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Distributed Optimization With Uncertain Communications
Pouya Rezaeinia , Bahman Gharesifard , and Tamás Linder

Abstract—In this article, we consider a distributed optimization
problem for the sum of convex functions where the underlying
communication network connecting nodes at each time epoch is
drawn at random from a collection of directed graphs. We propose
a modified version of the subgradient-push algorithm that provably
almost surely converges to an optimizer on any such sequence of
random directed graphs. We also prove that the convergence rate
of our proposed algorithm is upper bounded as O( 1√

t
), where t is

the time horizon.

Index Terms—Distributed control, distributed optimization, er-
godic chains, random networks.

I. INTRODUCTION

Distributed optimization of a sum of convex functions involves
solving the problem where a network of nodes V = {v1, v2, . . . , vn},
each with a private local convex function fi : R

d → R, aims to solve
the problem

minimize F (z) :=
n∑

i=1

fi(z), z ∈ Rd (1)

in a distributed manner, exchanging only limited information on their
estimate of the optimizer. The significance of this problem lies in its
wide range of applications, including sensor localization [3], statistical
learning [4], and Big Data [5].

Distributed optimization is a well-established subject with extensive
literature, as noted in [6]. This work focuses on communication network
conditions, especially with randomly drawn communication graphs, to
ensure convergence to a solution of (1). Practical implementations of
distributed optimization algorithms aim for guaranteed performance de-
spite communication deficiencies or uncertainties, as emphasized in [7].
Thus, our literature review in Section II-A centers on communication
networks, and so it may overlook some important results in other areas.
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A. Mathematical Preliminaries

LetR,R≥0, andZ≥0 denote the sets of real numbers, nonnegative real
numbers, and integers, respectively. For a set A, S ⊂ A indicates that S
is a proper subset of A; the empty set and A are trivial subsets of A. The
complement of S is Sc. The cardinality of a finite set S is |S|. Vectors
in Rn are column vectors, where n is a positive integer. The standard
Euclidean norm and the 1-norm on Rn are denoted by ‖ · ‖ and ‖ · ‖1,
respectively. The transpose of a matrix A and a vector v are denoted by
A′ and v′. The set of n× n nonnegative real-valued matrices is denoted
by Rn×n

≥0 . A matrix A ∈ Rn×n
≥0 is column-stochastic if each columns

sums to 1, it is row-stochastic if each row sums to 1, and it is doubly
stochastic if both of these conditions are satisfied. For A ∈ Rn×n

≥0 and
any nontrivial S ⊂ [n] := {1, . . . , n}, define ASSc :=

∑
i∈S,j∈Sc Aij .

1) Graph Theory: A (weighted) directed graphG := (V, E ,W )
consists of a node set V := {v1, v2, . . . , vn}, an edge set E ⊆ V × V ,
and a weighted adjacency matrix W ∈ Rn×n

≥0 , with Wji > 0 if and
only if (vi, vj) ∈ E , indicating that vi is connected to vj . Similarly,
given a matrix W ∈ Rn×n

≥0 , one can associate a directed graph G =
(V, E), where (vi, vj) ∈ E if and only if Wji > 0, making W the
corresponding weighted adjacency matrix. The in-neighbors and the
out-neighbors of vi are the sets of nodes N in

i = {j ∈ [n] : Wij > 0}
and N out

i = {j ∈ [n] : Wji > 0}, respectively. The out-degree of vi is
di = |N out

i |; for undirected graphs we drop the superscripts “in” and
“out.” In the directed graph G = (V, E ,W ), a path is the sequence of
distinct nodes vi1 , . . . , vik for some k ∈ [n] such that (vij , vij+1

) ∈ E
for all j ∈ [k − 1]. A directed graph is strongly connected if there
is a path between any pair of nodes. If G = (V, E ,W ) is strongly
connected, W is called irreducible. For graphs G1 = (V, E1) and
G2 = (V, E2) on the node set V , G = G1 ∪G2 is the graph on V with
the edge set E = E1 ∪ E2.

2) Sequences of Random Column-Stochastic Matrices:
Let Sn be the set of n× n column-stochastic matrices, and let FSn de-
note the Borelσ-algebra onSn, inherited fromRn×n. Given a probabil-
ity space (Ω,B, μ), a measurable functionW : (Ω,B, μ) → (Sn,FSn)
is called a random column-stochastic matrix, and a sequence {W (t)}
of such measurable functions on (Ω,B, μ) is called a random column-
stochastic matrix sequence; throughout, we assume that t ∈ Z≥0.
For any ω ∈ Ω, one can associate a sequence of directed graphs
{G(t)(ω)} to {W (t)(ω)}, where (vi, vj) ∈ E(t)(ω) if and only if
Wji(t)(ω) > 0. This defines a sequence of random directed graphs
on V = {v1, . . . , vn}, denoted by {G(t)}.

II. ALGORITHM

Consensus-based optimization has been extensively explored in
literature, often under the assumption that the underlying network
is either doubly stochastic or weight-balanced, as discussed in var-
ious studies [8], [9], [10], [11], [12], [13]. This article focuses on
scenarios where the network is not weight-balanced. In such cases,
the subgradient-push (SP) algorithm is employed to achieve average
consensus [11]. In particular, this method combines the push-sum
protocol [14] with subgradient flow, for more recent literature see [15],
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ensuring convergence to a solution of (1). We introduce this dynamic
as a foundation for subsequent discussions.

A. Subgradient-Push Algorithm

The SP algorithm involves each node vi maintaining and updat-
ing two vector variables, xi(t) and wi(t) ∈ Rd, and a scalar variable
yi(t) ∈ R. Initially, xi(0) is set to an estimate of the optimal solution
for node vi, and yi(0) is set to 1. Nodes send xi(t) and yi(t) to
out-neighbors in a (deterministic) directed graph of the available com-
munication channels Ḡ(t) = (V, Ē(t)), assumed to contain self-loops.
For each i ∈ [n], N̄ in

i (t) is the set of in-neighbors of vi and d̄i(t) is the
out-degree of vi in Ḡ(t). Each node updates its variables at time t+ 1
as follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

wi(t+ 1) =
∑

j∈N̄ in
i
(t)

xj(t)

d̄
j
(t)

yi(t+ 1) =
∑

j∈N̄ in
i
(t)

yj(t)

d̄
j
(t)

zi(t+ 1) = wi(t+1)
yi(t+1)

xi(t+ 1) = wi(t+ 1)− α(t+ 1)gi(t+ 1)

where gi(t+ 1) is a subgradient of the convex function fi at zi(t+
1) and α(t) = 1

tγ
for some 1

2
< γ < 1. This choice of α(t) ensures∑∞

t=1 α(t) = ∞, and
∑∞

t=1 α
2(t) < ∞. At each time t, zi(t) is node

vi’s estimate of a minimizer of F (z). The functions fi are assumed
to be Lipschitz continuous, i.e., for all i ∈ [n] there exists Li such
that ‖gi‖ ≤ Li. For our future analysis we define L =

∑n
i=1 Li. A

key assumption is that each node is aware of its out-degree, deemed
necessary for algorithmic success according to [16].

The SP algorithm has been proven to converge in deterministic,
time-varying settings with strong uniform connectivity [11]. Although
consensus-based optimization has been studied in random undirected
settings [17], extending these results to random directed graphs presents
significant challenges. Recent studies have concentrated on optimiza-
tion in environments characterized by noisy and imperfectly connected
time-varying networks [7], [18].

In [19], we established an ergodicity criterion for column-stochastic
matrices in the push-sum protocol, showing that a broad range of
time-varying random directed graphs meet these criteria. We applied
these findings to random graphs with Bernoulli-like edge probabilities,
deriving convergence rates for the push-sum algorithm under milder
ergodicity and infinite flow conditions (see [20] for details). Building
on this foundation, this article examines minimization problem (1) over
a sequence of random directed graphs.

B. Modified Subgradient-Push Algorithm

Here, we present our algorithm designed to extend deterministic
convergence rates to scenarios with random graphs. The difficulty lies in
the algorithm’s dependence on the ratio of correlated random variables
and the need to bound the denominator away from zero.

In the modified SP (MSP) algorithm, each node vi ∈ V sends its
values to its out-neighbors in Ḡ(t) only if yi(t) ≥ 1

n2n =: δ, making
vi an active node. At time t, node vi receives information from its active
in-neighbors N in

i (t) = N̄ in
i (t)\{vj ∈ N̄ in

i (t) | yj(t) < δ}. This forms
an effective communication network graph G(t) = (V, E(t),W (t)) at
time t with nodes V and edges E(t) ⊆ Ē(t). The MSP algorithm is⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

wi(t+ 1) =
∑

j∈N in
i
(t)

xj(t)

d
j
(t)

yi(t+ 1) =
∑

j∈N in
i
(t)

yj(t)

d
j
(t)

zi(t+ 1) = wi(t+1)
yi(t+1)

xi(t+ 1) = wi(t+ 1)− α(t+ 1)gi(t+ 1)

(2)

where N̄ in
i (t) is replaced with N in

i (t) and di(t) is the out-degree of vi
in G(t). In what follows, whenever we write G(t), or N in

i (t), we refer
to the subgraph of Ḡ(t) resulting from this modification.

The MSP algorithm addresses information imbalances by using
a threshold mechanism that allows nodes to selectively participate
based on their connectivity and “information quality.” This selective
participation differentiates an effective communication network graph
from conventional network graphs that do not filter connections based
on these criteria.

III. RANDOM SETTING AND MAIN RESULT

As described in Section II-B, Ḡ(t) = (V, Ē(t)) denotes the
graph of the available communication channels at time t and
G(t) = (V, E(t),W (t)) denotes the effective communication network
graph, i.e., those channels that are actively contributing to the network’s
objectives at any given time.

Assumption 1: LetG = {Ḡ1, Ḡ2, . . . , Ḡ2n
2−n} be the set of all pos-

sible graphs of available communication channels on V with self-loops
at all nodes. The sequence of communication graphs {Ḡ(t)} satisfies
the following.

i) At each time t ≥ 0, Ḡ(t) is drawn randomly from G with distri-
bution pb := P(Ḡ(t) = Ḡb), where b ∈ [2n

2−n].
ii)

⋃
b:pb>0 Ḡb is strongly connected.

iii) {Ḡ(t)} is an independent and identically distributed sequence.
These assumptions state that the graphs of available communication

channels are drawn independently from the set of all possible graphs
on V . Part (ii) imposes a mild connectivity assumption, analogous to
deterministic settings in [11]. Note that this assumption only involves
the underlying probabilities pb, b ∈ [2n

2−n].
We define the following auxiliary quantities used in the main results

of this article.
1) S(0) = 0; and S(t) =

∑t
s=1 α(s) for all t ≥ 1.

2) B = 2n− 2.

3) λ =

(
1− 1

n
( 4nB

p )

) p
2nB

.

Theorem 1: Consider MSP algorithm (2) and suppose that the
sequence of available communication channels {Ḡ(t)} satisfies As-
sumption 1.

i) We have limt→∞ zi(t) = z∗, for all i ∈ [n], almost surely (a.s.),
where z∗ is a solution (minimizer) of (1).

ii) Assume that every node i maintains the vector z̃i(t) ∈ Rd, initial-
ized with an arbitrary z̃i(0) ∈ Rd, following the update rule:

z̃i(t+ 1) =
α(t+ 1)zi(t+ 1) + S(t)z̃i(t)

S(t+ 1)
, t ≥ 0.

For all t ≥ 1, i ∈ [n], and z∗ ∈ Z∗, we have

E [F (z̃i(t+ 1))− F (z∗)]

≤ Γ(t)

[
n‖x̄(0)− z∗‖1

2
+

(
1 +

1

2γ − 1

)
L2

2n

+
6η1L

∑n
j=1 ‖xj(0)‖1

δ(1− λ)
+

6η1dL
2

δ(1− λ)

(
1 +

1

2γ − 1

)]
where Γ(t) = (1−γ)

(t+1)1−γ−1
.

Theorem 1 part (ii) provides a bound on the convergence rate of the
MSP algorithm. On the right-hand side (RHS) of the inequality, all the
terms except Γ(t) are constant with respect to t. In addition, we have
assumed that 1

2
< γ < 1. If we allow γ to approach 1/2 from above,

we obtain the upper bound of the order of O( 1√
t
) on the convergence

rate of the MSP algorithm.
This bound pertains to the weighted average of iterates in the opti-

mization process z̃i(·), rather than considering the final iterate as the
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solution. This method, also known as iterate averaging, is commonly
employed to assess the convergence rate of stochastic gradient opti-
mizations, effectively accounting for inherent noise and fluctuations
that arise from the use of subgradients. For further details, see [21].

IV. CONVERGENCE ANALYSIS

The rest of this article is dedicated to proving Theorem 1. Similar
to [11], we define a perturbed version of the push-sum algorithm with
our modifications. We primarily work with scalar variables. In proving
Theorem 1, we apply these results to solve (1) with vector variables.

In the modified perturbed-push (MPP) algorithm each node vi main-
tains and updates scalar variables xi(t), wi(t), and yi(t), where xi(0)
are arbitrary scalars and yi(0) are initialized to 1. Similar to the MSP
algorithm, node vi shares its values only if yi(t) ≥ δ, and di(t) and
N in

i (t) are the out-degree and the in-neighbor of vi, i ∈ [n], in the
effective communication network graphG(t), respectively. To simplify
the analysis, we express the algorithm in matrix form. For t ≥ 0, let
W (t) be the column-stochastic matrix associated with the effective
communication network graph G(t) with entries

Wij(t) =

{
1

d
j
(t)

, if j ∈ N in
i (t)

0, otherwise.
(3)

The MPP algorithm in matrix form is⎧⎪⎪⎪⎨⎪⎪⎪⎩
w(t+ 1) = W (t)x(t)

y(t+ 1) = W (t)y(t)

zi(t+ 1) = wi(t+1)
yi(t+1)

, for all i ∈ [n]

x(t+ 1) = w(t+ 1) + ε(t+ 1)

(4)

where ε(t) = (ε1(t), . . . , εn(t))
′ is the vector of perturbations at time t,

to be specified later. Here, w(t) = (w1(t), . . . , wn(t)) ∈ Rn, z(t) =
(z1(t), . . . , zn(t)) ∈ Rn, and we treat each component of the indi-
vidual node’s state variables separately. We assume ‖ε(t)‖1 ≤ U

tγ
,

for some U > 0, which holds when considering the subgradient term
in the MSP algorithm as a perturbation. Throughout this article, the
W (t), defined in (3), denote the adjacency matrices of the effective
communication graphs.

We examine the convergence properties of the MPP algorithm,
focusing initially on the connectivity of the generated matrix sequence.
A crucial attribute of these random matrices is the directed infinite flow
property.

Definition 1 ([19, Definition 3]): A sequence of random matrices
{W (t)} has the directed infinite flow property if for any nontrivial
S ⊂ [n],

∑∞
t=0 WSSc(t) = ∞, a.s.

Next, we repeat a few definitions from [19]. For a sequence of
matricesW (t)of the form (3) that has the directed infinite flow property,
let k0 = 0. For any q ≥ 1, define

kq = arg mint′>kq−1

⎛⎝min
S⊂[n]

t′−1∑
t=kq−1

WSSc(t) > 0

⎞⎠ . (5)

Essentially, kq is the minimal time instance after kq−1, where there
is nonzero communication between any nontrivial subset of V and its
complement. Moreover, let 	0 = 0 and for q ≥ 1

	q = kqn − k(q−1)n. (6)

For t > s ≥ 0, define Qt,s = {q : s ≤ k(q−1)n, kqn ≤ t}. As shown
in [19, Proposition 1], kq and 	q , which play important roles in our
convergence analysis, are sequences of random variables and are well
defined for the sequence of matrices {W (t)} that has the directed
infinite flow property.

The following proposition presents an upper bound on how well the
sequences zi(t+ 1) estimate the average x̄(t) := 1

n

∑
i∈[n] xi(t) for

each sample path, when {W (t)} has the directed infinite flow property.
This will allow us to state our first connectivity result in a random
setting.

Proposition 1: Consider MPP algorithm (4) and assume that the
sequence {W (t)} has the directed infinite flow property, a.s. Then, for
all t ≥ s ≥ 0 we have

|zi(t+1)−x̄(t)|≤ 2

yi(t+1)

(
Λt,0‖x(0)‖1 +

t∑
s=1

Λt,s‖ε(s)‖1
)

a.s., where Λt,s =
∏

q∈Qt,s
λq and λq = (1− 1

n�q
).

Proof: For t ≥ s ≥ 0, define the shorthand notation
W (t : s) = W (t)W (t− 1) · · ·W (s). Since {W (t)} has the directed
infinite flow property, a.s., by [19, Proposition 3], there existφ(t) ∈ Rn

such that for all i, j ∈ [n]

|[W (t : s)]ij − φi(t)| ≤ Λt,s (7)

where φi(t) is the i’th entry of the vector φ(t). Define
D(t : s) = W (t : s)− φ(t)1′

n, where 1n ∈ Rn is the vector of all
ones. Following similar steps as in [11, proof of Lemma 1], we get

|zi(t+ 1)− x̄(t)| ≤ 2

yi(t+ 1)

(
max

j
|[D(t : 0)]ij |‖x(0)‖1

+
t∑

s=1

max
j

|[D(t : s)]ij |‖ε(s)‖1
)
.

Using (7) we obtain the desired result. �
In the following, we state our first result on the connectivity of

the matrix sequence {W (t)} for the given random setting. The main
challenge, unlike in [19], is that this sequence depends not only on time
but also on the states yi(t).

Lemma 1: Consider the MPP algorithm (4) with W (t) as the
weighted adjacency matrix of the effective communication network
at time t. Suppose Assumption 1 holds. Then we have

i) defining p = (minb:pb>0 pb)
2n−2, for all t ≥ 0 we have

P(W (t+ 2n− 3 : t) is irreducible) ≥ p > 0. (8)

ii) {W (t)} has the directed infinite flow property.
Proof: We start by proving (i). Since the communication networks

are assumed to have self-loops at all nodes, if the sequenceG(t), G(t+
1), . . . , G(t+ 2n− 3) is such that

⋃t+2n−3
t′=t G(t) is strongly con-

nected, then W (t+ 2n− 3 : t) is irreducible. Thus, it is sufficient to
show that such a sequence occurs with probability at least p. To do this,
we construct events A1 and A2 so that under A1 ∩ A2,

⋃t+2n−3
t′=t G(t)

is strongly connected and P(A1 ∩ A2) ≥ p.
Similar to the setting in the push-sum algorithm in [14, Proposition

2.2], it is easy to check that
∑

i∈[n] yi(t) = n for all t. This is known as
the mass conservation property. Therefore, there exists a node vi0 ∈ V
with yi0(t) ≥ 1.Since the graphs contain self-loops at all nodes, in each
iteration node i sends 1/di(t) share of its values to itself. As di(t) ≤
n for all i, we have yi(t) ≥ 1

n
yi(t− 1). This along with yi0(t) ≥ 1,

implies that yi0(t
′) ≥ δ, for all t ≤ t′ ≤ t+ 2n. In other words, vi0

will remain active for all t ≤ t′ ≤ t+ 2n.
Since

⋃
b:pb>0 Ḡb is strongly connected by assumption, there exists

a graph Ḡb0 with probability pb0 > 0, in which vi0 is connected to
some other node vi1 ∈ V\{vi0}, i.e., e0 := (vi0 , vi1) ∈ Ēb0 . When
Ḡ(t) = Ḡb0 , vi1 receives 1/di0(t) share of vi0 ’s values. Thus, yi1(t+
1) ≥ 1

n
, which again implies yi1(t

′) ≥ δ, for all t+ 1 ≤ t′ ≤ t+ 2n,
i.e., vi1 will remain active for all t+ 1 ≤ t′ ≤ t+ 2n.
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Similarly, there exists a graph Ḡb1 , occurring with probability
pb1 > 0, where either (vi0 , vi2) ∈ Ēb1 or (vi1 , vi2) ∈ Ēb1 for some
vi2 ∈ V\{vi0 , vi1}. We refer to this edge as e1. When Ḡ(t) = Ḡb0

and Ḡ(t+ 1) = Ḡb1 , which happens with probability pb1pb2 , we have
yi2(t+ 2) ≥ 1

n2 and hence, yi2(t
′) ≥ δ, for all t+ 2 ≤ t′ ≤ t+ 2n.

In that event, vi2 will remain active for all t+ 2 ≤ t′ ≤ t+ 2n.
Continuing this argument, we obtain the event

A1={Ḡ(t)=Ḡb0 , Ḡ(t+1)=Ḡb1 , . . . , Ḡ(t+n−2)=Ḡbn−2
}.

If A1 occurs, which has probability at least (minb:pb>0 pb)
n−1, then

S1 = {e0, . . . , en−2} represents the set of edges in a directed spanning
tree of

⋃t+n−2
t′=t G(t) rooted at vi0 , noting that ei ∈ E(t+ i). Also,

when A1 occurs
1) for τ = 0, . . . , n− 1, node viτ remains active for all time t′ such

that t+ τ ≤ t′ ≤ t+ 2n (note that {vi0 , vi1 , . . . , vin−1
} = V);

2) in
⋃t+n−2

t′=t G(t) there is a path from vi0 to all nodes in V .
Next, we construct A2 where there is a path from all nodes to

vi0 in
⋃t+2n−2

t′=t+n−1 G(t). Thus, when A1 ∩ A2 occurs, every pair of

nodes in
⋃t+2n−2

t′=t G(t) is connected, making it strongly connected.
The probability of A1 ∩ A2 is at least (minb:pb>0 pb)

2n−2, yielding
the desired result.

Since
⋃

b:pb>0 Ḡb is strongly connected, at time t+ n− 1 there
exists a graph Ḡbn−1

with probability pbn−1
> 0, in which some

node vin ∈ V\{vi0} is connected to vi0 , i.e., en−1 := (vin , vio).
Similarly, at time t+ n there exists Ḡbn with probability pbn > 0
such that for some vin+1

∈ V\{vi0 , vin} either (vin+1
, vi0) ∈ Ebn

or (vin+1
, vin) ∈ Ebn . We refer to this edge as en. Continuing this

argument, we obtain our desired event

A2 = {Ḡ(t+ n− 1) = Ḡbn−1
,

Ḡ(t+ n) = Ḡbn , . . . , Ḡ(t+ 2n− 3) = Ḡb2n−3
}.

If A2 occurs, which has probability at least (minb:pb>0 pb)
n−1, there

is a path from all nodes to vi0 in
⋃t+2n−3

t′=t+n−1 G(t). This completes the
proof of part (i).

The proof of part (ii) is similar to the proof of [19, Lemma 1 part (i)].
Since every positive entry of W (t) is bounded below by 1/n, using the
Borel–Cantelli lemma, (8) implies that

∑∞
t=0 WSS̄(t) = ∞, a.s., for

any nontrivial S ⊂ [n]. Thus, {W (t)} has the directed infinite flow
property. �

Next is a useful consequence of this result and Proposition 1.
Corollary 1: Consider MPP algorithm (4) with W (t) as the

weighted adjacency matrix of the effective communication network
at time t. Suppose Assumption 1 holds. We have

|zi(t+ 1)−x̄(t)|≤ 2

δ

(
Λt,0‖x(0)‖1 +

t∑
s=1

Λt,s‖ε(s)‖1
)

(9)

a.s., where Λt,s ∈ (0, 1) for all t ≥ s ≥ 0.
The next technical lemma is used in an upcoming result.
Lemma 2: Let c ≥ 2. For all integers n ≥ 2 and ζ > 0, we have

e−ζ ≤ 1− 1

n
c
ζ
.

Proof: Since 1

n
c
ζ
≤ e

− 1
ζ , for c ≥ 2, it is enough to show e−ζ +

e
− 1

ζ ≤ 1, for ζ > 0. By symmetry we focus on the case where0<ζ≤1.
The function ζ log ζ is convex in this range, leading to ζ log ζ ≥ ζ − 1.
In addition, since ζ2 ≤ ζ for 0 < ζ ≤ 1, we have ζ log ζ ≥ ζ2 − 1.
Dividing both sides by ζ, rearranging and using the monotonicity of

the exponential function we obtain elog ζ−ζ ≥ e
− 1

ζ , which simplifies

to ζe−ζ ≥ e
− 1

ζ . The well-known inequality eζ ≥ 1 + ζ implies 1 ≥

e−ζ + ζe−ζ . Combining this and ζe−ζ ≥ e
− 1

ζ yields e−ζ + e
− 1

ζ ≤ 1,
completing the proof for 0 < ζ ≤ 1. �

Lemma 3: Consider MPP algorithm (4) with W (t) as the weighted
adjacency matrix of the effective communication network at time t.
Suppose Assumption 1 holds. Let θ := B + 2nB

p
, where B = 2n− 2.

Then,
i) for all t ≥ s+ θ ≥ 0 we have

P
(
Λt,s > 2λt−s

) ≤ 8e−c1(t−s), and

E[Λt,s] ≤ 10λt−s (10)

where λ =

(
1− 1

n
( 4nB

p )

) p
2nB

∈ (0, 1), c1 = p2

4B
, and Λt,s is

defined in Proposition 1;
ii) for all s ≥ 0 we have P(limt→∞ Λt,s = 0) = 1.

Proof: To prove part (i) we first provide a series of definitions. Define
a sequence of events

XB(t) :=

{
1, if

∑(t+1)B−1

t′=tB W (t′) is irreducible

0, otherwise.

By Lemma 1 part (i), we have P(XB(t) = 1) ≥ p > 0. Define the
partial sums HB(T ) :=

∑T
t=0 XB(t) for all T ≥ 0, and let qt :=

max{q : kq ≤ t}, where kq is defined in (5). Note that HB(·) is a
counter indicating the number of consecutive time windows of lengthB
with communication between each subset of nodes and its complement.
On the other hand, qt counts the number of consecutive time windows
of any length with communication between each subset of nodes and
its complement. By definition of HB(·) and qt, we have that

qt ≥ HB

(⌊
t

B

⌋
− 1

)
and therefore,

P

(
qt ≤ pt

2B

)
≤ P

(
HB

(⌊
t

B

⌋
− 1

)
≤ pt

2B

)
.

We find an upper bound for the two sides of the inequality by finding a
bound on the RHS for which we have

P

(
HB

(⌊
t

B

⌋
− 1

)
≤ pt

2B

)

= P

⎛⎝�t/B�−1∑
t′=0

XB(t
′)− p

(⌊
t

B

⌋
− 1

)
≤−βt

(⌊
t

B

⌋
− 1

)⎞⎠
≤ P

⎛⎝�t/B�−1∑
t′=0

(XB(t
′)− E[XB(t

′)])≤−βt

(⌊
t

B

⌋
− 1

)⎞⎠
where βt = p−

pt
2B

� t
B

�−1
. The last inequality follows from the fact that

for all t, E[XB(t)] = P(XB(t) = 1) ≥ p. Since βt > 0 for t ≥ θ,
using Hoeffding’s inequality, we obtain

P

(
HB

(⌊
t

B

⌋
− 1

)
≤ pt

2B

)
≤ e−β2

t (� t
B

�−1).

To simplify this inequality and find an upper bound on the RHS, we
will find a lower bound on positive part of the power of the exponent
function. We have

β2
t

(⌊
t

B

⌋
− 1

)
= p2

(⌊
t

B

⌋
− 1

)
− p2t

B
+

p2t2

4B2(⌊
t
B

⌋− 1
)
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≥ p2
(

t

B
− 2

)
− p2t

B
+

p2t2

4B2

t
B

= − 2p2 +
p2t

4B
≥ −2 +

p2t

4B
.

Therefore,

P

(
HB

(⌊
t

B

⌋
− 1

)
≤ pt

2B

)
≤ 8e−c1t

and consequently P(qt ≤ pt
2B

) ≤ 8e−c1t.
Now, we need to “translate” the term in parentheses on the left hand

side to a bound on Λt,0. When qt >
pt
2B

, we have |Qt,0| ≥ � pt
2nB

�;
therefore, using [19, Lemma A.4], Λt,0 can be bounded above as

Λt,0 ≤
⎛⎝1− 1

n
t

� pt
2nB

�

⎞⎠� pt
2nB

�

.

In [19, Proof of Lemma 3], it is shown that the RHS is bounded above
by 2λt. Therefore, when qt >

pt
2B

, we have Λt,0 ≤ 2λt. This implies
that

P
(
Λt,0 > 2λt

) ≤ 8e−c1t

for t ≥ θ. Following similar arguments, we can also obtain for all
t ≥ s+ θ

P
(
Λt,s > 2λt−s

) ≤ 8e−c1(t−s)

finishing the proof of the first part.
To prove the second part we use the law of total expectations. For

all t ≥ θ

E[Λt,0] = E

[
Λt,0 | qt > pt

2B

]
P

(
qt >

pt

2B

)
+ E

[
Λt,0 | qt ≤ pt

2B

]
P

(
qt ≤ pt

2B

)
≤ E

[
Λt,0 | qt > pt

2B

]
+ P

(
qt ≤ pt

2B

)
≤ 2λt + 8e−c1t. (11)

Using Lemma 2, e−ζ ≤
(
1− 1

n
2n2B

ζ

)
for all ζ > 0. Therefore,

e−c1t = e−
p2t
4B = e−

pn
2 · pt

2nB ≤
(
1− 1

n
2n2B
pn
2

) pt
2nB

= λt.

This along with (11) implies for all t ≥ θ that E[Λt,0] ≤ 10λt. Again,
by following similar arguments, we can also obtain E[Λt,s] ≤ 10λt−s

for all t ≥ s+ θ. Part (ii) is a direct consequence of part (i) and the
Borel–Cantelli lemma. �

In Lemma 3, we found an upper bound on E[Λt,s] for t ≥ s+ θ.
When t < s+ θ, since Λt,s ∈ (0, 1), we have E[Λt,s] ≤ 1. Therefore,
for all t we can write

E[Λt,s] ≤ η1λ
t−s (12)

where η1 = 10
λθ

.
Lemma 3 provides the foundation for the subsequent technical

result, which is instrumental in proving our convergence rate results
in Theorem 1.

Lemma 4: Consider MPP algorithm (4) with W (t) as the weighted
adjacency matrix of the effective communication network at time t.

Suppose Assumption 1 holds. In addition, assume that the perturbations
εi(t) are bounded as follows:

‖ε(t)‖1 ≤ U

tγ
, for all t ≥ 1

for some U > 0. Then,
i) limt→∞ |zi(t+ 1)− x̄(t)| = 0, a.s.;

ii)
∑∞

t=0 α(t+ 1)|zi(t+ 1)− x̄(t)| < ∞, a.s.;
iii)

E

[
1∑t

k=0 α(k + 1)

t∑
k=0

α(k + 1) |zi(k + 1)− x(k)|
]

≤ 2η1Γ(t)

δ(1− λ)
·
(
‖x(0)‖1 + U

(
1 +

1

2γ − 1

))
where Γ(t) = 1−γ

(t+1)1−γ−1
.

Proof: We start by proving (i). By Corollary 1, it suffices to
show limt→∞(Λt,0‖x(0)‖1 +

∑t
s=1 Λt,s‖ε(s)‖1) = 0, a.s. As shown

in Lemma 3 (ii), limt→∞ Λt,0 = 0, a.s. and therefore, it remains to show

lim
t→∞

t∑
s=1

Λt,s‖ε(s)‖1 = 0, a.s.

For all t ≥ 1 define τt :=
⌈

2
c1

ln(t)
⌉

, where c1 is the scalar constant

given in Lemma 3 (i). To study this limit, we break the summation into
the following two sums:

t∑
s=1

Λt,s‖ε(s)‖1=
t−τt∑
s=1

Λt,s‖ε(s)‖1+
t∑

s=t−τt+1

Λt,s‖ε(s)‖1. (13)

For the first sum on the RHS of (13) we have

P

(
t−τt∑
s=1

Λt,s‖ε(s)‖1 >

t−τt∑
s=1

2λt−s‖ε(s)‖1
)

≤ P

(
t−τt⋃
s=1

{Λt,s > 2λt−s}
)

≤
t−τt∑
s=1

P
(
Λt,s > 2λt−s

)
.

To further simplify this inequality, consider two cases.
1) Case 1: When t− τt ≤ θ,

t−τt∑
s=1

P
(
Λt,s > 2λt−s

) ≤ θ.

2) Case 2: When t− τt > θ, by (10)

t−τt∑
s=1

P
(
Λt,s > 2λt−s

) ≤ t−τt∑
s=1

8e−c1(t−s) ≤ 8t−2

1− e−c1
.

Combining the two cases, for some η2 > 0 and all t we have

P

(
t−τt∑
s=1

Λt,s ‖ε(s)‖1 >

t−τt∑
s=1

2λt−s‖ε(s)‖1
)
≤η2t

−2. (14)

If we sum (14) over t we obtain

∞∑
t=1

P

(
t−τt∑
s=1

Λt,s‖ε(s)‖1 >

t−τt∑
s=1

2λt−s‖ε(s)‖1
)

≤ η2

∞∑
t=1

t−2.

Since the RHS is finite, by the Borel–Cantelli lemma, there exists a
(random) t′, a.s., such that for all t ≥ t′

t−τt∑
s=1

Λt,s‖ε(s)‖1 ≤
t−τt∑
s=1

2λt−s‖ε(s)‖1.
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It is shown in the proof of [11, Lemma 1 (b)] (alternatively, it can be
shown by elementary estimates), that for our choice of λ and ε(s),
limt→∞

∑t−τt
s=1 λt−s‖ε(s)‖1 = 0, and therefore,

lim
t→∞

t−τt∑
s=1

Λt,s‖ε(s)‖1 = 0, a.s. (15)

For the second summation on the RHS of (13) recall that by assumption
‖ε(s)‖1 ≤ U

sγ
. This along with the fact that Λt,s ∈ (0, 1) implies that

t∑
s=t−τt+1

Λt,s‖ε(s)‖1 ≤
t∑

s=t−τt+1

‖ε(s)‖1 ≤
t∑

s=t−τt+1

U

sγ

≤ τt · max
t−τt<s≤t

U

sγ

≤
2U
c1

ln(t) + 1(
t− 2

c1
ln(t)− 1

)γ =: δt.

It is easy to show that limt→∞ δt = 0, which along with (15) gives us
our desired result.

Now, we prove part (ii). By Corollary 1, we have

∞∑
t=0

α(t+ 1) |zi(t+ 1)− x̄(t)|

≤ 2

δ

( ∞∑
t=0

α(t+ 1)Λt,0‖x(0)‖1 +
∞∑

t=0

t∑
s=1

Λt,sα(s)‖ε(s)‖1
)
.

Similar to part (i) using (10) and the fact that α(t+ 1) = 1
(t+1)γ

, 1
2
<

γ < 1, it can be seen that the first term on the RHS is finite, a.s. For the
second term on the RHS, we break the summation into two as follows:

∞∑
t=1

t∑
s=1

Λt,sα(s)‖ε(s)‖1=
∞∑

t=1

t−τt∑
s=1

Λt,sα(s)‖ε(s)‖1

+

∞∑
t=1

t∑
s=t−τt+1

Λt,sα(s)‖ε(s)‖1. (16)

For the first sum on the RHS of (16), as in part (i), we have

P

(
t−τt∑
s=1

Λt,sα(s)‖ε(s)‖1 >

t−τt∑
s=1

2λt−sα(s)‖ε(s)‖1
)

≤ P

(
t−τt⋃
s=1

{Λt,s > 2λt−s}
)

≤ η2t
−2. (17)

If we sum (17) over t we have

∞∑
t=1

P

(
t−τt∑
s=1

Λt,sα(s)‖ε(s)‖1 >

t−τt∑
s=1

2λt−sα(s)‖ε(s)‖1
)

< ∞.

Hence, by the Borel–Cantelli lemma, there exists a (random) t′′, a.s.,
such that for all t ≥ t′′

t−τt∑
s=1

Λt,sα(s)‖ε(s)‖1 ≤
t−τt∑
s=1

2λt−sα(s)‖ε(s)‖1.

It is shown in the proof of [11, Lemma 1 (c)] that for our choice of λ

and ε(s), limt→∞
∑t−τt

s=1 λt−sα(s)‖ε(s)‖1 < ∞, and therefore,

lim
t→∞

t−τt∑
s=1

Λt,sα(s)‖ε(s)‖1 < ∞, a.s. (18)

For the second sum on the RHS of (16) we have

∞∑
t=1

t∑
s=t−τt+1

Λt,sα(s)‖ε(s)‖1 ≤
∞∑

t=1

t∑
s=t−τt+1

U

s2γ
≤ Δ

where

Δ = U
∞∑

t=1

2
c1

ln(t) + 1

(t− 2
c1

ln(t)− 1)2γ
.

Since γ > 1
2

we have Δ < ∞, which along with (18) gives us our
desired result.

Finally, we prove part (iii). Using Corollary 1 we have

t∑
k=1

α(k + 1) |zi(k + 1)− x(k)|

≤
t∑

k=1

2

δ(k + 1)γ

(
Λk,0‖x(0)‖1 +

k∑
s=1

Λk,s‖ε(s)‖1
)

=
2‖x(0)‖1

δ

t∑
k=1

Λk,0

(k + 1)γ
+

2

δ

t∑
k=1

k∑
s=1

Λk,s‖ε(s)‖1
(k + 1)γ

≤ 2‖x(0)‖1
δ

t∑
k=1

Λk,0 +
2U

δ

t∑
k=1

k∑
s=1

Λk,s

s2γ
.

Taking expectations on both sides and using (12), we have

E

[
t∑

k=1

α(k + 1) |zi(k + 1)− x(k)|
]

≤ E

[
2‖x(0)‖1

δ

t∑
k=1

Λk,0 +
2U

δ

t∑
k=1

k∑
s=1

Λk,s

s2γ

]

≤ 2η1‖x(0)‖1
δ

t∑
k=1

λk +
2η1U

δ

t∑
k=1

k∑
s=1

λk−s

s2γ

≤ 2η1‖x(0)‖1
δ

λ

1− λ
+

2η1U

δ

t∑
k=1

k∑
s=1

λk−s

s2γ
.

For the second term on the RHS we have
t∑

k=1

k∑
s=1

λk−s

s2γ
=

t∑
s=1

1

s2γ

t∑
k=s

λk−s ≤
t∑

s=1

1

s2γ
1

1− λ

≤ 1

1− λ

(
1 +

∫ ∞

1

du

u2γ

)
=

1

1− λ

(
1 +

1

2γ − 1

)
.

In view of these two bounds and since 0 < λ < 1, we obtain

E

[
t∑

k=0

α(k + 1) |zi(k + 1)− x(k)|
]

≤ 2η1
δ(1− λ)

(
‖x(0)‖1 + U

(
1 +

1

2γ − 1

))
. (19)

In addition, we have the following inequality

t∑
k=0

α(k + 1) =

t+1∑
k=1

1

kγ
≥
∫ t+1

1

1

uγ
du

=
(t+ 1)1−γ − 1

1− γ
=:

1

Γ(t)
. (20)
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Thus, by (19) and (20), we obtain the result for part (iii). �
Finally, the following lemmas enable us to prove our main result.

Lemma 5 establishes conditions for the convergence of a sequence
with a subgradient-like iteration. Using these conditions, we prove
Theorem 1 by analyzing the average progress of the nodes’ states.
Lemma 6 confirms that the average values meet the requirements of
Lemma 5.

Lemma 5 ([11, Lemma 7]): Consider a convex minimization prob-
lem minx∈Rm f(x), where f : Rm → R is continuous, and assume the
solution set X∗ is nonempty. Let {xt} be a sequence such that for all
x ∈ X∗ and t ≥ 0

‖xt+1 − x‖2 ≤ ‖xt − x‖2 − βt(f(xt)− f(x)) + ct

where βt ≥ 0 and ct ≥ 0 for all t ≥ 0, with
∑∞

t=0 βt = ∞ and∑∞
t=0 ct < ∞. Then, the sequence {xt} converges to some solution

x∗ ∈ X∗.
Lemma 6 ([11, Lemma 8]): Consider the function F (z) =∑n
i=1 fi(z), where fi(z) are convex functions on Rd and Lipschitz

continuous with constants Li < ∞. Then, for all v ∈ Rd and t ≥ 0,

‖x̄(t+ 1)−v‖2 ≤ ‖x̄(t)−v‖2− 2α(t+ 1)

n
(F(x̄(t))−F(v))

+
4α(t+ 1)

n

n∑
i=1

Li‖zi(t+ 1)− x̄(t)‖

+ α2(t+ 1)
L2

n2

where x̄(t) = 1
n

∑n
i=1 xi(t), generated by the MSP algorithm.

Now, we prove Theorem 1.
Theorem 1: We start by proving part (i). Having established the

necessary results to accommodate the random nature of the underlying
communication networks, the proof follows similar steps as in [11,
Proof of Theorem 1]. Applying Lemma 4 (i) to each coordinate, we
obtain

lim
t→∞

‖zi(t+ 1)− x̄(t)‖ = 0 for all i ∈ [n].

Moreover, by Lemma 4 (ii)

∞∑
t=0

α(t+ 1)‖zi(t+ 1)− x̄(t)‖ < ∞ for all i ∈ [n].

On the other hand, by Lemma 6, for all optimal solutions z∗

‖x̄(t+ 1)−z∗‖2 ≤ ‖x̄(t)−z∗‖2− 2α(t+ 1)

n
(F(x̄(t))−F(z∗))

+
4α(t+ 1)

n

n∑
i=1

Li‖zi(t+ 1)− x̄(t)‖

+ α2(t+ 1)
L2

n2
.

Thus, with our choice of α(t), all the conditions of Lemma 5 are
satisfied, yielding the desired result.

Next, we prove part (ii). Recall that

z̃i(t+ 1) =
α(t+ 1)zi(t+ 1) + S(t)z̃i(t)

S(t+ 1)
, t ≥ 0 (21)

andS(t) =
∑t

s=1 α(s)withS(0) = 0. Rearranging the terms, we have

S(t+ 1)z̃i(t+ 1)− S(t)z̃i(t) = α(t+ 1)zi(t+ 1). (22)

Summing both sides over t and using telescoping sum yield

z̃i(t+ 1) =

∑t
k=0 α(k + 1)zi(k + 1)∑t

k=0 α(k + 1)
, for all t ≥ 0.

Since each gi is bounded by Li and L =
∑

i∈[n] Li, we have

F (z̃i(t+ 1))−F

(∑t
k=0 α(k + 1)x(k)∑t

k=0 α(k + 1)

)

=F

(∑t
k=0 α(k + 1)zi(k + 1)∑t

k=0 α(k + 1)

)
−F

(∑t
k=0 α(k + 1)x(k)∑t

k=0 α(k + 1)

)

≤ L∑t
k=0 α(k + 1)

t∑
k=0

α(k + 1) ‖zi(k + 1)− x(k)‖ .

Treating each coordinate of α(t+ 1)gi(t+ 1) as a perturbation εj(t)
and recalling that α(t) = 1

tγ
so that ‖ε(t)‖1 ≤ L

tγ
, we apply Lemma 4

(iii) to the coordinates of the vectors zi(k + 1) and x̄(t) to obtain

E

[
F (z̃i(t+ 1))− F

(∑t
k=0 α(k + 1)x(k)∑t

k=0 α(k + 1)

)]

≤ 2η1LΓ(t)

δ(1− λ)

(
n∑

j=1

‖xj(0)‖1 + dL(1 +
1

2γ − 1
)

)
. (23)

Also, by Lemma 6, using telescopic summation, and dividing both sides
by 2S(t+ 1)/n, we obtain∑t

k=0 α(k + 1)F (x(k))

S(t+ 1)
− F (z∗)

≤ n

2

‖x(0)− z∗‖2
S(t+ 1)

+
1

S(t+ 1)

t∑
k=0

α2(k + 1)
L2

2n

+
2

S(t+ 1)

t∑
k=0

α(k + 1)

n∑
i=1

Li ‖zi(k + 1)− x(k)‖ .

The convexity of F implies that

F

(∑t
k=0 α(k + 1)x(k)

S(t+ 1)

)
− F (z∗)

≤ n

2

‖x(0)− z∗‖2
S(t+ 1)

+
1

S(t+ 1)

t∑
k=0

α2(k + 1)
L2

2n

+
2

S(t+ 1)

t∑
k=0

α(k + 1)
n∑

i=1

Li ‖zi(k + 1)− x(k)‖ .

As shown in (20) we have 1
S(t+1)

≤ Γ(t). Using this and reapplying
Lemma 4 (iii) we obtain

E

(
F

(∑t
k=0 α(k + 1)x(k)

S(t+ 1)

)
− F (z∗)

)

≤ nΓ(t)
‖x(0)− z∗‖1

2
+

L2Γ(t)

2n

(
1 +

1

2γ − 1

)

+
4η1LΓ(t)

δ(1− λ)

(
n∑

j=1

‖xj(0)‖1 + dL

(
1 +

1

2γ − 1

))
. (24)

By summing (23) and (24), we obtain our desired result. �
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[11] A. Nedić and A. Olshevsky, “Distributed optimization over time-varying
directed graphs,” IEEE Trans. Autom. Control, vol. 60, no. 3, pp. 601–615,
Mar. 2015.

[12] I. Lobel and A. Ozdaglar, “Distributed subgradient methods for convex
optimization over random networks,” IEEE Trans. Autom. Control, vol. 56,
no. 6, pp. 1291–1306, Jun. 2011.

[13] B. Gharesifard and J. Cortés, “Distributed continuous-time convex op-
timization on weight-balanced digraphs,” IEEE Trans. Autom. Control,
vol. 59, no. 3, pp. 781–786, Mar. 2014.

[14] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of aggre-
gate information,” in Proc. 44th Annu. IEEE Symp. Found. Comput. Sci.,
2003, pp. 482–491.

[15] B. Gerencsér and M. Kornyik, “Low complexity convergence rate bounds
for the synchronous gossip subclass of push-sum algorithms,” IEEE Contr.
Syst. Lett., vol. 8, pp. 1283–1288, 2024.

[16] J. M. Hendrickx and J. N. Tsitsiklis, “Fundamental limitations for anony-
mous distributed systems with broadcast communications,” in Proc. 53rd
Annu. Allerton Conf. Commun., Control, Comput., 2015, pp. 9–16.

[17] A. Nedic, A. Olshevsky, and W. Shi, “Achieving geometric convergence
for distributed optimization over time-varying graphs,” SIAM J. Optim.,
vol. 27, no. 4, pp. 2597–2633, 2017.

[18] H. Reisizadeh, B. Touri, and S. Mohajer, “Distributed optimization over
time-varying graphs with imperfect sharing of information,” IEEE Trans.
Autom. Control, vol. 68, no. 7, pp. 4420–4427, Jul. 2023.

[19] P. Rezaeinia, B. Gharesifard, T. Linder, and B. Touri, “Push-sum on random
graphs: Almost sure convergence and convergence rate,” IEEE Trans.
Autom. Control, vol. 65, no. 3, pp. 1295–1302, Mar. 2020.

[20] F. Iutzeler, P. Ciblat, and W. Hachem, “Analysis of sum-weight-like
algorithms for averaging in wireless sensor networks,” IEEE Trans. Signal
Process., vol. 61, no. 11, pp. 2802–2814, Jun. 2013.

[21] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-
scale machine learning,” SIAM Rev., vol. 60, no. 2, pp. 223–311, 2018.

Authorized licensed use limited to: Queen's University. Downloaded on March 30,2025 at 22:49:23 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


