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Two structured multiple description (MD) vector quantization schemes with an iterative technique for designing the codebooks and partitions are proposed.
The schemes are derived from the recent theoretical work by Chen et al. In the first scheme, the central decoder is formed by the weighted sum of the side
codebooks, whereas the second scheme employs the optimum central decoder. The objective of the proposed iterative method is to minimize a Lagrangian
cost function (defined as the weighted sum of the central and side distortions) to jointly design the side codebooks and find the associated partitions. The
optimal parameters for minimizing the central distortion are also found. Simulations demonstrate that the proposed methods achieve performance close to
that of the unstructured, full-search MD quantizer with considerably less complexity and with only a few iterations.

Deux approches structurées de quantification vectorielle à description multiple (DM), basées sur une démarche itérative de la conception technique du livre
de code (codebook) et des partitions, sont proposées en référence aux récents travaux théoriques de Chen et al. Dans le premier cas, le décodeur central est
constitué de la somme pondérée des codebooks latéraux, tandis que la seconde approche emploie le régime optimal du décodeur central. L’objectif de la
méthode itérative proposée est de réduire au minimum la fonction lagrangienne de coût (définie comme la somme pondérée des distorsions centrales et des
côtés) pour concevoir conjointement les codebooks latéraux et les partitions associées. Les paramètres optimaux pour réduire au minimum la distorsion
centrale sont également trouvés. Les simulations montrent que les méthodes proposées réalisent une performance proche de celle d’un quantificateur DM
non structuré à pleine recherche avec beaucoup moins de complexité et peu d’itérations.
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I Introduction

Multiple description (MD) quantization is a promising approach for
gaining robustness for transmission over a diversity communication
system with several channels. In this technique, the source is quantized
and mapped to a set of descriptions which are sent separately over
multiple independent channels. Each description can be individually
decoded with small degradation, but if all descriptions are available
they can be jointly decoded to obtain a higher quality reconstruction.
In the general two-description quantization problem, source samples
are quantized into two descriptions with rates R1 and R2, respectively.
The reconstructions of the received descriptions induce the side distor-
tions D1 and D2, respectively; if both descriptions are received, the
central distortion is D0. In many applications, a balanced design is
considered, where R1 = R2 and D1 = D2 [1]–[2].

The first constructive method towards multiple description scalar
quantization (MDSQ) was proposed in [3] and [4]. The key compo-
nent of this method is the index assignment, which maps an index to
an index pair to be transmitted over two separate channels. The de-
sign of the index assignment is a difficult problem. The authors of [3]
and [4] provided several heuristic methods for constructing balanced
index assignments which are not necessarily optimal, but are likely to
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perform well. The analysis of this class of balanced quantizers reveals
that asymptotically (at high rates) it is 3.07 dB away from the rate-
distortion bound [5] in terms of the central and side distortion product
when a uniform central quantizer is used. This granular distortion gap
can be reduced by 0.4 dB when the central quantizer cells are better
optimized [6].

The framework of MDSQ was later extended to multiple descrip-
tion lattice vector quantization (MDLVQ) in [7]. The design relies
heavily on the choice of the lattice structure to facilitate the construc-
tion of index assignments. The analysis of these quantizers shows
that the constructions are high-resolution optimal for asymptotically
high dimensions. However, for lower dimensions, optimization of the
code cells can also improve the high-resolution performance [8]–[9].
The major difficulty in constructing both MDSQ and MDLVQ is to
find good index assignments, and thus the overall design would be
simplified significantly if the index-assignment component could be
eliminated altogether. Recently, Chen et al. [10] developed an MD
quantization method via Gram-Schmidt orthogonalization that avoids
the index-assignment problem. This technique promises to obtain the
El Gamal-Cover (EGC) [2] achievable rate-distortion region for a
memoryless Gaussian source at all rates, and for a memoryless non-
Gaussian source at high rates, by subtractive dithering and successive
quantization along with quantization splitting. Inspired by this interest-
ing successive quantization scheme, we propose two practical multiple
description quantization schemes with an iterative method to jointly
design the codebooks so as to minimize a Lagrangian cost function
that includes central and side distortions. We also find optimality con-
ditions in order to obtain a joint codebook design algorithm for both
proposed MD quantization schemes.

The rest of the paper is organized as follows. Section II explains the
basic structure of the proposed MD quantizers. The design technique
is discussed in Section III. Optimal transformations and parameters are
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Figure 1: MDVQ with two channels: (a) MDVQ-WSC scheme in which the central code-
book is generated as the weighted sum of the two side codebooks; (b) MDVQ-OC scheme
using the optimum central decoder.

found in Section IV. Section V provides the complexity comparison.
Simulation results are presented in Section VI. Finally, Section VII
concludes the paper.

II Proposed MD quantization schemes

In [10] a structured MD entropy-constrained vector quantization (MD-
ECVQ) scheme was proposed and shown to be asymptotically opti-
mal within the limit of large block lengths. Our goal is to develop a
method to iteratively optimize the structured quantization scheme pro-
posed in [10] for practical quantizer dimensions, an issue that was not
studied in [10]. The structure of the proposed MDVQ scheme is de-
picted in Fig. 1. The structures shown are similar to that of the asymp-
totically optimal MD-ECVQ scheme of [10], except that the dithered
lattice quantizers are replaced by ordinary nearest-neighbour vector
quantizers. These multiple description systems produce two different
lossy descriptions of the source with quantizers Q(1) and Q(2). The
input is a k-dimensional vector X. The quantizer Q(1) uses a code-
book Y = {y1,y2, . . . ,yN}, and the quantizer Q(2) uses a codebook
Z = {z1, z2, . . . , zM}. Both Q(1) and Q(2) are nearest-neighbour
quantizers. Since we are interested in the balanced case where chan-
nels operate at equal rates, we take M to be equal to N , i.e., M = N .
The encoders Q(1)

e and Q(2)
e generate indices i and j, which corre-

spond to code vectors yi and zj respectively. In other words, if the
input vector x lies in the central partition region Wij , then indices i
and j are generated. This input will be mapped to code vectors yi and
zj at the first and second side decoder respectively. As a result, we can
introduce new partitions of the input, each associated with a particular
side quantizer as follows:

Ri =
SM

m=1Wim, Sj =
SN

n=1Wnj , (1)

where Ri is the set of all input vectors mapped to the first side quan-
tizer index i, and Sj is similarly the set of all input vectors mapped
to the second side quantizer index j. The input to the second quan-
tizer, Q(2), is produced by linear transformation (scaling) of the input
vector X and Q(1)(X) (or equivalently Q(1)

d (Q(1)
e (X))) with scalars

a1 and a2. The indices i and j are transmitted over the separate chan-
nels provided by the diversity system. If only one of the indices is
received, the corresponding side decoder is used to reconstruct the
source vector. However, if both indices are received, the central de-
coder of the MDVQ with weighted sum central (MDVQ-WSC) de-
coder scheme reconstructs the source using linear transformations of
the received decoded descriptions with transformation matrices β1 and
β2. The optimized transformations a1, a2, β1, and β2 are discussed in
Section IV. After the encoder and decoder of the quantizers are de-
signed, the linear transformation can be replaced by the optimal MD
decoder Q(0). If both indices are received by the MDVQ with opti-
mum central (MDVQ-OC) decoder system, the decoder uses the opti-
mum central codebook to reconstruct the source. This will improve the
central decoder’s performance at the cost of increased complexity.

III Design method

In this section, we present an iterative algorithm for designing the
quantizers. The algorithm iteratively minimizes a Lagrangian cost
function which includes constraints on the side distortions. This pro-
cedure leads to a possibly sub-optimal design of quantizers under the
given constraints. The Lagrangian cost function is given by

L = λ0D0 + λ1D1 + λ2D2

= λ0E
h
‖ X− β1Q

(1)(X)− β2Q
(2)(X) ‖2

i

+ λ1E
h
‖ X−Q(1)(X) ‖2

i
+ λ2E

h
‖ X−Q(2)(X) ‖2

i
, (2)

where λ0, λ1, and λ2 are positive constants. The optimality conditions
for minimizing the Lagrangian function are derived in the next section.

III.A Optimality conditions for the MDVQ-WSC system
For a fixed second side quantizer Q(2) and for a given first side quan-
tizer Q(1) partition of the input space, the Q(1) codebook is optimal
if, for each i, yi minimizes the conditional Lagrangian function given
the region Ri. As a result, the optimal yi is the y that minimizes the
conditional Lagrangian function

L1,i = λ0E
h
‖ X− β1y − β2Q

(2)(a1X + a2y) ‖2| X ∈ Ri

i

+ λ1E
ˆ
‖ X− y ‖2| X ∈ Ri

˜
. (3)

Since y is an argument of the quantization function Q(2), an explicit
minimization solution of the Lagrangian function turns out to be in-
tractable. However, if we ease the notion of optimality as in [11] and
fix Q(2), then the above Lagrangian function becomes quadratic in y
and can be minimized with an iterative technique which takes the en-
coder of the second quantizer to be fixed while optimizing the decoder
of the first quantizer. Thus, we seek y to minimize the Lagrangian
function

L1,i = λ0E
ˆ
‖ X− β1y − β2U ‖2| X ∈ Ri

˜

+ λ1E
ˆ
‖ X− y ‖2| X ∈ Ri

˜
, (4)

where U = Q(2)(a1X+a2yi). Taking the gradient of (4) with respect
to y yields

∂L1,i

∂y
= −2λ0β

T
1 E [(X− β1y − β2U) | X ∈ Ri]

− 2λ1E [(X− y) | X ∈ Ri] . (5)

The optimal y can then be found by solving the equation
“
λ0β

T
1 β1 + λ1I

”
y = λ0β

T
1 E [(X− β2U) | X ∈ Ri]

+ λ1E [X | X ∈ Ri] , (6)



MORADI / LINDER / GAZOR: MULTIPLE DESCRIPTION CODING BY SUCCESSIVE QUANTIZATION 135

where I is the identity matrix. The solution of the above equation is
given by

y∗i =
“
λ0β

T
1 β1 + λ1I

”−1 “
λ0β

T
1 E

h“
X− β2Q

(2) (a1X + a2yi)
”

| X ∈ Ri] + λ1E [X | X ∈ Ri]) . (7)

For a fixed Q(1) and for a given Q(2) partition of the input space, the
Q(2) codebook is optimal if, for each j, zj minimizes the conditional
Lagrangian function in region Sj . Then, the optimal zj is the z that
minimizes the conditional Lagrangian function

L2,j = λ0E
h
‖ X− β1Q

(1)(X)− β2z ‖2| X ∈ Sj

i

+ λ2E
ˆ
‖ X− z ‖2| X ∈ Sj

˜
. (8)

Similarly, we seek z to minimize the Lagrangian function

L2,j = λ0E
ˆ
‖ U(X)− β2z ‖2| X ∈ Sj

˜

+ λ2E
ˆ
‖ X− z ‖2| X ∈ Sj

˜
, (9)

where U(X) = X − β1Q
(1)(X). Taking the gradient of (9) with

respect to z yields

∂L2,j

∂z
= −2λ0β

T
2 E [(U(X)− β2z) | X ∈ Sj ]

− 2λ2E [(X− z) | X ∈ Xj ] . (10)

The optimal z can then be found by solving the equation
“
λ0β

T
2 β2 + λ2I

”
z = λ0β

T
2 E [U(X) | X ∈ Sj ]

+ λ2E [X | X ∈ Sj ] . (11)

The solution of the above equation is given by

z∗j =
“
λ0β

T
2 β2 + λ2I

”−1

×
“
λ0β

T
2 E[X− β1Q

(1)(X) | X ∈ Sj ] + λ2E[X | X ∈ Sj ]
”
. (12)

Equations (7) and (12) provide the design conditions required to
improve the codebooks of the side quantizers in an iterative procedure
in order to minimize the Lagrangian cost function.

III.B Optimality conditions for the MDVQ-OC system
The derivation of optimality conditions for the MDVQ-OC system is
almost identical to the argument in the previous section. Since this
scheme uses the optimum central decoder, the first terms of L1,i in (4)
vanish, and the optimal y∗ and z∗ are found to be

y∗i = E [X | X ∈ Ri] , (13)
z∗j = E [X | X ∈ Sj ] . (14)

III.C Design algorithm
This section introduces an iterative technique to enhance the code-
books and, consequently, minimize the Lagrangian cost function as the
optimization criterion. The iterative algorithm is similar to the Gener-
alized Lloyd Algorithm (GLA) [12]. However, unlike the GLA, it does
not necessarily produce a non-increasing sequence of Lagrangian val-
ues. Suppose we have a training set T that includes L training vectors
xl, l = 1, 2, . . . , L. We use the superscript (n) to indicate variables
in the n-th iteration step. Suppose we have initial codebooks Y(0)

and Z(0), obtained by traditional single-description design, for the first
and second quantizer respectively. Let Ln denote the Lagrangian value
computed in the n-th iteration step. The iterative algorithm steps are
as follows:

1. Encode and partition training set: Encode each vector in the
training set with the current codebooks. Let i(k) and j(k) denote
the indices generated in encoding vector xk ∈ T. Compute the
Lagrangian cost Ln+1.

2. Termination test: If |Ln − Ln+1|/Ln < δ, where δ is a fixed
small positive threshold, or if n exceeds the maximum number
of desired steps, terminate the algorithm.

3. Update the Q(1) codebook: Replace each code vector in the
first side quantizer codebook by the conditional centroid accord-
ing to (7) and (13) for MDVQ-WSC and MDVQ-OC respectively
in order to obtain the new codebook Y(n+1).

4. Encode and repartition training set: Produce a new set of in-
dices i(k) and j(k) according to the updated codebook Y(n+1).

5. Update the Q(2) codebook: Replace each code vector in the
second side quantizer codebook by the conditional centroids
given in (12) and (14) for MDVQ-WSC and MDVQ-OC respec-
tively to obtain the new codebook Z(n+1). Go back to step 1.

Since the encoder generates optimal partitions only by jointly
searching the codebooks, it may rarely happen that the Lagrangian
value increases in an iteration. The possibility of a non-monotonic La-
grangian sequence raises the issue of how to effectively terminate the
iterative process. Similarly to the remedy proposed in [11], the termi-
nation step may be modified so that the algorithm will terminate when
the relative change in Ln is less than δ for several consecutive steps,
or when the total number of algorithm steps has reached a given limit.
Another consequence of the non-monotonicity in Ln is that the final-
stage codebooks at termination may not be the best ones. This problem
is easily resolved by choosing the codebooks from an intermediate it-
eration with the lowest Ln.

Once the encoder and decoder of the MDVQ-WSC quantizers are
found by the proposed iteration technique, the central decoder can be
replaced by the optimal MD decoder. In other words, given received
code vectors yi and zj from the first and second channels respectively,
the optimal central decoder Q(0)

d reconstructs the central description
as Q(0)

d (yi, zj) = E[X | X ∈ Wij ]. According to our simulation re-
sults, this adjustment yields better performance by the central decoder.

IV Optimal transformations and parameters

IV.A Optimal ai

Assuming a balanced case, we must choose a1 and a2 carefully such
that they lead to balanced side distortions, D1 ≈ D2. We investigated
the effect of a1 and a2 on the side distortions. Fig. 2 shows the side dis-
tortions as the coefficient a2 increases and a1 is kept fixed at a1 = −1
for k = 4 and R = 0.5 bits per source sample (bpss). The source is a
unit-variance memoryless Gaussian source. The side distortion of the
first quantizer remains almost constant, while the second side distor-
tion changes slightly with various values of a1 and a2.

IV.B Optimal βi

We can easily derive the optimal transformations β1 and β2 by mini-
mizing the central distortion, D0 = E[‖ X−β1X̂1−β2X̂2 ‖2], with
respect to the matrices β1 and β2. Using the orthogonality principle,
the optimal β1 and β2 must satisfy

E
h“

X− β1X̂1 − β2X̂2

”
X̂T

1

i
= 0, (15)

E
h“

X− β1X̂1 − β2X̂2

”
X̂T

2

i
= 0. (16)

If we define β to equal [β1 β2] and X̂T to equal [X̂T
1 X̂T

2 ], then we
can rewrite (15) and (16) as E[(X− βX̂)X̂T ] = 0. As a result, β can
be found by solving βE[X̂X̂T ] = E[XX̂T ], which yields

β = E
h
XX̂T

i “
E

h
X̂X̂T

i”−1
.

IV.C Choosing Lagrangian multipliers λi

We introduced an iteration technique in the previous section in order
to minimize the Lagrangian cost function for a fixed set of Lagrangian
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Figure 2: Distortion of the side decoders as the coefficient a2 increases (a1 = −1,
k = 4, and R = 0.5 bpss).

multipliers λi, i = 0, 1, 2. For the target side distortions, another prob-
lem remains; namely, to find the optimal λ∗i , i = 0, 1, 2, that leads
the side distortions to converge to the desired target side distortion. In
fact, each set of (λ0, λ1, λ2) corresponds to a single point on the con-
vex hull of an MD achievable distortion region. This implies that as
the values of λi, i = 0, 1, 2, change, we have a tradeoff between cen-
tral and side distortions. Therefore, appropriate selection of λi leads
to the desired target distortions at the side decoders. The search for
(λ0, λ1, λ2) is somewhat analogous to the search for the appropriate
value of λ, or equivalently the slope of the rate-distortion function, in
the design of an entropy-constrained vector quantizer [13]. For ECVQ,
[13] proposes a bisection approach to facilitate the code design for a
particular desired rate. The ECVQ algorithm designs a vector quan-
tizer for a specific λ at the middle of a range [λmin, λmax]. The design
process then shortens this range to the lower or higher half in the di-
rection that decreases the gap between the obtained and desired rates.
Now consider the Lagrangian function introduced in (2). For balanced
distortions where λ1 = λ2 = λ̃ and Ds = 1/2(D1 + D2), the La-
grangian function in (2) can be rewritten as

L = λ0D0 + λ̃(D1 + D2)

= λ0D0 + 2λ̃Ds. (17)

Since only the relative values of the Lagrangian multipliers are mean-
ingful [14], we can divide (17) by λ0. Then the Lagrangian function
reduces to

L = D0 + λDs, (18)
where λ = 2λ̃/λ0. As shown in [15], a small value of λ leads to a
higher Ds, and a large value of λ leads to a smaller Ds. Thus, we
can modify the iterative technique of the previous section as follows.
Similarly to the approach proposed in [13], we limit the value of λ to
the range [0, 1] and set λ = 0.5 as the initial value. We then observe
the obtained average side distortion Ds at the end of each iteration.
If the obtained Ds is higher than the target side distortion, we simply
shorten the range of λ to the higher half. Similarly, if the obtained Ds

is lower than the target side distortion, we shorten the range of λ to
the lower half. It should be noted that obtaining a Ds lower than the
target side distortion is not necessarily desired since it leads to a higher
central distortion. For instance, if the observed Ds is higher than the
target side distortion at the end of the first iteration, we update λ to
0.75, which is the middle of the range [0.5, 1]. Alternatively, consider
the obtained Lagrangian function at the end of the n-th iteration as

Ln = λ0,nD0,n + λ1,nD1,n + λ2,nD2,n. (19)

For the target side distortions D1,t and D2,t, we propose to modify the
Lagrangian multipliers of (19) as follows:

λ̃i,n+1 = λi,n
Di,n

Di,t
, i = 1, 2, (20)

Figure 3: Effect of tuning the Lagrangian multipliers on side distortions for a memoryless
Gaussian input source with unit variance and target side distortions D1,t = D2,t =
0.66 (k = 4 and R = 0.5 bpss).

Table 1
Comparison of computational complexity and memory

requirements for k-dimensional input vector
(R1 = R2 = R bpss, N = 2kR )

Computational Memory
complexity requirement

Optimum MDVQ N2k N2k + 2N2

MDVQ-OC N2 + 4Nk 4Nk + N2

MDVQ-WSC 4Nk 4Nk + 2N

λ̃0,n+1 = λ0,n. (21)

Assuming that the sum of multipliers is one, we normalize λ̃i,n+1,
i = 0, 1, 2, as

λi,n+1 =
λ̃i,n+1P2

j=0 λ̃j,n+1

, i = 0, 1, 2. (22)

In this way Ln remains a convex combination of individual distor-
tions. In general, (20) simply scales λi,n, i = 1, 2, proportionally to
the ratio of the observed corresponding side distortion to the target
side distortion, and (22) normalizes the resulting λ̃i,n+1, i = 0, 1, 2.
As a result, this may lead to the faster convergence of λi, i = 0, 1, 2,
to the optimal values. This simple procedure allows us to efficiently
control the tradeoff between the central and side distortions. Fig. 3
demonstrates the effect of tuning the Lagrangian multipliers according
to (20)–(22) on the observed side distortions for a four-dimensional
memoryless unit-variance Gaussian input source and target side dis-
tortions D1,t = D2,t = 0.66 with rate R = 0.5 bpss.

V Complexity and memory requirements

In this section the computational complexity and memory require-
ments of our proposed methods are compared with those of Vaisham-
payan’s potentially optimum MD vector quantizer [3]. The scheme
proposed in [3] is a very general form of MDVQ that can, if its pa-
rameters are appropriately chosen, achieve optimal performance for
a given quantizer dimension. However, because of its general struc-
ture, the scheme is rather complex. Also, in practice its optimality is
not guaranteed, as the iterative algorithm for its design ensures only
convergence to a locally optimum solution. The computational com-
plexity, which is the number of multiplication and addition operations,
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Figure 4: The complexity comparison as a function of bit rate for four-dimensional source
vector.

Table 2
Selected performance results for quantizer dimension k with

correlation coefficient ρ and rates R1 = R2 = 0.5 bpss

ρ k SNRside SNRcen (dB) Optimum
(dB) MDVQ-WSC MDVQ-OC MDVQ

0.0 4 1.65 4.47 4.52 4.55
0.0 8 1.75 4.89 4.96 5.01
0.9 4 6.15 8.13 8.21 8.29
0.9 8 7.45 9.82 9.91 10.01

and the memory requirements are compared in Table 1. The number
of operations required to encode each k-dimensional input vector in
a conventional vector quantizer depends mainly on the calculation of
distortion between two vectors and is given by N2k operations. In
our proposed methods, (7) and (12) for MDVQ-WSC and (13) and
(14) for MDVQ-OC give the number of required operations, which
are 4Nk and N2 + 4Nk respectively. Fig. 4 also shows the complex-
ity comparison as the bit rate increases. It is clear that our proposed
methods, and in particular the MDVQ-WSC method, can significantly
reduce the computational complexity and memory requirements when
a squared-error distortion measure is used for distortion.

VI Simulation results

Simulation results are provided in this section for the MDVQ-WSC
and MDVQ-OC schemes with two channels for a zero-mean unit-
variance stationary first-order Gauss-Markov source with correlation
coefficient ρ. The encoding rates are set to R1 = R2 = 0.5 bpss.
Block sizes k = 4 and k = 8 are considered. We have also set
λ1 = λ2 = λ in all the results presented here. A training set of length
50 000 source vectors was used along with a termination threshold of
0.001 in all cases.

Initialization of the design algorithm is an important issue when one
seeks to obtain an initial set of codebooks. The first applied initializa-
tion technique selects the codebook obtained by uniform partitioning
of the training set. We have also used two other initialization tech-
niques reported in [3]. Neither technique achieves results that are uni-
formly better than the other’s. The presented simulation results are the
best that have been obtained using all three initialization techniques.

Figs. 5 and 6 show the simulation results for ρ = 0 (memory-
less Gaussian source) and ρ = 0.9 (highly correlated Gauss-Markov

Figure 5: MDVQ for unit-variance memoryless Gaussian 4- and 8-dimensional source
vectors at R = 0.5 bpss for various values of λ.

Figure 6: MDVQ for unit-variance Gauss-Markov 4- and 8-dimensional source vectors
with ρ = 0.9 at R = 0.5 bpss for various values of λ.

source). We have plotted the SNR for the central decoder, SNRcen =
10log10(1/D0), as a function of SNRside = 10log10(2/(D1 + D2)),
for various values of λ. The optimum rate-distortion bound is the same
as that given in [3].

Table 2 shows selected performance results for a memoryless Gaus-
sian source as well as for a Gauss-Markov source with ρ = 0.9 and
R1 = R2 = 0.5 bpss. These results are compared with the best experi-
mental results achieved by Vaishampayan’s optimum MDVQ in [3]. As
can be seen from the table, the performance of our proposed schemes
is very close to that of the optimum MDVQ. Simulation results also re-
veal the significant improvement in performance obtained by increas-
ing the block size k in all cases, as expected from the known property
of vector quantization. An increase in block size results in a greater
improvement for ρ = 0.9 than for ρ = 0. For instance, for a memory-
less Gaussian source, only 0.15 dB are gained when the block size is
increased from k = 4 to k = 8 at SNRside = 1.5 dB for the MDVQ-
WSC scheme. However, for a Gauss-Markov source with correlation
coefficient ρ = 0.9, a gain of 1.15 dB is achieved for the same in-
crease in the block size from k = 4 to k = 8 at SNRside = 3.0 dB.
This result indicates the significance of increasing the block size for
highly correlated sources such as speech and video. Since the tradeoff
between central and side distortion can be carefully controlled by se-
lecting appropriate values for λ1, λ2, and λ0, our approach provides
the designer with greater design flexibility.



138 CAN. J. ELECT. COMPUT. ENG., VOL. 33, NO. 3/4, SUMMER/FALL 2008

Table 3
Gain achieved by replacing linear-transformation central
decoder with optimum central decoder in MDVQ-WSC

(R1 = R2 = 0.5 bpss)

Gauss-Markov Uniform Laplacian
ρ = 0.0 ρ = 0.9

k = 4 0.11 dB 0.14 dB 2.3 dB 0.34 dB
k = 8 0.15 dB 0.17 dB 2.8 dB 0.41 dB

As we mentioned in Section III.C, after the encoder and decoder
of the quantizers of the MDVQ-WSC scheme are designed, the linear-
transformation central decoder can be replaced by the optimal MD de-
coder. Doing so results in better performance for the central decoder
of the MDVQ-WSC scheme. Table 3 summarizes the gain achieved
by replacing the central decoder of MDVQ-WSC with the optimum
central decoder for various source distributions. Since, according to
heuristic considerations, the linear transformation performs nearly as
well as the optimum decoder for Gaussian sources, the achieved gain
for Gaussian sources is expected to be negligible. However, since the
output of side decoders is not Gaussian, a small gain is observed. On
the other hand, for uniform source distribution, this gain is significant.

VII Conclusion

We proposed two successive multiple description quantization
schemes with an iterative method to jointly design the codebooks by
minimizing a Lagrangian cost function. This Lagrangian function in-
cludes central and side distortions. We also found optimality condi-
tions and obtained a joint codebook design algorithm for the proposed
MDVQ schemes. The proposed MD vector quantization schemes have
relatively low complexity and, for moderately large dimensions, still
perform comparably to the more complex, potentially optimal, un-
structured MD vector quantization scheme in [3].
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