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Abstract

This paper studies the approximation of optimal control policies by quantized (discretized)
policies for a very general class of Markov decision processes (MDPs). The problem is
motivated by applications in networked control systems, computational methods for MDPs,
and learning algorithms for MDPs. We consider the finite-action approximation of stationary
policies for a discrete-time Markov decision process with discounted and average costs under
a weak continuity assumption on the transition probability, which is a significant relaxation
of conditions required in earlier literature. The discretization is constructive, and quantized
policies are shown to approximate optimal deterministic stationary policies with arbitrary
precision. The results are applied to the fully observed reduction of a partially observed
Markov decision process, where weak continuity is a much more reasonable assumption than
more stringent conditions such as strong continuity or continuity in total variation.

Keywords: Stochastic control, quantization, approximation, partially observed Markov
decision processes

1. Introduction

In this paper, we study the finite-action approximation of optimal control policies for
a discrete time Markov decision process (MDP) with Borel state and action spaces, under
discounted and average cost criteria. Various stochastic control problems may benefit from
such an investigation.

The optimal information transmission problem in networked control systems is one such
example. In many applications to networked control, the perfect transmission of the control
actions to an actuator is infeasible when there is a communication channel of finite capacity
between a controller and an actuator. Hence, the actions of the controller must be quan-
tized to facilitate reliable transmission to an actuator. Although, the problem of optimal
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information transmission from a plant/sensor to a controller has been studied extensively
[1], much less is known about the problem of transmitting actions from a controller to an
actuator. Such transmission schemes usually require a simple encoding/decoding rule since
an actuator does not have the computational/intelligence capability of a controller to use
complex algorithms. Therefore, time-invariant uniform quantization is a practically useful
encoding rule for controller-actuator communication.

The investigation of the finite-action approximation problem is also useful in computing
near optimal policies and learning algorithms for MDPs. In a recent work [2], we consider
the development of finite-state approximations for obtaining near optimal policies. However,
to establish constructive control schemes, one needs to quantize the action space as well.
Thus, results on approximate optimality of finite-action models pave the way for practical
computation algorithms which are commonly used for finite-state/action MDPs. One other
application regarding approximation problems is on learning a controlled Markov chain us-
ing simulations. If one can ensure that learning a control model with only finitely many
control actions is sufficient for approximate optimality, then it is easier to develop efficient
learning algorithms which allow for the approximate computation of finitely many transi-
tion probabilities. In particular, results developed in the learning and information theory
literature for conditional kernel estimations [3] (with control-free models) can be applied to
transition probability estimation for MDPs.

Motivated as above, in this paper we investigate the following approximation problem:
For uncountable Borel state and action spaces, under what conditions can the optimal
performance (achieved by some optimal stationary policy) be arbitrarily well approximated
if the controller action set is restricted to be finite? We show that quantized stationary
policies obtained by uniform quantization of the action space can approximate optimal
policies with arbitrary precision for an MDP with an unbounded one-stage cost function,
under a weak continuity assumption on the transition probability.

Various approximation results, which are somewhat related to our work, have been es-
tablished for MDPs with Borel state and action spaces in the literature along the theme of
computation of near optimal policies. For rather complete surveys of these techniques, we
refer the reader to [4, 5, 6, 7, 8, 9, 10, 11, 12] and the references therein. With the excep-
tion of [12], these works assume in general restrictive continuity conditions on the transition
probability. In [12], the authors considered an approximation problem in which all the com-
ponents of the original model are allowed to vary in the reduced model (varying only the
action space corresponds to the setup considered in this paper). Under weak continuity
of the transition probability, [12] established the convergence of the reduced models to the
original model for the discounted cost when the one-stage cost function is bounded. In this
paper we allow the one-stage cost function to be unbounded. In addition, we also study
the approximation problem for the challenging average cost case. Hence, our results can be
applied to a wider range of stochastic systems. However, analogous with [12], the price we
pay for imposing weaker assumptions is that we do not obtain explicit performance bounds
in terms of the rate of the quantizer used in the approximations.

In [13] we solved a variant of this problem for the discounted cost under the following
assumptions: (i) the action space is compact, (ii) the transition probability is setwise contin-
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uous in the action variable, and (iii) the one stage cost function is bounded and continuous in
the action variable. The average cost was also considered under some additional restrictions
on the ergodicity properties of Markov chains induced by deterministic stationary policies.
In this paper we consider a similar problem for systems where the transition probability is
weakly continuous in the state-action variables. An important motivation for considering
these conditions comes from the fact that for the fully observed reduction of a partially
observed MDP (POMDP), the setwise continuity of the transition probability in the action
variable is a prohibitive condition even for simple systems such as the one described in
Example 2.1 in the next section.

Organization: In Section 2 we give definitions and the problem formulation. The main
result for discounted cost is stated and proved in Section 3. In Section 4 an analogous
approximation result is obtained for the average cost criterion. In Section 5 the results for
the discounted cost are applied to the fully observed reduction of POMDPs via appealing
to results by Feinberg et al. [14]. Section 6 concludes the paper.

2. Markov Decision Processes

For a metric space E, the Borel σ-algebra is denoted by B(E). Given any Borel measurable
function w : E → [1,∞) and any real valued Borel measurable function u on E, we define
w-norm of u as

‖u‖w := sup
e∈E

|u(e)|
w(e)

.

Let Cw(E) and Bw(E) denote the space of all real valued continuous and Borel measurable
functions on E with finite w-norm, respectively [15]. Let P(E) denote the set of all probability
measures on E. A sequence {µn} of measures on E is said to converge weakly (resp., setwise)
[16] to a measure µ if

∫
E
g(e)µn(de) →

∫
E
g(e)µ(de) for all bounded and continuous real

functions g on E (resp., for all bounded and Borel measurable real functions g on E). Unless
otherwise specified, the term ”measurable” will refer to Borel measurability.

We consider a discrete-time Markov decision process (MDP) with state space Z and
action space A, where Z and A are Borel spaces. In this paper, we assume that the set of
admissible actions for any z ∈ Z is A. Let the stochastic kernel η( · |z, a) be the transition
probability of the next state given that the previous state-action pair is (z, a) [17]. The
one-stage cost function c is a measurable function from Z × A to [0,∞). The probability
measure ξ over Z denotes the initial distribution of the state process.

Define the history spaces H0 = Z and Ht = (Z× A)t × Z, t = 1, 2, . . . endowed with their
product Borel σ-algebras generated by B(Z) and B(A). A policy is a sequence ϕ = {ϕt} of
stochastic kernels on A given Ht. The set of all policies is denoted by Φ. A deterministic
policy is a sequence ϕ = {ϕt} of stochastic kernels on A given Ht which are realized by a
sequence of measurable functions {ft} from Ht to A, i.e., ϕt( · |ht) = δft(ht)( · ), where δz is
the point mass at z. Let F denote the set of all measurable functions f from Z to A. A
deterministic stationary policy is a constant sequence of stochastic kernels ϕ = {ϕt} on A
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given Z such that ϕt( · |z) = δf(z)( · ) for all t for some f ∈ F. The set of deterministic
stationary policies is identified with the set F.

According to the Ionescu Tulcea theorem [17], an initial distribution ξ on Z and a policy
ϕ define a unique probability measure Pϕ

ξ on H∞ = (Z×A)∞. The expectation with respect
to Pϕ

ξ is denoted by Eϕξ . If ξ = δz, we write Pϕ
z and Eϕz instead of Pϕ

δz
and Eϕδz . The

cost functions to be minimized in this paper are the discounted cost with a discount factor
β ∈ (0, 1) and the average cost, respectively:

J(ϕ, ξ) = Eϕξ

[ ∞∑
t=0

βtc(zt, at)

]
,

V (ϕ, ξ) = lim sup
T→∞

1

T
Eϕξ

[T−1∑
t=0

c(zt, at)

]
.

A policy ϕ∗ is called optimal if J(ϕ∗, z) = infϕ∈Φ J(ϕ, z) (or V (ϕ∗, z) = infϕ∈Φ V (ϕ, z) for
the average cost) for all z ∈ Z. It is well known that the set F of deterministic stationary
policies contains an optimal policy for a large class of infinite horizon discounted cost (see,
e.g., [17, 18]) and average cost optimal control problems (see, e.g., [19, 18]). In this case we
say that F is an optimal class.

2.1. Problem Formulation

To give a precise definition of the problem we study in this paper, we first give the
definition of a quantizer from the state to the action space.

Definition 2.1. A measurable function q : Z → A is called a quantizer from Z to A if the
range of q, i.e., q(Z) = {q(z) ∈ A : z ∈ Z}, is finite.

The elements of q(Z) (the possible values of q) are called the levels of q. The rate
R = log2 |q(Z)| of a quantizer q (approximately) represents the number of bits needed to
losslessly encode the output levels of q using binary codewords of equal length. Let Q
denote the set of all quantizers from Z to A. A deterministic stationary quantizer policy is a
constant sequence ϕ = {ϕt} of stochastic kernels on A given Z such that ϕt( · |z) = δq(z)( · )
for all t for some q ∈ Q. For any finite set Λ ⊂ A, let Q(Λ) denote the set of all elements
in Q having range Λ. Analogous with F, the set of all deterministic stationary quantizer
policies induced by Q(Λ) will be identified with the set Q(Λ).

Our main objective is to find conditions on the components of the MDP under which
there exists a sequence of finite subsets {Λn}n≥1 of A for which the following holds:

(P) For any initial point z we have limn→∞minq∈Q(Λn) J(q, z) = minf∈F J(f, z) (or
limn→∞minq∈Q(Λn) V (q, z) = minf∈F V (f, z) for the average cost), provided that the set
F of deterministic stationary policies is an optimal class for the MDP.

Letting MDPn be defined as the Markov decision process having the components
{
Z,Λn, η, c

}
,

(P) is equivalent to stating that optimal cost of MDPn converges to the optimal cost of the
original MDP.
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2.2. Setwise Continuity versus Weak Continuity

Requiring that the transition probability of the system be weakly continuous in state-
action variables is indeed a fairly mild assumption compared to the setwise continuity in
the action variable. Indeed, the latter condition is even prohibitive for certain stochastic
systems. In this section we consider two examples, the fully observed reduction of a POMDP
and the additive noise model, in order to more explicitly highlight this. We refer the reader
to [20, Chapter 4] and Section 5 of this paper for the basics of POMDPs.

Example 2.1. Consider the system dynamics

xt+1 = xt + at,

yt = xt + vt,

where xt ∈ X, yt ∈ Y and at ∈ A, and where X, Y and A are the state, observation and
action spaces, respectively. Here, we assume that X = Y = A = R+ and the ‘noise’ {vt} is
a sequence of i.i.d. random variables uniformly distributed on [0, 1]. It is easy to see that
the transition probability is weakly continuous (with respect to state-action variables) and
the observation channel that gives the conditional distribution of the current observation
given the current state is continuous in total variation (with respect to state variable) for
this POMDP. Hence, by [14, Theorem 3.7] the transition probability η of the fully observed
reduction of the POMDP is weakly continuous in the state-action variables. However, the
same conclusion cannot be drawn for the setwise continuity of η with respect to the action
variable as shown below.

Let z denote the generic state variable for the fully observed reduced MDP, where the
state variables are elements of P(X) which is equipped with the Borel σ-algebra generated
by the topology of weak convergence. If we define the function F (z, a, y) := Pr{xt+1 ∈
· |zt = z, at = a, yt+1 = y} from P(X)×A×Y to P(X) and the stochastic kernel H( · |z, a) :=
Pr{yt+1 ∈ · |zt = z, at = a} on Y given P(X)× A, then η can be written as

η( · |z, a) =

∫
Y

1{F (z,a,y)∈ · }H(dy|z, a),

where 1D denotes the indicator function of an event D and zt denotes the posterior distri-
bution of the state xt given the past observations, i.e.,

zt( · ) := Pr{xt ∈ · |y0, . . . , yt, a0, . . . , at−1}.

Let us set z = δ0 (point mass at 0 ∈ X), {ak} = { 1
k
}, and a = 0. Hence, ak → a. We show

that η( · |z, ak) 9 η( · |z, a) setwise.
Observe that for all k and y ∈ Y, we have F (z, ak, y) = δ 1

k
and F (z, a, y) = δ0. Define

the open set O with respect to the weak topology in P(X) as

O :=
{
z ∈ P(X) :

∣∣∫
X

g(x)δ1(dx)−
∫
X

g(x)z(dx)
∣∣ < 1

}
,
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where g is the symmetric triangular function on [−1, 1] with g(0) = 1 and g(−1) = g(1) = 0.
Observe that we have F (z, ak, y) ∈ O for all k and y, but F (z, a, y) 6∈ O for all y. Hence,

η(O|z, ak) :=

∫
Y

1{F (z,ak,y)∈O}H(dy|z, ak) = 1,

but

η(O|z, a) :=

∫
Y

1{F (z,a,y)∈O}H(dy|z, a) = 0

implying that η( · |z, ak) does not converge to η( · |z, a) setwise. Hence, η does not satisfy
the setwise continuity assumption.

Example 2.2. In this example we consider an additive-noise system given by

zt+1 = F (zt, at) + vt, t = 0, 1, 2, . . .

where Z = Rn and A = Rm for some n,m ≥ 1. The noise process {vt} is a sequence
of independent and identically distributed (i.i.d.) random vectors. In such a system, the
continuity of F in (z, a) (which holds for most practical systems) is sufficient to imply the
weak continuity of the transition probability, and no assumptions are needed on the noise
process (not even the existence of a density is required). Hence, weak continuity does not
restrict the noise model and is satisfied by almost all systems in the applications, whereas
other conditions, such as strong continuity or continuity in total variation distance, hold
only if the noise is well behaved in addition to the continuity of F . For example, for setwise
continuity, it is usually required that F is continuous in a for every z, the noise admits a
density, and this density is continuous [17, Example C.8].

3. Near Optimality of Quantized Policies with Discounted Cost

In this section we consider the problem (P) for the discounted cost. The following
assumptions will be imposed for both the discounted cost and the average cost. We note that
these assumptions are often used in the literature for studying discounted Markov decision
processes with unbounded one-stage cost and weakly continuous transition probability.

Assumption 3.1.

(a) The one stage cost function c is nonnegative and continuous.

(b) The stochastic kernel η( · |z, a) is weakly continuous in (z, a) ∈ Z × A, i.e., if (zk, ak) →
(z, a), then η( · |zk, ak)→ η( · |z, a) weakly.

(c) A is compact.

(d) There exist nonnegative real numbers M and α ∈ [1, 1
β
), and a continuous weight function

w : Z→ [1,∞) such that for each z ∈ Z, we have

sup
a∈A

c(z, a) ≤Mw(z), (1)
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sup
a∈A

∫
Z

w(y)η(dy|z, a) ≤ αw(z), (2)

and
∫
Z
w(y)η(dy|z, a) is continuous in (z, a).

Let dA denote the metric on A. Since A is compact and thus totally bounded, one can
find a sequence of finite sets Λn = {an,1, . . . , an,kn} ⊂ A such that for all n,

min
i∈{1,...,kn}

dA(a, an,i) < 1/n for all a ∈ A. (3)

In other words, Λn is a 1/n-net in A. In the rest of this paper, we assume that the sequence
{Λn}n≥1 is fixed. To ease the notation in the sequel, let us define the mapping Υn : F →
Q(Λn) by

Υn(f)(z) = arg min
a∈Λn

dA(f(z), a). (4)

Hence, for all f ∈ F, we have

sup
z∈Z

dA
(
Υn(f)(z), f(z)

)
< 1/n. (5)

Define the operator T on the set of real-valued measurable functions on Z by

Tu(z) := min
a∈A

[
c(z, a) + β

∫
Z

u(y)η(dy|z, a)

]
. (6)

In the literature T is called the Bellman optimality operator.

Lemma 3.1. For any u ∈ Cw(Z) the function lu(z, a) :=
∫
Z
u(y)η(dy|z, a) is continuous in

(z, a).

Proof. For any nonnegative continuous function g on Z, the function lg(z, a) =
∫
Z
g(y)η(dy|z, a)

is lower semi-continuous in (z, a), if η is weakly continuous (see, e.g., [17, Proposition E.2]).
Define the nonnegative continuous function g by letting g = bw+u, where b = ‖u‖w. Then lg
is lower semi-continuous. Since lu = lg−blw and lw is continuous by Assumption 3.1-(d), lu is
lower semi-continuous. Analogously, define the nonnegative continuous function v by letting
v = −u+ bw. Then lv is lower semi-continuous. Since lu = blw − lv and lw is continuous by
Assumption 3.1-(d), lu is also upper semi-continuous. Therefore, lu is continuous.

Lemma 3.2. Let Y be any of the compact sets A or Λn. Define the operator TY on Bw(Z)
by letting

TYu(z) := min
a∈Y

[
c(z, a) + β

∫
Z

u(y)η(dy|z, a)

]
.

Then TY maps Cw(Z) into itself. Moreover, Cw(Z) is closed with respect to the w-norm.
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Proof. Note that TYu(z) = mina∈Y
(
c(z, a) + βlu(z, a)

)
. The function lu is continuous by

Lemma 3.1, and therefore, TYu is also continuous by [21, Proposition 7.32]. Since TY maps
Bw(Z) into itself, TYu ∈ Cw(Z).

For the second statement, let un converge to u in w-norm in Cw(Z). It is sufficient to
prove that u is continuous. Let zk → z0. Since B := {z0, z1, z2, . . .} is compact, w is bounded
on B. Therefore, un → u uniformly on B which implies that limk→∞ u(zk) = u(z0). This
completes the proof.

Lemma 3.2 implies that T maps Cw(Z) into itself. It can also be proved that T is a
contraction operator with modulus σ := βα (see [15, Lemma 8.5.5]); that is,

‖Tu− Tv‖w ≤ σ‖u− v‖w for all u, v ∈ Cw(Z).

Define the discounted value function J∗ by

J∗(z) := inf
ϕ∈Φ

J(ϕ, z).

The following theorem is a known result in the theory of Markov decision processes (see e.g.,
[15, Section 8.5, p. 65]).

Theorem 3.1. Suppose Assumption 3.1 holds. Then, the value function J∗ is the unique
fixed point in Cw(Z) of the contraction operator T , i.e.,

J∗ = TJ∗. (7)

Furthermore, a deterministic stationary policy f ∗ is optimal if and only if

J∗(z) = c(z, f ∗(z)) + β

∫
Z

J∗(y)η(dy|z, f ∗(z)). (8)

Finally, there exists a deterministic stationary policy f ∗ which is optimal, so it satisfies (8).

Define, for all n ≥ 1, the operator Tn (which will be used to approximate T ) by

Tnu(z) := min
a∈Λn

[
c(z, a) + β

∫
Z

u(y)η(dy|z, a)

]
. (9)

Note that Tn is the Bellman optimality operator for MDPn having components
{
Z,Λn, η, c

}
.

Analogous with T , it can be shown that Tn is a contraction operator with modulus σ = αβ
mapping Cw(Z) into itself. Let J∗n ∈ Cw(Z) (discounted value function of MDPn) denote the
fixed point of Tn.

The following theorem is the main result of this section which states that the discounted
value function of MDPn converges to the discounted value function of the original MDP.

Theorem 3.2. For any compact set K ⊂ Z we have

lim
n→∞

sup
z∈K
|J∗n(z)− J∗(z)| = 0. (10)

Therefore,

lim
n→∞

|J∗n(z)− J∗(z)| = 0 for all z ∈ Z.
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To prove Theorem 3.2, we need following results.

Lemma 3.3. For any compact subset K of Z and for any ε > 0, there exists a compact
subset Kε of Z such that

sup
(z,a)∈K×A

∫
Kc

ε

w(y)η(dy|z, a) < ε. (11)

Proof. Let us define the set of measures Ξ on Z as

Ξ :=

{
Q( · |z, a) : Q(D|z, a) =

∫
D

w(y)η(dy|z, a), (z, a) ∈ K × A

}
.

Note that Ξ is uniformly bounded since

sup
(z,a)∈K×A

∫
Z

w(y)η(dy|z, a) ≤ α sup
z∈K

w(z) <∞.

If the mapping Q : K × A 3 (z, a) 7→ Q( · |z, a) ∈ Ξ is continuous with respect to the weak
topology on Ξ, then Ξ (being a continuous image of the compact set K × A) is compact
with respect to the weak topology. Then, by an extension of Prohorov’s theorem to non-
probability measures [22, Theorem 8.6.2], Ξ is tight, completing the proof. Hence, we only
need to prove the continuity of the mapping Q.

By Lemma 3.1, for any u ∈ Cw(Z),
∫
Z
u(y)η(dy|z, a) is continuous in (z, a). Let (zk, ak)→

(z, a) in K × A. Note that for any g ∈ Cb(Z), gw ∈ Cw(Z). Therefore, we have

lim
k→∞

∫
Z

g(y)Q(dy|zk, ak) = lim
k→∞

∫
Z

g(y)w(y)η(dy|zk, ak)

=

∫
Z

g(y)w(y)η(dy|z, a) =

∫
Z

g(y)Q(dy|z, a)

proving that Q( · |zk, ak)→ Q( · |z, a) weakly.

Lemma 3.4. Let {un} be a sequence in Cw(Z) with supn ‖un‖w := L <∞. If un converges
to u ∈ Cw(Z) uniformly on each compact subset of Z, then for any f ∈ F and compact subset
K of Z we have

lim
n→∞

sup
z∈K

∣∣∣∣∫
Z

un(y)η(dy|z, fn(z))−
∫
Z

u(y)η(dy|z, f(z))

∣∣∣∣ = 0,

where fn = Υn(f) (see (4)).

Proof. Fix a compact subset K of Z. Then for Kε as in Lemma 3.3,

sup
z∈K

∣∣∣∣∫
Z

un(y)η(dy|z, fn(z))−
∫
Z

u(y)η(dy|z, f(z))

∣∣∣∣
9



≤ sup
z∈K

∣∣∣∣∫
Z

un(y)η(dy|z, fn(z))−
∫
Z

u(y)η(dy|z, fn(z))

∣∣∣∣
+ sup

z∈K

∣∣∣∣∫
Z

u(y)η(dy|z, fn(z))−
∫
Z

u(y)η(dy|z, f(z))

∣∣∣∣
≤ sup

z∈K

∣∣∣∣∫
Kε

un(y)η(dy|z, fn(z))−
∫
Kε

u(y)η(dy|z, fn(z))

∣∣∣∣
+ sup

z∈K

∣∣∣∣∫
Kc

ε

un(y)η(dy|z, fn(z))−
∫
Kc

ε

u(y)η(dy|z, fn(z))

∣∣∣∣
+ sup

z∈K

∣∣∣∣∫
Z

u(y)η(dy|z, fn(z))−
∫
Z

u(y)η(dy|z, f(z))

∣∣∣∣
≤ sup

y∈Kε

|un(y)− u(y)|+ 2Lε+ sup
z∈K

∣∣∣∣∫
Z

u(y)η(dy|z, fn(z))−
∫
Z

u(y)η(dy|z, f(z))

∣∣∣∣.
Let us define l(z, a) :=

∫
Z
u(y)η(dy|z, a). Since u ∈ Cw(Z), by Lemma 3.1 l is continuous,

and therefore, uniformly continuous on K × A. Note that in the last expression as n→∞:
(i) the first term goes to zero since un → u uniformly on Kε and (ii) the last term goes to
zero since l is uniformly continuous on K×A and fn → f uniformly. Then the result follows
by observing that ε is arbitrary.

Let us define v0 = v0
n = 0, and vt+1 = Tvt and vt+1

n = Tnv
t
n for t ≥ 1; that is, {vt}t≥1

and {vtn}t≥1 are successive approximations to the discounted value functions of the original
MDP and MDPn, respectively. Lemma 3.2 implies that vt and vtn are in Cw(Z) for all t and
n. By [15, Theorem 8.3.6, p. 47], [15, (8.3.34), p. 52] and [15, Section 8.5, p. 65] we have

vt(z) ≤ J∗(z) ≤M
w(z)

1− σ
, (12)

‖vt − J∗‖w ≤M
σt

1− σ
, (13)

and

vtn(z) ≤ J∗n(z) ≤M
w(z)

1− σ
, (14)

‖vtn − J∗n‖w ≤M
σt

1− σ
. (15)

Since for each n and u, Tu ≤ Tnu, we also have vt ≤ vtn for all t ≥ 1 and J∗ ≤ J∗n.

Lemma 3.5. For any compact set K ⊂ Z and t ≥ 1, we have

lim
n→∞

sup
z∈K
|vtn(z)− vt(z)| = 0. (16)
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Proof. We prove (16) by induction. For t = 1, the claim holds since v0 = v0
n = 0, and c is

uniformly continuous on K × A for any compact subset K of Z. Assume the claim is true
for t ≥ 1. We fix any compact set K. Let f ∗t denote the selector of Tvt = vt+1; that is,

vt+1(z) = Tvt(z) = c(z, f ∗t (z)) + β

∫
Z

vt(y)η(dy|z, f ∗t (z)),

and let f ∗t,n := Υn(f ∗t ) (see (4)). By (12) and (14) we have

vt(z) ≤M
w(z)

1− σ
(17)

vtn(z) ≤M
w(z)

1− σ
, (18)

for all t and n. For each n ≥ 1, we have

sup
z∈K

∣∣vt+1
n (z)− vt+1(z)

∣∣
= sup

z∈K

(
vt+1
n (z)− vt+1(z)

)
(as vt+1 ≤ vt+1

n )

= sup
z∈K

(
min
Λn

[
c(z, a) + β

∫
Z

vtn(y)η(dy|z, a)

]
−min

A

[
c(z, a) + β

∫
Z

vt(y)η(dy|z, a)

])
≤ sup

z∈K

([
c(z, f ∗t,n(z)) + β

∫
Z

vtn(y)η(dy|z, f ∗t,n(z))

]
−
[
c(z, f ∗t (z)) + β

∫
Z

vt(y)η(dy|z, f ∗t (z))

])
≤ sup

z∈K

∣∣c(z, f ∗t,n(z))− c(z, f ∗t (z))
∣∣+ β sup

z∈K

∣∣∣∣∫
Z

vtn(y)η(dy|z, f ∗t,n(z))−
∫
Z

vt(y)η(dy|z, f ∗t (z))

∣∣∣∣.
Note that in the last expression, as n → ∞ the first term goes to zero since c is uni-
formly continuous on K × A and f ∗t,n → f ∗t uniformly, and the second term goes to zero by
Lemma 3.4, (17), and (18).

Now, using Lemma 3.5 we prove Theorem 3.2.

Proof of Theorem 3.2. Let us fix any compact set K ⊂ Z. Since w is bounded on K, it is
enough to prove limn→∞ supz∈K

|J∗
n(z)−J∗(z)|
w(z)

= 0. We have

sup
z∈K

|J∗n(z)− J∗(z)|
w(z)

≤ sup
z∈K

|J∗n(z)− vtn(z)|
w(z)

+ sup
z∈K

|vtn(z)− vt(z)|
w(z)

+ sup
z∈K

|vt(z)− J∗(z)|
w(z)

≤ 2M
σt

1− σ
+ sup

z∈K

|vtn(z)− vt(z)|
w(z)

(by (13) and (15)).

Since w ≥ 1, supz∈K
|vtn(z)−vt(z)|

w(z)
→ 0 as n → ∞ for all t by Lemma 3.5. Hence, the

last expression can be made arbitrarily small since t ≥ 1 is arbitrary and σ ∈ (0, 1), this
completes the proof.
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4. Near Optimality of Quantized Policies with Average Cost

In this section we consider the problem (P) for the average cost. We prove an approxi-
mation result analogous to Theorem 3.2. To do this, some new assumptions are needed on
the components of the original MDP in addition to the conditions in Assumption 3.1. A ver-
sion of these assumptions were used in [23] and [24] to study the existence of the solution to
the Average Cost Optimality Equality (ACOE) and Inequality (ACOI). For any probability
measure ϑ and measurable function h on Z, let ϑ(h) :=

∫
Z
h(z)ϑ(dz).

Assumption 4.1. Suppose Assumption 3.1 holds with (2) replaced by condition (e) below.
Moreover, suppose there exist a probability measure λ on Z and a continuous function
φ : Z× A→ [0,∞) such that

(e)
∫
Z
w(y)η(dy|z, a) ≤ αw(z) + λ(w)φ(z, a) for all (z, a) ∈ Z× A, where α ∈ (0, 1).

(f) η(D|z, a) ≥ λ(D)φ(z, a) for all (z, a) ∈ Z× A and D ∈ B(Z).

(g) The weight function w is λ-integrable.

(h)
∫
Z
φ(z, f(z))λ(dz) > 0 for all f ∈ F.

Any f ∈ F gives rise to a time-homogeneous Markov chain {zt}∞t=1 (state process) with
the transition probability η( · |z, f(z)) on Z given Z. For any t ≥ 1, let ηt( · |z, f(z)) denote
the t-step transition probability of this Markov chain given the initial point z. Hence,
ηt( · |z, f(z)) is recursively given by

ηt+1( · |z, f(z)) =

∫
Z

η( · |y, f(y))ηt(dy|z, f(z)).

For any z ∈ Z, let

V ∗(z) := inf
ϕ∈Φ

V (ϕ, z).

V ∗ is called the average cost value function of the MDP. The following theorem is a conse-
quence of [23, Theorems 3.3 and 3.6].

Theorem 4.1. Under Assumption 4.1 the following holds.

(i) For each f ∈ F, the stochastic kernel η( · |z, f(z)) is positive Harris recurrent with
unique invariant probability measure νf . Furthermore, w is νf -integrable, and there-
fore, ρf :=

∫
Z
c(z, f(z))νf (dz) < ∞.

(ii) There exist f ∗ ∈ F and h∗ ∈ Cw(Z) such that the triple (h∗, f ∗, ρf∗) satisfies the average
cost optimality equality (ACOE), i.e.,

ρf∗ + h∗(z) = min
a∈A

[
c(z, a) +

∫
Z

h∗(y)η(dy|z, a)

]
12



= c(z, f ∗(z)) +

∫
Z

h∗(y)η(dy|z, f ∗(z)),

and therefore,

V ∗(z) = ρf∗ ,

for all z ∈ Z.

Proof. The only statement that does not directly follow from [23, Theorems 3.3 and 3.6] is
the fact: h∗ ∈ Cw(Z). Hence, we only prove this.

By [23, Theorem 3.5], h∗ is the unique fixed point of the following contraction operator
with modulus α

Fu(z) := min
a∈A

[
c(z, a) +

∫
Z

u(y)η(dy|z, a)− λ(u)φ(z, a)

]
.

Since φ is continuous, by Lemma 3.1 the function inside the minimization is continuous
in (z, a) if u ∈ Cw(Z). Then by Lemma 3.2, F maps Cw(Z) into itself. Therefore, h∗ ∈
Cw(Z).

This theorem implies that for each f ∈ F, the average cost is given by V (f, z) =∫
Z
c(y, f(y))νf (dy) for all z ∈ Z (instead of νf -a.e.).

Remark 4.1. If the state space Z is compact and the transition probability η( · |z, a) has a
strictly positive density g(y|z, a) with respect to some probability measure ϑ which is contin-
uous in (y, z, a), then Assumption 4.1 holds for w = 1, λ = ϑ, and φ(z, a) = miny∈Z g(y|z, a).

Note that all the statements in Theorem 4.1 are also valid for MDPn with an optimal
policy f ∗n and a canonical triplet (h∗n, f

∗
n, ρf∗n). Analogous with F , define the contraction

operator Fn (with modulus α) corresponding to MDPn as

Fnu(z) := min
a∈Λn

[
c(z, a) +

∫
Z

u(y)η(dy|z, a)− λ(u)φ(z, a)

]
,

and therefore, h∗n ∈ Cw(Z) is its fixed point.
The next theorem is the main result of this section which states that the average cost

value function, denoted as V ∗n , of MDPn converges to the average cost value function V ∗ of
the original MDP.

Theorem 4.2. We have

lim
n→∞

|V ∗n − V ∗| = 0,

where V ∗n and V ∗ are both constants.

Let us define u0 = u0
n = 0, and ut+1 = Fut and ut+1

n = Fnu
t
n for t ≥ 1; that is, {ut}t≥1

and {utn}t≥1 are successive approximations to h∗ and h∗n, respectively. Lemma 3.2 implies
that ut and utn are in Cw(Z) for all t and n.

13



Lemma 4.1. For all u, v ∈ Cw(Z) and n ≥ 1, the following results hold: (i) if u ≤ v, then
Fu ≤ Fv and Fnu ≤ Fnv; (ii) Fu ≤ Fnu.

Proof. Define the sub-stochastic kernel η̂ by letting

η̂( · |z, a) := η( · |z, a)− λ( · )φ(z, a).

Using η̂, F and Fn can be written as

Fu(z) := min
a∈A

[
c(z, a) +

∫
Z

u(y)η̂(dy|z, a)

]
,

Fnu(z) := min
a∈Λn

[
c(z, a) +

∫
Z

u(y)η̂(dy|z, a)

]
.

Then the results follow from the fact that η̂( · |z, a) ≥ 0 by Assumption 4.1-(f).

Lemma 4.1 implies that u0 ≤ u1 ≤ u2 ≤ . . . ≤ h∗ and u0
n ≤ u1

n ≤ u2
n ≤ . . . ≤ h∗n. Note

that ‖u1‖w, ‖u1
n‖w ≤M by Assumption 3.1-(d). Since

‖h∗‖w ≤ ‖h∗ − u1‖w + ‖u1‖w = ‖Fh∗ − Fu0‖w + ‖u1‖w ≤ α‖h∗‖w + ‖u1‖w
‖h∗n‖w ≤ ‖h∗n − u1

n‖w + ‖u1
n‖w = ‖Fnh∗n − Fnu0

n‖w + ‖u1
n‖w ≤ α‖h∗n‖w + ‖u1

n‖w,

we have

ut(z) ≤ h∗(z) ≤M
w(z)

1− α
,

and

utn(z) ≤ h∗n(z) ≤M
w(z)

1− α
.

By inequalities above and the facts ‖ut − h∗‖w ≤ αt‖h‖w and ‖utn − h∗n‖w ≤ αt‖hn‖w, we
also have

‖ut − h∗‖w ≤M
αt

1− α
,

and

‖utn − h∗n‖w ≤M
αt

1− α
.

By Lemma 4.1, for each n and v ∈ Cw(Z), we have Fv ≤ Fnv. Therefore, by the monotonicity
of F and the fact u0 = u0

n = 0, we have

ut ≤ utn
h∗ ≤ h∗n, (19)

for all t and n.
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Lemma 4.2. For any compact set K ⊂ Z and t ≥ 1, we have

lim
n→∞

sup
z∈K
|utn(z)− ut(z)| = 0. (20)

Proof. Note that for each t ≥ 1, by the dominated convergence theorem and λ(w) < ∞,
we have λ(utn) → λ(ut) if utn → ut pointwise. The proof can be finished using the same
arguments as in the proof of Lemma 3.5 and so we omit the details.

Lemma 4.3. For any compact set K ⊂ Z, we have

lim
n→∞

sup
z∈K
|h∗n(z)− h∗(z)| = 0.

Proof. The lemma can be proved using the same arguments as in the proof of Theorem 3.2.

Now, using Lemma 4.3 we prove Theorem 4.2

Proof of Theorem 4.2. Recall that V ∗ = ρf∗ and V ∗n = ρf∗n , and they satisfy the following
ACOEs:

h∗(z) + ρf∗ = min
a∈A

[
c(z, a) +

∫
Z

h∗(y)η(dy|z, a)

]
= c(z, f ∗(z)) +

∫
Z

h∗(y)η(dy|z, f ∗(z))

h∗n(z) + ρf∗n = min
a∈Λn

[
c(z, a) +

∫
Z

h∗n(y)η(dy|z, a)

]
= c(z, f ∗n(z)) +

∫
Z

h∗n(y)η(dy|z, f ∗n(z)).

Note that h∗n ≥ h∗ (see (19)) and ρf∗n ≥ ρf∗ . For each n, let fn := Υn(f ∗). Then for any
z ∈ Z we have

lim sup
n→∞

(
h∗n(z) + ρf∗n

)
= lim sup

n→∞

(
min
a∈Λn

[
c(z, a) +

∫
Z

h∗n(y)η(dy|z, a)

])
= lim sup

n→∞

(
c(z, f ∗n(z)) +

∫
Z

h∗n(y)η(dy|z, f ∗n(z))

)
≤ lim sup

n→∞

(
c(z, fn(z)) +

∫
Z

h∗n(y)η(dy|z, fn(z))

)
= c(z, f ∗(z)) +

∫
Z

h∗(y)η(dy|z, f ∗(z)) (21)

= h∗(z) + ρf∗

≤ lim inf
n→∞

(
h∗n(z) + ρf∗n

)
,

where (21) follows from Lemma 3.4 and the fact that h∗n converges to h∗ uniformly on any
compact subset K of Z and supn ‖h∗n‖w ≤ M

1−α . Since limn→∞ h
∗
n(z) = h∗(z) by Lemma 4.3,

we have limn→∞ ρf∗n = ρf∗ . This completes the proof.
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5. Application to Partially Observed MDPs

In this section we apply the result obtained in Section 3 to partially observed Markov
decision processes (POMDPs). Consider a discrete time POMDP with state space X, action
space A, and observation space Y, all Borel spaces. Let p( · |x, a) denote the transition
probability of the next state given the current state-action pair is (x, a), and let r( · |x)
denote the transition probability of the current observation given the current state variable
x. The one-stage cost function, denoted by c̃, is again a measurable function from X× A to
[0,∞).

Define the history spaces H̃t = (Y × A)t × Y, t = 0, 1, 2, . . . endowed with their product
Borel σ-algebras generated by B(Y) and B(A). A policy π = {πt} is a sequence of stochastic
kernels on A given H̃t. We denote by Π the set of all policies. Hence, for any initial
distribution µ and policy π we can think of POMDP as a stochastic process

{
xt, yt, at

}
t≥0

defined on a probability space
(
Ω,B(Ω), P π

µ

)
where Ω = H̃∞ × X∞, xt is a X-valued random

variable, yt is a Y-valued random variable, at is a A-valued random variable, and P π
µ -almost

surely they satisfy

P π
µ (x0 ∈ · ) = µ( · )

P π
µ (xt ∈ · |x[0,t−1], y[0,t−1], a[0,t−1]) = P π

µ (xt ∈ · |xt−1, at−1) = p( · |xt−1, at−1)

P π
µ (yt ∈ · |x[0,t], y[0,t−1], a[0,t−1]) = P π

µ (yt ∈ · |xt) = r( · |xt)
P π
µ (at ∈ · |x[0,t], y[0,t], a[0,t−1]) = πt( · |y[0,t], a[0,t−1])

where x[0,t] = (x0, . . . , xt), y[0,t] = (y0, . . . , yt), and a[0,t] = (a0, . . . , at) (t ≥ 1). Let J̃(π, µ)
denote the discounted cost function of the policy π ∈ Π with initial distribution µ of the
POMDP.

It is known that any POMDP can be reduced to a (completely observable) MDP [25],
[26], whose states are the posterior state distributions or beliefs of the observer; that is, the
state at time t is

Pr{xt ∈ · |y0, . . . , yt, a0, . . . , at−1} ∈ P(X).

We call this equivalent MDP the belief-MDP. The belief-MDP has state space Z = P(X)
and action space A. The transition probability η of the belief-MDP can be constructed as
in Example 2.1 (see also [20])

η( · |z, a) =

∫
Y

1{F (z,a,y)∈ · }H(dy|z, a),

where F (z, a, y) := Pr{xt+1 ∈ · |zt = z, at = a, yt+1 = y}, H( · |z, a) := Pr{yt+1 ∈ · |zt =
z, at = a}, and zt denotes the posterior distribution of the state xt given the past observa-
tions. The one-stage cost function c of the belief-MDP is given by

c(z, a) :=

∫
X

c̃(x, a)z(dx). (22)
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Hence, the belief-MDP is a Markov decision process with the components (Z,A, η, c).
For the belief-MDP define the history spaces Ht = (Z × A)t × Z, t = 0, 1, 2, . . . as in

Section 2. Again, Φ denotes the set of all policies for the belief-MDP, where the policies are
defined in an usual manner. Let J(ϕ, ξ) denote the discounted cost function of policy ϕ ∈ Φ
for initial distribution ξ of the belief-MDP.

Notice that any history vector ht = (z0, . . . , zt, a0, . . . , at−1) of the belief-MDP is a func-
tion of the history vector h̃t = (y0, . . . , yt, a0, . . . , at−1) of the POMDP. Let us write this rela-
tion as i(h̃t) = ht. Hence, for a policy ϕ = {ϕt} ∈ Φ, we can define a policy πϕ = {πϕt } ∈ Π
as

πϕt ( · |h̃t) := ϕt( · |i(h̃t)).

Let us write this as a mapping from Φ to Π: Φ 3 ϕ 7→ i(ϕ) = πϕ ∈ Π. It is straightforward
to show that the cost functions J(ϕ, ξ) and J̃(πϕ, µ) are the same. One can also prove that
(see [25], [26])

inf
ϕ∈Φ

J(ϕ, ξ) = inf
π∈Π

J̃(π, µ) (23)

and furthermore, that if ϕ is an optimal policy for belief-MDP, then πϕ is optimal for the
POMDP as well. Hence, the POMDP and the corresponding belief-MDP are equivalent in
the sense of cost minimization. We will impose the following assumptions on the components
of the original POMDP.

Assumption 5.1.

(a) The one stage cost function c̃ is continuous and bounded.

(b) The stochastic kernel p( · |x, a) is weakly continuous in (x, a) ∈ X× A.

(c) The stochastic kernel r( · |x) is continuous in total variation, i.e., if xk → x, then
r( · |xk)→ r( · |x) in total variation.

(d) A is compact.

We refer the reader to [14, Section 8] for examples satisfying Assumption 5.1-(c). Note
that by [21, Proposition 7.30], the one stage cost function c, which is defined in (22), is in
Cb(Z× A) under Assumption 5.1-(a),(b). Hence, the belief-MDP satisfies the conditions in
Theorem 3.2 for w = 1 if η is weakly continuous. The following theorem is a consequence of
[14, Theorem 3.7, Example 4.1] and Example 2.1.

Theorem 5.1.

(i) Under Assumption 5.1-(b),(c), the stochastic kernel η for belief-MDP is weakly con-
tinuous in (z, a).

(ii) If we relax the continuity of the observation channel in total variation to setwise or
weak continuity, then η may not be weakly continuous even if the transition probability
p of POMDP is continuous in total variation.

17



(iii) Finally, η may not be setwise continuous in a, even if the observation channel is
continuous in total variation.

Part (i) of Theorem 5.1 implies that belief-MDP satisfies conditions in Theorem 3.2.
However, note that continuity of the observation channel in total variation in Assumption 5.1
cannot be relaxed to weak or setwise continuity. On the other hand, the continuity of the
observation channel in total variation is not enough for the setwise continuity of η. Hence,
results in [13] cannot be applied to the POMDP we consider even though we put a fairly
strong condition on the observation channel.

Theorem 5.2. Suppose Assumption 5.1 holds for the POMDP. Then we have

lim
n→∞

|J∗n(z)− J∗(z)| = 0 for all z ∈ Z,

where J∗n is the discounted value function of the belief-MDP with the components
{
Z,Λn, η, c

}
and J∗ is the discounted value function of the belief-MDP with the components

{
Z,A, η, c

}
.

The significance of Theorem 5.2 is reinforced by the following observation. If we define
DΠQ(Λn) as the set of deterministic policies in Π taking values in Λn, then the above
theorem implies that for any given ε > 0 there exists n ≥ 1 and π∗ ∈ DΠQ(Λn) such that

J̃(π∗, µ) < min
π∈Π

J̃(π, µ) + ε,

where π∗ = πϕ
∗
. This means that even when is an information transmission constraint from

the controller to the plant, one might get ε-close to the value function for any small ε by
quantizing the controller’s actions and sending the encoded levels.

6. Discussion

In this paper, we considered the finite-action approximation of stationary policies for a
discrete-time Markov decision process with either discounted or average costs. Under mild
weak continuity assumptions it was shown that if one uses a sufficiently large number of
points to discretize the action space, then the resulting finite-action MDP can approximate
the original model with arbitrary precision. The results obtained for the discounted cost
were also applied to the finite-action approximation problem for POMDPs.

One direction for future work is to further investigate the problem (P) for the average
cost under specific conditions for POMDPs, so that the results obtained for the average
cost can be applicable to the belief-MDPs. In this case, a possible solution methodology is
to investigate conditions on the POMDP under which the Markov chain arising from the
belief-MDP with a stationary policy is ergodic and hence has a unique invariant measure.
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