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Abstract

Given finite-dimensional random vectors Y, X, and Z that form a Markov chain in that order
(Y → X → Z), we derive the upper bounds on the excess minimum risk using generalized
information divergence measures. Here, Y is a target vector to be estimated from an
observed feature vector X or its stochastically degraded version Z. The excess minimum
risk is defined as the difference between the minimum expected loss in estimating Y from X
and from Z. We present a family of bounds that generalize a prior bound based on mutual
information, using the Rényi and α-Jensen–Shannon divergences, as well as Sibson’s mutual
information. Our bounds are similar to recently developed bounds for the generalization
error of learning algorithms. However, unlike these works, our bounds do not require
the sub-Gaussian parameter to be constant, and therefore, apply to a broader class of
joint distributions over Y, X, and Z. We also provide numerical examples under both
constant and non-constant sub-Gaussianity assumptions, illustrating that our generalized
divergence-based bounds can be tighter than the ones based on mutual information for
certain regimes of the parameter α.

Keywords: statistical inference; excess minimum risk; sub-Gaussianity; information
divergences; Rényi divergence; α-Jensen–Shannon divergence; Sibson mutual information;
variational characterizations

1. Introduction
The excess minimum risk in statistical inference quantifies the difference between the

minimum expected loss attained by estimating a (target) hidden random vector from a
feature (observed) random vector and the minimum expected loss incurred by estimating
the hidden vector from a stochastically degraded version of the feature vector. The aim of
this work is to derive upper bounds on the excess minimum risk in terms of generalized
information divergence measures such as the Rényi divergence [1], the α-Jensen–Shannon
divergence [2,3] and the Sibson mutual information [4,5].

Recently, several bounds of this nature, expressed in terms of information-theoretic
measures, have appeared in the literature, including [6–17] among others. Most of these
works have focused on the (expected) generalization error of learning algorithms. In [6], Xu
and Raginsky established bounds on the generalization error in terms of Shannon’s mutual
information between the (input) training dataset and the (output) hypothesis; these bounds
are tightened in [7] by using the mutual information between individual data samples
and the hypothesis. In [11], Modak et al. extend these works by obtaining upper bounds
on the generalization error in terms of the Rényi divergence, employing the variational
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characterization of the Rényi divergence [18–20]. The authors also derive bounds on the
probability of generalization error via Rényi’s divergence, which recover the bounds of
Esposito et al. [9] (see also [8,10] for bounds expressed in terms of the f -divergence [21]).
More recently, Aminian et al. [17] obtained a family of bounds on the generalization error
and excess risk applicable to supervised learning settings using a so-called “auxiliary dis-
tribution method.” In particular, they derive new bounds based on the α-Jensen–Shannon
and α-Rényi mutual information measures. Here, both measures are defined via diver-
gences between a joint distribution and a product of its marginals: the former using the
Jensen–Shannon divergence of weight α [3] (Equation (4.1)) (which is always finite), and the
latter using the Rényi divergence of order α. Beyond learning-theoretic settings, Rényi
divergence-based measures have also been successfully applied to classification problems,
including time series and pattern classification, via belief and fractal extensions of the
divergence [22–24]. In addition to information-theoretic approaches, generalization bounds
based on PAC-Bayesian theory [25,26], particularly those involving f -divergences and
Rényi-type divergences, have been actively studied. Separately, generalization bounds
based on the Wasserstein distance [27] have also been established as an alternative ap-
proach based on optimal transport techniques. Connections between generalization error
and transportation cost inequalities were explored in [28], recovering previous mutual
information-based bounds and deriving a family of new bounds. A convex analytic ap-
proach is taken in [29], where information-theoretic measures of the dependence between
input and output are replaced with arbitrary strongly convex functions of the input and
output joint distribution. The resulting new generalization bounds either complement
prior results or improve on these. Other works concerning the analysis of generalization
error include [12,30] for deep learning generative adversarial networks [31] and [16] for the
Gibbs algorithm (see also the extensive lists of references therein).

In this paper, we focus on the excess minimum risk in statistical inference. Our motiva-
tion is to generalize the results of Györfi et al. [14], who derived a mutual information-based
upper bound that applies to a broad class of loss functions under standard sub-Gaussianity
assumptions. Related but distinct work includes [13,15], where information-theoretic
bounds on excess risk are developed in a Bayesian learning framework involving training
data. Lower bounds on the Bayes risk in terms of information measures were recently
developed in [32]. The contributions of our paper are as follows:

• We extend the bound in [14] by introducing a family of bounds based on generalized in-
formation divergence measures, namely, the Rényi divergence, the α-Jensen–Shannon
divergence, and the Sibson mutual information, parameterized by the order α ∈ (0, 1).
Unlike [11] and [17] , where the sub-Gaussian parameter is assumed to be constant, our
setup allows this parameter to depend on the (target) random vector being estimated.
This makes our bounds applicable to a broader class of joint distributions over the
random vectors involved.

• For the Rényi divergence based bounds, we adopt an approach similar to that of [11],
deriving upper bounds by making use of the the variational representation of the
Rényi divergence.

• For the bounds involving the α-Jensen–Shannon divergence and the Sibson mutual
information, we follow the methodology of [17], employing the auxiliary distribution
method together with the variational representation of the Kullback–Leibler (KL)
divergence [33].

• We provide simple conditions under which the α-Jensen–Shannon divergence bound
is tighter than the other two bounds for bounded loss functions.

• We compare the bounds based on the aforementioned information divergence mea-
sures with mutual information-based bounds by providing numerical examples.
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Our problem of bounding the excess minimum risk is closely related to recent work on
generalization error in learning theory. In both settings, the goal is to understand how much
performance is lost when a target variable is estimated from a less informative or trans-
formed version of the input. In learning theory, this is often studied through generalization
bounds, which compare the performance of a learned predictor on training and test data.
As already stated, several recent works have used information-theoretic tools—such as mu-
tual information and its generalizations—to bound the generalization error (e.g., [6,11,17]).
Although these works focus on algorithm-dependent error, the structure of the bounds is
similar to ours. Our bounds, instead, are on the excess minimum risk, which compares the
best possible performance using full observations versus using degraded ones. Still, both
approaches rely on similar tools, including variational characterizations and divergence
measures. In this sense, our work takes a different but related approach by studying the
basic limits of inference, rather than how well a particular algorithm performs.

This paper is organized as follows. In Section 2, we provide preliminary definitions
and introduce the statistical inference problem. In Section 3, we establish a family of
upper bounds on the excess minimum risk, expressed in terms of the Rényi divergence,
the α-Jensen–Shannon divergence, and the Sibson mutual information, all parameterized
by the order α ∈ (0, 1). We also present several numerical examples, including cases with
both constant and non-constant sub-Gaussian parameters, all of which demonstrate that
the proposed bounds are tighter than the mutual information bound for a range of values
of α. Additionally, Section 3 includes an analytical comparison of the proposed bounds
under bounded loss functions. In Section 5, we provide concluding remarks and suggest
directions for future work.

2. Preliminaries
2.1. Problem Setup

Consider a random vector Y ∈ Rp, p ≥ 1, that is to be estimated (predicted) from a
random observation vector X taking values in Rq, q ≥ 1. Given a measurable estimator
(predictor) f : Rq → Rp and a loss function l : Rp ×Rp → R+, the loss (risk) realized in
estimating Y by f (X) is given by l(Y, f (X)). The minimum expected risk in predicting Y
from X is defined by

L∗
l (Y|X) = inf

f :Rq→Rp
E[l(Y, f (X))] (1)

where the infimum is over all measurable f .
We also consider another random observation vector Z that is a random transformation

or stochastically degraded version of X obtained, for example, by observing X through a
noisy channel. Here, Z takes values in Rr, r ≥ 1, and Y, X and Z form a Markov chain in
this order, which we denote as Y → X → Z. We similarly define the minimum expected
risk in predicting Y from Z as

L∗
l (Y|Z) = inf

g:Rr→Rp
E[l(Y, g(Z))], (2)

where the infimum is over all measurable predictors g. With the notation introduced above,
we define the excess minimum risk as the difference L∗

l (Y|Z)− L∗
l (Y|X), which is always

non-negative due to the Markov chain condition Y → X → Z (e.g., see the data processing
inequality for expected risk in [13] (Lemma 1)). Our objective is to establish upper bounds
to this difference using generalized information divergence measures.

In [14], the random vector Z is taken as T(X), a transformation of the random vector
X, where T : Rp → Rr is measurable. The authors derive bounds on the excess minimum
risk using Shannon’s mutual information. Here, we generalize these bounds by employing
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a family of information-divergence measures of order α ∈ (0, 1), which recover Shannon’s
mutual information in the limits α → 0 or α → 1. Furthermore, we use an arbitrary random
vector Z, as the degraded version of the observation X instead of T(X). We also provide
examples where the various generalized information divergence-based bounds perform
better than the mutual information-based bounds of [14] for a certain range α.

We next state some definitions that we will invoke in deriving our results.

2.2. Definitions

Consider two arbitrary jointly distributed random variables U and V defined on the
same probability space (Ω,M) and taking values in U and V , respectively. Let PU and PV

be the marginal distributions of U and V, respectively, and PU,V be a joint distribution over
U × V . We first provide definitions for the Rényi divergence-based measures.

Definition 1 ([1,34]). The Rényi divergence of order α ∈ (0, ∞), α ̸= 1, between the two
probability measures PU and PV is denoted by Dα(PU∥PV) and defined as follows. Let ν be a
sigma-finite positive measure such that PU and PV are absolutely continuous with respect to ν,
written as PU , PV ≪ ν, with Radon–Nikodym derivatives dPU

dν = pU and dPV
dν = pV , respectively.

Then

Dα(PU∥PV) =

{
1

α−1 log
[∫

(pU)
α(pV)

1−αdν
]

if 0 < α < 1 or α > 1 and PU ≪ PV

+∞ if α > 1 and PU ≪̸ PV .

Definition 2. The conditional Rényi divergence of order α between the conditional distributions
PV|U and QV|U given PU is denoted by Dα(PV|U∥QV|U |PU) and given by

Dα(PV|U∥QV|U |PU) = EPU

[
Dα(PV|U( · |U)∥QV|U( · |U)))

]
, (3)

where EPU [ · ] denotes expectation with respect to distribution PU .

Note that the above definition of conditional Rényi divergence differs from the some-
what standard one, which is given as Dα(PV|U PU∥QV|U PU), e.g., see [35] (Definition 3).
We adopt the above definition because it is well-tailored to our setting, which allows sub-
Gaussianity parameters to be random. However, as α → 1, both notions of the conditional
Rényi divergence recover the conditional KL divergence, which is

DKL(PV|U∥QV|U |PU) = DKL(PV|U PU∥QV|U PU) = EPU

[∫
pV|U log

[
pV|U
qV|U

]
dv

]
.

We next provide the definitions for the α-Jensen–Shannon divergence-based measures.

Definition 3 ([2,3]). The α-Jensen–Shannon divergence for α ∈ (0, 1) between two probability
measures PU and PV on a measurable space (Ω,M) is denoted by JSα(PU∥PV) and given by

JSα(PU∥PV) = αDKL(PU∥αPU + (1 − α)PV) + (1 − α)DKL(PV∥αPU + (1 − α)PV), (4)

where DKL(·∥·) is the KL divergence.

Definition 4. The conditional α-Jensen–Shannon divergence between the conditional distributions
PV|U and QV|U given PU is denoted by JSα(PV|U∥QV|U |PU) and given by

JSα(PV|U∥QV|U |PU) = EPU

[
JSα(PV|U( · |U)∥QV|U( · |U))

]
, (5)

where EPU [ · ] denotes expectation with respect to distribution PU .
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Next we define the Sibson mutual information (of order α).

Definition 5 ([4,5]). Let α ∈ (0, 1) ∪ (1, ∞). The Sibson mutual information of order α between
V and U is denoted by IS

α (V; U) and given by

IS
α (V; U) = min

QU∈P(U )
Dα(PU,V∥QU PV), (6)

where P(U ) denotes the set of probability distributions on U .

It is known that Dα(PU,V∥QU PV) is convex in QU [34], which allows for a closed-
form expression for the minimizer and, consequently, for the Sibson mutual information
IS
α (V; U) [9,36]. Let U∗ denote a random variable whose distribution achieves the minimum,

with the corresponding distribution PU∗ . Then, the Sibson mutual information of order α

can equivalently be written as follows.

Definition 6 ([9]). Let ν be a sigma-finite positive measure such that PU,V and PU PV are abso-
lutely continuous with respect to ν × ν, written as PU,V , PU PV ≪ ν × ν, with Radon–Nikodym
derivatives(densities) dPU,V

d(ν×ν)
= pU,V and d(PU PV)

d(ν×ν)
= pU pV , respectively. For α ∈ (0, 1) ∪ (1, ∞),

the Sibson mutual information of order α between V and U can be written as follows:

IS
α (V; U) = Dα(PU,V∥PU∗PV), (7)

where the distribution PU∗ has density

pU∗(u) =
dPU∗

dν
(u) =

(∫ ( pU,V(u, v)
pU(u)pV(v)

)α

pV(v) dv
) 1

α

∫ (∫ ( pU,V(u′, v′)
pU(u′)pV(v′)

)α

pV(v′) dv′
) 1

α

pU(u′) du′

pU(u). (8)

Remark 1. From Definition 6, we note that the Sibson mutual information of order α is a functional
of the distributions PU,V and PU∗ . Hence, from this point onward, we denote with a slight abuse of
notation the Sibson mutual information of order α between V and U by IS

α (PU,V , PU∗).

We end this section with the definitions of the sub-Gaussian and conditional sub-
Gaussian properties.

Definition 7. A real random variable U with finite expectation is said to be σ2-sub-Gaussian for
some σ2 > 0 if

logE[eλ(U−E[U])] ≤ σ2λ2

2
(9)

for all λ ∈ R.

Definition 8. A real random variable U is said to be conditionally σ2-sub-Gaussian given another
random variable V (i.e., under PU|V) for some σ2 > 0 if we have almost surely that

logE[eλ(U−E[U|V])|V] ≤ σ2λ2

2
(10)

for all λ ∈ R.

Throughout the paper, we omit stating explicitly that the conditional sub-Gaussian
inequality holds almost surely for the sake of simplicity.
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3. Bounding Excess Minimum Risk
In this section, we establish a series of bounds on the excess minimum risk based on

different information-theoretic measures. Our approach combines the variational charac-
terizations of the KL divergence [33], the Rényi divergence [18], and the Sibson mutual
information [9] (Theorem 2), along with the auxiliary distribution method introduced
in [17].

3.1. Rényi Divergence-Based Upper Bound

We first state the variational characterization of the Rényi divergence [18], which
generalizes the Donsker–Varadhan variational formula for KL divergence [33].

Lemma 1 ([18] (Theorem 3.1)). Let P and Q be two probability measures on (Ω,M) and
α ∈ (0, ∞), α ̸= 1. Let g be a measurable function such that e(α−1)g ∈ L1(P) and eαg ∈ L1(Q),
where L1(µ) denotes the collection of all measurable functions with finite L1-norm. Then,

Dα(P∥Q) ≥ α

α − 1
logEP[e(α−1)g(X)]− logEQ[eαg(X)]. (11)

We next provide the following lemma, whose proof is a slight generalization
of [11] (Lemma 2) and [14] (Lemma 1).

Lemma 2. Consider two arbitrary jointly distributed random variables U and V defined on the
same probability and taking values in spaces U and V , respectively. Given a measurable function
h : U × V → R, assume that h(u, V) is σ2(u)-sub-Gaussian under PV and PV|U=u for all u ∈ U ,
where E[σ2(U)] < ∞. Then for α ∈ (0, 1),

|E[h(U, V)]−E[h(Ū, V̄)]| ≤

√
2E[σ2(U)]

Dα(PV|U∥PV |PU)

α
,

where Ū and V̄ are independent copies of U and V, respectively, (i.e., PŪ,V̄ = PU PV).

Proof. By the sub-Gaussian property, we have that

logE
[
e(α−1)λh(u,V)−E[(α−1)λh(u,V)|U=u]|U = u

]
≤ λ2(α − 1)2σ2(u)

2
(12)

and

logE[eαλh(u,V)−E[αλh(u,V)]] ≤ λ2α2σ2(u)
2

. (13)

Re-arranging the terms gives us

− logE
[
e(α−1)λh(u,V)|U = u

]
≥ −λ2(α − 1)2σ2(u)

2
+E[(1 − α)λh(u, V)|U = u] (14)

and

− logE[eαλh(u,V)] ≥ −λ2α2σ2(u)
2

−E[αλh(u, V)]. (15)

Note that by (12) and (13), e(α−1)λh(u,V) ∈ L1(PV|U=u) and eαλh(u,V) ∈ L1(PV). By the
variational formula in (11), we have that

Dα(PV|U=u∥PV) ≥
α

α − 1
logE[e(α−1)λh(u,V)|U = u]− logE[eαλh(u,V)]. (16)
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Substituting (14) and (15) in (16) yields

Dα(PV|U=u∥PV) ≥
α

1 − α

(
−λ2(α − 1)2σ2(u)

2
+E[(1 − α)λh(u, V)|U = u]

)
− λ2α2σ2(u)

2
−E[αλh(u, V)]

= αλ(E[h(u, V)|U = u]−E[h(u, V)])− λ2α(1 − α)σ2(u)
2

− λ2α2σ2(u)
2

= αλ(E[h(u, V)|U = u]−E[h(u, V)])− λ2ασ2(u)
2

.

The left-hand side of the resulting inequality

λ2ασ2(u)
2

− αλ(E[h(u, V)|U = u]−E[h(u, V)]) + Dα(PV|U=u∥PV) ≥ 0

is a non-negative quadratic polynomial in λ. Thus, the discriminant is non-positive and
we have

(α(E[h(u, V)|U = u]−E[h(u, V)]))2 ≤ 4
(

ασ2(u)
2

)
Dα(PV|U=u∥PV).

Therefore,

|E[h(u, V)|U = u]−E[h(u, V)]| ≤

√
2σ2(u)Dα(PV|U=u∥PV)

α
. (17)

Since Ū and V̄ are independent and PV̄ = PV , we have that

E[h(u, V)] = E[h(Ū, V̄)|Ū = u].

Therefore, we have

|E[h(U, V)]−E[h(Ū, V̄)]| =
∣∣∣∣∫ (E[h(U, V)|U = u]−E[h(Ū, V̄)|Ū = u])PU(du)

∣∣∣∣
=

∣∣∣∣∫ (E[h(u, V)|U = u]−E[h(u, V)])PU(du)
∣∣∣∣

≤
∫
|(E[h(u, V)|U = u]−E[h(u, V)]|PU(du) (18)

≤
∫ √2σ2(u)Dα(PV|U=u∥PV)

α
PU(du) (19)

≤
√∫

2σ2(u)PU(du)

√∫ Dα(PV|U=u∥PV)

α
PU(du) (20)

=

√
2E[σ2(U)]

Dα(PV|U∥PV |PU)

α
, (21)

where (18) follows from Jensen’s inequality, (19) follows from (17), (20) follows from the
Cauchy–Schwarz inequality and the definition of conditional Rényi divergence in (3) with
Dα(PV|U∥PV |PU) = EU [Dα(PV|U(·|U)∥PV)].

Note that the Rényi divergence-based bound in Lemma 2 differs from that in [17]
(Theorem 3). In our approach, we consider sub-Gaussianity under both PV and PV|U=u for
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all u ∈ U , which allows for non-constant sub-Gaussian parameters. This leads to a more
general bound that applies to a broader class of loss functions.

We next use Lemma 2 to derive our theorem for the Rényi divergence-based bound;
its proof is an adaptation of [14] (Theorem 3).

Theorem 1. Let X, Y and Z be random vectors such that Y → X → Z, as described in Section 2.1.
Assume that there exists an optimal estimator f of Y from X such that l(y, f (X)) is conditionally
σ2(y)-sub-Gaussian under PX|Z and PX|Z,Y=y for all y ∈ Rp, i.e.,

logE[e(λ(l(y, f (X)))−E[l(y, f (X))|Z])|Z] ≤ σ2(y)λ2

2

and

logE[e(λ(l(y, f (X)))−E[l(y, f (X))|Z,Y=y])|Z, Y = y] ≤ σ2(y)λ2

2

for all λ ∈ R and y ∈ R, where σ2 : R → R, satisfies E[σ2(Y)] < ∞. Then for α ∈ (0, 1),
the excess minimum risk satisfies

L∗
l (Y|Z)− L∗

l (Y|X) ≤
√

2E[σ2(Y)]
α

Dα(PX|Y,Z∥PX|Z|PY,Z). (22)

Proof of Theorem 1. Let X̄, Ȳ and Z̄ be random variables such that PȲ|Z̄ = PY|Z, PX̄|Z̄ =

PX|Z, PZ̄ = PZ and Ȳ and X̄ are conditionally independent given Z̄, i.e., PȲ,X̄,Z̄ =

PY|ZPX|ZPZ.
We apply Lemma 2 by setting U = Y, V = X and h(u, v) = l(y, f (x)). Consider

E[l(Y, f (X))|Z = z]) and E[l(Ȳ, f (X̄))|Z = z] as regular expectations taken with respect
to PY,X|Z=z and PȲ,X̄|Z=z. Since Ȳ and X̄ are conditionally independent given Z̄ = z and
PZ̄ = PZ, we have that

|E[l(Y, f ′(X))|Z = z])−E[l(Ȳ, f (X̄))|Z = z])|

≤
√

2E[σ2(Y)|Z = z]
α

Dα(PX|Y,Z=z∥PX|Z=z|PY|Z=z). (23)

Now,∣∣E[l(Y, f (X))]−E[l(Ȳ, f (X̄))]
∣∣

≤
∫ ∣∣E[l(Y, f (X))|Z = z])−E[l(Ȳ, f (X̄))|Z = z])

∣∣PZ(dz)

≤
∫ (√2E[σ2(Y)|Z = z]

α

×
√

Dα(PX|Y,Z=z∥PX|Z=z|PY|Z=z)

)
PZ(dz)

≤
√

2
∫

E[σ2(Y)|Z = z]PZ(dz)

×

√∫ Dα(PX|Y,Z=z∥PX|Z=z|PY|Z=z)

α
PZ(dz)

=

√
2E[σ2(Y)]

α
Dα(PX|Y,Z∥PX|Z|PY,Z), (24)

where the first inequality follows from Jensen’s inequality and since PZ̄ = PZ, the second
inequality follows from (23), the third from the Cauchy–Schwarz inequality, and the equality



Entropy 2025, 27, 727 9 of 26

follows from (3). Since Ȳ and X̄ are conditionally independent given Z̄, we obtain the
Markov chain Ȳ → Z̄ → X̄. Then, we have

E[l(Ȳ, f (X̄))]) ≥ L∗
l (Ȳ|X̄)

≥ L∗
l (Ȳ|Z̄)

= L∗
l (Y|Z), (25)

where the first inequality follows since Ȳ → X̄ → f (X̄), the second inequality holds since
Ȳ → Z̄ → X̄ by construction, and the equality follows since (Ȳ, Z̄) and (Y, Z) have the
same distribution by construction. Since f is an optimal estimator of Y from X, we also have

E[l(Y, f (X))]) = L∗
l (Y|X). (26)

Therefore, using (25) and (26) in (24) combined with the fact that L∗
l (Y|Z) ≥ L∗

l (Y|X), we
arrive at the desired inequality:

L∗
l (Y|Z)− L∗

l (Y|X) ≤
√

2E[σ2(Y)]
α

Dα(PX|Y,Z∥PX|Z|PY,Z).

Remark 2. Taking the limit as α → 1 of the right-hand side of (22) in Theorem 1, we have that

L∗
l (Y|Z)− L∗

l (Y|X) ≤
√

2E[σ2(Y)] DKL(PX|Y,Z∥PX|Z|PY,Z)

=
√

2E[σ2(Y)] (I(X; Y)− I(Z; Y)), (27)

recovering the bound in [14] (Theorem 3).

As a special case, we consider bounded loss functions, which naturally satisfy the
conditional sub-Gaussian condition. The following corollary is an application of Theorem 1
under a fixed sub-Gaussian parameter. For completeness, we include the full proof.

Corollary 1. Suppose the loss function l is bounded, i.e., ∥l∥∞ = supy,y′ l(y, y′) < ∞. Then
for random vectors X, Y and Z such that Y → X → Z as described in Section 2.1, we have the
following inequality for α ∈ (0, 1) on the excess minimum risk:

L∗
l (Y|Z)− L∗

l (Y|X) ≤ ∥l∥∞√
2

√
Dα(PX|Y,Z∥PX|Z|PY,Z)

α
. (28)

Proof. We show that the bounded loss function l satisfies the conditional sub-Gaussian
properties of Theorem 1. Since l is bounded we have that for any f : Rq → Rp, x ∈ Rq and
y ∈ Rp, l(y, f (x)) ∈ [0, ∥l∥∞]. Then, by Hoeffding’s lemma [37], we can write

logE[e(λ(l(y, f (X)))|Z] ≤ E[λl(y, f (X))|Z]) + ∥l∥2
∞λ2

8

and

logE[e(λ(l(y, f (X)))|Z, Y = y] ≤ E[λl(y, f (X))|Z, Y = y]) +
∥l∥2

∞λ2

8
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for all λ ∈ R and y ∈ R. Rearranging the above inequalities gives us that l(y, f (X)) is

conditionally ∥l∥2
∞

4 -sub-Gaussian under both PX|Z and PX|Z,Y=y for all y ∈ Rp. Then by (22),
we have

L∗
l (Y|Z)− L∗

l (Y|X) ≤ ∥l∥∞√
2

√
Dα(PX|Y,Z∥PX|Z|PY,Z)

α
. (29)

Remark 3. Taking the limit as α → 1 of (29) in Corollary 1 yields the mutual information-
based bound:

L∗
l (Y|Z)− L∗

l (Y|X) ≤ ∥l∥∞√
2

√
DKL(PX|Y,Z∥PX|Z|PY,Z)

=
∥l∥∞√

2

√
I(X; Y)− I(Z; Y), (30)

which recovers the bound in [14] (Corollary 1).

3.2. α-Jensen–Shannon Divergence-Based Upper Bound

We next derive α-Jensen–Shannon divergence-based bounds on minimum excess risk.
We consider two arbitrary jointly distributed random variables U and V defined on the

same probability space and taking values in U and V , respectively. Throughout this section,
we work with the joint distribution PU,V over U × V and the corresponding product of
marginals PU PV . For convenience, we also define additional distributions that will play an
important role in the derivation of our bounds.

Definition 9. The α-convex combination of the joint distribution PU,V and the product of two
marginals PU PV is denoted by P(α)

U,V and given by

P(α)
U,V = αPU,V + (1 − α)PU PV (31)

for α ∈ (0, 1).

Definition 10. The α-conditional convex combination of the conditional distribution PV|U and the

marginal PV is denoted by P(α)
V|U and given by

P(α)
V|U = αPV|U + (1 − α)PV (32)

for α ∈ (0, 1).

We first provide the following lemma, whose proof, given in Appendix A, is a slight
generalization of [17] (Lemma 2) and [14] (Lemma 1).

Lemma 3. Given a function h : U × V → R, assume that h(u, V) is σ2(u)-sub-Gaussian under
P(α)

V|U=u for all u ∈ U , where E[σ2(U)] < ∞. Then for α ∈ (0, 1),

|EPU,V [h(U, V)]−EPU PV [h(U, V)]| ≤

√
2E[σ2(U)]

JSα(PU,V∥PU PV)

α(1 − α)
.

We next use Lemma 3 to derive our theorem for α-Jensen–Shannon divergence-based
bound. The proof of the theorem is relegated to Appendix A.
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Theorem 2. Let X, Y and Z be random vectors such that Y → X → Z, as described in Section 2.1.
Assume that there exists an optimal estimator f of Y from X such that l(y, f (X)) is conditionally
σ2(y)-sub-Gaussian under P(α)

X|Z,Y=y = αPX|Z,Y=y + (1 − α)PX|Z for all y ∈ Rp, i.e.,

logE
P(α)

X|Z,Y=y

e
λ
(

l(y, f (X))−E
P(α)X|Z,Y=y

[
l(y, f (X))

]) ≤ σ2(y)λ2

2

for all λ ∈ R and y ∈ R, where σ2 : R → R satisfies E[σ2(Y)] < ∞. Then for α ∈ (0, 1),
the excess minimum risk satisfies

L∗
l (Y|Z)− L∗

l (Y|X) ≤

√
2E[σ2(Y)]
α(1 − α)

JSα(PY,X|Z∥PY|ZPX|Z|PZ). (33)

Remark 4. Taking the limit as α → 0 on the right-hand side of (33) in Theorem 2, we obtain

L∗
l (Y|Z)− L∗

l (Y|X) ≤
√

2E[σ2(Y)] (I(X; Y)− I(Z; Y)),

recovering the bound (27) of [14] (Theorem 3). Furthermore, taking the limit as α → 1 of the
right-hand side of (33) in Theorem 2, yields

L∗
l (Y|Z)− L∗

l (Y|X) ≤
√

2E[σ2(Y)] DKL(PY|ZPX|Z∥PY,X|Z|PZ)

=
√

2E[σ2(Y)] (L(X; Y)− L(Z; Y)), (34)

where L(U; V) := DKL(PU PV∥PU,V) is called the Lautum information between U and V, defined
as the reverse KL divergence (i.e., the KL divergence between the product of marginals and the joint
distribution) [38]. We, therefore, obtain an upper bound on the minimum excess risk in terms of the
reverse KL divergence.

We close this section by specializing Theorem 2 to the case of bounded loss functions,
hence obtaining a counterpart result to Corollary 1.

Corollary 2. Suppose the loss function l is bounded. Then for random vectors X, Y and Z such
that Y → X → Z as described in Section 2.1, we have the following inequality for α ∈ (0, 1) on the
excess minimum risk:

L∗
l (Y|Z)− L∗

l (Y|X) ≤ ∥l∥∞√
2

√
JSα(PY,X|Z∥PY|ZPX|Z|PZ)

α(1 − α)
. (35)

3.3. Sibson Mutual Information-Based Upper Bound

Here we bound the excess minimum risk based on Sibson’s mutual information. We
recall from Definition 6 that U and V are jointly distributed on measurable spaces U and
V , with joint distribution PU,V and marginals PU and PV , assuming that all distributions
are absolutely continuous with respect to a common sigma-finite measure ν, with densities
pU , pV , and pU,V . Let U∗ denote the random variable whose distribution PU∗ attains the
minimum in the definition of the Sibson mutual information IS

α (PU,V , PU∗), with density
pU∗ as given in (8). We now define an auxiliary distribution that will be central to the
derivation of the main bounds in this section.



Entropy 2025, 27, 727 12 of 26

Definition 11. Let PÛ,V̂ be a joint distribution on U × V determined by density pÛ,V̂ that is
obtained by tilting (using parameter α) the densities pU,V , pU∗ and pV as follows:

pÛ,V̂(u, v) =
(pU,V(u, v))α(pU∗(u)pV(v))(1−α)∫∫

(pU,V(u′, v′))α(pU∗(u′)pV(v′))(1−α)du′dv′
(36)

for α ∈ (0, 1).

We state the following lemma based on the variational representation of the Sibson
mutual information [9] (Theorem 2), which establishes a connection to the KL divergence.
The proof of the lemma follows from [17] (Lemma 3) and [36] (Theorem 5.1).

Lemma 4. For the distributions PÛ,V̂ , PU,V and PU∗PV we have

αDKL(PÛ,V̂∥PU,V) + (1 − α)DKL(PÛ,V̂∥PU∗PV) = (1 − α)IS
α (PU,V , PU∗).

We now invoke a basic but important property of sub-Gaussian random variables that
will be used later in our analysis. Specifically, the set of all sub-Gaussian random variables
has a linear structure. This property is well established in the literature [39,40].

Lemma 5. If X is a σ2
X-sub-Gaussian random variable, then for any α ∈ R, the random variable

αX is |α|σ2
X-sub-Gaussian. If Y is a σ2

Y-sub-Gaussian random variable, then the sum X + Y is
sub-Gaussian with parameter (σX + σY)

2.

We next provide the following lemma, whose proof is a slight generalization
of [17] (Theorem 4) and [14] (Lemma 1). The proof is given in Appendix B.

Lemma 6. Given a function h : U × V → R, assume that h(u, V) is γ2(u)-sub-Gaussian under
PV for all u ∈ U and h(U, V) is σ2

4 -sub-Gaussian under both PU PV and PU,V . Assume also that
logEPU∗ [eγ2(U∗)] < ∞. Then for α ∈ (0, 1),

∣∣∣EPU,V [h(U, V)]−EPU PV [h(U, V)]
∣∣∣ ≤

√
2((1 − α)σ2 + α logEPU∗ [eγ2(U∗)])

IS
α (PU,V , PU∗)

α
.

We next use Lemma 6 to derive our upper bound on the excess minimum risk in
terms of the Sibson mutual information. The proof of the theorem is in Appendix B.

Theorem 3. Let X, Y and Z be random vectors such that Y → X → Z form a Markov
chain as described in Section 2.1. Assume that there exists an optimal estimator f of Y from
X such that l(y, f (X)) is conditionally γ2(y)-sub-Gaussian under PX|Z for all y ∈ Rp, where

logEPZ PY∗|Z [e
γ2(Y∗)] < ∞, and l(Y, f (X)) is conditionally σ2

4 -sub-Gaussian under both PY|ZPX|Z
and PY,X|Z, i.e., for all λ ∈ R

logEPX|Z

[
e
(λ(l(y, f (X)))−EPX|Z [l(y, f (X))])

]
≤ γ2(y)λ2

2

for all y ∈ Rp,

logEPY|Z PX|Z

[
e
(λ(l(Y, f (X)))−EPY|Z PX|Z [l(Y, f (X))])

]
≤ σ2λ2

8

and

logEPY,X|Z

[
e
(λ(l(Y, f (X)))−EPY,X|Z [l(Y, f (X))])

]
≤ σ2λ2

8
.
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Then for α ∈ (0, 1), the excess minimum risk satisfies

L∗
l (Y|Z)− L∗

l (Y|X) ≤

√
2((1 − α)σ2 + αEPZ [ΦY∗ |Z(γ2(Y∗))])

α
EPZ

[
IS
α (PY,X|Z, PY∗ |Z)

]
, (37)

where ΦPU (V) = logEPU [e
V ] and the distribution PY∗ |Z has density

pY∗ |Z(y|z) =

(∫ ( pY,X|Z(y, x|z)
pY|Z(y|z)pX|Z(x|z)

)α

pX|Z(x|z)dx

) 1
α

∫ (∫ ( pY,X|Z(y′, x′|z)
pY|Z(y′|z)pX|Z(x′|z)

)α

pX|Z(x′|z)dx′
) 1

α

pY|Z(y
′|z)dy′

pY|Z(y|z). (38)

Setting γ2(Y∗) = σ2 and taking the limit as α → 1 on the right-hand side of (37)
recovers the mutual information-based bound (27) of [14] (Theorem 3) in the case of a
constant sub-Gaussian parameter. We conclude this section by presenting a specialization
of Theorem 3 to the case of bounded loss functions.

Corollary 3. Suppose the loss function l is bounded. Then for random vectors X, Y and Z such
that Y → X → Z as described in Section 2.1, we have the following inequality for α ∈ (0, 1) on the
excess minimum risk:

L∗
l (Y|Z)− L∗

l (Y|X) ≤ ∥l∥∞√
2

√
(4 − 3α)

α
EPZ

[
IS
α (PY,X|Z, PY∗ |Z)

]
. (39)

3.4. Comparison of Proposed Upper Bounds

In this section, we give a simple comparison of the upper bounds based on the α-Jensen–
Shannon divergence (Theorem 2) with those based on the Rényi divergence (Theorem 1)
and the Sibson mutual information (Theorem 3) for bounded loss functions. Similar to
[17] (Proposition 8), we provide a simple condition under which the upper bound based
on the α-Jensen–Shannon divergence is tighter than those obtained using the other two
divergence measures.

Proposition 1. Suppose the loss function is bounded. Let X, Y, and Z be random vectors such
that Y → X → Z, as described in Section 2.1. Then, for any α ∈ (0, 1), the α-Jensen–Shannon
divergence-based bound on the excess minimum risk,

∥l∥∞√
2

√
JSα(PY,X|Z∥PY|ZPX|Z|PZ)

α(1 − α)
,

is no larger than both the Rényi divergence-based bound,

∥l∥∞√
2

√
Dα(PX|Y,Z∥PX|Z|PY,Z)

α
,

and the Sibson mutual information-based bound,

∥l∥∞√
2

√
(4 − 3α)

α
EPZ

[
IS
α (PY,X|Z, PY∗ |Z)

]
,
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provided that

hb(α)

1 − α
≤ Dα(PX|Y,Z∥PX|Z | PY,Z), and

hb(α)

1 − α
≤ EPZ

[
IS
α (PY,X|Z, PY∗ |Z)

]
, (40)

where hb(α) = −α log α − (1 − α) log(1 − α) is the binary entropy function.

Remark 5. The function g(α) = hb(α)
1−α is strictly increasing for α ∈ (0, 1), limα→0 g(α) = 0,

and limα→1 g(α) = ∞. On the other hand, at least for finite alphabets, the information quantities
on the right-hand sides of the inequalities in (40), in general, converge to a positive constant as
α → 0. In this case, there always exists an α∗ ∈ (0, 1) such that the inequalities in (40) are satisfied
for all 0 < α ≤ α∗.

Proof. It is known that the α-Jensen–Shannon divergence is bounded above by the binary
entropy hb(α), with equality if and only if P and Q are mutually singular [3,41]. Applying
this we obtain

JSα(PY,X|Z∥PY|ZPX|Z | PZ) = EPZ

[
JSα

(
PY,X|Z(· | Z) ∥ PY|Z(· | Z)PX|Z(· | Z)

)]
≤ EPZ [hb(α)]

= hb(α).

Consequently, we obtain the bound

∥l∥∞√
2

√
JSα(PY,X|Z∥PY|ZPX|Z | PZ)

α(1 − α)
≤ ∥l∥∞√

2

√
hb(α)

α(1 − α)
.

Therefore, under the assumption that

hb(α)

1 − α
≤ Dα(PX|Y,Z∥PX|Z | PY,Z) and

hb(α)

1 − α
≤ EPZ

[
IS
α (PY,X|Z, PY∗ |Z)

]
,

we conclude that the α-Jensen–Shannon bound is tighter than the other two bounds:

∥l∥∞√
2

√
JSα(PY,X|Z∥PY|ZPX|Z | PZ)

α(1 − α)
≤ ∥l∥∞√

2

√
Dα(PX|Y,Z∥PX|Z | PY,Z)

α
,

∥l∥∞√
2

√
JSα(PY,X|Z∥PY|ZPX|Z | PZ)

α(1 − α)
≤ ∥l∥∞√

2

√
(4 − 3α)

α
EPZ

[
IS
α (PY,X|Z, PY∗ |Z)

]
.

4. Numerical Results
In this section, we present three examples where some of the proposed information

divergence-based bounds outperform the mutual information-based bound. The first
example considers a concatenated q-ary symmetric channel with a bounded loss function.
The remaining two examples involve Gaussian additive noise channels and loss functions
with non-constant sub-Gaussian parameters.

Example 1. We consider a concatenation of two q-ary symmetric channels, with input Y and noise
variables U1 and U2, all taking values in {0, 1, . . . , q − 1}. We assume that Y, U1 and U2 are
independent. The input Y has distribution p = [p0, p1, . . . , pq−1], while the noise variables U1 and
U2 are governed by P(Ui = 0) = 1 − ϵi and P(Ui = a) = ϵi/(q − 1) for all a ∈ {1, . . . , q − 1}
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and i = 1, 2, where ϵ1, ϵ2 ∈ (0, 1) are the crossover probabilities. The output X of the first channel
is given by

X = (Y + U1) mod q

and serves as the input to the second channel. The final output Z is then given by

Z = (X + U2) mod q,

which can also be written as Z = (Y + U1 + U2) mod q. This construction naturally induces the
Markov chain Y → X → Z.

Using a 0–1 loss function (defined as l(y, y′) = 1(y ̸= y′), where 1(·) denotes the indicator
function), we compute the bounds in Corollaries 1 and 2, corresponding to equations (28) and (35),
respectively, as functions of α ∈ (0, 1). Figure 1 compares the Rényi-based bound (28) and the
αJensen–Shannon-based bound (35) with the mutual information-based bound (27). Among the two,
the α-Jensen–Shannon-based bound consistently performs the best over a wide range of α values.
Moreover, as q increases in the q-ary symmetric channel, both the interval of α for which the proposed
bounds outperform the mutual information-based bound and the magnitude of improvement become
more pronounced. For this example, we set ϵ1 = 0.15 and ϵ2 = 0.05. For q = 10, 100, 200, we
generate input distributions by sampling from a symmetric (i.e., with identical parameters) Dirichlet
distribution on Rq. Using a Dirichlet parameter greater than one gives balanced distributions that
avoid placing too much weight on any single symbol. For q = 2, 3, 5, the input distributions are
explicitly specified in the figure captions.

Finally, we note that in this example, the specialized bound for bounded loss functions derived
from the Sibson mutual information in Corollary 3 does not offer any improvement over the standard
mutual information-based bound (27) and is, therefore, not presented. In the next two examples, we
compare the αJensen–Shannon-based bound of Theorem 2 with the mutual information-based bound
for loss functions with non-constant sub-Gaussian parameters.

Example 2. Consider a Gaussian additive noise channel with input Y and noise random variables
W1 and W2, where Y ∼ N (0, σ̂2), W1 ∼ N (0, σ2

1 ), and W2 ∼ N (0, σ2
2 ). Assume that Y is

independent of (W1, W2) and W1 is independent of W2. Define

X = Y + W1

and
Z = X + W2 = Y + W1 + W2,

inducing the Markov chain Y → X → Z.
We consider the loss function l(y, y′) = min{|y − y′|, |y − c|} for some c > 0. For this

model, we observe that

l(y, f ∗(X)) = min{|y − f ∗(X)|, |y − c|} ≤ |y − c| ≤ |y|+ |c| = |y|+ c,

where f ∗ denotes the optimal estimator of Y from X. Thus, l(y, f ∗(X)) is a non-negative random
variable that is almost surely bounded by |y|+ c. By Hoeffding’s lemma, it follows that this loss is
conditionally σ2(y)-sub-Gaussian under PX|Z, PX|Z,Y=y and P(α)

X|Z,Y=y for all y ∈ Rp, with

σ2(y) =
(|y|+ c)2

4
.
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Furthermore, for σ̂2 = 1 and σ2
i = 1, i = 1, 2, we have that

E[σ2(Y)] = E
[
(|Y|+ c)2

4

]
=

1
4
E
[
|Y|2 + c2 + 2|Y|c

]
=

1 + c2 + 2c
√

2/π

4
.

Hence, the conditions of Theorem 2 are satisfied. Figure 2 compares the α-Jensen–Shannon-
based bound in (33) with the mutual information-based bound in (27) for c = 1. We observe that
the α-Jensen–Shannon-based bound is tighter for values of α approximately in the range (0, 0.3).

Example 3. Consider a Gaussian additive noise model with input Z ∼ N (0, σ̂2) and two noise
variables W1 ∼ N (0, σ2

1 ) and W2 ∼ N (0, σ2
2 ), all mutually independent. Let X = Z + W1 and

Y = X + W2 = Z + W1 + W2, inducing the Markov chain Z → X → Y, which is equivalent to
the Markov chain Y → X → Z.

We again consider the loss function l(y, y′) = min{|y − y′|, |y − c|} for some c > 0,
and observe that l(y, f ∗(X)) ≤ |y|+ c, where f ∗ is the optimal estimator of Y from X. Hence,

the loss is (conditionally) σ2(y)-sub-Gaussian as in the previous example with σ2(y) = (|y|+c)2

4 .
For σ̂2 = 2, σ2

1 = 39 and σ2
2 = 1, the expected sub-Gaussian parameter is

E[σ2(Y)] =
42 + c2 + 2c

√
84/π

4
.

Therefore, the conditions of Theorem 2 continue to hold.
In contrast to the previous example, where Y was the input and Z the degraded observation, this

example reverses that direction. Figure 3 compares the α-Jensen–Shannon-based bound in (33) with
the mutual information-based bound in (27) for c = 1. We observe that the α-Jensen–Shannon-based
bound is tighter for values of α approximately in the range (0, 0.7).

(a) q = 2 with p = [0.3, 0.7]. (b) q = 3 with p = [0.4, 0.2, 0.4].

(c) q = 5 with p = [0.25, 0.1, 0.4, 0.15, 0.1]. (d) q = 10, with p drawn randomly.
Figure 1. Cont.
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(e) q = 100, with p drawn randomly. (f) q = 200, with p drawn randomly.

Figure 1. Comparison of bounds versus α on minimum excess risk for two concatenated q-ary
symmetric channels, where ϵ1 = 0.15 and ϵ2 = 0.05.

Figure 2. Comparison of bounds vs α on minimum excess risk for a Gaussian additive noise channel
with c = 1, σ̂2 = 1 and σ2

i = 1 for all i = 1, 2.

Figure 3. Comparison of bounds vs α on minimum excess risk for a reverse Gaussian additive noise
channel with c = 1, σ̂2 = 2, σ2

1 = 39 and σ2
2 = 1.
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5. Conclusions
In this paper, we studied the problem of bounding the excess minimum risk in statisti-

cal inference using generalized information divergence measures. Our results extend the
mutual information-based bound in [14] by developing a family of bounds parameterized
by the order α ∈ (0, 1), involving the Rényi divergence, the α-Jensen–Shannon divergence,
and Sibson’s mutual information. For the Rényi divergence-based bounds, we employed
the variational representation of the divergence, following the approach in [11], and for
the α-Jensen–Shannon and Sibson-based bounds, we adopted the auxiliary distribution
method introduced in [17].

Unlike the bounds in [11,17], which assume the sub-Gaussian parameter to be con-
stant, our framework allows this parameter to depend on the (target) random vector,
thereby making the bounds applicable to a broader class of joint distributions. We demon-
strated the effectiveness of our approach through three numerical examples: one involving
concatenated discrete q-ary symmetric channels, and two based on additive Gaussian
noise channels. In all cases, we observed that at least one of our α-parametric bounds
is tighter than the mutual information-based bound over certain ranges of α, with the
improvements becoming more pronounced in the discrete example as the channel alphabet
size q increased.

Future directions include exploring bounds under alternative f -divergence measures,
developing tighter bounds for high-dimensional settings, and determining divergence rates
in infinite-dimensional cases.
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Appendix A
Proof of Lemma 3. Assume that the function h(u, V) is σ2(u)-sub-Gaussian under the
distribution P(α)

V|U=u for all u ∈ U . Then, by applying the Donsker–Varadhan representa-

tion [33] for DKL(PV|U=u ∥ P(α)
V|U=u), we obtain

DKL(PV|U=u∥P(α)
V|U=u) ≥ EPV|U=u

[λh(u, V)]− logE
P(α)

V|U=u
[eλh(u,V)]

≥ EPV|U=u
[λh(u, V)]−E

P(α)
V|U=u

[λh(u, V)]− λ2σ2(u)
2

, (A1)

for all λ ∈ R. Rearranging terms, we obtain for all λ ∈ R and u ∈ U that

λ

(
EPV|U=u

[h(u, V)]−E
P(α)

V|U=u
[h(u, V)]

)
≤ DKL(PV|U=u∥P(α)

V|U=u) +
λ2σ2(u)

2
.
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Similarly, using the assumption that the function h(u, V) is σ2(u)-sub-Gaussian under
P(α)

V|U=u for all u ∈ U and the Donsker–Varadhan representation [33] for DKL(PV∥P(α)
V|U=u),

we have for all λ′ ∈ R that

λ′
(
EPV [h(u, V)]−E

P(α)
V|U=u

[h(u, V)]

)
≤ DKL(PV∥P(α)

V|U=u) +
λ′2σ2(u)

2
.

If λ < 0, then taking λ′ = α
α−1 λ > 0 yields that

E
P(α)

V|U=u
[h(u, V)]−EPV|U=u

[h(u, V)] ≤
DKL(PV|U=u∥P(α)

V|U=u)

|λ| +
|λ|σ2(u)

2
, (A2)

and

EPV [h(u, V)]−E
P(α)

V|U=u
[h(u, V)] ≤

DKL(PV∥P(α)
V|U=u)

λ′ +
λ′σ2(u)

2
. (A3)

Adding (A2) and (A3) yields for all λ < 0 that

EPV [h(u, V)]−EPV|U=u
[h(u, V)]

≤
DKL(PV|U=u∥P(α)

V|U=u)

|λ| +
|λ|σ2(u)

2
+

DKL(PV∥P(α)
V|U=u)

λ′ +
λ′σ2(u)

2
,

=
DKL(PV|U=u∥P(α)

V|U=u)

|λ| +
|λ|σ2(u)

2
+

DKL(PV∥P(α)
V|U=u)

α
α−1 λ

+
α

α−1 λσ2(u)
2

,

=
αDKL(PV|U=u∥P(α)

V|U=u) + (1 − α)DKL(PV∥P(α)
V|U=u)

α|λ| +
|λ|σ2(u)
2(1 − α)

. (A4)

Similarly for λ > 0, taking λ′ = α
α−1 λ < 0, we have

−
(
E

P(α)
V|U=u

[h(u, V)]−EPV|U=u
[h(u, V)]

)
≤

DKL(PV|U=u∥P(α)
V|U=u)

λ
+

λσ2(u)
2

, (A5)

and

−
(
EPV [h(u, V)]−E

P(α)
V|U=u

[h(u, V)]

)
≤

DKL(PV∥P(α)
V|U=u)

|λ′| +
|λ′|σ2(u)

2
. (A6)

Adding (A5) and (A6) yields for all λ > 0 that

−
(
EPV [h(u, V)]−EPV|U=u

[h(u, V)]
)

≤
αDKL(PV|U=u∥P(α)

V|U=u) + (1 − α)DKL(PV∥P(α)
V|U=u)

αλ
+

λσ2(u)
2(1 − α)

. (A7)

From (A4) and (A7), we obtain the following non-negative parabola in terms of λ:

λ2
(

σ2(u)
2(1 − α)

)
+ λ

(
EPV [h(u, V)]−EPV|U=u

[h(u, V)]
)

+
αDKL(PV|U=u∥P(α)

V|U=u) + (1 − α)DKL(PV∥P(α)
V|U=u)

α
≥ 0, (A8)

where (A8) holds trivially for λ = 0. Thus, its discriminant is non-positive, and we have
for all α ∈ (0, 1) that
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|EPV [h(u, V)]−EPV|U=u
[h(u, V)]|2

≤ 2σ2(u)

(
αDKL(PV|U=u∥P(α)

V|U=u) + (1 − α)DKL(PV∥P(α)
V|U=u)

)
α(1 − α)

.

Hence,

|EPV [h(u, V)]−EPV|U=u
[h(u, V)]|

≤

√√√√
2σ2(u)

(
αDKL(PV|U=u∥P(α)

V|U=u) + (1 − α)DKL(PV∥P(α)
V|U=u)

)
α(1 − α)

. (A9)

As a result, we obtain that

|EPU,V [h(U, V)]−EPU PV [h(U, V)]|

=

∣∣∣∣∫ (EPV [h(u, V)]−EPV|U=u
[h(u, V)])PU(du)

∣∣∣∣
≤
∫ ∣∣∣EPV [h(u, V)]−EPV|U=u

[h(u, V)]
∣∣∣PU(du) (A10)

≤
∫ 

√√√√
2σ2(u)

(
αDKL(PV|U=u∥P(α)

V|U=u) + (1 − α)DKL(PV∥P(α)
V|U=u)

)
α(1 − α)

PU(du) (A11)

≤
√∫

2σ2(u)PU(du)

×

√√√√∫ (
αDKL(PV|U=u∥P(α)

V|U=u) + (1 − α)DKL(PV∥P(α)
V|U=u)

)
α(1 − α)

PU(du) (A12)

=

√√√√
E[2σ2(U)]

(
αDKL(PU,V∥P(α)

U,V) + (1 − α)DKL(PU PV∥P(α)
U,V)

)
α(1 − α)

(A13)

=

√
E[2σ2(U)]

JSα(PU,V∥PU PV)

α(1 − α)
, (A14)

where (A10) follows from Jensen’s inequality, (A11) follows from (A9), (A12) follows from
the Cauchy–Schwarz inequality, (A13) follows from the definition of the conditional KL
divergence and Definition 9 and (A14) follows from the definition of α-Jensen–Shannon di-
vergence.

Proof of Theorem 2. Let X̄, Ȳ and Z̄ be the same random variables defined in Theorem 1.
Similar to the proof of Theorem 1, we apply Lemma 3 by setting U = Y, V = X and
h(u, v) = l(y, f (x)) and taking regular expectations with respect to PY,X|Z=z and PȲ,X̄|Z=z.
Since Ȳ and X̄ are conditionally independent given Z̄ = z such that PȲ,X̄|Z=z = PY|ZPX|Z
and PZ̄ = PZ, we have that

|EPY,X|Z=z
[l(Y, f (X))]−EPȲ,X̄|Z=z

[l(Ȳ, f (X̄))]|

= |EPY,X|Z=z
[l(Y, f (X))]−EPY|Z=zPX|Z=z

[l(Y, f (X))]|

≤

√
2E[σ2(Y)|Z = z]

α(1 − α)
JSα(PY,X|Z=z∥PX|Z=zPY|Z=z). (A15)
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Thus,∣∣∣EPY,X [l(Y, f (X))]−EPȲ,X̄
[l(Ȳ, f (X̄))]

∣∣∣
≤
∫ ∣∣∣EPY,X|Z=z

[l(Y, f (X))]−EPȲ,X̄|Z=z
[l(Ȳ, f (X̄))])

∣∣∣PZ(dz)

≤
∫ (√2E[σ2(Y)|Z = z]

α(1 − α)
JSα(PY,X|Z=z∥PX|Z=zPY|Z=z)

)
PZ(dz)

≤
√

2
∫

E[σ2(Y)|Z = z]PZ(dz)

√∫ JSα(PY,X|Z=z∥PX|Z=zPY|Z=z)

α(1 − α)
PZ(dz)

=

√
2E[σ2(Y)]
α(1 − α)

JSα(PY,X|Z∥PY|ZPX|Z|PZ), (A16)

where the first inequality follows from Jensen’s inequality and since PZ̄ = PZ, the second
inequality follows from (A15), the third from the Cauchy–Schwarz inequality, and the
equality follows from (5). From proof of Theorem 1, we know that Ȳ → Z̄ → X̄ forms a
Markov chain. Hence,

EPȲ,X̄
[l(Ȳ, f (X̄))]) ≥ L∗

l (Y|Z), (A17)

Since f is an optimal estimator of Y from X, we also have

EPY,X [l(Y, f (X))]) = L∗
l (Y|X). (A18)

Therefore, using (A17) and (A18) in (A16) combined with the fact that L∗
l (Y|Z) ≥ L∗

l (Y|X),
we arrive at the desired inequality:

L∗
l (Y|Z)− L∗

l (Y|X) ≤

√
2E[σ2(Y)]
α(1 − α)

JSα(PY,X|Z∥PY|ZPX|Z|PZ).

Appendix B
Proof of Lemma 6. We first show that h(U, V)− EPV [h(U, V)] is σ2-sub-Gaussian under
PU,V . By assumption, h(U, V) is σ2

4 -sub-Gaussian under PU,V . It remains to show that the
term −EPV [h(U, V)] is also σ2

4 -sub-Gaussian under PU,V . Observe that

EPU,V

[
eλ
(
EPV [h(U,V)]−EPU,V [EPV [h(U,V)]]

)]
= EPU

[
eλ(EPV [h(U,V)]−EPU PV [h(U,V)])

]
≤ EPU PV

[
eλ(h(U,V)−EPU PV [h(U,V)])

]
(A19)

≤ exp
(

λ2σ2

8

)
, (A20)

where (A19) follows from Jensen’s inequality, and (A20) follows from the assumption
that h(U, V) is σ2

4 -sub-Gaussian under PU PV . Thus, EPV [h(U, V)] is σ2

4 -sub-Gaussian un-
der PU,V .

Therefore, by Lemma 5, it follows that −EPV [h(U, V)] is σ2

4 -sub-Gaussian under PU,V ,
and hence the difference h(U, V)−EPV [h(U, V)] is σ2-sub-Gaussian under PU,V , as claimed.
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Let g : U × V → R be defined by g(u, v) = h(u, v)− EPV [h(u, V)]. Since h(U, V)−
EPV [h(U, V)] is σ2-sub-Gaussian under PU,V and by definition of g, we obtain that for all
λ ∈ R:

logEPU,V

[
e
(

λ
(

g(U,V)−EPU,V [g(U,V)]
))]

≤ σ2λ2

2
.

This can be re-written as

logEPU,V

[
e(λ(g(U,V)))

]
≤ σ2λ2

2
+EPU,V [λg(U, V)]. (A21)

Moreover, since h(u, V) is γ(u)2-sub-Gaussian under PV for all u ∈ U , it follows that for all
λ′ ∈ R,

logEPV

[
e(λ′(h(u,V)−EPV [h(u,V)]))

]
≤ γ2(u)λ′2

2
. (A22)

Using the definition of g and applying the exponential to both sides, we obtain:

EPV

[
e(λ

′(g(u,V)))
]
≤ e

γ2(u)λ′2
2 .

Taking the expectation with respect to PU∗ yields

EPU∗ PV

[
e(λ

′(g(U∗ ,V)))
]
≤ EPU∗

[
e

γ2(U∗)λ′2
2

]
.

Finally, taking the logarithm and noting that

EPU∗ PV [g(U
∗, V)] = EPU∗ PV [h(U

∗, V)]−EPU∗ PV [h(U
∗, V)] = 0,

we conclude that

logEPU∗ PV

[
exp

(
λ′(g(U∗, V))

)]
≤ λ′2

2
logEPU∗ [e

γ2(U∗)] +EPU∗ PV [λ
′g(U∗, V)]. (A23)

Using the Donsker–Varadhan representation for DKL(PÛ,V̂∥PU,V) [33] and inequality (A21),
we have for all λ ∈ R that

DKL(PÛ,V̂∥PU,V) ≥ EPÛ,V̂
[λg(Û, V̂)]− logEPU,V [e

λg(U,V)]

≥ EPÛ,V̂
[λg(Û, V̂)]−EPU,V [λg(U, V)]− σ2λ2

2
.

Rearranging terms yields

λ
(
EPÛ,V̂

[g(Û, V̂)]−EPU,V [g(U, V)]
)
≤ DKL(PÛ,V̂∥PU,V) +

σ2λ2

2
. (A24)

Note that

EPU,V [g(U, V)] = EPU,V [
(
h(U, V)−EPV [h(U, V)]

)
] = EPU,V [h(U, V)]−EPU PV [h(U, V)].

Similarly, using the Donsker–Varadhan representation for DKL(PÛ,V̂∥PU∗PV) [33] and in-
equality (A23), we have for all λ′ ∈ R :
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λ′
(
EPÛ,V̂

[g(Û, V̂)]−EPU∗ PV [g(U
∗, V)]

)
≤ DKL(PÛ,V̂∥PU∗ PV) +

λ′2

2
logEPU∗ [eγ2(U∗)]. (A25)

If λ > 0, then choosing λ′ = α
α−1 λ < 0, we have from (A24) that

EPÛ,V̂
[g(Û, V̂)]−EPU,V [g(U, V)] ≤

DKL(PÛ,V̂∥PU,V)

λ
+

σ2λ

2
. (A26)

On the other hand, since EPU∗ PV [g(U
∗, V)] = 0, (A25) yields with λ′ = α

α−1 λ < 0:

−EPÛ,V̂
[g(Û, V̂)] ≤

DKL(PÛ,V̂∥PU∗PV)

|λ′| +
|λ′|

2
logEPU∗ [e

γ2(U∗)]. (A27)

Adding (A26) and (A27) yields that for all λ > 0:

−EPU,V [g(U, V)] ≤
DKL(PÛ,V̂∥PU,V)

λ
+

σ2λ

2
+

DKL(PÛ,V̂∥PU∗ PV)

|λ′| +
|λ′|

2
logEPU∗ [e

γ2(U∗)]

=
DKL(PÛ,V̂∥PU,V)

λ
+

σ2λ

2
+

DKL(PÛ,V̂∥PU∗ PV)
α

1−α λ

+
α

1−α λ

2
logEPU∗ [e

γ2(U∗)]

=
αDKL(PÛ,V̂∥PU,V) + (1 − α)DKL(PÛ,V̂∥PU∗ PV)

αλ

+ λ

(
(1 − α)σ2 + α logEPU∗ [eγ2(U∗)]

2(1 − α)

)
. (A28)

Similarly for λ < 0, choosing λ′ = α
α−1 λ > 0, we have from (A24) and (A25) that

−
(
EPÛ,V̂

[g(Û, V̂)]−EPU,V [g(U, V)]
)
≤

DKL(PÛ,V̂∥PU,V)

|λ| +
σ2|λ|

2
. (A29)

and

EPÛ,V̂
[g(U, V)] ≤

DKL(PÛ,V̂∥PU∗PV)

λ′ +
λ′

2
logEPU∗ [e

γ2(U∗)]. (A30)

Adding (A29) and (A30) yields for all λ < 0 and λ′ = α
α−1 λ > 0 that

EPU,V [g(U, V)] ≤
DKL(PÛ,V̂∥PU,V)

|λ| +
σ2|λ|

2
+

DKL(PÛ,V̂∥PU∗PV)

λ′ +
λ′

2
logEPU∗ [e

γ2(U∗)]

=
DKL(PÛ,V̂∥PV,U)

|λ| +
σ2|λ|

2
+

DKL(PÛ,V̂∥PU∗PV)
α

1−α |λ|

+
α

1−α |λ|
2

logEPU∗ [e
γ2(U∗)]

=
αDKL(PÛ,V̂∥PV,U) + (1 − α)DKL(PÛ,V̂∥PU∗PV)

α|λ|

+ |λ|
(
(1 − α)σ2 + α logEPU∗ [eγ2(U∗)]

2(1 − α)

)
. (A31)
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Considering (A28) and (A31), we have a non-negative parabola in λ given by

λ2

(
(1 − α)σ2 + α logEPU∗ [eγ2(U∗)]

2(1 − α)

)
− λ

(
EPU,V [h(U, V)]−EPU PV [h(U, V)]

)
+

αDKL(PÛ,V̂∥PU,V) + (1 − α)DKL(PÛ,V̂∥PU∗PV)

α
≥ 0,

whose discriminant must be non-positive (for λ = 0, the above inequality holds trivially).
Thus, for all α ∈ (0, 1),∣∣∣EPU,V [h(U, V)]−EPU PV [h(U, V)]

∣∣∣
≤

√
2
((1 − α)σ2 + α logEPU∗ [eγ2(U∗)])

(1 − α)

×

√√√√(αDKL(PÛ,V̂∥PU,V) + (1 − α)DKL(PÛ,V̂∥PU∗PV)

α

)
. (A32)

Finally, invoking Lemma 4 we obtain

∣∣EPU,V [h(U, V)]−EPU PV [h(U, V)]
∣∣ ≤

√
2((1 − α)σ2 + α logEPU∗ [eγ2(U∗)])

IS
α (PU,V , PU∗ )

α
. (A33)

Proof of Theorem 3. Let X̄, Ȳ and Z̄ be the same random variables as defined in
Theorem 1. We also consider the distribution PY∗ |Z given by pY∗ |Z(y|z) in (38) obtained
from Definition 6 by considering the distributions PY,X|Z and PY|ZPX|Z.

We apply Lemma 6 by setting U = Y, V = X and h(u, v) = l(y, f (x)) and taking
regular expectations with respect to PY,X|Z=z and PȲ,X̄|Z=z. Since Ȳ and X̄ are conditionally
independent given Z̄ = z such that PȲ,X̄|Z=z = PY|ZPX|Z, and PZ̄ = PZ, we have that

|EPY,X|Z=z
[l(Y, f (X))]−EPȲ,X̄|Z=z

[l(Ȳ, f (X̄))]|

= |EPY,X|Z=z
[l(Y, f (X))]−EPY|Z=zPX|Z=z

[l(Y, f (X))]|

≤

√
2((1 − α)σ2 + αΦY∗ |Z=z(γ

2(Y∗)))

α
IS
α (PY,X|Z=z, PY∗ |Z=z). (A34)

Now, ∣∣∣EPY,X [l(Y, f (X))]−EPȲ,X̄
[l(Ȳ, f (X̄))]

∣∣∣
=
∣∣∣EPZ

[
EPY,X|Z=z

[l(Y, f (X))]−EPȲ,X̄|Z=z
[l(Ȳ, f (X̄))]

]∣∣∣
≤ EPZ

[∣∣∣EPY,X|Z=z
[l(Y, f (X))]−EPȲ,X̄|Z=z

[l(Ȳ, f (X̄))])
∣∣∣]

≤ EPZ

[√
2((1 − α)σ2 + αΦY∗ |Z=z(γ

2(Y∗)))
IS
α (PY,X|Z=z, PY∗ |Z=z)

α

]

≤

√√√√2EPZ

[
((1 − α)σ2 + αΦY∗ |Z=z(γ

2(Y∗)))
]
EPZ

[
IS
α (PY,X|Z=z, PY∗ |Z=z)

α

]

=

√
2((1 − α)σ2 + αEPZ [ΦY∗ |Z(γ2(Y∗))])

α
EPZ

[
IS
α (PY,X|Z, PY∗ |Z)

]
, (A35)
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where the first equality holds since PZ̄ = PZ, the first inequality follows from Jensen’s
inequality, the second inequality follows from (A34), and the third inequality follows from
the Cauchy–Schwarz inequality. From the proof of Theorem 1, we know that Ȳ → Z̄ → X̄
forms a Markov chain. Hence,

EPȲ,X̄
[l(Ȳ, f (X̄))]) ≥ L∗

l (Y|Z). (A36)

Since f is an optimal estimator of Y from X, we also have

EPY,X [l(Y, f (X))]) = L∗
l (Y|X). (A37)

Therefore, using (A36) and (A37) in (A35) along with the fact that L∗
l (Y|Z) ≥ L∗

l (Y|X), we
arrive at the desired inequality:

L∗
l (Y|Z)− L∗

l (Y|X)

≤

√
2((1 − α)σ2 + αEPZ [ΦY∗ |Z(γ2(Y∗))])

α
EPZ

[
IS
α (PY,X|Z, PY∗ |Z)

]
.
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