ornstein distance (or Monge-Kantorovich trans-
portation distance/ Wasserstein distance extended to random
processes). For example, what is the best imitation Gaussian
process with only one bit per symbol?

Intuitively and mathematically [12], [14], if the source code
is working well, one would expect the channel bits produced by
the source encoder to be approximately i.i.d. and the resulting
reproduction process to be as close to the source as possible with
a one bit per symbol channel. Thus the decoder driven by coin
flips should produce a nearly optimal simulation. Conversely, if
an i.i.d. source driving a stationary code produces a good sim-
ulation of a source, the code should provide a good decoder in
a source coding system with an encoder matching possible de-
coder outputs to the source sequence, e.g., a Viterbi algorithm.

Rigorous results along this line were developed in [10],
showing that the two optimization problems are equivalent and
optimal (or nearly optimal) source coders imply optimal (or
nearly optimal) simulators and vice versa for the specific case
of stationary codes and sources that are -processes (stationary
codings of i.i.d. processes).

Results that are similar in spirit were developed for more gen-
eral sources by Steinberg and Verdu [31], where other deep con-
nections between process simulation and rate-distortion theory
were also explored. However, results in [31] are for asymptot-
ically long block codes while our focus is on stationary codes
— especially on stationary decoders of modest memory — and
on the behavior of processes rather than on the asymptotics of
finite-dimensional distributions, which might not correspond to
the joint distributions of a stationary process.

We introduce a design technique for trellis-encoded source
coding based on designing a stationary decoder to approxi-
mately satisfy necessary conditions for optimality (analogous
to the Lloyd algorithm for vector quantizer design [8]) and
using a matched Viterbi algorithm as an encoder (analogous
to the minimum distortion encoder in the Lloyd algorithm).
The combination of a good decoder with a matched search
algorithm as the encoder is the most common implementation
of trellis source codes. Previous work [4], [23], [32], [35]
for trellis encoding system design has been based largely on
intuitive guidelines, assumptions, or formal axioms for good
code design. In contrast, we prove several necessary conditions
which optimal or asymptotically optimal source codes must
satisfy, including some properties simply assumed in the past.
Examples of such properties are Pearlman’s observations [23]
that the marginal reproduction distribution should approximate
the Shannon optimal reproduction and that the reproduction
process should be approximately white. We give a code con-
struction which provably satisfies a key necessary condition
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and which is shown experimentally to satisfy the other neces-
sary conditions while providing performance comparable to
or superior to previously published work, and in many cases,
remarkably close to the theoretical limit.

The rest of the paper is organized as follows. In Section II
we give an overview of definitions and concepts we need for
stating our results and in Section III we state and prove the
necessary conditions for optimum trellis-encoded source code
design. Section IV introduces the new design technique and
Section V presents experimental results for encoding memory-
less Gaussian, uniform, and Laplacian sources.

II. PRELIMINARIES

A. A Note on Notation

We deal with random objects which will be denoted by cap-
ital letters. These include random variables , -dimensional
random vectors , and random pro-
cesses , where is the set of all integers. The
generic notation might stand for any of these random ob-
jects, where the specific nature will either be clear from con-
text or stated (this is to avoid notational clutter when possible).
Lower case letters will correspond to sample values of random
objects. For example, given an alphabet (such as the real
line or the binary alphabet ), then a random variable

may take on values , an -dimensional random
vector may take on values , the Cartesian product
space, and a random process may take on values

. A lower case
letter without subscript or superscript may stand for a member
of any of these spaces, depending on context.

B. Stationary and Sliding-Block Codes

A stationary or sliding-block code is a time-invariant filter,
in general nonlinear. It operates on an input sequence to pro-
duce an output sequence in such a way that shifting the input
sequence results in a shifted output sequence. More precisely,
a stationary code with an input alphabet (typically or
a Borel subset for an encoder or for a decoder) and
output alphabet (typically for an encoder or some
subset for a decoder) is a measurable mapping (with respect
to suitable -fields) of an infinite input sequence (in ) into
an infinite output sequence (in ) with the property that

, where is the (left) shift on , that
is, . The se-
quence-to-sequence mapping from is described
by the sequence-to-symbol mapping defined by code output at
time 0, since .
More concretely, the sequence-to-symbol mapping usually
depends on only a finite window of the data, in which case
the output random process, say , can be expressed as

, a mapping on the
contents of a shift register containing
samples of the input random process . Both and will
be referred to as stationary or sliding-block codes.

Unlike block codes, stationary codes preserve statistical char-
acteristics of the coded process, including stationarity, ergod-

icity, and mixing. If a stationary and ergodic source is
encoded into bits by a stationary code , which are in turn de-
coded into a reproduction process by another stationary
code , then the resulting pair process and output
process are also stationary and ergodic.

Given any block code, a stationary code with similar proper-
ties can be constructed (at least in theory) and vice versa. Thus
good codes of one type can be used to construct good codes of
the other (at least in theory) and the optimal performance for the
two classes of codes is the same [9], [11], [16], [28].

C. Fidelity and Distortion

A distortion measure , is a non-
negative measurable function (with respect to suitable

-fields). A fidelity criterion is a family of distortion mea-
sures , . We
assume that the fidelity criterion is additive (or single-letter)

where . Throughout the paper, we make the standard
assumption that and . Given random vectors

with a joint distribution , the average distortion is
defined by the expectation

Given a stationary pair process , the average
distortion between -tuples is given by the single-letter char-
acterization
and hence a measure of the fidelity (or, rather, lack of fi-
delity) of a stationary coding and decoding of a stationary
source into a reproduction is the average distortion

The emphasis in this paper will
be the case where and the distortion is the common
squared error distortion . Also of interest
is the Hamming distortion, where if and 1
otherwise.

Throughout the paper we assume that the stationary process
and the distortion measure satisfy the following stan-

dard reference letter condition: there exists such that
. In particular, when the distortion is the

squared error, we always assume that the source has finite vari-
ance.

D. Optimal Source Coding

Let denote the collection of all sliding-block codes
with input alphabet and finite output alphabet of size .
The operational distortion-rate function for source is defined
by

Note that is defined for the discrete set of values such
that for some nonnegative integer .

E. Distance Measures for Random Vectors and Processes

A distortion measure induces a natural notion of a “dis-
tance” between random vectors and processes (the quotes will
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be removed when the relation to a true distance or metric is
clarified). The optimal transportation cost between two prob-
ability distributions, say and , corresponding to random
variables (or vectors) defined on a common (Borel) probability
space with a nonnegative cost function is defined
as

where is the class of all probability distributions on
having and as marginals, that is,

, for all . The reader is
referred to Villani [33] and Rachev and Rüschendorf [25] for
extensive development and references. The most important spe-
cial case is when the cost function is a nonnegative power of an
underlying metric: , where is a complete,
separable metric (Polish) space with respect to . In this case

is a metric. The notation and will
be used to denote the two most important cases of the optimal
transportation cost with respect to the squared error and Ham-
ming distance, respectively.

Given two processes with process distributions and
on , let and denote the induced -di-
mensional distributions for all positive integers . Let be
an additive distortion measure induced by , .
Define the (generalized) distance [15] between two stationary
processes

If is a metric, then so is . If is the Hamming metric, this
is Ornstein’s -bar distance [21], [22]. If is a power of an un-
derlying metric, then will also be a metric.
We will refer to as the “ -distance” whether or not it is actu-
ally a true metric. We distinguish the most important cases by
subscripts, in particular denotes with squared error (and
hence is a metric) and denotes with equal to the
Hamming distance ( is a metric).

For stationary processes there is a simpler characterization of

(1)

where the infimum is over all stationary processes (or stationary
and ergodic processes if and are ergodic). This and many
other properties of the and generalized are detailed in [13],
[15], [21], and [22]. Properties relevant here include the fol-
lowing:

1) For stationary processes

(2)

2) If the processes are both i.i.d., then

(3)

3) If the processes are both stationary and ergodic, the dis-
tance can be expressed as the infimum over the limiting
distortion between any two frequency-typical sequences of

the two processes. Thus the -distance between the two
processes is the amount by which a frequency-typical se-
quence of one process must be changed in a time average
sense to produce a frequency-typical sequence of another
process.

The process distance can be used to characterize both the
optimal source coding and the optimal rate-constrained simu-
lation problem. Let be a random process described by a
process distribution and let be an i.i.d. equiprobable
random process with alphabet of size and distri-
bution . The optimal simulation of the process
with process distribution given the process with
process distribution and reproduction alphabet is charac-
terized by

(4)

where is the process distribution resulting
from a stationary coding of using , i.e., for all events

. The notation for is
redundant since determines the distribution of and vice
versa. As in the definition of the operational rate-distortion
function, is of the form for some nonnegative
integer .

F. Entropy Rate

Alternative characterizations of the optimal source coding
and simulation performance can be stated in terms of the en-
tropy rate of a random process. As we will be dealing with both
discrete and continuous alphabet processes and with some bor-
derline processes that have continuous alphabets yet finite en-
tropy, suitably general notions of entropy as found in mathe-
matical information theory and ergodic theory are needed (see,
e.g., [13], [21], [22], and [24]). For a finite-alphabet random
process, define as usual the Shannon entropy of a random vector
or, equivalently, of its distribution by

and the Shannon entropy rate
of the process by If
the process is stationary, then

(5)

In the general case of a continuous alphabet, the en-
tropy rate is given by the Kolmogorov-Sinai invariant

, where the supremum is over
all finite-alphabet stationary codes. It is important to note that
(5) need not hold when the alphabet is not finite and that a
random process with a continuous alphabet can have an infinite
finite-order entropy and a finite entropy rate.

G. Constrained Entropy Rate Optimization

A stationary and ergodic process is called a -process if it is
obtained by a stationary coding of an i.i.d. process. If the source
is stationary and ergodic, then [10]

(6)

that is, the best simulation by coding coin flips in a stationary
manner has the same performance as the best simulation of
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by any -process having entropy rate bit per symbol or less.
If were itself discrete and a -process with entropy rate
less than or equal to , then Ornstein’s isomorphism theorem
[21], [22] (or the weaker Sinai-Ornstein theorem) implies that

. In words, a -process can be stationarily en-
coded into any other process having equal or smaller entropy
rate.

The -distance also yields a characterization of the opera-
tional distortion rate function [16]

(7)

where the infimum is over all stationary and ergodic processes.
Comparing (6) and (7), obviously If the
source is also a -process, then the two infima are the same
and .

A related operational distortion-rate function resembling
the simulation problem replaces the encoder/decoder with a
common encoder output/decoder input alphabet by a single
code into a reproduction having a constrained entropy rate.
Suppose that a source is encoded by a sliding-block code

directly into a reproduction with process distribution
. What coding yields the smallest distortion under

the constraint that the output entropy rate is less than or equal
to ? In this case, unsurprisingly

(8)

These relations implicitly define optimal codes and optimal
performance, but they do not say how to evaluate the optimal
performance or design the codes for a particular source. The
Shannon rate-distortion function solves the first problem.

H. Shannon Rate-Distortion Functions

In the discrete alphabet case the th-order average mutual
information between random vectors and is given by

. In general
is given as the supremum of the discrete alphabet

average mutual information over all possible discretizations or
quantizations of and . If the joint distribution of
and is , then we also write for .

The Shannon rate-distortion function [27] is defined for a sta-
tionary source by

(9)

where is the collection of all joint distributions for
with first marginal distribution . The dual distor-

tion-rate function is

Source coding theorems show that under suitable conditions
. (See, e.g., [9], [11], and [16] for source

coding theorems for stationary codes.)

Csiszár [3] provided quite general versions of Gallager’s [7]
Kuhn-Tucker optimization for evaluating the rate-distortion
functions for finite dimensional vectors, in particular restating
the optimization over joint distributions as an optimization
over the reproduction distribution . When an optimizing
reproduction distribution exists, it will be referred to as the
Shannon optimal reproduction distribution. Csiszár provides
conditions under which an optimizing distribution exists.

The following lemma and corollary are implied by the proof
of Csiszár’s Theorem 2.2 and the extension of the reproduction
space from compact metric to Euclidean spaces discussed at the
bottom of [3, p. 66]. The lemma shows that if the distortion
measure is a power of a metric derived from a norm, then there
exists an optimizing joint distribution and hence also a Shannon
optimal reproduction distribution. In the corollary, the roles of
distortion and mutual information are interchanged to obtain the
distortion-rate version of the result.

Lemma 1: Let be a random vector with an alphabet
which is a finite-dimensional Euclidean space with norm .
Assume the reproduction alphabet and a distortion mea-
sure , , such that .
Then for any there exists a distribution on
achieving the minimum of (9). Hence for any , a Shannon

-dimensional optimal reproduction distribution exists for the
th-order rate-distortion function.

Corollary 1: Given the assumptions of the lemma, suppose
that , is sequence of distributions on
with marginals and for which for

(10)

(11)

Then has a subsequence that converges weakly to a
Shannon optimal reproduction distribution. If the Shannon
distribution is unique, then converges weakly to it.

I. i.i.d. Sources

If the process is i.i.d., then

(12)
If a Shannon optimal distribution exists for the first-order rate
distortion-function, then this guarantees that it exists for all fi-
nite-order rate-distortion functions and that the optimal -th
order distribution is simply the product distribution of copies
of the first-order optimal distribution.

Rose [26] proved that for a continuous input random vari-
able and the squared error distortion, the Shannon optimal repro-
duction distribution will be (absolutely) continuous only in the
special case where the Shannon lower bound to the rate distor-
tion function holds with equality, e.g., in the case of a Gaussian
source and squared error distortion. In other cases, the optimum
reproduction distribution is discrete, and for source distribu-
tions with bounded support (e.g., the uniform source), the
Shannon optimal reproduction distribution will have finite sup-
port, that is, it will be describable by a probability mass func-
tion (PMF) with a finite domain. This last result is originally
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due to Fix [6]. Rose proposed an algorithm using a form of an-
nealing which attempts to find the optimal finite alphabet di-
rectly by operating on the source distribution, avoiding the indi-
rect path of first discretizing the input distribution and then per-
forming a discrete Blahut algorithm — the approach inherent to
the constrained alphabet rate-distortion theory and code design
algorithm of Finamore and Pearlman [5]. There is no proof that
Rose’s annealing algorithm actually converges to the optimal
solution, but our numerical results support his arguments.

III. NECESSARY CONDITIONS FOR OPTIMAL AND

ASYMPTOTICALLY OPTIMAL CODES

A sliding-block code for source coding is said to be
optimum if it yields an average distortion equal to the oper-
ational distortion-rate function . Unlike the
simple scalar quantizer case (or the nonstationary vector quan-
tizer case), however, there are no simple conditions for guaran-
teeing the existence of an optimal code. Hence usually it is of
greater interest to consider codes that are asymptotically optimal
in the sense that their performance approaches the optimal in the
limit, but there might not be a code which actually achieves the
limit. More precisely, a sequence of rate- sliding-block codes

, , for source coding is asymptotically op-
timal (a.o.) if

(13)

An optimal code (when it exists) is trivially asymptotically op-
timal and hence any necessary condition for an asymptotically
optimal sequence of codes also applies to a fixed code that is
optimal by simply equating every code in the sequence to the
fixed code.

Similarly, a simulation code is optimal if
and a sequence of codes is asymptotically optimal

if
(14)

In this section we exclusively focus on the squared error dis-
tortion and assume that the real-valued stationary and ergodic
process has finite variance.

A. Process Approximation

The following lemma provides necessary conditions for
asymptotically optimal codes which are a slight generalization
and elaboration of [14, Theorem 1]. A proof is provided in the
Appendix.

Lemma 2: (Condition 1) Given a real-valued stationary
ergodic process , suppose that is an
asymptotically optimal sequence of stationary source codes
for with encoder output/decoder input alphabet of size

. Denote the resulting reproduction processes by
and the -ary encoder output/decoder input processes by

. If , then

where is an i.i.d. equiprobable process with alphabet size .
These properties are quite intuitive:
• The process distance between a source and an approxi-

mately optimal reproduction of entropy rate less than
is close to the Shannon distortion rate function. Thus fre-
quency-typical sequences of the reproduction should be as
close as possible to frequency-typical source sequences.

• The entropy rate of an approximately optimal reproduction
and of the resulting encoded -ary process must be near
the maximum possible value.

• The sequence of encoder output processes approaches an
i.i.d. equiprobable source in the Ornstein process distance.
If , the encoder output bits should look like fair coin
flips.

If is a -process, then a sequence of a.o. simulation
codes yielding a reproduction processes satisfies

and a similar
argument to the proof of the previous lemma implies that

.

B. Moment Conditions

The next set of necessary conditions concerns the squared
error distortion and resembles a standard result for scalar and
vector quantizers (see, e.g., [8, Lemmas 6.2.2 and 11.2.2]). The
proof differs, however, in that in the quantization case the cen-
troid property is used, while here simple ideas from linear pre-
diction theory accomplish a similar goal. Define in the usual way
the covariance .

Lemma 3: (Condition 2) Given a real-valued stationary er-
godic process , suppose that If is an asymptotically op-
timal sequence of codes (with respect to squared error) yielding
reproduction processes with entropy rate , then

(15)

(16)

(17)

Defining the error as , then the necessary
conditions become

(18)

(19)

(20)

The results are stated for time , but stationarity ensures
that they hold for all times .

Proof: For any encoder/decoder pair yielding a
reproduction process

where the second inequality follows since scaling a sliding-
block decoder by a real constant and adding a real constant
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results in another sliding-block decoder with entropy rate no
greater than that of the input. The minimization over and
for each is solved by standard linear prediction techniques as

(21)

(22)

(23)

Combining the above facts we have that since is an
asymptotically optimal sequence

(24)

and hence that both inequalities are actually equalities. The final
inequality (24) being an equality yields

(25)

Application of asymptotic optimality and (21) to

results in

(26)

Subtracting (25) from (26) yields

(27)

Since both terms in the limit are nonnegative, both must con-
verge to zero since the sum does. Convergence of the right-hand
side (RHS) term in the sum proves (15). Provided

, which is true if , (25) and (27) together imply that
converges to 0 and hence that

(28)

This proves (16) and with (26) proves (17) and also that

(29)

Finally consider the conditions in terms of the reproduction
error. Equation (18) follows from (15). Equation (19) follows
from (15)–(29) and some algebra. Equation (20) follows from
(18) and the asymptotic optimality of the codes.

If is a -process so that , then a
similar proof yields corresponding results for the simulation
problem. If is an asymptotically optimal (with respect to
distance) sequence of stationary codes of an i.i.d. equiprobable
source with alphabet of size which produce
a simulated process , then

C. Finite-Order Distribution Shannon Conditions for i.i.d.
Processes

Several code design algorithms, including randomly popu-
lating a trellis to mimic the proof of the trellis source encoding
theorem [34], are based on the intuition that the guiding prin-
ciple of designing such a system for an i.i.d. source should be
to produce a code with marginal reproduction distribution close
to a Shannon optimal reproduction distribution [5], [23], [35].
While highly intuitive, we are not aware of any rigorous demon-
stration to the effect that if a code is asymptotically optimal, then
necessarily its marginal reproduction distribution approaches
that of a Shannon optimal. Pearlman [23] was the first to for-
mally conjecture this property of sliding-block codes. The fol-
lowing result addresses this issue. It follows from standard in-
equalities and Csiszár [3] as summarized in Corollary 1.

Lemma 4: (Condition 3a) Given a real-valued i.i.d. process
with distribution , assume that is an asymptot-

ically optimal sequence of stationary source encoder/decoder
pairs with common encoder output/decoder input alphabet
of size which produce a reproduction process

. Then a subsequence of the marginal distribution of the
reproduction process, converges weakly and in to a
Shannon optimal reproduction distribution. If the Shannon op-
timal reproduction distribution is unique, then converges
to it.

Proof: Given the asymptotically optimal sequence of
codes, let denote the induced process joint distributions
on . The encoded process has alphabet size and
hence entropy rate less than or equal to . Since coding cannot
increase entropy rate, the entropy rate of the reproduction
(decoded) process is also less than or equal to . By standard
information theoretic inequalities (e.g., [11, p. 193]), since the
input process is i.i.d. we have for all that

(30)

The left-hand side (LHS) term converges to the mutual in-
formation rate between the input and reproduction, which
is bound above by the entropy rate of the output so that

Since the code sequence is asymp-
totically optimal, (13) holds. Thus the sequence of joint distri-
butions for meets the conditions of Corollary 1
and hence has a subsequence which converges weakly to
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a Shannon optimal distribution. If the Shannon optimal distri-
bution is unique, then every subsequence of of has
a further subsequence which converges to , which implies
that converges weakly to . The moment conditions

(15) and (17)of Lemma 3 imply that converges to
. The weak convergence of a subsequence of

(or the sequence itself) and the convergence of the second
moments imply convergence in [33].

Since the source is i.i.d., the -fold product of a one-di-
mensional Shannon optimal distribution is an -dimensional
Shannon optimal distribution. If the Shannon optimal marginal
distribution is unique, then so is the -dimensional Shannon
optimal distribution. Since Csiszár’s [3] results hold for the

-dimensional case, we immediately have the first part of the
following corollary.

Corollary 2: (Condition 3b) Given the assumptions of the
lemma, for any positive integer let denote the -di-
mensional joint distribution of the reproduction process .
Then a subsequence of the -dimensional reproduction distri-
bution converges weakly and in to the -fold product
of a Shannon optimal marginal distribution (and hence to an

-dimensional Shannon optimal distribution). If the one di-
mensional Shannon optimal distribution is unique, then
converges weakly and in to its -fold product distribution.

Proof: The moment conditions (15) and (17) of
Lemma 3 imply that converges to
for . The weak convergence of the -di-
mensional distribution of a subsequence of (or the
sequence itself) and the convergence of the second moments
imply convergence in [33].

There is no counterpart of this result for optimal codes
as opposed to asymptotically optimal codes. Consider the
Gaussian case where the Shannon optimal distribution is a
product Gaussian distribution with variance . If
a code were optimal, then for each the resulting th order
reproduction distribution would have to equal the Shannon
product distribution. But if this were true for all , the repro-
duction would have to be the i.i.d. process with the Shannon
marginals, but that process has infinite entropy rate.

If is a -process, then a small variation on the proof yields
similar results for the simulation problem: given an i.i.d. target
source , the th-order joint distributions of an asymp-
totically optimal sequence of constrained rate simulations
will have a subsequence that converges weakly and in to an

-dimensional Shannon optimal distribution.

D. Asymptotic Uncorrelation

The following theorem proves a result that has often been
assumed or claimed to be a property of optimal codes. Define
as usual the covariance function of the stationary process
by for all integer .

Lemma 5: (Condition 4) Given a real-valued i.i.d. process
with distribution , assume that is an asymptotically

optimal sequence of stationary source encoder/decoder pairs
with common alphabet of size which produce
a reproduction process . For all

(31)

and hence the reproduction processes are asymptotically uncor-
related.

Proof: If the Shannon optimal distribution is unique, then
converges in to the -fold product of the Shannon

optimal marginal distribution by Corollary 2. As Lemma 6 in the
Appendix shows, this implies the convergence of

to 0 for all .

Taken together these necessary conditions provide straight-
forward tests for code construction algorithms. Ideally, one
would like to prove that a given code construction satisfies
these properties, but so far this has only proved possible for
the Shannon optimal reproduction distribution property —
as exemplified in the next section. The remaining properties,
however, can be easily demonstrated numerically.

IV. AN ALGORITHM FOR SLIDING-BLOCK SIMULATION AND

SOURCE DECODER DESIGN

We begin with a sliding-block simulation code which approx-
imately satisfies the Shannon marginal distribution necessary
condition for optimality. Matching the code with a Viterbi algo-
rithm (VA) encoder then yields a trellis source encoding system.

A. Sliding-Block Simulation Code/Source Decoder

Consider a sliding-block code of length of an equiprob-
able binary i.i.d. process which produces an output process

defined by

(32)

where the notation makes sense even if is infinite, in
which case views a semi-infinite binary sequence. Since
the processes are stationary, we emphasize the case .
Suppose that the ideal distribution for is given by a
CDF , for example the CDF corresponding to the Shannon
optimal marginal reproduction distribution of Lemma 1.
Given a CDF , define the (generalized) inverse CDF
as for . If
is a uniformly distributed continuous random variable on

, then the random variable has CDF . The
CDF can be approximated by considering the binary -tuple

comprising the shift register entries
as the binary expansion of a number in

(33)

and defining

(34)
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If the is a fair coin flip process, the discrete random vari-
able is uniformly distributed on the
discrete set

, that is, it is a discrete approximation to a uniform
that improves as grows, and the distribution of

converges weakly to , satisfying
a necessary condition for an asymptotically optimal sequence
of codes. If is infinite, then the marginal distribution will
correspond to the target distribution exactly! This fulfills the
necessary condition of weak convergence for an asymptotically
optimal code of Lemma 4.

The code as described thus far only provides the correct ap-
proximate marginals; it does not provide joint distributions that
match the Shannon optimal joint distribution — nor can it ex-
actly since it cannot produce independent pairs. We adopt a
heuristic aimed at making pairs of reproduction samples as inde-
pendent as possible by modifying the code in a way that decorre-
lates successive reproductions and hence attempts to satisfy the
necessary condition of Lemma 5. Instead of applying the inverse
CDF directly to the binary shift register contents, we first per-
mute the binary vectors, that is, the codebook of all possible
shift register contents is permuted by an invertible one-to-one
mapping and the binary vector
is used to generate the discrete uniform distribution. A randomly
chosen permutation is used, but once chosen it is fixed so that
sliding-block decoder is truly stationary. Such a random choice
to obtain a code that is then used for all time is analogous to
the traditional Shannon block source coding proof of randomly
choosing a decoder codebook which is then used for all time.
Thus our decoder is

(35)

where is a Shannon optimal reproduction distribution
obtained either analytically (as in the Gaussian case) or from
the Rose algorithm (to find the optimum finite support).

Intuitively, the permutation should make the resulting se-
quence of arguments of the mapping (the number in
constructed from the permuted binary symbols) resemble an
independent sequence and hence cause the sequence of branch
labels to locally appear to be independent. The goal is to satisfy
the necessary conditions on joint reproduction distributions of
Corollary 2, but we have no proof that the proposed construction
has this property. The experimental results to be described show
excellent performance approaching the Shannon rate-distortion
bound and show that the branch labels are indeed uncorrelated.
The permutation is implemented easily by permuting the table
entries defining . For the constrained-rate simulation problem,
the permutation does not change the marginal distribution of the
coder output, which still converges weakly to the Shannon op-
timal reproduction distortion as , even in the Gaussian
case. This approach is in the spirit of Rose’s mapping approach
to finding the rate-distortion function [26] since it involves
discretizing a continuous uniform random variable which is the
argument to a mapping into the reproduction space, rather than
discretizing the source.

The decoder design involves no training (assuming that the
Shannon optimal marginal distribution is known).

B. Trellis Encoding

If the decoder of a source coding system is a finite-length
sliding-block code, then encoding can be accomplished using
a VA search of the trellis diagram labeled by the available de-
coder outputs. A trellis is a directed graph showing the action
of a finite-state machine with all but the newest symbol in the
shift register constituting the state and the newest symbol being
the input. Branches connecting each state are labeled by the
output (or an index for the output in a reproduction codebook)
produced by receiving a specific input in a given state. As usu-
ally implemented, the VA yields a block encoder matched to the
sliding-block decoder. A source coding system having this form
is a trellis source encoding system.

The theoretical properties of asymptotically optimal codes
developed here are for the combination of stationary encoder
and decoder, but our numerical results use the traditional
trellis source encoding structure of a block VA matched to a
sliding-block decoder. In fact, we perform a full search on the
entire test sequence since this provides the smallest possible
average distortion encoding using the given decoder. This ap-
parent mismatch of a theoretical emphasis on overall stationary
codes with a hybrid stationary decoder/block encoder merits
explanation. First, our emphasis is on decoder design and given
a sliding-block decoder, no encoder can yield smaller average
distortion than a matched VA algorithm operating on the entire
dataset. Available computers permit such an implementation
for datasets and decoders of interesting size. A source coding
theorem for a block Viterbi encoder and a stationary decoder
may be found in [10]. Second, using standard techniques
for converting a block code into a sliding-block code, a VA
block encoder can be approximated as closely as desired by a
sliding-block code. Such approximations originate in Ornstein’s
proof of his isomorphism theorem [21], [22] and have been
developed specifically for tree and trellis encoding systems,
e.g., in [9, Section VII], and for block source codes in general in
[11], [28]. These constructions embed a good block code into a
stationary structure by means of a punctuation sequence which
inserts rare spacing between long blocks — which in practice
would mean adding significant computational complexity to
the straightforward Viterbi search of the approximately optimal
decoder output. Other, simpler, means of stationarizing the VA
such as incremental tree and trellis encoding [1], [10] have been
considered, but they are not supported by coding theorems.
Experimentally, however, they have been shown to provide
essentially the same performance as the usual block Viterbi
encoder. The hybrid code with a VA encoder and a stationary
decoder remains the simplest implementation and takes full
advantage of the stationary decoder which is designed here.
Third, our necessary conditions for optimal stationary codes
focus on the reproduction process and hence depend on the
decoder and its correspondence to an optimal simulation code.
The Associate Editor has pointed out that the theoretical results
for stationary codes can likely be reconciled with our use of a
block encoder/stationary decoder by extending our necessary
conditions to incorporate hybrid codes such as fixed-rate (or
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variable-rate [36]) trellis encoding systems by replacing our
marginal distributions by average marginal distributions. We
suspect this is true and that our results will hold for any coding
structure yielding asymptotically mean stationary processes,
but we have chosen not to attempt this here in the interests of
simplicity and clarity.1

A brief overview of the history of trellis source encoding
provides useful context for comparing the numerical results. A
stationary decoder produces a time-invariant trellis and trellis
branch labels that do not change with time. The original 1974
source coding theorem for trellis encoded i.i.d. sources [34] was
proved for time-varying codes by using a variation of Shannon
random coding — successive levels of the trellis were labeled
randomly based on i.i.d. random variables chosen according to
the test channel output distribution arising in the evaluation of
the Shannon rate-distortion function.

Early research on trellis encoding design was concerned with
time-varying trellises, reflecting the structure of the coding the-
orem. In particular, Wilson and Lytle [35] populated their trellis
using i.i.d. random labels chosen according to the Shannon
optimal reproduction distribution. A later source coding the-
orem for time-invariant trellis encoding [10] was based on the
sliding-block source coding theorem [9], [16] and was purely
an existence proof; it did not suggest any implementable design
techniques. Two early techniques for time-invariant code de-
sign were the fake process design [17] and a Lloyd clustering
approach conditioned on the shift register states [29], [30]. The
former technique was based on a heuristic argument involving
optimal simulation and the -distance formulation of the oper-
ational distortion rate function. The idea was to color a trellis
with a process as close in as possible to the original source.
While the goal is correct, the heuristic adopted to accomplish it
was flawed: the design attempted to match the marginal distri-
bution and the power spectral density of the reproduction with
those of the original source. As pointed out by Pearlman [23]
and proved in this paper, the marginal distribution of the trellis
labels should instead match the Shannon optimal distribution,
not the original source distribution.

Pearlman’s theoretical development [23] was based on his
and Finamore’s constrained-output alphabet rate-distortion [5],
which involved a prequantization step prior to designing a trellis
encoder for the resulting finite-alphabet process. Pearlman pro-
vided a coding theorem and an implementation for a time-in-
variant trellis encoding, but used the artifice of a subtractive
dithering sequence to ensure the necessary independence of suc-
cessive trellis branch labels over the code ensemble. Because of
the dithering, the overall code is not time-invariant.

Marcellin and Fisher in 1990 [18] introduced trellis-coded
quantization (TCQ) based on an analogy with coded modulation
in the dual problem of trellis decoding for noisy channels. The
technique provided a coding technique of much reduced com-
plexity that has since become one of the most popular compres-
sion systems for a variety of signals. The dual code argument is
strong, however, only for the uniform case, but variations of the

1Note added in proof: It has been brought to our attention that results along
this line showing convergence of average marginal distributions to the Shannon
optimal for the case of finite-alphabet sources that are either i.i.d. or which sat-
isfy the Shannon lower bound have been developed by [37].

idea have proved quite effective in a variety of systems. TCQ has
a default assignment of reproduction values to trellis branches
using a Lloyd-optimized quantizer, but the levels can also be op-
timized.

Some techniques, including TCQ in our experiments, tend
to reach a performance “plateau” in that performance improve-
ment with complexity becomes negligible well before the com-
plexity becomes burdensome. In TCQ this can be attributed to
constraints placed on the system to ensure low complexity. The
technique introduced here has not (yet) shown any such plateau.

More recently, van der Vleuten and Weber [32] combined
the fake process intuition with TCQ to obtain improved trellis
coding systems for i.i.d. sources. They incorrectly stated that
[17] had shown that a necessary condition for optimality for
trellis reproduction labels for coding an i.i.d. source is that the
reproduction process be uncorrelated (white) when the branch
labels are chosen in an equiprobable independent fashion. This
is indeed an intuitively desirable property and it was used as
a guideline in [17] — but it was not shown to be necessary.
Eriksson et al. [4] used linear congruential (LC) recursions to
generate trellis labels and reproduction values to develop the
best codes of the time for i.i.d. sources to date by establishing
a set of “axioms” of desirable properties for good codes (in-
cluding a flat reproduction spectrum) and then showing that a
trellis decoder based on an inverse CDF of a sequence produced
by linear recursion relations meets the conditions. Because of
the CDF matching and spectral control, the system can also be
viewed as a variation on the fake process approach. Eriksson et
al. observe that a problem with TCQ is the constrained ability to
increase alphabet size for a fixed rate and they argue that larger
alphabet size can always help. This is not correct in general, al-
though it is for the Gaussian source where the Shannon optimal
distribution is continuous. For other sources, such as the uni-
form, the Shannon optimal has finite support and optimizing for
an alphabet that is too large or not the correct one will hurt in
general. As with TCQ, the approach allowed optimization of the
reproduction values assigned to trellis branch labels.

V. NUMERICAL EXAMPLES

The random permutation trellis encoder was designed for
three common i.i.d. test sources: Gaussian, uniform, and Lapla-
cian. The results in terms of both mean squared error (MSE)
and signal-to-noise ratio (SNR) are reported for various shift
register lengths indicated by , here stands for
random permutation trellis coding algorithm with shift register
length . The test sequences were all of length . The results
for Gaussian, uniform and Laplacian sources are shown in
Tables I–III, respectively.

Each test result is from one random permutation; repeating
the test with different random permutations has produced almost
identical results. For example, for i.i.d. Gaussian source, ,

, a total of 20 test runs have returned MSE in the range
between 0.2629 and 0.2643, with an average of 0.2634.

The distortion-rate function for all three sources are
also listed in the tables. For uniform and Laplacian sources,

are numerical estimations produced by the Rose algo-
rithm, in both cases, the reported distortions are slightly lower
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in comparison to the results reported in [18] and [20] calculated
using the Blahut algorithm [2].

The rate of the random permutation trellis
coder are compared to previous results of the linear congruential
trellis codes (LC) of Eriksson, Anderson, and Goertz [4], trellis
coded quantization (TCQ) by Marcellin and Fischer [18], trellis
source encoding by Pearlman [23] based on constrained repro-
duction alphabets and matching the Shannon optimal marginal
distribution, a Lloyd-style clustering algorithm conditioned on
trellis states by Stewart et al. [29], [30], and the Linde-Gray fake
process design [17]. The rate are compared with
Eriksson et al.’s LC codes and Marcellin and Fisher’s TCQ. The
rate are compared with TCQ which are the only
available previous results for these rates.

Eriksson et al.’s LC codes use 512 states for and 256
states for , which are equivalent to shift register length

in both cases. Marcellin’s TCQ uses 256 states for all
rates, corresponding to shift register length 9, 10, 11, 12 for rate
1, 2, 3, 4, respectively. Pearlman’s results and Stewart’s results
are for , and Linde/Gray uses a shift register of length
9. The shift register length is indicated as a subscript for all
results.

In the Gaussian example, there are reproduction levels in
the random permutation codes, the result of taking the inverse
Shannon optimal CDF, that of a Gaussian zero mean random
variable with variance , and evaluating it at uni-
formly spaced numbers in the unit interval. For the uniform
source, there are 3, 6, 12, and 24 reproduction points for rates
1, 2, 3, 4 bits chosen by the Rose algorithm for evaluating the
first order rate-distortion function. Similarly, for the Laplacian
source , there are 9, 17, 31, and 55 reproduction points for rates
1,2,3,4 bits, respectively. For rates , the trellis
has outgoing branches from each node and incoming
branches to each node. new bits are shifted into the shift reg-
ister and old bits are shifted out at each transition. The Viterbi
search now merges paths at each node compared to just 2
paths in the 1 bit case. The number of states in the trellis is

, for the trellis structures with the same number of states;
the has shift register length 1 bit longer com-
pared to the and also has twice the number of
branches/reproduction levels.

Eriksson et al.’s LC codes use reproduction points, the
Linde/Gray fake process design uses reproduction points,
in both cases, the reproduction points are generated by taking
the inverse CDF of the source, evaluating it in the unit interval,
and then multiplying with a scaling factor. Stewart also uses
reproduction points, but the reproduction points are obtained
through an iterative Lloyd-style training algorithm. Pearlman
uses a simpler four symbol reproduction alphabet, produced by
the Blahut algorithm. Marcellin’s TCQ uses reconstruc-
tion symbols, which are the outputs of the Llyod-Max quantizer.
In both LC codes and TCQ, numerical optimization of the repro-
ductions values were used to improve the results. The optimized
results for LC codes and TCQ are listed in the tables with the
notation “(opt)”.

The TCQ_9 and TCQ(opt)_9 results are from Marcellin and
Fisher’s TCQ paper [18]. The TCQ results at shift register length
12, 16, 20, 24 are asterisked since they are from our own im-

TABLE I
GAUSSIAN EXAMPLE

plementation of the TCQ following descriptions in [18]. In our
implementation, the default reproduction values, not the opti-
mized ones were used. The TCQ results are clearly showing a
performance “plateau” as the shift register length increases.

The effectiveness of the random permutation at forcing higher
order distributions to look more Gaussian is shown in Fig. 1.
The two dimensional scatter plot for adjacent samples with no
permutation does not look Gaussian and is clearly highly cor-
related. When a randomly chosen permutation is used, the plot
looks like a 2D Gaussian sample. In both figures, the and
axis are the value of the samples.

Fig. 2. shows the MSE of the random permutation trellis coder
for i.i.d. Gaussian at with various shift register length.
The performance has not yet shown to hit a plateau as shift reg-
ister length increases.

The uniform i.i.d. source is of interest because it is simple,
there is no exact formula for the rate-distortion function with
respect to mean-squared error and hence it must be found by
numerical means, and because one of the best compression al-
gorithms, trellis-coded quantization (TCQ) is theoretically ide-
ally matched to this example. So the example is an excellent one
for demonstrating some of the issues raised here and for com-
parison with other techniques.
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TABLE II
UNIFORM ��� �� EXAMPLE

TABLE III
LAPLACIAN EXAMPLE

TABLE IV
SHANNON OPTIMAL REPRODUCTION DISTRIBUTION FOR THE

UNIFORM ����� SOURCE

The Rose algorithm yielded a Shannon optimal distribution
with an alphabet of size 3 for . The points and their
probabilities are shown in Table IV.

Fig. 1. Scatter plots of fake Gaussian 2-dimensional density: no permutation
and random permutation.

Fig. 2. Performance: 1 bit Gaussian.

Plugging the distribution into the random permutation trellis
encoder led to a mapping of (0 0.368) to 0.2, [0.368 0.632] to
0.5, and (0.632 1) to 0.8.
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TABLE V
SHANNON OPTIMAL REPRODUCTION DISTRIBUTION FOR THE

LAPLACIAN SOURCE

For the Laplacian source of variance 1, the Rose algorithm
yielded a Shannon optimal distribution with an alphabet of size
9 for the 1 bit case. The 9 reproduction points and their proba-
bilities are listed in Table V.

For all three test sources — Gaussian, uniform, and Lapla-
cian — the performance of the random permutation trellis
source encoder is approaching the Shannon limit. Therefore, it
is of interest to estimate the entropy rate of the encoder output
bit sequence, which should be close to an i.i.d. equiprobable
Bernoulli process since an entropy rate near 1 is a necessary
condition for approximate optimality [12], [14]. A “plug-in”(or
maximum-likelihood) estimator was used for this purpose.
The estimator uses the empirical probability of all words of a
fixed length in the sequence to estimate the entropy rate. Bit
sequences of length produced by encoding the Gaussian,
uniform, and Laplacian sources with trellis encoder of shift
register length were fed into the estimator, the resulting
entropy rate estimation ranges from 0.9993 to 0.9995. For
comparison, the estimator yielded entropy rate of 0.9998 for a
randomly generated bit sequence of the same length.

Eriksson et al.’s LC results for 1 bit at 512 states (equiv-
alent to shift register length 10) for Gaussian source is better
than the random permutation results for the same shift register
length. This is likely the result of their exhaustive search over
all possible ways of labeling the branches within the constraint
of their axioms. A similar approach to the random permuta-
tion code would be to search for the permutation that produced
the best results. Our results are from randomly chosen permu-
tations, so they reflect performance of the ensemble average
(which we believe may eventually lead to a source coding the-
orem using random coding ideas). All permutations have the
same marginals, but some permutations will have better higher
order distributions. Such an optimization is feasible only for
small . We tested an optimization by exhaustion for and
found that the best MSE (SNR) was 0.3262 (4.8647), while the
average MSE (SNR) for all permutations was 0.3852 (4.1431).
This demonstrates that the best permutation can provide notable
improvement over the average, but we have no efficient search
algorithm for finding optimum permutations.

APPENDIX

PROOF OF LEMMA 2

The encoded and decoded processes are both stationary and
ergodic since the original source is. From (7) and the source
coding theorem

The second inequality follows since stationary coding reduces
entropy rate, and so . Since the LHS
term converges to the RHS, the first equality of the lemma is
proved.

Standard inequalities of information theory yield

where the second inequality follows since mutual informa-
tion rate is bounded above by entropy rate, and the third
inequality follows from the process definition of the Shannon
rate-distortion function [11]. Taking the limit as ,
the RHS term converges to since the code sequence is
asymptotically optimal (so that )
and the Shannon rate-distortion function is a continuous
function of its argument (except possibly at ). Thus

proving the
second equality of the lemma.

The final part requires Marton’s inequality [19] relating Orn-
stein’s distance and relative entropy when one of the processes
is i.i.d.. Suppose that and are stationary process distri-
butions for two processes with a common discrete alphabet and
that and denote the finite dimensional distributions.
For any integer the relative entropy or informational diver-
gence is defined by

In our notation Marton’s inequality states that if is a sta-
tionary ergodic process and is an i.i.d. process, then

Since is an i.i.d. equiprobable process with alphabet size ,

and taking the limit as yields (in view of property (2)
of the distance)

Applying this to and taking the limit using the previous
part of the lemma completes the proof.

Lemma 6: Let denote the -fold product of a proba-
bility distribution on the real line such that .
Assume is a sequence of probability distribution on
such that If are
random variables with joint distribution , then for all

Proof: The convergence of to in distance im-
plies that there exist i.i.d. random variables with
common distribution and a sequence or random variables
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with joint distribution , all defined on
the same probability space, such that

(36)

First note that this implies for all

(37)

Also, (Cauchy-Schwarz), so that for all
,

(38)

Now the statement is direct convergence of the fact that in any
inner product space, the inner product is jointly continuous.
To be more concrete, letting and

for random variables and with finite second
moment defined on this probability space, we have the bound

Since converges to by (37) and con-
verges to zero by (36), we obtain that converges to

, i.e.

since and are independent if . This and (38) imply
the lemma statement.
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