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Randomized Quantization and Source Coding
With Constrained Output Distribution
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Abstract— This paper studies fixed-rate randomized vector
quantization under the constraint that the quantizer’s output has
a given fixed probability distribution. A general representation
of randomized quantizers that includes the common models
in the literature is introduced via appropriate mixtures of
joint probability measures on the product of the source and
reproduction alphabets. Using this representation and results
from optimal transport theory, the existence of an optimal
(minimum distortion) randomized quantizer having a given
output distribution is shown under various conditions. For
sources with densities and the mean square distortion measure,
it is shown that this optimum can be attained by randomizing
quantizers having convex codecells. For stationary and
memoryless source and output distributions, a rate-distortion
theorem is proved, providing a single-letter expression for the
optimum distortion in the limit of large blocklengths.

Index Terms— Source coding, quantization, randomization,
random coding, output-constrained distortion-rate function.

I. INTRODUCTION

AQUANTIZER maps a source (input) alphabet into
a finite collection of points (output levels) from a

reproduction alphabet. A quantizer’s performance is usually
characterized by its rate, defined as the logarithm of the
number of output levels, and its expected distortion when
the input is a random variable. One usually talks about
randomized quantization when the quantizer used to encode
the input signal is randomly selected from a given collection
of quantizers. Although introducing randomization in the
quantization procedure does not improve the optimal rate-
distortion tradeoff, randomized quantizers may have other
advantages over their deterministic counterparts.

In what appears to be the first work explicitly dealing with
randomized quantization, Roberts [1] found that adding ran-
dom noise to an image before quantization and subtracting the
noise before reconstruction may result in a perceptually more
pleasing image. Schuchman [2] and Gray and Stockham [3]
analyzed versions of such so called dithered scalar quantizers
where random noise (dither) is added to the input signal prior
to uniform quantization. If the dither is subtracted after the
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quantization operation, the procedure is called subtractive
dithering; otherwise it is called non-subtractive dithering.
Under certain conditions, dithering results in uniformly distrib-
uted quantization noise that is independent of the input [2], [3],
which allows a simple modeling of the quantization process by
an additive noise channel. In the information theoretic litera-
ture the properties of entropy coded dithered lattice quantizers
have been extensively studied. For example, such quantizers
have been used to provide achievable bounds on the perfor-
mance of universal lossy compression systems by Ziv [4] and
Zamir and Feder [5], [6]. Recently Akyol and Rose [7], [8],
introduced a class of randomized nonuniform scalar quantizers
obtained via applying companding to a dithered uniform
quantizer and investigated optimality conditions for the design
of such quantizers. One should also note that the random
codes used to prove the achievability part of Shannon’s
rate-distortion theorem [9] can also be viewed as randomized
quantizers.

Dithered uniform/lattice and companding quantizers, as well
as random rate-distortion codes, pick a random quantizer from
a “small” structured subset of all possible quantizers. Such
special randomized quantizers may be suboptimal for certain
tasks and one would like to be able to work with more general
(or completely general) classes of randomized quantizers. For
example, Li et al. [10] and Klejsa et al. [12] considered
distribution-preserving dithered scalar quantization, where the
quantizer output is restricted to have the same distribution
as the source, to improve the perceptual quality of mean
square optimal quantizers in audio and video coding. Dithered
quantizers or other structured randomized quantizers classes
likely do not provide optimal performance in this problem.
In an unpublished work [11] the same authors considered more
general distribution-preserving randomized vector quantizers
and lower bounded the minimum distortion achievable by such
schemes when the source is stationary and memoryless.

In this paper we propose a general model which formalizes
the notion of randomly picking a quantizer from the set of
all quantizers with a given number of output levels. Note that
this set is much more complex and less structured then say
the parametric family of all quantizers having a given number
of convex codecells. Inspired by work in stochastic control
(see [13]) our model represents the set of all quantizers
acting on a given source as a subset of all joint probability
measures on the product of the source and reproduction
alphabets. Then a randomized quantizer corresponds to a
mixture of probability measures in this subset. The usefulness
of the model is demonstrated by rigorously setting up
a generalization of the distribution-preserving quantization
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problem where then the goal is to find a randomized quantizer
minimizing the distortion under the constraint that the output
has a given distribution (not necessarily that of the source).
We show that under quite general conditions an optimal
solution (i.e., an optimal randomized quantizer) exists for this
generalized problem. We also consider a relaxed version of
the output distribution constraint where the output distribution
is only required to belong to some neighborhood (in the weak
topology) of a target distribution. For this problem we show
the optimality of randomizing among finitely many quantizers.
While for fixed quantizer dimension we can only provide
existence results, for stationary and memoryless source and
output distributions we also develop a rate-distortion theorem
which identifies the minimum distortion in the limit of large
block lengths in terms of the so-called output-constrained
distortion-rate function. This last result solves a general
version of a problem that was left open in [11].

The rest of the paper is organized as follows. In Section II
we introduce our general model for randomized quantization
and show its equivalence to other models more common in the
information theoretic literature. In Section III the randomized
quantization problem with an output distribution constraint is
formulated and the existence of an optimal solution is shown
using optimal transport theory. For the special but important
case of sources with densities and the mean square distortion
measure, we show that this optimum can be attained by
randomizing quantizers having convex codecells. In Section IV
a relaxed version of output distribution constraint is considered
where finitely randomized quantizers are optimal. In Section V
we present and prove a rate-distortion theorem for fixed-rate
lossy source coding with an output distribution constraint.
Many of the proofs are quite technical and they are relegated
to the Appendix.

II. MODELS OF RANDOMIZED QUANTIZATION

A. Notation

In this paper X denotes the input alphabet and Y is the
reconstruction (output) alphabet. Throughout the paper we set
X = Y = R

n , the n-dimensional Euclidean space for some
n ≥ 1, although most of the results hold in more general
settings; for example if the input and output alphabets are
Polish (complete and separable metric) spaces. If E is a metric
space, B(E) and P(E) will denote the Borel σ -algebra on E
and the set of probability measures on (E,B(E)), respectively.
It will be tacitly assumed that any metric space is equipped
with its Borel σ -algebra and all probability measures on such
spaces will be Borel measures. The product of metric spaces
will be equipped with the product Borel σ -algebra. Unless
otherwise specified, the term “measurable” will refer to Borel
measurability. We always equip P(E) with the Borel σ -algebra
B(P(E)) generated by the topology of weak convergence [14].

B. Three Models of Randomized Quantization

An M-level quantizer (M is a positive integer) from the
input alphabet X to the reconstruction alphabet Y is a Borel
measurable function q : X → Y whose range q(X) = {q(x) :
x ∈ X} contains at most M points of Y. If QM denotes

Fig. 1. Randomized source code (quantizer).

the set of all M-level quantizers, then our definition implies
QM ⊂ QM+1 for all M ≥ 1.

In what follows we define three models of randomized
quantization; two that are commonly used in the source coding
literature, and a third abstract model that will nevertheless
prove very useful.

Model 1: One general model of M-level randomized quan-
tization that is often used in the information theoretic literature
is depicted in Fig. 1.

Here X and Y are the source and output random variables
taking values in X and Y, respectively. The index I takes
values in {1, . . . ,M}, and Z is a Z = R

m -valued random
variable which is independent of X and which is assumed to
be available at both the encoder and the decoder. The encoder
is a measurable function e : X × Z → {1, . . . ,M} which
maps (X, Z) to I , and the decoder is a measurable function
d : {1, . . . ,M} × Z → Y which maps (I, Z) to Y. For a
given source distribution, in a probabilistic sense a Model 1
quantizer is determined by the triple (e, d, ν), where ν denotes
the distribution of Z .

Note that codes used in the random coding proof of the
forward part of Shannon’s rate distortion theorem can be
realized as Model 1 quantizers. In this case Z may be taken
to be the random codebook consisting of M = 2nR code
vectors of dimension n, each drawn independently from a
given distribution. This Z can be represented as an m = n
M-dimensional random vector that is independent of X .
The encoder outputs the index I of the code vector Y in
the codebook that best matches X (in distortion or in a
joint-typicality sense) and the decoder can reconstruct this Y
since it is a function of I and Z .

Model 2: Model 1 can be collapsed into a more tractable
equivalent model. In this model, a randomized quantizer is a
pair (q, ν), where q : X × Z → Y is a measurable mapping
such that q( · , z) is an M-level quantizer for all z ∈ Z and ν is
a probability measure on Z, the distribution of the randomizing
random variable Z . Here q is the composition of the encoder
and the decoder in Model 1: q(x, z) = d(e(x, z), z).

Model 2 quantizers include, as special cases, subtractive and
non-subtractive dithering of M-level uniform quantizers, as
well as the dithering of non-uniform quantizers. For example,
if n = m = 1 and qu denotes a uniform quantizer, then

q(x, z) = qu(x + z)− z

is a dithered uniform quantizer using subtractive dithering,

q(x, z) = qu(x + z)

is a dithered uniform quantizer with non-subtractive dithering,
and with appropriate mappings g and h,

q(x, z) = h
(
qu(g(x)+ z)− z

)
.
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is a dithered non-uniform quantizer (see [8] and [10]). We note
that dithered lattice quantizers [4], [5], [15] can also be
considered as Model 2 type randomized quantizers when the
source has a bounded support (so that with probability one
only finitely many lattice points can occur as output points).

Let ρ : X × Y → R be a nonnegative measurable function,
called the distortion measure. From now on we assume that
the source X has distribution μ (denoted as X ∼ μ). The
distortion associated with Model 2 quantizer (q, ν) or with
Model 1 quantizer (e, d, ν), with q(x, z) = d(e(x, z), z), is the
expectation

L(q, ν) =
∫

Z

∫

X
ρ(x,q(x, z)) μ(dx)ν(dz)

= E
[
ρ(X,q(X, Z))

]
(1)

where Z ∼ ν is independent of X .
Model 3: In this model, instead of considering quantizers as

functions that map X into a finite subset of Y, first we represent
them as special probability measures on X×Y (see, [16]–[19]).
This leads to an alternative representation where a randomized
quantizer is identified with a mixture of probability measures.
In certain situations the space of these “mixing probabilities”
representing all randomized quantizers will turn out to be more
tractable than considering the quite unstructured space of all
Model 1 triples (e, d, ν) or Model 2 pairs (q, ν).

A stochastic kernel [20] (or regular conditional probabil-
ity [21]) on Y given X is a function Q(dy|x) such that for
each x ∈ X, Q( · |x) is a probability measure on Y, and for
each Borel set B ⊂ X, Q(B| · ) is a measurable function from
X to [0, 1]. A quantizer q from X into Y can be represented
as a stochastic kernel Q on Y given X by letting [16], [17],

Q(dy|x) = δq(x)(dy),

where δu denotes the point mass at u: δu(A) = 1 if u ∈ A
and δu(A) = 0 if u /∈ A for any Borel set A ⊂ Y.

If we fix the distribution μ of the source X , we can also
represent q by the probability measure v(dx dy) = μ(dx)
δq(x)(dy) on X × Y. Thus we can identify the set QM of all
M-level quantizers from X to Y with the following subset
of P(X × Y):

�μ(M) = {
v ∈ P(X × Y) : v(dx dy)

= μ(dx)δq(x)(dy), q ∈ QM
}
. (2)

Note that q �→ μ(dx)δq(x)(dy) maps QM onto �μ(M), but
this mapping is one-to-one only if we consider equivalence
classes of quantizers in QM that are equal μ almost every-
where (μ-a.e).

We equip P(X × Y) with the topology of weak
convergence (weak topology) which is metrizable with the
Prokhorov metric, making P(X × Y) into a Polish space [14].
The following lemma is proved in the Appendix A.

Lemma 1: �μ(M) is a Borel subset of P(X × Y).
Now we are ready to introduce Model 3 for randomized

quantization. Let P be a probability measure on P(X × Y)
which is supported on �μ(M), i.e., P(�μ(M)) = 1. Then
P induces a “randomized quantizer” vP ∈ P(X × Y) via

vP (A × B) =
∫

�μ(M)
v(A × B) P(dv)

for Borel sets A ⊂ X and B ⊂ Y, which we abbreviate to

vP =
∫

�μ(M)
v P(dv). (3)

Since each v in �μ(M) corresponds to a quantizer with input
distribution μ, P can be thought as a probability measure on
the set of all M-level quantizers QM .

Let P0(�μ(M)) denote the set of probability measures on
P(X × Y) supported on �μ(M). We define the set of M-level
Model 3 randomized quantizers as

�R
μ(M) =

{
vP ∈ P(X × Y) : vP

=
∫

�μ(M)
vP(dv), P ∈ P0(�μ(M))

}
. (4)

Note that if vP ∈ �R
μ(M) is a Model 3 quantizer, then the

X-marginal of vP is equal to μ, and if X and Y are random
vectors (defined on the same probability space) with joint
distribution vP , then they provide a stochastic representation
of the random quantizer’s input and output, respectively.
Furthermore, the distortion associated with vP is

L(vP ) :=
∫

X×Y
ρ(x, y)vP(dx dy)

=
∫

�μ(M)

∫

X×Y
ρ(x, y)v(dx dy)P(dv)

= E
[
ρ(X,Y )

]
.

C. Equivalence of Models

Here we show that the three models of randomized quan-
tization are essentially equivalent. As before, we assume that
the source distribution μ is fixed. The following two results
are proved in Appendix B and Appendix C, respectively.

Theorem 1: For each Model 2 randomized quantizer (q, ν)
there exists a Model 3 randomized quantizer vP ∈ �R

μ(M) such
that (X,Y ) = (X,q(X, Z)) has distribution vP . Conversely,
for any vP ∈ �R

μ(M) there exists a Model 2 randomized
quantizer (q, ν) such that (X,q(X, Z)) ∼ vP .

Theorem 2: Models 1 and 2 of randomized quantization are
equivalent in the sense of Theorem 1.

Remark 1:
(a) Clearly, any two equivalent randomized quantizers have

the same distortion. The main result of this section is
Theorem 1. Theorem 2 is intuitively obvious, but proving
that any Model 2 quantizer can be decomposed into an
equivalent Model 1 quantizer with measurable encoder
and decoder is not quite trivial.

(b) Since the dimension m of the randomizing random
vector Z was arbitrary, we can take m = 1 in Theorem 1.
In fact, the proof also implies that any Model 2 or
3 randomized quantizer is equivalent (in the sense of
Theorem 1) to a Model 2 quantizer (q, ν), where q :
X × [0, 1] → Y and ν is the uniform distribution on
[0, 1].

(c) Assume that (Z,A, ν) is an arbitrary probability space.
For any randomized quantizer q : X × Z → Y in the
form q(X, Z), where Z ∼ ν is independent of X , there
exists a Model 3 randomized quantizer vP such that
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(X,q(X, Z)) ∼ vP . This can be proved by using the
same proof method as in Theorem 1. In view of the
previous remark and Theorem 1, this means that uniform
randomization over the unit interval [0, 1] suffices under
the most general circumstances.

(d) All results in this section remain valid if the input and
reproduction alphabets X and Y are arbitrary uncountable
Polish spaces. In this case, uniform randomization over
the unit interval still provides the most general model
possible.

In the next two sections, Model 3 will be used to represent
randomized quantizers because it is particularly suited to
treating the optimal randomized quantization problem under
an output distribution constraint.

III. OPTIMAL RANDOMIZED QUANTIZATION

WITH FIXED OUTPUT DISTRIBUTION

Let ψ be a probability measure on Y and let �(M, ψ)
denote the set of all M-level Model 2 randomized quantiz-
ers (q, ν) such that the output q(X, Z) has distribution ψ.
As before, we assume that X ∼ μ, Z ∼ ν, and Z and X are
independent. We want to show the existence of a minimum-
distortion randomized quantizer having output distribution ψ,
i.e, the existence of (q∗, ν∗) ∈ �(M, ψ) such that

L(q∗, ν∗) = inf
(q,ν)∈�(M,ψ)

L(q, ν).

If we set ψ = μ, the above problem is reduced to showing
the existence of a distribution-preserving randomized
quantizer [10], [11] having minimum distortion.

The set of M-level randomized quantizers is a fairly general
(nonparametric) set of functions and it seems difficult to
investigate the existence of an optimum directly. On the other
hand, Model 3 provides a tractable framework for establishing
the existence of an optimal randomized quantizer under quite
general conditions.

Let �μ,ψ be the set of all joint distributions v ∈ P(X × Y)
having X-marginal μ and Y-marginal ψ. Then

�R
μ,ψ(M) = �R

μ(M) ∩ �μ,ψ (5)

is the subset of Model 3 randomized quantizers which corre-
sponds to the class of output-distribution-constrained Model 2
randomized quantizers �(M, ψ).

For any v ∈ P(X × Y) let

L(v) =
∫

X×Y
ρ(x, y)v(dx dy).

Using these definitions, finding optimal randomized quantizers
with a given output distribution can be posed as finding v in
�R
μ,ψ (M) which minimizes L(v), i.e.,

(P1) minimize L(v)

subject to v ∈ �R
μ,ψ (M).

We can prove the existence of the minimizer for (P1) under
either of the following assumptions. Here ‖x‖ denotes the
Euclidean norm of x ∈ R

n.
Assumption 1: ρ(x, y) is continuous and ψ(B) = 1 for

some compact subset B of Y.

Assumption 2: ρ(x, y) = ‖x − y‖2.
Theorem 3: Suppose infv∈�R

μ,ψ(M)
L(v) < ∞. Then there

exists a minimizer with finite cost for problem (P1) under
either Assumption 1 or Assumption 2.

The theorem is proved in Appendix D with the aid of
optimal transport theory [22]. The optimal transport problem
for marginals π ∈ P(X), λ ∈ P(Y) and cost function
c : X × Y → [0,∞] is defined as

minimize
∫

X×Y
c(x, y)v(dx dy)

subject to v ∈ �π,λ.

In the proof of Theorem 3 we set up a relaxed version of
the optimization problem (P1). We show that if the relaxed
problem has a minimizer, then (P1) also has a minimizer,
and then prove the existence of a minimizer for the relaxed
problem using results from optimal transport theory.

Remark 2: Note that the product distribution μ ⊗ ψ cor-
responds to a 1-level randomized quantizer (the equivalent
Model 2 randomized quantizer is given by q(x, z) = z
and Z ∼ ψ). Hence μ ⊗ ψ ∈ �R

μ,ψ(M) for all M ≥ 1, and
if L(μ⊗ψ) < ∞, then the condition infv∈�R

μ,ψ(M)
L(v) < ∞

holds. In particular, if both μ and ψ have finite second
moments

∫ ‖x‖2μ(dx) < ∞ and
∫ ‖y‖2ψ(dy) < ∞, and

ρ(x, y) = ‖x − y‖2 (Assumption 2), then infv∈�R
μ,ψ(M)

L(v) < ∞.
Optimal transport theory can also be used to show that,

under some regularity conditions on the input distribution and
the distortion measure, the randomization can be restricted to
quantizers having a certain structure. Here we consider sources
with densities and the mean square distortion. A quantizer
q : X → Y with output points q(X) = {y1, . . . , yk} ⊂ Y is
said to have convex codecells if q−1(yi ) = {x : q(x) = yi } is a
convex subset of X = R

n for all i = 1, . . . , k. Let QM,c denote
the set of all M-level quantizers having convex codecells. The
proof of the following theorem is given in Appendix E.

Theorem 4: Suppose ρ(x, y) = ‖x − y‖2 and μ admits
a probability density function. Then an optimal randomized
quantizer in Theorem 3 can be obtained by randomizing over
quantizers with convex cells. That is

min
v∈�R

μ,ψ(M)
L(v) = min

v∈�R,c
μ,ψ(M)

L(v),

where �R,c
μ,ψ (M) represents the Model 3 quantizers with output

distribution ψ that are obtained by replacing QM with QM,c
in (2).

Remark 3: Each quantizer having M convex codecells can
be described using nM + (n + 1)M(M − 1)/2 real parameters
if μ has a density and any two quantizers that are μ-a.e.
equal are considered equivalent. One obtains such a parametric
description by specifying the M output points using nM real
parameters, and specifying the M convex polytopal codecells
by M(M − 1)/2 hyperplanes separating pairs of distinct
codecells using (n + 1)M(M − 1)/2 real parameters. Thus
Theorem 4 replaces the nonparametric family of quantizers
QM in Theorem 3 with the parametric family QM,c.
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IV. APPROXIMATION WITH FINITE RANDOMIZATION

Since randomized quantizers require common randomness
that must be shared between the encoder and the decoder, it is
of interest to see how one can approximate the optimal cost by
randomizing over finitely many quantizers. Clearly, if the tar-
get probability measure ψ on Y is not finitely supported, then
no finite randomization exists with this output distribution.
In this section we relax the fixed output distribution constraint
and consider the problem where the output distribution belongs
to some neighborhood (in the weak topology) of ψ. We show
that one can always find a finitely randomized quantizer which
is optimal (resp., ε-optimal) for this relaxed problem if the dis-
tortion measure is continuous and bounded (resp., arbitrary).

Let B(ψ, δ) denote the open ball in P(Y), with respect
to the Prokhorov metric [14] (see also (20) in Appendix F),
having radius δ > 0 and centered at the target output distribu-
tion ψ. Also, let Mδ

μ,ψ denote the set of all v ∈ �R
μ(M) whose

Y marginal belongs to B(ψ, δ). That is, Mδ
μ,ψ represents all

randomized quantizers in �R
μ(M) whose output distribution is

within distance δ of the target distribution ψ. We consider the
following relaxed version of the minimization problem (P1):

(P3) minimize L(v)

subject to v ∈ Mδ
μ,ψ .

The set of finitely randomized quantizers in �R
μ(M) is

obtained by taking finite mixtures of quantizers in �μ(M), i.e.,

�FR
μ (M) =

{
vP ∈ �R

μ(M) : vP

=
∫

�μ(M)
vP(dv), | supp(P)| < ∞

}
.

Theorem 5: Assume the distortion measure ρ is continuous
and bounded and let v ∈ Mδ

μ,ψ be arbitrary. Then there exists
vF in Mδ

μ,ψ ∩ �FR
μ (M) such that L(vF ) ≤ L(v).

The proof is given in Appendix F.
Although the minimum in (P3) may not be achieved by

any v ∈ Mδ
μ,ψ , the theorem implies that if the problem has a

solution, it also has a solution in the set of finitely randomized
quantizers.

Corollary 1: Assume ρ is continuous and bounded and sup-
pose there exists v∗ ∈ Mδ

μ,ψ with L(v∗) = infv∈Mδ
μ,ψ

L(v).

Then there exists vF ∈ Mδ
μ,ψ ∩ �FR

μ (M) such that
L(vF ) = L(v∗).

The continuity of L, implied by the boundedness and
continuity of ρ is crucial in the proof of Theorem 5 and thus
for Corollary 1. However, the next theorem shows that for
an arbitrary ρ, any ε > 0, and v ∈ Mδ

μ,ψ , there exists vF

in Mδ
μ,ψ ∩ �FR

μ (M) such that L(vF ) ≤ L(v) + ε. That is,
for any ε > 0 there exists an ε-optimal finitely randomized
quantizer for (P3). The theorem is proved in Appendix G.

Theorem 6: Let ρ be an arbitrary distortion measure and
assume infv∈Mδ

μ,ψ
L(v) < ∞. Then,

inf
v∈Mδ

μ,ψ∩�FR
μ (M)

L(v) = inf
v∈Mδ

μ,ψ

L(v).

Remark 4: The above results on finite randomization heav-
ily depend on our use of the Prokhorov metric as a

measure of “distance” between two probability measures.
In particular, if one considers other measures of closeness,
such as the Kullback-Leibler (KL) divergence or the total vari-
ation distance, then finite randomization may not suffice if the
target output distribution is not discrete. In particular, if the tar-
get output distribution ψ has a density and ψ̃ denotes the (nec-
essarily discrete) output distribution of any finitely randomized
quantizer, then ψ̃ is not absolutely continuous with respect to
ψ and for the KL divergence we have DK L(ψ̃‖ψ) = ∞, while
for the total variation distance we have ‖ψ̃ − ψ‖T V = 1.

V. A SOURCE CODING THEOREM

After proving the existence of an optimum randomized
quantizer in problem (P1) in Section III, one would also like
to evaluate the minimum distortion

L∗ := min{L(v) : v ∈ �R
μ,ψ(M)} (6)

achievable for fixed source and output distributions μ and ψ
and given number of quantization levels M. For any given
blocklength n this seems to be a very hard problem in
general. However, we are able to prove a rate-distortion type
result that explicitly identifies L∗ in the limit of large block
lengths n if the source and output distributions correspond to
two stationary and memoryless (i.e., i.i.d.) processes.

With a slight abuse of the notation used in previous sections,
we let X = Y = R and consider a sequence of problems (P1)
with input and output alphabets Xn = Yn = R

n, n ≥ 1, and
corresponding source and output distributions μn = μ⊗· · ·⊗μ
and ψn = ψ ⊗ · · · ⊗ ψ, the n-fold products of a two fixed
probability measures μ,ψ ∈ P(R). To emphasize the chang-
ing block length, xn = (x1, . . . , xn) and yn = (y1, . . . , yn)
will denote generic elements of Xn and Yn, respectively.

Assumption 3: The distortion measure is the average squared
error given by

ρn(x
n, yn) = 1

n

n∑

i=1

ρ(xi , yi )

with ρ(x, y) = (x − y)2. We assume that μ and ψ have finite
second moments, i.e.,

∫
x2μ(dx) < ∞,

∫
y2ψ(dy) < ∞.

For R ≥ 0 let �R
μn ,ψn (2nR) denote the set of n-dimensional

Model 3 randomized quantizers defined in (5) having input
distribution μn, output distribution ψn, and at most 2nR levels
(i.e., rate R). Then

Ln(μ,ψ, R) := inf
{

L(v) : v ∈ �R
μn ,ψn (2nR)

}

is the minimum distortion achievable by such quantizers.
We also define

D(μ,ψ, R)

= inf
{

E[ρ(X,Y )] : X ∼ μ, Y ∼ ψ, I (X; Y ) ≤ R
}
,

where the infimum is taken over pairs of all joint distributions
of real random variables X and Y such that X has distrib-
ution μ, Y has distribution ψ, and their mutual information
I (X; Y ) is upper bounded by R.

One can trivially adapt the standard proof from rate-
distortion theory to show that similar to the distortion-rate
function, D(μ,ψ, R) is a convex and nonincreasing function
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of R. Note that D(μ,ψ, R) is finite for all R ≥ 0 by
the assumption that μ and ψ have finite second moments.
The distortion-rate function D(μ, R) of the i.i.d. source μ,
is obtained from D(μ,ψ, R) as

D(μ, R) = inf
ψ∈P(Y)

D(μ,ψ, R).

By a standard argument one can easily show that
the sequence {nLn(μ,ψ, R)}n≥1 is subadditive and so
infn≥1 Ln(μ,ψ, R) = limn→∞ Ln(μ,ψ, R). Thus the limit
represents the minimum distortion achievable with rate-R
randomized quantizers for an i.i.d. source with marginal μ
under the constraint that the output is i.i.d. with marginal ψ.
The next result proves that this limit is equal to D(μ,ψ, R),
which one could thus call the “output-constrained distortion-
rate function.”

Theorem 7: We have

lim
n→∞ Ln(μ,ψ, R) = D(μ,ψ, R). (7)

Remark 5:
(a) As usual, the proof of the theorem consists of a converse

and an achievability part. The converse (Lemma 2 below)
directly follows from the usual proof of the converse
part of the rate-distortion theorem. In fact, this was first
noticed in [11] where the special case ψ = μ was
considered and (in a different formulation) it was shown
that for all n

Ln(μ,μ, R) ≥ D(μ,μ, R).

Virtually the same argument implies that Ln(μ,ψ, R) ≥
D(μ,ψ, R) for all n and ψ. Nevertheless, we write out
the proof in Appendix VI-H since, strictly speaking,
the proof in [11] is only valid if ψ is discrete with
finite (Shannon) entropy or it has a density and finite
differential entropy.

(b) The proof of the converse part (Lemma 2) is valid for any
randomized quantizer whose output Y n satisfies Yi ∼ ψ,
i = 1, . . . , n. Thus the theorem also holds if in the
definition of Ln(μ,ψ, D), the randomized quantizers are
required to have outputs with identically distributed (but
not necessarily independent) components having common
distribution ψ.

(c) In [11] it was left as an open problem if D(μ,μ, R) can
be asymptotically achieved by a sequence of distribution-
preserving randomized quantizers. The authors presented
an incomplete achievability proof for the special case of
Gaussian μ using dithered lattice quantization. We prove
the achievability of D(μ,ψ, R) for arbitrary μ and ψ
using a fundamentally different (but essentially non-
constructive) approach. In particular, our proof is based
on random coding where the codewords are uniformly
distributed on the type class of an n-type that well
approximates the target distribution ψ, combined with
optimal coupling from mass transport theory.

(d) With only minor changes in the proof, the theorem
remains valid if X = Y are arbitrary Polish spaces with
metric d and ρ(x, y) = d(x, y)p for some p ≥ 1. In this
case the finite second moment conditions translate into

∫
d(x, x0)

p μ(dx) < ∞ and
∫

d(y, y0)
p ψ(dy) < ∞ for

some (and thus all) x0, y0 ∈ X.
Proof of Theorem 7: In this proof we use Model 2 of

randomized quantization which is more suitable here than
Model 3. Also, it is easier to deal with the rate-distortion
performance than with the distortion-rate performance. Thus,
following the notation in [23], for D ≥ 0 we define the
minimum mutual information with constraint output ψ as

Im(μ‖ψ, D)

= inf
{

I (X; Y ) : X ∼ μ,Y ∼ ψ, E[ρ(X,Y )] ≤ D
}
,

where the infimum is taken over pairs of all joint distribu-
tions of X with marginal μ and Y with marginal ψ such
that E[ρ(X,Y )] ≤ D. If this set of joint distributions is
empty, we let Im(μ‖ψ, D) = ∞. Clearly, the extended real
valued functions Im(μ‖ψ, · ) and D(R, μ, · ) are inverses of
each other. Hence Im(μ‖ψ, D) is a nonincreasing, convex
function of D.

The converse part of the theorem, i.e., the statement
Ln(μ,ψ, R) ≥ D(R, μ,ψ) for all n ≥ 1, is directly implied
by the following lemma. The proofs of all lemmas in this
section are given in Appendix H.

Lemma 2: For all n ≥ 1 if a randomized quantizer has
input distribution μn, output distribution ψn, and distortion D,
then its rate is lower bounded as

R ≥ Im(μ‖ψ, D).
In the rest of the proof we show the achievability

of D(R, μ,ψ). We first prove this for finite alphabets and
then generalize to continuous alphabets.

Let X = Y be finite sets and assume that
ρ(x, y) = d(x, y)p, where d is a metric on X and p > 0.
For each n let ψn be a closest n-type [24, Ch. 11] to ψ in
the l1-distance which is absolutely continuous with respect
to ψ, i.e., ψn(y) = 0 whenever ψ(y) = 0. Let D be such
that Im(μ‖ψ, D) < ∞, let ε > 0 be arbitrary, and set
R = Im(μ‖ψ, D) + ε. Assume Xn ∼ μn for n ≥ 1. For each
n generate 2nR codewords uniformly and independently drawn
from Tn(ψn), the type class of ψn [24], i.e., independently
(of each other and of Xn) generate random codewords
Un(1), . . . ,Un(2nR) such that Un(i) ∼ ψ

(n)
n , where

ψ(n)n (yn) =
{

1
|Tn(ψn)| , if yn ∈ Tn(ψn)

0, otherwise.

(As usual, for simplicity we assume that 2nR is an integer.) Let
X̂n denote the output of the nearest neighborhood encoder:
X̂n = arg min

1≤i≤2nR
ρn(Xn,Un(i)). In case of ties, we choose Un(i)

with the smallest index i . The next lemma states the intuitively
clear fact that X̂n is uniformly distributed on Tn(ψn).

Lemma 3: X̂n ∼ ψ
(n)
n .

The idea for this random coding scheme comes from [23]
where an infinite i.i.d. codebook {Un(i)}∞i=1 was considered
and the coding rate was defined as (1/n) log Nn , where Nn

is the smallest index i such that ρn(Xn,Un(i)) ≤ D. If the
Un(i) are uniformly chosen from the type class Tn(ψn), then
by Theorem 1 and Appendix A and B of [23], (1/n) log Nn −
Im(μ‖ψn, D) → 0 in probability.
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Fig. 2. D(R, μ,ψ) achieving randomized quantizer scheme.

Our scheme converts this variable-length random cod-
ing scheme into a fixed-rate scheme by considering, for
each blocklength n, the finite codebook {Un(i)}2nR

i=1. Letting
ρmax = maxx,y ρ(x, y), the expected distortion of our scheme
is bounded as

E[ρn(X
n, X̂n)] ≤ D + ρmax Pr

{ 1

n
log Nn > R

}
.

Since Im(μ‖ψn, D) → Im(μ‖ψ, D) by the continuity
of Im(μ‖ψ, D) in ψ (see [23, Appendix A]), we have
R ≥ Im(μ‖ψn, D) + δ for some δ > 0 if n is large enough.
Thus the above bound implies

lim sup
n→∞

E[ρn(X
n, X̂n)] ≤ D. (8)

Hence our random coding scheme has the desired rate and
distortion as n → ∞. However, its output X̂n has distribution
ψ
(n)
n instead of the required ψn. The next lemma shows

that the normalized Kullback-Leibler divergence (relative
entropy, [24]) between ψ(n)n and ψn asymptotically vanishes.

Lemma 4:
1

n
D(ψ(n)n ‖ψn) → 0 as n → ∞.

Let π, λ ∈ P(X). The optimal transportation cost T̂n(π, λ)
between π and λ (see [22]) with cost function ρn is defined by

T̂n(π, λ) = inf
{

E[ρn(U
n, V n)] : Un ∼ π, V n ∼ λ

}
, (9)

where the infimum is taken over all joint distribution of pairs of
random vectors (Un, V n) satisfying the given marginal distri-
bution constraints. The joint distribution achieving T̂n(π, λ) as
well as the resulting pair (Un, V n) are both called an optimal
coupling of π and λ. Optimal couplings exist when X is finite
or X = R

n, ρ(x, y) = (x − y)2, and both π and λ both have
finite second moments [22].

Now consider an optimal coupling (X̂n,Y n) of ψ(n)n and ψn.
If Z1 and Z2 are uniform random variables on [0, 1]
such that Z = (Z1, Z2) is independent of Xn, then the
random code and optimal coupling can be “realized” as
(Un(1), . . . ,Un(2nR)) = fn(Z1), X̂n = f̂n(Xn, Z1), and
Y n = gn(X̂n, Z2), where fn , f̂n , and gn are suitable
(measurable) functions. Combining random coding with
optimal coupling this way gives rise to a randomized
quantizer of type Model 2 whose output has the desired
distribution ψn (see Fig. 2).

The next lemma uses Marton’s inequality [25] to show
that the extra distortion introduced by the coupling step
asymptotically vanishes.

Lemma 5: We have

lim
n→∞ T̂n(ψ

(n)
n , ψn) = 0

and consequently

lim sup
n→∞

E
[
ρn(X

n,Y n)
] ≤ D.

In summary, we have shown that there exists a
sequence of Model 2 randomized quantizers having rate

R = Im(μ‖ψ, D)+ε and asymptotic distortion upper bounded
by D which satisfy the output distribution constraint Y n ∼ ψn.
Since ε > 0 is arbitrary, this completes the proof of the achiev-
ability of Im(μ‖ψ, D) (and the achievability of D(μ,ψ, R))
for finite source and reproduction alphabets.

Remark 6: We note that an obvious approach to
achievability would be to generate a codebook where
the codewords have i.i.d. components drawn according to ψ.
However, the output distribution of the resulting the scheme
would be too far from the desired ψn. In particular, such
a scheme produces output X̂n whose empirical distribution
(type) converges to a “favorite type” which is typically
different from ψ [23, Th. 4]. As well, the rate achievable
with this scheme at distortion level D is [26, Th. 2]

R = min
ψ ′∈P(Y)

(
Im(μ‖ψ ′, D)+ D(ψ ′‖ψ))

which is typically strictly less than Im(μ‖ψ, D).
Now let X = Y = R, ρ(x, y) = (x − y)2, and assume that

μ and ψ have finite second moments. We make use of the final
alphabet case to prove achievability for this continuous case.
The following lemma provides the necessary link between the
two cases.

Lemma 6: There exist a sequence {Ak} of finite subsets of R

and sequences of probability measures {μk} and {ψk}, both
supported on Ak, such that

(i) T̂1(μ,μk) → 0, T̂1(ψ,ψk) → 0 as k → ∞;
(ii) For any ε > 0 and D ≥ 0 such that Im(μ‖ψ, D) < ∞,

we have Im(μk‖ψk , D+ε) ≤ Im(μ‖ψ, D) for all k large
enough.

Let μn
k and ψn

k denote the n-fold products of μk and ψk ,
respectively. Definition (9) of optimal coupling implies that
T̂n(μ

n, μn
k ) ≤ T̂1(μ,μk) and T̂n(ψ

n, ψn
k ) ≤ T̂1(ψ,ψk). Hence

for any given ε > 0 by Lemma 6 we can choose k large
enough such that for all n,

T̂n(μ
n, μn

k ) ≤ ε and T̂n(ψ
n , ψn

k ) ≤ ε, (10)

and also Im(μk‖ψk , D + ε) ≤ Im(μ‖ψ, D).
Now for each n define the following randomized quantizer:

(a) Realize the optimal coupling between μn and μn
k.

(b) Apply the randomized quantizer scheme for the finite
alphabet case with common source and output alphabet
Ak , source distribution μn

k , and output distribution ψn
k .

Set the rate of the quantizer to R = Im(μ‖ψ, D) + ε.
(c) Realize the optimal coupling between ψn

k and ψn.
In particular, the optimal couplings are realized as follows:

in (a) the source Xn ∼ μn is mapped to Xn(k) ∼ μn
k , which

serves as the source in (b), via Xn(k) = f̂n,k(Xn, Z3), and
in (c) the output Y n(k) ∼ ψn

k of the scheme in (b) is mapped
to Y n ∼ ψn via Y n = ĝn,k(Y n(k), Z4), where Z3 and Z4 are
uniform randomization variables that are independent of Xn.
Thus the composition of these three steps is a valid Model 2
randomized quantizer.

Since R = Im(μ‖ψ, D) + ε, in step (b) the asymptotic
(in n) distortion D + ε can be achieved by Lemma 6(ii).
Using (10) and the triangle inequality for the norm
‖V n‖2 := (∑n

i=1 E[V 2
i ])1/2 on R

n-valued random vectors
having finite second moments, it is straightforward to show
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that the asymptotic distortion of the overall scheme is upper
bounded by D + l(ε), where l(ε) → 0 as ε → 0. Since
ε > 0 can be taken to be arbitrarily small by choosing
k large enough, this completes the achievability proof for the
case X = Y = R. �

VI. CONCLUSION

We investigated a general abstract model for randomized
quantization that provides a more suitable framework for
certain optimal quantization problems than the ones usually
considered in the source coding literature. In particular, our
model formalizes the notion of randomly picking a quantizer
from the set all all quantizers with a given number of output
levels. Using this model, we proved the existence of an optimal
randomized vector quantizer under the constraint that the
quantizer output has a given distribution.

Our results are mostly non-constructive and it is an open
problem how to find (or well approximate) such optimal quan-
tizers. A special case where a scalar source has a density and
the output distribution is constrained to be equal to the source
distribution was considered in [10] and construction based on
dithered uniform quantization followed by a nonlinear map-
ping was given. Although this construction is optimal in the
limit of high resolution (M → ∞), it is very likely suboptimal
for any finite M. In general, it would be interesting to better
characterize optimal randomized quantizers in Theorem 3, for
example, by finding useful necessary conditions for optimality.
It would also be interesting to characterize the high-resolution
behavior of the distortion, which should be markedly different
from the classical case if the input and output distributions
are not equal. Connections between the output distribution-
constrained lossy source codes studied in Section V and the
empirical distribution of good rate-distortion codes (see [27]
and references therein) are also worth studying. Finally, a
rigorous theory of randomized quantization paves the way
for interesting applications in signaling games in game the-
ory [28] and in stochastic networked control (see [16], [29] for
applications of randomized quantization in real-time coding,
and [17] and [30] for quantizers and stochastic kernels viewed
as information structures in networked control).

APPENDIX

A. Proof of Lemma 1

For a fixed probability measure μ on X define

�μ = {
v ∈ P(X × Y) : v( · × Y) = μ}

(�μ is the set of all probability measures in P(X × Y) whose
X-marginal is μ). The following proposition, due to
Borkar [13, Lemma 2.2], gives a characterization of the
extreme points of �μ.

Proposition 1: �μ is closed and convex, and its set of
extreme points �μ,e is a Borel set in P(X × Y). Furthermore,
v ∈ �μ,e if and only if v(dx dy) can be disintegrated as

v(dx dy) = Q(dy|x)μ(dx)

where Q( · |x) is a Dirac measure for μ-a.e. x , i.e., there
exists a measurable function f : X → Y such that
Q( · |x) = δ f (x)( · ) for μ-a.e. x .

In fact, Borkar did not explicitly state Borel measurability
of �μ,e in [13], but the proof of [13, Lemma 2.3] clearly
implies this.

By Proposition 1 it is clear that v ∈ �μ(M) if and only if
v ∈ �μ,e and its marginal on Y is supported on a set having at
most M elements, i.e., for some L ≤ M and {y1, . . . , yL} ⊂ Y,

v(X × {y1, . . . , yL}) = 1.

Let {yn}n≥1 be a countable dense subset of Y and define
following subsets of �μ,e:

k =
⋃

n1≥1,...,nM ≥1

{
v ∈ �μ,e : v

(
X ×

M⋃

i=1

B(yni , 1/k)
)

= 1

}

and

� =
∞⋂

k=1
k

where B(y, r) denotes the open ball in Y centered at y having
radius r. Sets of the form

{
v ∈ P(X × Y) : v

(
X ×

M⋃

i=1

B(yni , 1/k)
)

= 1

}

are Borel sets by [31, Proposition 7.25]. Since �μ,e is a
Borel set, k is a Borel set for all k. Thus � is a Borel
set in P(X × Y). We will prove that � = �μ(M).

Since {yn}n≥1 is dense in Y, for any v ∈ �μ(M) and
k ≥ 1 there exist ñ1, . . . , ñM such that supp(v(X × · )) ⊂⋃M

i=1 B(yñi , 1/k). Thus �μ(M) ⊂ k for all k, implying
�μ(M) ⊂ �.

To prove the inclusion � ⊂ �μ(M), let v ∈ � and notice
that for all k there exist nk

1, nk
2, . . . , nk

M such that

v
(
X ×

M⋃

i=1

B(ynk
i
, 1/k)

)
= 1.

Let us define Kn = X × ⋂n
k=1

⋃M
i=1 B(ynk

i
, 1/k). Clearly,

Kn+1 ⊂ Kn and v(Kn) = 1, for all n. Letting

G =
∞⋂

k=1

M⋃

i=1

B(ynk
i
, 1/k),

we have v(X×G) = 1. If we can prove that G has at most M
distinct elements, then v ∈ �μ(M). Assuming the contrary,
there must exist distinct {ŷ1, ŷ2, . . . , ŷM , ŷM+1} ⊂ G. Let
ε = min{‖ŷi − ŷ j‖ : i, j = 1, . . . ,M + 1, i �= j}.
Clearly, for 1

k < ε
4 ,

⋃M
i=1 B(ynk

i
, 1/k) cannot contain

{ŷ1, ŷ2, . . . , ŷM , ŷM+1}, a contradiction. Thus G has at most
M elements and we obtain � = �μ(M). �

B. Proof of Theorem 1

We will need the following result which gives a necessary
and sufficient condition for the measurability of a mapping
from a measurable space to P(E), where E is a Polish space.
It is proved for compact E in [32, Th. 2.1] and for noncom-
pact E it is the corollary of [31, Proposition 7.25].

Theorem 8: Let (,F) be a measurable space and let E
be a Polish space. A mapping h :  → P(E) is measurable



SALDI et al.: RANDOMIZED QUANTIZATION AND SOURCE CODING 99

if and only if the real valued functions ω �→ h(ω)(A) from
 to [0, 1] are measurable for all A ∈ B(E).

For any (q, ν) define f : R
m → �μ(M) by f (z) =

δq(x,z)(dy)μ(dx). By Theorem 8, f is measurable if and only
if the mappings z �→ ∫

δq(x,z)(Cx )μ(dx) are measurable for
all C ∈ B(X × Y), where Cx = {y : (x, y) ∈ C}. Observe that
δq(x,z)(Cx ) is a measurable function of (x, z) because {(x, z) ∈
X×Z : δq(x,z)(Cx ) = 1} = {(x, z) ∈ X×Z : (x,q(x, z)) ∈ C}.
By [33, Th. 18.3]

∫
δq(x,z)(Cx )μ(dx) is measurable as well.

Hence f is measurable.
Thus we can define the probability measure P supported

on �μ(M) by P = ν ◦ f −1 (i.e., P(B) = ν( f −1(B)) for any
Borel set B ⊂ �μ(M)). Then, for the corresponding vP we
have (X,Y ) ∼ vP , i.e., for C ∈ B(X × Y),

Pr
{(

X,q(X, Z)
) ∈ C

} =
∫

Z

∫

X
δq(x,z)(Cx )μ(dx)ν(dz)

=
∫

Z
f (z)(C)ν(dz)

=
∫

�μ(M)
v(C)P(dv)

= vP (C).

Conversely, let vP be defined as in (3) with P supported
on �μ(M), i.e., vP = ∫

�μ(M)
vP(dv). Define the mapping

�μ(M) � v �→ qv , where qv is the μ-a.e. defined quantizer
in QM , giving v(dx dy) = μ(dx)δqv(x)(dy). Since �μ(M) is
an uncountable Borel space, there is a measurable bijection
(Borel isomorphism) g : R

m → �μ(M) between R
m and

�μ(M) [21]. Now define q by q(x, z) = qg(z)(x) and let
ν = P ◦ g. Then for all z, q( · , z) is a μ-a.e. defined
M-level quantizer. However, it is not clear whether q(x, z) is
measurable. Therefore we will construct another measurable
function q̃(x, z) such that q̃( · , z) is an M-level quantizer
and q̃( · , z) = q( · , z) μ-a.e., for all z. Then we will prove
that (X,Y ) = (X, q̃(X, Z)) ∼ v p where Z ∼ ν. Define the
stochastic kernel on X × Y given �μ(M) as

γ (dx dy|v) = v(dx dy).

Clearly, γ is well defined because �μ(M) is a Borel subset
of P(X × Y). Observe that for each v ∈ �μ(M), we have

γ (C|v) =
∫

X
δqv (x)(Cx)μ(dx) (11)

for C ∈ B(X×Y). Furthermore, by [31, Proposition 7.27] there
exists a stochastic kernel η(dy|x, v) on Y given X × �μ(M)
which satisfies for all C ∈ B(X × Y) and v ∈ �μ(M),

γ (C|v) =
∫

X
η(Cx |x, v)μ(dx). (12)

Since B(Y) is countably generated by the separability of
Y, for any v ∈ �μ(M) we have η( · |x, v) = δqv (x)( · )
μ-a.e. by (11) and (12). Since η is a stochastic kernel, it can
be represented as a measurable function from X × �μ(M)
to P(Y), i.e.,

η : X × �μ(M) → P(Y).
Define P1(Y) = {ψ ∈ P(Y) : ψ({y}) = 1 for some y ∈ Y}.
P1(Y) is a closed (thus measurable) subset of P(Y)

by [34, Lemma 6.2]. Hence, M := η−1(P1(Y)) is also
measurable. Observe that for any v ∈ �μ(M) we have Mv :=
{x ∈ X : (x, v) ∈ M} ⊃ {x ∈ X : η( · |x, v) = δqv (x)( · )}. Thus
μ(Mv ) = 1 for all v ∈ �μ(M), which implies μ⊗ P

(
M

) = 1.
Define the function q̃v from X × �μ(M) to Y as

q̃v (x) =
{

ỹ, if (x, v) ∈ M, where η({ỹ}|x, v) = 1,

y, otherwise,

where y is fixed. By construction, q̃v (x) = qv(x) μ-a.e., for
all v ∈ �μ(M). For any C ∈ B(Y) we have

q̃−1
v (C)

= {(x, v) ∈ X × �μ(M) : q̃v (x) ∈ C}
= {(x, v) ∈ M : q̃v (x) ∈ C} ∪ {(x, v) ∈ Mc : q̃v (x) ∈ C}.

Clearly {(x, v) ∈ Mc : q̃v (x) ∈ C} = Mc or ∅ depending
on whether or not y is an element of C . Hence, q̃−1

v (C) ∈
B(X ×�μ(M)) if {(x, v) ∈ M : q̃v (x) ∈ C} ∈ B(X ×�μ(M)).
But {(x, v) ∈ M : q̃v (x) ∈ C} = {(x, v) ∈ M : η(C|x, v) = 1}
which is in B(X×�μ(M)) by the measurability of η(C| · , · ).
Thus, q̃ is a measurable function from X × �μ(M) to Y.

Let us define q̃ as q̃(x, z) = q̃g(z)(x). By the measurability
of g it is clear that q̃ is measurable. In addition, for any
z ∈ Z q̃( · , z) is an M-level quantizer which is μ-a.e. equal
to q( · , z). Finally, if Z ∼ ν is independent of X and
Y = q̃(X, Z), then (X,Y ) ∼ vP , i.e.,

Pr
{(

X, q̃(X, Z)
) ∈ C

}

=
∫

Z

∫

X
δq̃(x,z)(Cx)μ(dx)ν(dz)

=
∫

�μ(M)

∫

X
δq̃v (x)(Cx )μ(dx)P(dv)

=
∫

�μ(M)

∫

Mv

η(Cx |x, v)μ(dx)P(dv)

=
∫

�μ(M)
γ (C|v)P(dv)

=
∫

�μ(M)
v(C)P(dv)

= v p(C). �

C. Proof of Theorem 2
If (e, d, ν) is a Model 1 randomized quantizer, then

setting q(x, z) = d(e(x, z), z) defines a Model 2 randomized
quantizer (q, ν) such that the joint distributions of their inputs
and outputs coincide.

Conversely, let (q, ν) be a Model 2 randomized quantizer.
It is obvious that q can be decomposed into an encoder
e : X×Z → {1, . . . ,M} and decoder d : {1, . . . ,M}×Z → Y
such that d(e(x, z), z) = q(x, z) for all x and z. The
difficulty lies in showing that this can be done so that the
resulting e and d are measurable. In fact, we instead construct
measurable e and d whose composition is μ ⊗ ν-a.e. equal
to q, which is sufficient to imply the theorem.

Let (q, ν) be a Model 2 randomized quantizer. Since
R

n and [0, 1] are both uncountable Borel spaces, there
exists a Borel isomorphism f : R

n → [0, 1] [21]. Define
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q̂ : X × Y → [0, 1] by q̂ = f ◦ q. Hence, q̂ is measurable
and, for any fixed z, q̂(·, z) is an M-level quantizer from
X to [0, 1]. Also note that q = f −1 ◦ q̂.

Now for any fixed z ∈ Z consider only those output points
of q̂(·, z) that occur with positive μ probability and order these
according to their magnitude from the smallest to the largest.
For i = 1, . . . ,M let the function fi (z) take the value of
the i th smallest such output point. If there is no such value,
let fi (z) = 1. We first prove that all the fi are measurable
and then define the encoder and the decoder in terms of these
functions.

Observe that for any a ∈ [0, 1], by definition

{z ∈ Z : f1(z) ≤ a} =
{

z ∈ Z :
∫

X
δq̂(x,z)([0, a])μ(dx) > 0

}
,

where the set on the right hand side is a Borel set by
Fubini’s theorem. Hence, f1 is a measurable function. Define
E1 = {(x, z) ∈ X × Z : q̂(x, z) − f1(z) = 0}, a Borel set.
Letting E1,z = {x ∈ X : (x, z) ∈ E1} denote the z-section
of E1, for any a ∈ [0, 1) we have

{z ∈ Z : f2(z) ≤ a}
=

{
z ∈ Z :

∫

X\E1,z

δq̂(x,z)([0, a])μ(dx) > 0
}
,

and thus f2 is measurable. Continuing in this fashion,
we define the Borel sets Ei = {(x, z) : q̂(x, z) − fi (z) = 0}
and write, for any a ∈ [0, 1),

{z ∈ Z : fi (z) ≤ a}
=

{
z ∈ Z :

∫

X\⋃i−1
j=1 E j,z

δq̂(x,z)([0, a])μ(dx) > 0
}
,

proving that fi is measurable for all i = 1, . . . ,M .
Define

N = {
(x, z) ∈ X × Z : q̂(x, z) �= fi (z) for all i = 1, . . . ,M

}

= X × Z \
M⋃

i=1

Ei .

Clearly, N is a Borel set and μ ⊗ ν(N) = 0 by
Fubini’s theorem and the definition of f1, . . . , fM . Now we
can define

e(x, z) =
M∑

i=1

i 1{q̂(x,z)= fi (z)} + M 1N (x, z).

and

d(i, z) =
M∑

j=1

f −1 ◦ f j (z)1{i= j },

where 1B denotes the indicator of event (or set) B . The
measurability of q̂ and f , f1, . . . , fM implies that e and d
are measurable. Since d(e(x, z), z) = q̂(x, z) μ ⊗ ν-a.e. by
construction, this completes the proof. �

D. Proof of Theorem 3

1) Proof Under Assumption 1: To simplify the
notation we redefine the reconstruction alphabet as
Y = B , so that Y is a compact subset of R

n .
It follows from the continuity of ρ that L is lower
semicontinuous on P(X × Y) for the weak topology (see
[22, Lemma 4.3]). Hence, to show the existence of a
minimizer for problem (P1) it would suffice to prove that
�R
μ,ψ(M) = �R

μ(M) ∩ �μ,ψ is compact. It is known that
�μ,ψ is compact [22, Ch. 4], but unfortunately �μ(M) is not
closed [17] and it seems doubtful that �R

μ(M) is compact.
Hence, we will develop a different argument which is based
on optimal transport theory. We will first give the proof under
Assumption 1; the proof under Assumption 2 then follows
via a one-point compactification argument.

Let PM (Y) = {ψ0 ∈ P(Y) : | supp(ψ0)| ≤ M} be the set of
discrete distributions with M atoms or less on Y.

Lemma 7: PM (Y) is compact in P(Y).
Proof: Let {ψn} be an arbitrary sequence in PM (Y). Each

ψn can be represented by points (yn
1 , . . . , yn

M ) = yn ∈ YM

and (pn
1 , . . . , pn

M) = pn ∈ Ks , where Ks = {(p1, . . . , pM ) ∈
R

M : ∑M
i=1 pi = 1, pi ≥ 0} is the probability simplex in R

M.
Let wn = (yn, pn). Since YM × Ks is compact, there exists
a subsequence {wnk } converging to some w in YM × Ks . Let
ψ be the probability measure in PM (Y) which is represented
by w. It straightforward to show that ψ is a weak limit
of {ψnk }. This completes the proof. �

Define

�̂μ(M) =
⋃

ψ0∈PM (Y)

{
v̂ ∈ �μ,ψ0 : L(v̂) = min

v∈�μ,ψ0

L(v)
}
.

The elements of �̂μ(M) are the probability measures which
solve the optimal transport problem (see [22]) for fixed input
marginal μ and some output marginal ψ0 in PM (Y). At the
end of this proof Lemma 11 shows that �̂μ(M) is a Borel set.
Let �̂R

μ(M) be the randomization of �̂μ(M), obtained by
replacing �μ(M) with �̂μ(M) in (4). Define the optimization
problem (P2) as

(P2) minimize L(v)

subject to v ∈ �̂R
μ,ψ(M),

where �̂R
μ,ψ(M) = �̂R

μ(M) ∩ �μ,ψ .
Proposition 2: For any v∗ ∈ �R

μ,ψ(M) there exists

v̂ ∈ �̂R
μ,ψ (M) such that L(v∗) ≥ L(v̂). Hence, the distortion

of any minimizer in (P2) is less than or equal to the distortion
of a minimizer in (P1).

To prove Proposition 2 we need the following lemma.
Lemma 8: Let P be a probability measure on �μ(M). Then

there exists a measurable mapping f : �μ(M) → �̂μ(M) such
that v(X × · ) = f (v)(X × · ) and L(v) ≥ L( f (v)), P-a.e.

Proof: Define the projections f1 : �μ(M) → PM (Y)
and f2 : �̂μ(M) → PM (Y) by f1(v) = v(X × · ),
f2(v) = v(X× · ). Note that f1 is continuous and f2 is contin-
uous and onto. Define P̃ = P ◦ f −1

1 on PM (Y). By Yankov’s
lemma [35, Appendix 3] there exists a mapping g from
PM (Y) to �̂μ(M) such that f2(g(ψ)) = ψ P̃-a.e. Then, it is
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straightforward to show that f = g ◦ f1 satisfies conditions
v(X × · ) = f (v)(X × · ) and L(v) ≥ L( f (v)), P-a.e. �

Proof of Proposition 2: Let v∗ ∈ �R
μ,ψ(M), i.e.,

v∗ =
∫

�μ(M)
vP(dv) and v∗(X × · ) = ψ.

By Lemma 8 there exists f : �μ(M) → �̂μ(M) such that
v(X × · ) = f (v)(X × · ) and L(v) ≥ L( f (v)), P-a.e. Define
P̃ = P◦ f −1 ∈ P(�̂μ(M)) and v̂ = ∫

�̂μ(M)
v P̃(dv) ∈ �̂R

μ(M).
We have

L(v∗) =
∫

�μ(M)
L(v)P(dv) ≥

∫

�μ(M)
L( f (v))P(dv)

=
∫

�̂μ(M)
L(v)P̃(dv) = L(v̂)

as well as

v∗(X × · ) =
∫

�μ(M)
v(X × · )P(dv)

=
∫

�μ(M)
f (v)(X × · )P(dv)

=
∫

�̂μ(M)
v(X × · )P̃(dv) = v̂(X × · ).

This completes the proof. �
Recall the set �μ and its set of its extreme points�μ,e from

Proposition 1. It is proved in [13] and [36] that any ṽ ∈ �μ
can be written as ṽ = ∫

�μ,e
vP(dv) for some P ∈ P(�μ,e).

By Proposition 1 we also have �μ(M) ⊂ �μ,e. The following
lemma is based on these two facts.

Lemma 9: Let ṽ ∈ �μ which is represented as ṽ =∫
�μ,e

vP(dv). If ṽ(X × · ) ∈ PM (Y), then P(�μ(M)) = 1.
Proof: Since ṽ(X × · ) ∈ PM (Y), there exist a finite set

B ⊂ Y having M
′ ≤ M elements such that ṽ(X × B) = 1.

We have

ṽ(X × B) =
∫

�μ,e

v(X × B)P(dv)

=
∫

�μ,e\�μ(M)
v(X × B)P(dv)

+
∫

�μ(M)
v(X × B)P(dv).

Since v(X × B) < 1 for all v ∈ �μ,e \ �μ(M), we obtain
P(�μ(M)) = 1. �

Lemma 9 implies �̂μ(M) ⊂ �R
μ(M) because v(X × · ) ∈

PM (Y) when v ∈ �̂μ(M). Define h : P(�μ(M)) → �μ as
follows:

h(P)( · ) =
∫

�μ(M)
v( · )P(dv). (13)

It is clear that the range of h is �R
μ(M) ⊂ �μ.

Lemma 10: h is continuous.
Proof: Assume {Pn} converges weakly to P in P(�μ(M)).

Then, for any continuous and bounded real function f on X×Y

lim
n→∞

∫

�μ(M)

∫

X×Y
f (x, y)v(dx dy)Pn(dv)

=
∫

�μ(M)

∫

X×Y
f (x, y)v(dx dy)P(dv)

if the mapping v �→ ∫
X×Y f (x, y)v(dx dy) is continuous

and bounded on �μ(M). Clearly this mapping is continuous
by the definition of weak convergence and bounded by the
boundedness of f. Thus

∫

�μ(M)
vPn(dv) →

∫

�μ(M)
vP(dv)

weakly, completing the proof. �
Since �̂μ(M) ⊂ �R

μ(M), we have Popt(�μ(M)) :=
h−1(�̂μ(M)) ⊂ P(�μ(M)), which is measurable by the mea-
surability of �̂μ(M) and h. Let g : Popt(�μ(M)) → �̂μ(M)
be the restriction of h to Popt(�μ(M)). Clearly g is
measurable and onto. By Yankov’s lemma [35] for any
probability measure P on �̂μ(M) there exists a measur-
able mapping ϕ : �̂μ(M) → Popt(�μ(M)) such that
g(ϕ(v̂)) = v̂ P-a.e. In addition, since ϕ(v̂) ∈ g−1(v̂) P-a.e.,
we have

L(v̂) =
∫

�μ(M)
L(v)ϕ(v̂)(dv) (14)

and

v̂(X × · ) =
∫

�μ(M)
v(X × · )ϕ(v̂)(dv) (15)

P-a.e. Define the stochastic kernel �(dv|v̂) on �μ(M) given
�̂μ(M) as

�(dv|v̂) = ϕ(v̂)(dv). (16)

Since ϕ is measurable, �(dv|v̂) is well defined. Observe
that both ϕ and �(dv|v̂) depend on the probability measure
P ∈ �̂μ(M).

Proposition 3: If (P2) has a minimizer v∗, then we can find
v̄ ∈ �R

μ,ψ(M) such that L(v̄) = L(v∗), implying that v̄ is a
minimizer for (P1).

Proof: v∗ can be written as v∗ = ∫
�̂μ(M)

v̂P(d v̂). Consider
the stochastic kernel �(dv|v̂) defined in (16). Composing P
with � we obtain a probability measure� on �̂μ(M)×�μ(M)
given by

�(d v̂ dv) = P(d v̂)�(dv|v̂). (17)

Let P̃ = �(�̂μ(M)× · ) ∈ P(�μ(M)). Define the randomized
quantizer v̄ ∈ �R

μ(M) as v̄ = ∫
�μ(M)

v P̃(dv). We show that
L(v∗) = L(v̄) and v∗(X× · ) = v̄(X× · ) which will complete
the proof. We have

L(v∗) =
∫

�̂μ(M)
L(v̂)P(d v̂)

=
∫

�̂μ(M)

∫

�μ(M)
L(v)ϕ(v̂)(dv)P(d v̂ ) (by (14))

=
∫

�̂μ(M)×�μ(M)
L(v)�(d v̂ dv) (by (16))

=
∫

�μ(M)
L(v)P̃(dv) = L(v̄).
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Similarly,

v∗(X × · ) =
∫

�̂μ(M)
v̂(X × · )P(d v̂)

=
∫

�̂μ(M)

∫

�μ(M)
v(X × · )ϕ(v̂)(dv)P(d v̂ ) (by (15))

=
∫

�̂μ(M)×�μ(M)
v(X × · )�(d v̂ dv) (by (16))

=
∫

�μ(M)
v(X × · )P̃(dv) = v̄(X × · ).

By Proposition 2, v̄ is a minimizer for (P1). �
Hence, to prove the existence of a minimizer for (P1) it is

enough prove the existence of a minimizer for (P2). Before
proceeding to the proof we need to define the optimal transport
problem. Optimal transport problem for marginals π ∈ P(X),
λ ∈ P(Y) and cost function c : X×Y → [0,∞] is defined as:

minimize
∫

X×Y
c(x, y)v(dx dy)

subject to v ∈ �π,λ. (18)

The following result is about the structure of the optimal v
in (18). It uses the concept of c-cyclically monotone
sets [22, Definition 5.1]. A set B ⊂ X × Y is said to
be c-cyclically monotone if for any N ≥ 1 and pairs
(x1, y1), . . . , (xN , yN ) in B , the following inequality holds:

N∑

i=1

c(xi , yi ) ≤
N∑

i=1

c(xi , yi+1),

where yN+1 := y1.
Informally, when v ∈ �π,λ is concentrated on a c-cyclically

monotone set, then its cost cannot be improved by local
perturbations; see the discussion in [22, Ch. 5]. The following
result shows that an optimal v must concentrate on a
c-cyclically monotone set.

Proposition 4 ([37, Th. 1.2], [22, Th. 5.10]): Let c :
X × Y → [0,∞] be continuous. If v ∈ �π,λ is a
solution to the optimal transport problem (18) and∫

X×Y c(x, y)v(dx dy) < ∞, then v is concentrated on
some c-cyclically monotone set.

For any K ⊂ P(X) and S ⊂ P(Y) define �K ,S ⊂ P(X×Y)
as the set of probability measures which are concentrated
on some c-cyclically monotone set and solve (18) for some
π ∈ K , λ ∈ S. The following result is a slight modification
of [22, Corollary 5.21].

Proposition 5: If K and S are compact, then �K ,S is
compact.

Proof: Let {vn} be a sequence in �K ,S . It can be
shown that there exists a subsequence {vnk } converging to v
whose marginals belong to K and S [22, Lemma 4.4]. Since
each vnk is concentrated on a c-cyclically monotone set by
assumption, it can be shown by using the continuity of c that
v is also concentrated on a c-cyclically monotone set (see
[22, Proof of Th. 5.20]). Then v is also an element of �K ,S

by [37, Th. B]. �
Since {μ} and PM (Y) are both compact, we obtain that

�{μ},PM (Y) is compact. Thus it follows that P(�{μ},PM (Y)) is

also compact. Furthermore, by Proposition 4 we have
�{μ},PM (Y) ⊃ {v ∈ �̂μ(M) : L(v) < ∞}. Hence the
randomization can be restricted to �{μ},PM (Y) when defining
�̂R
μ(M) for (P2). Let �R

{μ},PM (Y)
be the randomization of

�{μ},PM (Y) obtained by replacing �μ(M) with �{μ},PM (Y)
in (4). One can show that the mapping P(�{μ},PM (Y)) � P �→
vP ∈ �R

{μ},PM (Y)
is continuous by using the same proof as

in Lemma 10. Thus �R
{μ},PM (Y)

is the continuous image of
a compact set, and thus it is also compact. This, together
with the compactness of �μ,ψ and the lower semicontinuity
of L, implies the existence of the minimizer for (P2) under
Assumption 1.

To tie up a loose end, we still have to show that
�̂μ(M) is measurable, which will complete the proof under
Assumption 1.

Lemma 11: �̂μ(M) is a Borel set.
Proof: Let us define �̂f

μ(M) := {v ∈ �̂μ(M) : L(v) < ∞}
and �̂∞

μ (M) = �̂μ(M) \ �̂ f
μ(M). Since solutions to the

optimal transport problem having finite costs must concentrate
on c-cyclically monotone sets by Proposition 4, we have
�̂f
μ(M) = {v ∈ �{μ},PM (Y) : L(v) < ∞}. Hence, �̂ f

μ(M) is a
Borel set since �{μ},PM (Y) is compact and L is lower semi-
continuous. Recall the continuous mapping f2 in the proof of
Lemma 8. Since �{μ},PM (Y) is compact, {v ∈ �{μ},PM (Y) :
L(v) ≤ N} is also compact for all N ≥ 0. Hence,
f2

(
�̂f
μ(M)

) = ⋃∞
N=0 f2

({v ∈ �{μ},PM (Y) : L(v) ≤ N}) is
σ -compact, so a Borel set, in PM (Y). Since f2

(
�̂∞
μ (M)

) =
PM (Y) \ f2

(
�̂

f
μ(M)

)
, f2

(
�̂∞
μ (M)

)
is also a Borel set. Note

that for any v ∈ �̂∞
μ (M) we have L(v) = ∞, which means

that all ṽ with the same marginals as v are also in �̂∞
μ (M).

This implies �̂∞
μ (M) = f −1

2

(
f2

(
�̂∞
μ (M)

))
. Hence, �̂∞

μ (M)
is a Borel set. �

2) Proof Under Assumption 2: It is easy to check that
the proof under Assumption 1 remains valid if X and Y are
arbitrary uncountable Polish spaces such that Y is compact,
and the distortion measure ρ is an extended real valued
function (no steps exploited the special structure of R

n). Let
Y be the one-point compactification of R

n [21]. Y is clearly
an uncountable Polish space. Define the extended real valued
distortion measure ρ : X × Y → [0,∞] by

ρ(x, y) =
{

‖x − y‖2, if y ∈ R
n

∞, if y = ∞.
(19)

It is straightforward to check that ρ is continuous. Define
L on P(X × Y) as before, but with this new distortion
measure ρ. The proof under Assumption 1 gives a minimizer
v∗ = ∫

�μ(M)
vP(dv) for (P1). Define �̃μ(M) = {v ∈ �μ(M) :

v(X × {∞}) = 0}. Since L(v∗) < ∞ by assumption,
P(�̃μ(M)) = 1. This implies that v∗ is also a minimizer for
the problem (P1) when X = Y = R

n and ρ = ‖x − y‖2. �

E. Proof of Theorem 4

From the proof of Theorem 3 recall the set �̂μ(M) of
probability measures which solve the optimal mass transport
problem for fixed input marginal μ and some output marginal
ψ0 in PM (Y). It is known that if μ admits a density and
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ρ(x, y) = ‖x − y‖2, then each v ∈ �̂μ(M) is in the
form v(dx dy) = μ(dx)δq(x)(dy) for some q ∈ QM,c (see
[38, Th. 1]). Thus in this case �̂μ(M) ⊂ �μ(M), which
implies that �̂R

μ,ψ (M) ⊂ �R,c
μ,ψ (M) ⊂ �R

μ,ψ(M). Recall the
problem (P2) in the proof of Theorem 3. It was shown
that (P2) has a minimizer v∗. It is clear from the previous
discussion that v∗ is obtained by randomizing over the set of
quantizers having convex codecells represented by �̂μ(M).
On the other hand, v∗ is also a minimizer for the problem (P1)
by Proposition 2 in the proof of Theorem 3. �

F. Proof of Theorem 5

Recall the continuous mapping h : P(�μ(M)) → �R
μ(M)

defined in (13). Let PF (�μ(M)) denote the set of prob-
ability measures on �μ(M) having finite support. Clearly
h(PF (�μ(M))) = �FR

μ (M).
Lemma 12: �FR

μ (M) is dense in �R
μ(M).

Proof: Since �μ(M) is a separable metric space,
PF (�μ(M)) is dense in P(�μ(M)) by [34, Th. 6.3]. Since
�FR
μ (M) is the image of a PF (�μ(M)) under the continuous

function h which maps P(�μ(M)) onto �R
μ(M), it is dense

in �R
μ(M). �

Recall that the Prokhorov metric on P(E), where (E, d) is
a metric space, is defined as [14]

dP(v, ν) = inf
{
α : v(A) ≤ ν(Aα)+ α,

ν(A) ≤ v(Aα)+ α for all A ∈ B(E)} (20)

where

Aα =
{

e ∈ E : inf
e′∈A

d(e, e′) < α
}
.

Hence for v, ν ∈ P(X × Y),

dP(v, ν) ≥ inf
{
α : v(X × B) ≤ ν((X × B)α)+ α,

ν(X × B) ≤ v((X × B)α)+ α, B ∈ B(Y)}

= dP
(
v(X × · ), ν(X × · ))

(note that (X × B)α = X × Bα). This implies

Gα
ψ := {v ∈ P(X × Y) : v(X × · ) ∈ B(ψ, α)}

⊃ {v ∈ P(X × Y) : dP(v̂, v) < α}, (21)

where v̂ is such that v̂(X × · ) = ψ and α > 0 . Recall that
given a metric space E and A ⊂ E, a set B ⊂ A is relatively
open in A if B = A ∩ U for some open set U ⊂ E.

Lemma 13: Mδ
μ,ψ is relatively open in �R

μ(M).
Proof: Since Mδ

μ,ψ = Gδ
ψ∩�R

μ(M), it is enough to prove
that Gδ

ψ is open in P(X × Y). Let ṽ ∈ Gδ
ψ . Then ṽ(X × · ) ∈

B(ψ, δ) by definition, and there exists δ0 > 0 such that
B(ṽ(X × · ), δ0) ⊂ B(ψ, δ). By (21) we have

{
v ∈ P(X × Y) : dP(ṽ, v) < δ0

} ⊂ Gδ0
v(X× · ) . (22)

We also have Gδ0
v(X× · ) ⊂ Gδ

ψ since B(ṽ(X × · ), δ0) ⊂
B(ψ, δ). This implies that Gδ

ψ is open in P(X × Y). �

1) Case 1: First we treat the case L(v) > infv ′∈�μ(M) L(v ′).
If ρ is continuous and bounded, then L is continuous. Hence,
{v ′ ∈ �R

μ(M) : L(v ′) < L(v)} is relatively open in �R
μ(M).

Define F := {v ′ ∈ �R
μ(M) : L(v ′) < L(v)}.

Lemma 14: F ∩ Mδ
μ,ψ is nonempty and relatively open

in �R
μ(M).
Proof: By Lemma 13 and the above discussion the

intersection is clearly relatively open in �R
μ(M), so we need

to show that it is not empty. Since L(v) > infv ′∈�μ(M) L(v ′),
there exists ṽ ∈ �μ(M) such that L(ṽ) < L(v). Define
the sequence of randomized quantizers {vn} ∈ �R

μ(M) by
letting vn = 1

n ṽ + (1 − 1
n )v. Then, vn → v weakly be-

cause for any continuous and bounded real function f on
X × Y

lim
n→∞

∣∣
∣
∣

∫

X×Y
f dvn −

∫

X×Y
f dv

∣∣
∣
∣

= lim
n→∞

1

n

∣
∣
∣∣

∫

X×Y
f d ṽ −

∫

X×Y
f dv

∣
∣
∣∣ = 0.

Hence there exists n0 such that vn ∈ Mδ
μ,ψ for all n ≥ n0.

On the other hand, for any n

L(vn) = L

(
1

n
ṽ +

(
1 − 1

n

)
v

)

= 1

n
L(ṽ)+

(
1 − 1

n

)
L(v)

< L(v).

This implies vn ∈ Mδ
μ,ψ ∩ F for all n ≥ n0, completing the

proof. �
Hence, we can conclude that there exists finitely randomized

quantizer vF ∈ F ∩ Mδ
μ,ψ by Lemmas 12 and 14. By the

definition of F we also have L(vF ) < L(v). This completes
the proof of the theorem for this case.

2) Case 2: The case L(v) = infv ′∈�μ(M) L(v ′) := L∗
is handled similarly. Define the subset of �μ(M) whose
elements correspond to optimal quantizers:

�μ,opt(M) = {v ′ ∈ �μ(M) : L(v
′
) = L∗}.

Let �R
μ,opt(M) be the randomization of �μ,opt(M), obtained by

replacing �μ(M) with �μ,opt(M) in (4). Note that if L(v) =
L∗, then v is obtained by randomizing over the set �μ,opt(M),
i.e., v ∈ �R

μ,opt(M). Let �FR
μ,opt(M) denote the set obtained

by the finite randomization of �μ,opt(M). By using the
same proof method as in Lemma 12 we can prove that
�FR
μ,opt(M) is dense in �R

μ,opt(M). In addition, Mδ
μ,ψ is

relatively open in �R
μ,opt(M) by Lemma 13. Thus, there

exists finitely randomized quantizer vF ∈ Mδ
μ,ψ ∩ �R

μ,opt(M)
with L(vF ) = L(v) = L∗. This completes the proof
of Theorem 5. �

G. Proof of Theorem 6

Let v̂ ∈ Mδ
μ,ψ be such that L(v̂) < infv∈Mδ

μ,ψ
L(v)+ ε/2.

Let P̂ be the probability measure on �μ(M) that in-
duces v̂ , i.e., v̂ = ∫

�μ(M)
v P̂(dv). Consider a sequence of
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independent and identically distributed (i.i.d.) random vari-
ables X1, X1, . . . , Xn, . . . defined on some probability space
(,F , γ ) which take values in

(
�μ(M),B(�μ(M))

)
and have

common distribution P̂ . Then L(X1), L(X2), . . . are i.i.d. R-
valued random variables with distribution P̂ ◦ L−1. Thus we
have

∫


L(Xi (ω))γ (dω) =

∫

�μ(M)
L(v)P̂(dv) = L(v̂)

< inf
v∈Mδ

μ,ψ

L(v)+ ε

2

by assumption. The empirical measures Pωn on �μ(M) corre-
sponding to X1, . . . , Xn are

Pωn ( · ) := 1

n

n∑

i=1

δXi (ω)( · ).

By the strong law of large numbers

1

n

n∑

i=1

L(Xi ) =
∫

�μ(M)
L(v)Pωn (dv)

→
∫

�μ(M)
L(v)P̂(dv) = L(v̂) (23)

γ -a.s. As a subset of P(X × Y), �μ(M) with the
Prokhorov metric is a separable metric space, and thus
by [21, Th. 11.4.1] we also have the almost sure convergence
of empirical measures, i.e., Pωn → P̂ weakly γ -a.s. Thus
there exists ω̂ ∈  for which both convergence results hold.
Define the sequence of finitely randomized quantizers {vn}
by vn = ∫

�μ(M)
vP ω̂n (dv). By (23) L(vn) → L(v̂) and by

Lemma 10 in the proof of Theorem 3 vn → v̂ weakly. Since
Mδ

μ,ψ is a relatively open neighborhood of v̂ in �R
μ(M),

we can find sufficiently large n such that vn ∈ Mδ
μ,ψ and

L(vn) < L(v̂) + ε
2 . Hence, for any ε > 0 there exists an

ε-optimal finitely randomized quantizer for (P3). �

H. Proofs for Section V
Proof of Lemma 2: The proof uses standard notation

for information quantities [24]. Let Xn ∼ μn , Z ∼ ν,
and Y n = q(Xn, Z) ∼ ψn , where (q, ν) is an arbitrary
Model 2 randomized quantizer with at most 2nR levels
(Z is independent of Xn). Let Di = E[ρ(Xi ,Yi )] and
D = 1

n

∑n
i=1 Di = E[ρn(Xn,Y n)]. Since q( · , z) has at most

2nR levels for each z,

n R ≥ H (Y n|Z) ≥ I (Xn; Y n|Z)
≥ I (Xn; Y n) (24)

≥
n∑

i=1

I (Xi ; Yi ) (25)

≥
n∑

i=1

Im(μ‖ψ, Di )

≥ nIm(μ‖ψ, D)

where the last two inequalities follow since Yi ∼ ψ ,
i = 1, . . . , n and Im(μ‖ψ, D) is convex in

D [23, Appendix A]. Inequalities (24) and (25) follow
from the chain rule for mutual information (Kolmogorov’s
formula) [39, Corollary 7.14], which in particular implies
that I (U ; V |W ) ≥ I (U ; V ) for general random variables
U , V , and W , defined on the same probability space,
such that U and W are independent. This proves that
R ≥ Im(μ‖ψ, D). �

Proof of Lemma 3: Let U2nR = (
Un(1), . . . ,Un(2nR)

)

which is a n2nR -vector. Then, we can write

X̂n = g(Xn,U2nR
)

for a function g from Yn(2nR+1) to Yn. Observe the following:

(i) For any permutation σ of {1, . . . , n}, Xn and
Xn
σ = (

Xσ(1), . . . , Xσ(n)
)

have the same distribution.
The same issue is true for Un(i) and Un(i)σ for all i
because for any un ∈ Tn(ψn), un

σ ∈ Tn(ψn) and this
mapping is a bijection on Tn(ψn). It follows from
the independence of Xn and Un(i) that (Xn,UnR)

and (Xn
σ ,U

2nR

σ ) have the same distribution, where
U2nR

σ := (
Un(1)σ , . . . ,Un(2nR)σ

)
. Thus, g(Xn,U2nR

)

and g(Xn
σ ,U

2nR

σ ) have the same distribution.
(ii) For any xn ∈ Xn and yn ∈ Yn , ρn(xn, yn) =

ρn(xn
σ , yn

σ ). Thus, if g outputs un(i) for inputs
xn, un(1), . . . , un(2nR), then g outputs un(i)σ for inputs
xn
σ , un(1)σ , . . . , un(2nR)σ . It follows that

g(Xn
σ ,U

2nR

σ ) = g(Xn,U2nR
)σ .

Together with i) this implies that X̂n and X̂n
σ have the

same distribution.

Let un and vn ∈ Tn(ψ
(n)
n ) and so un = vn

σ for some
permutation σ . Then (ii) implies

Pr{X̂n = un} = Pr{X̂n
σ = un}.

Since Pr{X̂n = vn} = Pr{X̂n
σ = vn

σ } and vn
σ = un , we obtain

Pr{X̂n = un} = Pr{X̂n = vn}
proving that X̂n is uniform on Tn(ψ

(n)
n ). �

Proof of Lemma 4: By [24, Th. 11.1.2] we have

1

n
D(ψ(n)n ‖ψn) = 1

n

∑

yn∈Tn(ψn)

ψ(n)n (yn) log
ψ
(n)
n (yn)

ψn(yn)

= 1

n
log

2n(H(ψn)+D(ψn‖ψ))

|Tn(ψn)| . (26)

From [24, Th. 11.1.3],

1

(n + 1)|X| 2
nH(ψn ) ≤ |Tn(ψn)| ≤ 2nH(ψn )

and thus 1
nD(ψ(n)n ‖ψn) is sandwiched between D(ψn‖ψ) and

|X|
n log(n + 1)+ D(ψn‖ψ). Thus

lim
n→∞

1

n
D(ψ(n)n ‖ψn) = lim

n→∞D(ψn‖ψ) = 0

where the second limit holds since X is a finite set and
ψn → ψ in the l1-distance. �
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Proof of Lemma 5: Let ρH denote the Hamming
distortion and let ρH

n (x
n, yn) = (1/n)

∑n
i=1 ρ

H (xi , yi ). Since
ρ(x, x) = 0 for all x ∈ X, we have

ρn(x
n, yn) ≤ ρmax ρ

H
n (x

n, yn).

Let T H
n (ψ

(n)
n , ψn) be the distortion of the optimal coupling

between ψ
(n)
n and ψn when the cost function is ρH

n . Then
the above inequality gives

T̂n(ψ
(n)
n , ψn) ≤ ρmax T H

n (ψ
(n)
n , ψn).

On the other hand, by Marton’s inequality [25, Proposition 1]

T H
n (ψ

(n)
n , ψn) ≤

√
1

2n
D(ψ(n)n ‖ψn).

Combining these bounds with 1
n D(ψ(n)n ‖ψn) → 0 (Lemma 4),

we obtain

lim
n→∞ T̂n(ψ

(n)
n , ψn) = 0 (27)

which is the first statement of the lemma.
Recall that ρ(x, y) = d(x, y)p for some p > 0, where

d is a metric. Let q = max{1, p}. If p ≥ 1, then ‖V n‖p :=(
E

[ ∑n
i=1 |Vi |p

])1/q is a norm on R
n-valued random vectors

whose components have finite pth moments, and if 1 < p < 0,
we still have ‖Un + V n‖p ≤ ‖Un‖p + ‖V n‖p . Thus we can
upper bound E[ρn(Xn,Y n)] as follows:
(

E

[
1

n

n∑

i=1

ρ(Xi ,Yi )

])1/q

=
(

E

[
1

n

n∑

i=1

d(Xi ,Yi )
p
])1/q

≤
(

E

[
1

n

n∑

i=1

d(Xi , X̂i )
p
])1/q

+
(

E

[
1

n

n∑

i=1

d(X̂i ,Yi )
p
])1/q

=
(

E[ρn(X
n, X̂n)]

)1/q + T̂n(ψ
(n)
n , ψn)1/q .

Hence (8) and (27) imply

lim sup
n→∞

E[ρn(X
n ,Y n)] ≤ D

as claimed. �
Proof of Lemma 6: Let X ∼ μ and Y ∼ ψ such that I (X; Y )

achieves Im(μ‖ψ, D) < ∞ at distortion level D (the existence
of such pair follows from an analogous statements for rate-
distortion functions [40]). Let qk denote the uniform quantizer
on the interval [−k, k] having 2k levels, where we extend qk

to the real line by using the nearest neighborhood encoding
rule. Let X (k) = qk(X) and Y (k) = qk(Y ). We clearly have

E[(X −X (k))2] → 0, E[(Y −Y (k))2] → 0 as k → ∞. (28)

Let μk and ψk denote the distributions of X (k) and Y (k),
respectively. Then by [22, Th. 6.9] it follows that
T̂1(μk, μ)→0 and T̂1(ψk, ψ) → 0 as k → ∞ since
μk → μ, ψk → ψ weakly, and E[X (k)2] → E[X2],
E[Y (k)2] → E[Y 2].

By the data processing inequality, we have for all k,

I (X (k); Y (k)) ≤ I (X; Y ). (29)

Also note that (28) implies

lim sup
k→∞

E
[
ρ1(X (k),Y (k))

]

= lim sup
k→∞

E
[(

X (k)− Y (k)
)2] ≤ D.

Thus, for given ε > 0, if k is large we have Im(μk‖ψk,
D + ε) ≤ Im(μ‖ψ, D) as claimed. �
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[30] S. Yüksel and T. Başar, Stochastic Networked Control Systems:
Stabilization and Optimization under Information Constraints.
Boston, MA, USA: Birkhäuser, 2013.

[31] D. P. Bertsekas and S. E. Shreve, Stochastic Optimal Control: The
Discrete Time Case. New York, NY, USA: Academic, 1978.

[32] L. Dubins and D. Freedman, “Measurable sets of measures,” Pacific J.
Math, vol. 14, no. 4, pp. 1211–1222, 1964.

[33] P. Billingsley, Probability and Measure, 3rd ed. New York, NY, USA:
Wiley, 1995.

[34] K. R. Parthasarathy, Probability Measures on Metric Spaces. Providence,
RI, USA: AMS, 1967.

[35] E. B. Dykin and A. A. Yushkevich, Controlled Markov Processes. Berlin,
Germany: Springer-Verlag, 1979.

[36] V. S. Borkar, “On extremal solutions to stochastic control problems,”
Appl. Math. Optim., vol. 24, no. 1, pp. 317–330, 1991.

[37] A. Pratelli, “On the sufficiency of c-cyclical monotonicity for optimality
of transport plans,” Math. Zeitschrift, vol. 258, no. 3, pp. 677–690, 2008.

[38] M. McAsey and L. Mou, “Optimal locations and the mass transport
problem,” Contemp. Math., vol. 226, pp. 131–148, 1999.

[39] R. Gray, Entropy and Information Theory. New York, NY, USA:
Springer-verlag, 2011.

[40] I. Csiszár, “On an extremum problem of information theory,” in Studia
Scientiarum Mathematicarum Hungarica, vol. 9, pp. 57–70, 1974.

Naci Saldi (S’14) received his B.Sc. and M.S. degrees in Electrical and
Electronics Engineering from Bilkent University in 2008 and 2010,
respectively. Since 2011 he has been a Ph.D. student in the Department
of Mathematics and Statistics, Queen’s University, Kingston, ON, Canada.
His research interests include stochastic control, source coding, and applied
probability.

Tamás Linder (S’92–M’93–SM’00–F’13) received the M.S. degree in
electrical engineering from the Technical University of Budapest, Hungary,
in 1988, and the Ph.D degree in electrical engineering from the Hungarian
Academy of Sciences in 1992.

He was a post-doctoral researcher at the University of Hawaii in 1992
and a Visiting Fulbright Scholar at the Coordinated Science Laboratory,
University of Illinois at Urbana-Champaign during 1993-1994. From 1994
to 1998 he was a faculty member in the Department of Computer Science
and Information Theory at the Technical University of Budapest. From 1996
to 1998 he was also a visiting research scholar in the Department of Electrical
and Computer Engineering, University of California, San Diego. In 1998 he
joined Queen’s University where he is now a Professor of Mathematics and
Engineering in the Department of Mathematics and Statistics. His research
interests include communications and information theory, source coding and
vector quantization, machine learning, and statistical pattern recognition.

Dr. Linder received the Premier’s Research Excellence Award of the
Province of Ontario in 2002 and the Chancellor’s Research Award of Queen’s
University in 2003. He was an Associate Editor for Source Coding of the
IEEE TRANSACTIONS ON INFORMATION THEORY in 2003-2004.

Serdar Yüksel (M’11) received his B.Sc. degree in Electrical and Electronics
Engineering from Bilkent University in 2001; M.S. and Ph.D. degrees in
Electrical and Computer Engineering from the University of Illinois at Urbana-
Champaign in 2003 and 2006, respectively. He was a post-doctoral researcher
at Yale University for a year before joining Queen’s University as an Assistant
Professor of Mathematics and Engineering in the Department of Mathematics
and Statistics, where he is now an Associate Professor. He has been awarded
the 2013 CAIMS/PIMS Early Career Award in Applied Mathematics. His
research interests are on stochastic and decentralized control, information
theory and applied probability.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


