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Asymptotic Optimality of Finite Model
Approximations for Partially Observed Markov

Decision Processes With Discounted Cost
Naci Saldi , Serdar Yüksel , and Tamás Linder

Abstract—We consider finite model approximations of
discrete-time partially observed Markov decision processes
(POMDPs) under the discounted cost criterion. After con-
verting the original partially observed stochastic control
problem to a fully observed one on the belief space, the fi-
nite models are obtained through the uniform quantization
of the state and action spaces of the belief space Markov
decision process (MDP). Under mild assumptions on the
components of the original model, it is established that the
policies obtained from these finite models are nearly opti-
mal for the belief space MDP, and so, for the original partially
observed problem. The assumptions essentially require that
the belief space MDP satisfies a mild weak continuity condi-
tion. We provide an example and introduce explicit approx-
imation procedures for the quantization of the set of prob-
ability measures on the state space of POMDP (i.e., belief
space).

Index Terms—Approximations, Markov decision
processes, non-linear filtering, quantization, stochastic
control.

I. INTRODUCTION

IN PARTIALLY observed Markov decision processes
(POMDP) theory, existence of optimal policies in general,

have been established via converting the original partially ob-
served stochastic control problem to a fully observed one on
the belief space, leading to a belief-Markov decision process
(MDP). However, computing an optimal policy for this fully
observed model, and so for the original POMDP, using well
known dynamic programming algorithms is challenging even
if the original system has finite state and action spaces, since
the state space of the fully observed model is always uncount-
able. One way to overcome this difficulty is to compute an
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approximately optimal policy instead of a true optimal policy
by constructing a reduced model for the fully observed system
for which one can apply well known algorithms, such as policy
iteration, value iteration, Q-learning, etc. to obtain the optimal
policy.

In MDP theory, various methods have been developed to com-
pute near optimal policies by reducing the original problem into
a simpler one. A partial list of these techniques is as follows:
Approximate dynamic programming, approximate value or pol-
icy iteration, simulation-based techniques, neuro-dynamic pro-
gramming (or reinforcement learning), state aggregation, etc.
We refer the reader to [1]–[9] and references therein. However,
existing works mostly study systems with discrete (i.e., finite or
countable) state and action spaces ([1], [5], [6], [10]), or those
that consider general state and action spaces (see, e.g., [7]–[9],
[11], [12]) assume in general Lipschitz-type continuity condi-
tions on the transition probability and the one-stage cost function
in order to provide a rate of convergence analysis for the ap-
proximation error. However, for the fully observed reduction of
POMDP, a Lipschitz-type regularity condition on the transition
probability is in general prohibitive. Indeed, demonstrating even
the arguably most relaxed regularity condition on the transition
probability (i.e., weak continuity in state-action variable), is a
challenging problem as was recently demonstrated in [13] for
general state and action spaces (see also [14], [15] for a control-
free setup). Therefore, results developed in the prior literature
cannot in general be applied to compute approximately optimal
policies for fully observed reduction of POMDP, and so, for the
original POMDP.

In [16], [17] we investigated finite action and state approx-
imations of fully observed stochastic control problems with
general state and action spaces under the discounted cost and
average cost optimality criteria. For the discounted cost case,
we showed that the optimal policies obtained from these fi-
nite models asymptotically achieve the optimal cost for the
original problem under the weak continuity assumption on the
transition probability. Here, we apply and properly generalize
the results in these papers to obtain approximation results for
fully observed reduction of POMDPs, and so, for POMDPs.
The versatility of approximation resulting under weak conti-
nuity conditions become particularly evident while investigat-
ing the applicability of these results to the partially observed
case.
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In the literature there exist various, mostly numerical and
computational, results for obtaining approximately optimal poli-
cies for POMDPs. In the following, we list a number of such
related results and comparisons with our paper: 1) A com-
putational algorithm, utilizing structural convexity properties
of the value function of belief-MDPs, for the solutions of
POMDPs when the state space is continuous and action and
measurements are discrete, and with further extensions to con-
tinuous action and measurements is developed in [18]. An al-
gorithm which may be regarded as a quantization of the be-
lief space is provided in [19]. However, no rigorous conver-
gence results are given regarding this computational algorithm.
2) Quantization-based algorithms for the belief state, where
the state, measurement, and the action sets are finite is pre-
sented in [20] and [21]. 3) An explicit quantization method
for the set of probability measures containing the belief states,
where the state space, unlike in many other contributions in
the literature; is continuous and is provided in [22] and [23].
The quantization is done through the approximations as mea-
sured by Kullback–Leibler divergence: Kullback–Leibler diver-
gence (or relative entropy) is a very strong pseudodistance mea-
sure which is even stronger than total variation (by Pinsker’s in-
equality [24]), which in turn is stronger than weak convergence.
In particular, being able to quantize the space of probability mea-
sures with finitely many balls as defined by such a distance mea-
sure requires very strict assumptions on the allowable beliefs and
it in particular requires, typical equicontinuity conditions (see
e.g. [25, Lemma 4.3]). 4) In [26], the authors consider the near
optimality of finite-state controllers that are finite-state proba-
bilistic automatons taking observations as inputs and produc-
ing controls as the outputs. A special case for these type of
controllers are the ones that only use finite observation his-
tory. A similar finite memory approximation is developed in
[27]. 5) In [28] the authors establish finite state approxima-
tion schemes for the belief-MDPs under both discounted cost
and average cost criteria using concavity properties of the cor-
responding value function and show that approximate costs
can be used as lower bounds for the optimal cost function.
A similar finite state approximation is considered in [29], [30]
using concavity and convexity properties of the value func-
tion for the discounted cost criterion. We refer the reader to
the survey papers [31], [32], and the book [33] for further
algorithmic and computational procedures for approximating
POMDPs.

Contributions of the paper: 1) We show that finite models
asymptotically approximate the original POMDP in the sense
that the true costs of the policies obtained from these finite mod-
els converge to the optimal cost of the original model. The finite
models are constructed by discretizing both the state and action
spaces of the equivalent fully observed belief space formula-
tion of the POMDP. We establish the result for models with
general state and action spaces under mild conditions on the
system components. 2) We provide systematic procedures for
the quantization of the set of probability measures on the state
space of POMDPs which is the state space of belief-MDPs.
By choosing an appropriate metric for the weak convergence

topology, any probability measure on the state space can be ap-
proximated by the set of probability measures with fixed finite
support. Then, one can use the existing methods in the litera-
ture for discretizing the probability simplex to obtain finite-state
approximations of the belief space. 3) Our rigorous results can
be used to justify the novel quantization techniques presented
in [19]–[21] as well as a more relaxed version for the results
presented in [22] and [23]. In particular, there do not exist
approximation results of the generality presented in our pa-
per with asymptotic performance guarantees. We show that
provided that the belief space is quantized according to balls
generated through metrics that metrize the weak convergence
topology (such as Prokhorov, bounded-Lipschitz, or stronger
ones, such as the Wasserstein metric), and provided that the ac-
tion sets are quantized in a uniform fashion, under very weak
conditions on the controlled Markov chain (namely the weak
continuity of the kernel and total variation continuity of the
measurement channel), asymptotic optimality is guaranteed.
4) Our approach also highlights the difficulties of obtaining
explicit rates of convergence results for approximation meth-
ods for POMDPs. Even in fully observed models, for obtaining
explicit rates of convergence, one needs strong continuity con-
ditions of the Lipschitz type, e.g.; [17, Th. 5.1]. As Theorem 1
shows, this is impossible even under quite strong conditions for
POMDPs.

The rest of the paper is organized as follows. In Section II we
introduce the partially observed stochastic control model and
construct the belief space formulation. In Section III we estab-
lish the continuity properties that are satisfied by the transition
probability of the belief space MDP. In Section IV we con-
struct the finite model approximations and state approximation
results. In Section V we provide explicit methods to quantize
the set of probability measures on the state space. In Section VI
we illustrate our results by considering a numerical example.
Section VII concludes the paper.

II. PARTIALLY OBSERVED MARKOV DECISION PROCESSES

A POMDP has the following components: 1) State space X,
action space A, and observation space Y, all Borel spaces; 2)
p( · |x, a) is the transition probability of the next state given the
current state-action pair is (x, a); 3) r( · |x) is the observation
channel giving the probability of the current observation given
the current state variable x; and 4) the one-stage cost function
c : X × A → [0,∞).

To complete the description of the partially observed control
model, we must specify how the controller designs its control
law at each time step. To this end, define the history spaces
H0 = Y and Ht = (Y × A)t × Y, t = 1, 2, . . . endowed with
their product Borel σ-algebras generated by B(Y) and B(A). A
policy π = {πt} is a sequence of stochastic kernels on A given
Ht . We denote by Π the set of all policies.

According to the Ionescu–Tulcea theorem [34], an initial
distribution μ on X and a policy π define a unique prob-
ability measure Pπ

μ on H∞ × X∞. The expectation with re-
spect to Pπ

μ is denoted by Eπ
μ . For any initial distribu-
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tion μ and policy π, we can think of the POMDP as a
stochastic process

{
xt, yt , at

}
t≥0 defined on the probabil-

ity space
(
Ω,F , P π

μ

)
, where Ω = H∞ × X∞, the xt are X-

valued random variables, the yt are Y-valued random vari-
ables, the at are A-valued random variables, and they satisfy for
all t ≥ 1

Pπ
μ (x0 ∈ · ) = μ( · )

Pπ
μ (xt ∈ · |x{0,t−1}, y{0,t−1}, a{0,t−1})

= Pπ
μ (xt ∈ · |xt−1 , at−1) = p( · |xt−1 , at−1)

Pπ
μ (yt ∈ · |x{0,t}, y{0,t−1}, a{0,t−1})

= Pπ
μ (yt ∈ · |xt) = r( · |xt)

Pπ
μ (at ∈ · |x{0,t}, y{0,t}, a{0,t−1}) = πt( · |y{0,t}, a{0,t−1})

where x{0,t} = (x0 , . . . , xt), y{0,t} = (y0 , . . . , yt), and a{0,t} =
(a0 , . . . , at). We denote by J(π, μ) the discounted cost function
of the policy π ∈ Π with initial distribution μ, which is given
by

J(π, μ) := Eπ
μ

[ ∞∑

t=0

βtc(xt, at)

]

where β ∈ (0, 1) is the discount factor.
With this notation, the discounted value function of the con-

trol problem is defined as

J∗(μ) := inf
π∈Π

J(π, μ).

A policy π∗ is said to be optimal if J(π∗, μ) = J∗(μ).
In POMDPs, since the information available to the deci-

sion maker is a noisy version of the state, one cannot ap-
ply the dynamic programming principle directly as the one-
stage cost function depends on the exact state information. A
canonical way to overcome this difficulty is converting the
original partially observed control problem into a fully ob-
served one by taking the posterior state distributions Pr{xt ∈
· |y0 , . . . , yt , a0 , . . . , at−1} ∈ P(X) (“beliefs” of the observer)
as the new state variable and the function c̃ : P(X) × A →
[0,∞), defined by

c̃(z, a) :=
∫

X
c(x, a)z(dx)

as the new one-stage cost function. This fully observed MDP is
called the belief-MDP and is equivalent to the original POMDP
in the sense that for any optimal policy for the belief-MDP,
one can construct a policy for the belief-MDP which is opti-
mal. Therefore, finite-model approximation results developed
for fully observed MDPs can be applied to the belief-MDP, and
so to the POMDP.

III. CONTINUITY PROPERTIES OF BELIEF-MDPS

In this section, we first discuss the continuity properties that
are satisfied by or prohibitive for the transition probability of
the belief-MDP. Then, we derive the conditions satisfied by the
components of the belief-MDP.

A. On the Convergence of Probability Measures

Let E be a Borel space and let P(E) denote the family of all
probability measure on (E,B(E)). A sequence {μn} is said to
converge to μ ∈ P(E) weakly (resp., setwise) if

∫

E
g(e)μn (de) →

∫

E
g(e)μ(de)

for all continuous and bounded real function g (resp., for all
measurable and bounded real function g).

For any μ, ν ∈ P(E), the total variation norm is given by

‖μ − ν‖T V := 2 sup
B∈B(E)

|μ(B) − ν(B)|

= sup
f : ‖f ‖∞≤1

∣
∣
∣
∣

∫

E
f(e)μ(de) −

∫

E
f(e)ν(de)

∣
∣
∣
∣

where the supremum is over all measurable real f such that
‖f‖∞ = supe∈E |f(e)| ≤ 1. A sequence {μn} is said to con-
verge to μ ∈ P(E) in total variation if ‖μn − μ‖T V → 0. As it
is clear from the definitions, total variation convergence implies
setwise convergence, which in turn implies weak convergence.

The total variation metric leads to a stringent notion for con-
vergence. For example a sequence of discrete probability mea-
sures on a finite-dimensional Euclidean space never converges
in total variation to a probability measure which admits a den-
sity function with respect to the Lebesgue measure. Setwise
convergence also induces a topology which is not easy to work
with since the space under this convergence is not metrizable
[35, p. 59]. However, the space of probability measures on a
Borel space endowed with the topology of weak convergence
is itself a Borel space [36]. The bounded-Lipschitz metric ρBL

[37, p.109], for example, can be used to metrize this space

ρBL (μ, ν) := sup
‖f ‖B L ≤1

∣
∣
∣
∣

∫

E
f(e)μ(de) −

∫

E
f(e)ν(de)

∣
∣
∣
∣ (1)

where

‖f‖BL := ‖f‖∞ + sup
e 	=e ′

f(e) − f(e′)
dE(e, e′)

and dE is the metric on E. Finally, the Wasserstein metric
of order one, W1 , can also be used for compact E (see [37,
Th. 6.9])

W1(μ, ν) = inf
η∈H(μ,ν )

∫

E×E
dE(e, e′)η(de, de′)

whereH(μ, ν) denotes the set of probability measures on E × E
with first marginal μ and second marginal ν. Indeed, W1 can
also be used as an upper bound to ρBL for noncompact E since
W1 can equivalently be written as [37, Remark 6.5]

W1(μ, ν) := sup
‖f ‖L i p ≤1

∣
∣
∣
∣

∫

E
f(e)μ(de) −

∫

E
f(e)ν(de)

∣
∣
∣
∣

where

‖f‖Lip := sup
e 	=e ′

f(e) − f(e′)
dE(e, e′)

.
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Comparing this with (1), it follows that:

ρBL ≤ W1 . (2)

This observation will be utilized for the quantization algorithms
on the set of probability measures later in the paper.

B. Belief Space Formulation of POMDPs

As indicated in Section II, any POMDP can be reduced to a
(completely observable) MDP [38], [39], whose states are the
posterior state distributions or beliefs of the observer; that is, the
state at time t is

zt := Pr{xt ∈ · |y0 , . . . , yt , a0 , . . . , at−1} ∈ P(X).

In this section, we construct the components of this belief-MDP
under some assumptions on the components of the POMDP.
Later, we establish the conditions satisfied by the components
of the belief-MDP, under which we can apply approximation
results in our earlier work [16], [17] to the belief-MDP, and so,
to the original POMDP.

To this end, let v : X → [0,∞) be a continuous moment func-
tion in the sense that there exists an increasing sequence of
compact subsets {Kn}n≥1 of X such that

lim
n→∞ inf

x∈X\Kn

v(x) = ∞.

The following assumptions will be imposed on the components
of the POMDP.

Assumption 1:
a) The one-stage cost function c is continuous and bounded.
b) We have one of the following:

1) the stochastic kernel p( · |x, a) is weakly contin-
uous in (x, a) ∈ X × A, i.e., if (xk , ak ) → (x, a),
then p( · |xk , ak ) → p( · |x, a) weakly. The obser-
vation channel r( · |x) is continuous in total vari-
ation, i.e., if xk → x, then r( · |xk ) → r( · |x) in
total variation.

2) the stochastic kernel p( · |x, a) is total variation
continuous in (x, a) ∈ X × A, i.e., if (xk , ak ) →
(x, a), then p( · |xk , ak ) → p( · |x, a) in total vari-
ation.

c) A is compact.
d) There exists a constant λ ≥ 0 such that

sup
a∈A

∫

X
v(y)p(dy|x, a) ≤ λv(x).

e) The initial probability measure μ satisfies
∫

X
v(x)μ(dx) < ∞.

We let

Pv (X) :=
{

μ ∈ P(X) :
∫

X
v(x)μ(dx) < ∞

}
.

Note that since the probability law of xt is in Pv (X),
by Assumption 1-d),e), under any policy we have Pr{xt ∈
· |y0 , . . . , yt , a0 , . . . , at−1} ∈ Pv (X) almost everywhere. There-
fore, the belief-MDP has state space Z = Pv (X) instead of

P(X), where Z is equipped with the Borel σ-algebra generated
by the topology of weak convergence. The transition proba-
bility η of the belief-MDP can be constructed as follows (see
also [40]). Let z denote the generic state variable for the belief-
MDP. First consider the transition probability on X × Y given
Z × A

R(x ∈ A, y ∈ B|z, a) :=
∫

X
κ(A,B|x′, a)z(dx′)

where κ(dx, dy|x′, a) := r(dy|x)p(dx|x′, a). Let us disinte-
grate R as

R(dx, dy|z, a) = H(dy|z, a)F (dx|z, a, y).

Then, we define the mapping F : Z × A × Y → Z as

F (z, a, y) = F ( · |z, a, y). (3)

In the literature, (3) is called the “nonlinear filtering equation”
[40]. Note that, for each t ≥ 0, we indeed have

F (z, a, y)( · ) = Pr{xt+1 ∈ · |zt = z, at = a, yt+1 = y}
and

H( · |z, a) = Pr{Yt+1 ∈ · |zt = z, at = a}.
Then, η can be written as

η( · |z, a) =
∫

Y
δF (z ,a,y )( · ) H(dy|z, a)

where δz denotes the Dirac–delta measure at point z; that is,
δz (D) = 1 if z ∈ D and otherwise it is zero. Recall that the
initial point for the belief-MDP is μ; that is, z0 ∼ δμ , and the
one-stage cost function c̃ of the belief-MDP is given by

c̃(z, a) :=
∫

X
c(x, a)z(dx). (4)

Hence, the belief-MDP is a fully observed Markov decision
process with the components

(
Z, A, η, c̃

)
. For the belief-MDP

define the history spaces H̃0 = Z and H̃t = (Z × A)t × Z, t =
1, 2, . . . and let Π̃ denote the set of all policies for the belief-
MDP, where the policies are defined in a usual manner. Let
J̃(π̃, ξ) denote the discounted cost function of policy π̃ ∈ Π̃ for
initial distribution ξ of the belief-MDP.

Notice that any history vector h̃t = (z0 , . . . , zt , a0 , . . . , at−1)
of the belief-MDP is a function of the history vector ht =
(y0 , . . . , yt , a0 , . . . , at−1) of the POMDP. Let us write this rela-
tion as i(ht) = h̃t . Hence, for a policy π̃ = {π̃t} ∈ Π̃, we can
define ππ̃ = {ππ̃

t } ∈ Π as

ππ̃
t ( · |ht) := π̃t( · |i(ht)). (5)

Let us write this as a mapping from Π̃ to Π: Π̃ � π̃ → i(π̃) =
ππ̃ ∈ Π. It is straightforward to show that the cost functions
J̃(π̃, ξ) and J(ππ̃ , μ) are the same, where ξ = δμ . One can also
prove that (see [38], [39])

inf
π̃∈Π̃

J̃(π̃, ξ) = inf
π∈Π

J(π, μ) (6)

and furthermore, that if π̃ is an optimal policy for the belief-
MDP, then ππ̃ is optimal for the POMDP as well. Hence, the
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POMDP and the corresponding belief-MDP are equivalent in
the sense of cost minimization. Therefore, approximation results
developed for MDPs in [16], [17] can be applied to the belief-
MDP and so, to the POMDP.

C. Strong and Weak Continuity Properties of the Belief
MDP

The stochastic kernel η is said to be weakly continuous if
η( · |zk , ak ) → η( · |z, a) weakly, whenever (zk , ak ) → (z, a).
The kernel is said to be strongly continuous if, for any z ∈ Z,
η( · |z, ak ) → η( · |z, a) setwise, whevener ak → a. In general,
for the fully observed reduction of a partially observed MDP
(POMDP), requiring strong continuity of the transition proba-
bility is a strong condition. This is illustrated through the simple
example [16, Example 2.1]. The following theorem is a conse-
quence of [41, Th. 3.7], [53, Th. 2], and [16, Example 2.1].

Theorem 1:
i) Under Assumption 1-(b), the stochastic kernel η for

belief-MDP is weakly continuous in (z, a).
ii) The stochastic kernel η may not be setwise continuous

in action variable a even if the observation channel is
continuous in total variation.

Part i) of Theorem 1 implies that the transition probability η
of the belief-MDP is weakly continuous under Assumption 1.
On the other hand, the continuity of the observation chan-
nel in total variation is not enough for the setwise continuity
of η.

The above suggests that our earlier results in [16] and [17],
which only require weak continuity conditions on the transition
kernel of a given MDP, are particularly suitable in developing
approximation methods for POMDPs (through their MDP re-
duction), in both quantizing the action spaces as well as state
spaces.

Remark 1: We refer the reader to [41, Th. 3.2(c)], [53,
Sec. 4] for more general conditions implying weak continuity of
the transition probability η. We also note that, in the uncontrolled
setting, [42] and [14] have established similar weak continuity
conditions (i.e., the weak-Feller property) of the noninear filter
process (i.e., the belief process) in continuous time and discrete
time, respectively.

Remark 2: Our aim in this paper is to show the asymptotic
optimality of finite model approximations under very general
conditions. Establishing general regularity conditions that pro-
duce an explicit error bound on the approximation as a function
of the number of bins in the quantization, and thus obtaining
rates of convergence to optimality, is in general prohibitive. To
obtain explicit rates of convergence even for fully observed sys-
tems, one needs strong continuity conditions of the Lipschitz
type on the components of the fully observed reduction of the
POMDP, see for example in [17, Th. 5.2]. In view of Theorem 1,
this does not seem possible under mild conditions since even
setwise continuity does not hold. Indeed, establishing condi-
tions that result in a Lipschitz type regularity behaviour (for the
belief-MDP) on the components of the fully observed transition
kernel and the measurement models is an interesting future re-

search topic. Theorem 1 suggests that these conditions should
be quite restrictive.

Example 1: In this example we consider the following par-
tially observed model

xt+1 = F (xt, at , vt)

yt = H(xt, wt), t = 0, 1, 2, . . . (7)

where X = Rn , A ⊂ Rm , and Y ⊂ Rd for some n,m, d ≥ 1.
The noise processes {vt} and {wt} are sequences of independent
and identically distributed (i.i.d.) random vectors taking values
in V = Rp and W = Rl , respectively, for some p, l ≥ 1, and they
are also independent of each other. In this system, the continuity
of F in (x, a) is sufficient to imply the weak continuity of the
transition probability p, and no assumptions are needed on the
noise process (not even the existence of a density is required).
On the other hand, the continuity of the observation channel r in
total variation holds, if for any x ∈ X, the probability measure
r( · |x) has a density g(y, x), which is continuous in x, with
respect to some reference probability measure m on Y. This
follows from Scheffé’s theorem (see, e.g., [43, Th. 16.2]). For
instance, this density condition holds for the following type of
models:

1) In the first model, we have Y = W = Rd , H(x,w) =
H(x) + w, H is continuous, and w has a continuous
density gw with respect to Lebesgue measure.

2) In the second case, Y is countable and r(y|x) is continu-
ous in x for all y ∈ Y. Therefore, the transition probability
η of the belief space MDP, corresponding to the model in
(7), is weakly continuous.

Next, we derive conditions satisfied by the components of the
belief-MDP under Assumption 1. Note first that Z =

⋃
m≥1 Fm ,

where

Fm :=
{

μ ∈ Pv (X) :
∫

X
v(x)μ(dx) ≤ m

}
.

Since v is a moment function, each Fm is tight [34, Prop. E.8].
Moreover, each Fm is also closed since v is continuous. There-
fore, each Fm is compact with respect to the weak topology.
This implies that Z is a σ-compact Borel space. Note that by
[44, Prop. 7.30], the one-stage cost function c̃ of the belief-MDP,
which is defined in (4), is in Cb(Z × A) under Assumption 1-
a). Therefore, the belief-MDP satisfies the following conditions
under Assumption 1, which we formally state as a separate
assumption.

Assumption 2:
i) The one-stage cost function c̃ is bounded and continuous.

ii) The stochastic kernel η is weakly continuous.
iii) A is compact and Z is σ-compact.

IV. FINITE MODEL APPROXIMATIONS

A. Finite-Action Approximation

In this section, we consider finite-action approximation of the
belief-MDP and so, the POMDP. For these equivalent models,
we obtain an approximate finite-action model as follows. Let
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dA denote the metric on A. Since A is assumed compact and
thus totally bounded, there exists a sequence of finite sets Λn =
{an,1 , . . . , an,kn

} ⊂ A such that for each n,

min
i∈{1,...,kn }

dA(a, an,i) < 1/n for all a ∈ A.

In other words, Λn is a 1/n-net in A. The sequence {Λn}n≥1 is
used by the finite-action model to approximate the belief-MDP
and the POMDP.

In [16], for MDPs with Borel state and action spaces, we
studied the problem of approximating an uncountable action set
with a finite one and had established the asymptotic optimality
of finite action models for such fully observed MDPs that sat-
isfy a number of technical conditions, in particular, the weak
continuity condition of the transition kernel in state and action
variables. Given the belief-MDP reduction, [16, Th. 3.2] implies
the following result.

Theorem 2: Suppose Assumption 1 (and thus Assumption 2)
holds for the POMDP. Then we have

lim
n→∞ |J̃∗

n (z) − J̃∗(z)| = 0 for all z ∈ Z

where J̃∗
n is the discounted cost value function of the belief-

MDPn with the components
(
Z,Λn , η, c̃

)
and J̃∗ is the dis-

counted cost value function of the belief-MDP with components(
Z, A, η, c̃

)
.

The significance of Theorem 2 is reinforced by the follow-
ing observation. If we let Π(Λn ) to be the set of deterministic
policies of the POMDP taking values in Λn , then the theo-
rem implies that for any given ε > 0 there exists n ≥ 1 and
π∗

ε ∈ Π(Λn ) such that

J(π∗
ε , μ) < min

π∈Π
J(π, μ) + ε

where π∗
ε = πf̃ ∗

n [see (5)] and f̃ ∗
n is the optimal deterministic

stationary policy for the belief-MDPn .

B. Finite-State Approximation

The finite-state model for the belief-MDP is obtained as in
[17], by quantizing the set of probability measures Z = Pv (X);
that is, for each m, we quantize compact set Fm similar to the
quantization of A and represent the rest of the points Z \ Fm by
some pseudostate.

If Z is compact, the index m can be fixed to m = 1 in the
following:

We let dZ denote a metric on Z which metrizes the weak
topology. For each m ≥ 1, since Fm is compact and thus totally

bounded, there exists a sequence
({z(m )

n,i }k
(m )
n

i=1

)
n≥1 of finite grids

in Fm such that for all n ≥ 1

min
i∈

{
1,...,k

(m )
n

} dZ

(
z, z

(m )
n,i

)
< 1/n for all z ∈ Fm . (8)

Let {S(m )
n,i }k

(m )
n

i=1 be a partition of Fm such that z
(m )
n,i ∈ S(m )

n,i and

max
z∈S(m )

n , i

dZ

(
z, z

(m )
n,i

)
< 1/n (9)

for all i = 1, . . . , k
(m )
n . Choose any z

(m )

n,k
(m )
n +1

∈ Z \ Fm which

is a so-called pseudostate and set S
n,k

(m )
n +1 = Z \ Fm .

Let Z(m )
n := {z(m )

n,1 , . . . , z
(m )
n,kn

, z
(m )

n,k
(m )
n +1

} and define function

Q
(m )
n : Z → Z(m )

n by

Q(m )
n (z) = z

(m )
n,i when z ∈ S(m )

n,i .

Here Q
(m )
n (z) maps z to the representative element of the par-

tition it belongs to.
Remark 3:
1) Note that given {z(m )

n,i }k
(m )
n

i=1 ⊂ Fm that satisfies (8), one

way to obtain the corresponding partition {S(m )
n,i }k

(m )
n

i=1
of Fm satisfying (9) as follows. Let us define function
Qnear : Fm → {z(m )

n,1 , . . . , z
(m )

n,k
(m )
n

} as

Qnear(z) = arg min
z

(m )
n , i

dZ

(
z, z

(m )
n,i

)

where ties are broken so that Qnear is measurable. In
the literature, Qnear is often called a nearest neighbor
quantizer with respect to “distortion measure” dZ [45].

Then, Qnear induces a partition {S(m )
n,i }k

(m )
n

i=1 of the space
Fm given by

S(m )
n,i =

{
z ∈ Fm : Q(m )

n (z) = z
(m )
n,i

}

which satisfies (9). Although one can construct, in theory,
the partition using nearest neighbor sense, it is computa-
tionally difficult to find these regions when the original
state space X is uncountable.

2) The index n indicates the resolution of the quantizer that
is applied to discretize the compact set Fm and index
m emphasizes the size of the compact set Fm for which
quantization is applied.

Let {ν(m )
n } be a sequence of probability measures on Z sat-

isfying

ν(m )
n

(
S(m )

n,i

)
> 0 for all i, n,m. (10)

One possible choice for ν
(m )
n is

ν(m )
n ( · ) =

k
(m )
n +1∑

i=1

δ
z

(m )
n , i

( · ).

We let ν
(m )
n,i be the restriction of ν

(m )
n to S(m )

n,i defined by

ν
(m )
n,i ( · ) :=

ν
(m )
n ( · )

ν
(m )
n

(
S(m )

n,i

) .

The measures ν
(m )
n,i will be used to define a sequence of finite-

state belief MDPs, denoted as MDP(m )
n , which approximate

the belief-MDP. To this end, for each n and m define the one-
stage cost function c

(m )
n : Z(m )

n × A → [0,∞) and the transition



136 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 65, NO. 1, JANUARY 2020

probability p
(m )
n on Z(m )

n given Z(m )
n × A by

c(m )
n

(
z

(m )
n,i , a

)
:=

∫

S(m )
n , i

c(z, a)ν(m )
n,i (dz)

p(m )
n

(
· |z(m )

n,i , a
)

:=
∫

S(m )
n , i

Q(m )
n ∗ p( · |z, a)ν(m )

n,i (dz) (11)

where Q
(m )
n ∗ p( · |z, a) ∈ P(Z(m )

n ) is the pushforward of the
measure p( · |z, a) with respect to Q

(m )
n ; that is

Q(m )
n ∗ p(y|z, a) = p

({
z ∈ Z : Q(m )

n (z) = y
}
|z, a

)

for all y ∈ Z(m )
n . For each n and m, we define MDP(m )

n as a
Markov decision process with the following components: Z(m )

n

is the state space, A is the action space, p
(m )
n is the transition

probability, and c
(m )
n is the one-stage cost function.

Given the belief-MDP, [17, Th. 3.2]1 implies the following.
Theorem 3: Suppose Assumption 1 (and thus Assumption 2)

holds for the POMDP. Then we have

lim
n,m→∞

∣
∣
∣J̃(f (m )

n , μ) − J̃∗(μ)
∣
∣
∣ = 0

where f
(m )
n is obtained by extending the optimal policy of the

MDP(m )
n to Z. Hence, by the equivalence of POMDPs and belief-

MDPs, we also have

lim
n,m→∞

∣
∣
∣J(πf

(m )
n , μ) − J∗(μ)

∣
∣
∣ = 0.

Theorem 3 implies that to find a near optimal policy for the
POMDP, it is sufficient to compute an optimal policy for the
finite-state belief-MDP with sufficiently many states, extend
this policy to the original state space of the belief-MDP, and
then construct the corresponding policy for the POMDP. Next,
we discuss explicit methods to quantize the set of probability
measures on X, that is, the belief-space Z.

V. QUANTIZATION OF THE BELIEF-SPACE

An explicit construction for an application requires a properly
defined metric on Z. As stated in Section III-A, one can metrize
the set of probability measures defined on a Borel space under
the weak topology using various distance measures. Building
on this fact, in the following we present explicit methods for
the quantization of Z for the cases where X is finite, a compact
subset of a finite-dimensional Euclidean space, or the finite-
dimensional Euclidean space itself, and p( · |a) is independent
of the state variable x.

A. Construction with Finite X

If the state space is finite with |X| = m, then Z = Pv (X) =
P(X), and Z is a simplex in Rm . In this case, Euclidean distance
can be used to metrize Z. Indeed, one can make use of the

1Although Theorem 3.2 in [17] is proved under the assumption that the
state space is locally compact, a careful examination of the proof reveals that
σ-compactness of the state space is also sufficient to establish the result.

algorithm in [46] (see also [47]) to quantize Z in a nearest
neighbor manner. To this end, for each n ≥ 1, define

Zn :=

{

(p1 , . . . , pm ) ∈ Qm : pi =
ki

n
,

m∑

i=1

ki = n

}

(12)

where Q is the set of rational numbers and n, k1 , . . . , km ∈ Z+ .
The set Zn is called type lattice by analogy with the concept of
types in information theory [48, Ch. 12]. Then, the algorithm
that computes the nearest neighbor levels can be described as
follows:

Algorithm: Given z ∈ Z, find nearest y ∈ Zn :
1) Compute values (i = 1, . . . ,m)

k′
i =

⌊
nzi +

1
2

⌋
and n′ =

m∑

i=1

k′
i .

2) If n′ = n the nearest y is given by ( k ′
1

n , . . . , k ′
m

n ). Other-
wise, compute the errors

δi = k′
i − nzi

and sort them
−1
2

≤ δi1 ≤ δi2 ≤ . . . ≤ δim
≤ 1

2
.

3) Let Δ = n′ − n. If Δ > 0, set

kij
=

{
k′

ij
if j = 1, . . . ,m − Δ − 1

k′
ij
− 1 if j = m − Δ, . . . ,m.

If Δ < 0, set

kij
=

{
k′

ij
+ 1 if j = 1, . . . , |Δ|

k′
ij

if j = |Δ| + 1, . . . ,m.

Then, the nearest y is given by ( k1
n , . . . , km

n ).
One can also compute the maximum radius of the quantization

regions for this algorithm. To this end, let d∞ and dp denote
respectively the metrics induced by L∞ and Lp (p ≥ 1) norms
on Rm , which metrizes the weak topology on Z. Then, we have
[46, Prop. 2]

b∞ := max
z∈Z

min
y∈Zn

d∞(z, y) =
1
n

(
1 − 1

m

)

b2 := max
z∈Z

min
y∈Zn

d2(z, y) =
1
n

√
a(m − a)

m

b1 := max
z∈Z

min
y∈Zn

d1(z, y) =
1
n

2a(m − a)
m

where a = �m/2�. Hence, for each n ≥ 1, the set Zn is an bj -net
in Z with respect to dj metric, where j ∈ {∞, 2, 1}.

B. Construction With Compact X

The analysis in the previous subsection shows that a finitely
supported measure can be approximated through type lattices.
Thus, if compactly supported probability measures can be ap-
proximated with those having finite support, the analysis in
Section V-A yields approximately optimal policies. In the fol-
lowing, we assume that X is a compact subset of Rd for some
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d ≥ 1. Then Z := Pv (X) = P(X) is also compact (under the
weak convergence topology) and can be metrized using the
Wasserstein metric W1 (here, in defining W1 , we use the met-
ric on X induced by the Euclidean norm ‖ · ‖) as discussed in
Section III-A.

For each n ≥ 1, let Qn be some lattice quantizer [45] on X
such that ‖x − Qn (x)‖ < 1/n for all x ∈ X. Set Xn = Qn (X),
i.e., the output levels of Qn (note that Xn is finite since X is
compact). Then, one can approximate any probability measure
in Z with probability measures in

P(Xn ) := {μ ∈ P(X) : μ(Xn ) = 1} .

Indeed, for any μ ∈ Z, we have [49, Th. 2.6]

inf
μ ′∈P(Xn )

W1(μ, μ′) ≤ inf
Q :X→Xn

∫

X
‖x − Q(x)‖μ(dx)

≤
∫

X
‖x − Qn (x)‖μ(dx) ≤ 1

n
.

Once this is obtained, we can further approximate the prob-
ability measure induced by Qn via the algorithm introduced
in Section V-A with asymptotic performance guarantees. Thus,
through a sequence of type lattices Zmn

as given in (12) with a
successively refined support set so that Xn ⊂ Xn+1 for n ∈ N
with mn = |Xn |, one can quantize Z to obtain a sequence of
finite state-action MDPs through (11) leading to Theorem 3.

For some related properties of approximations of probability
measures with those with finite support, and the relation to
optimal quantization, we refer the reader to [49].

C. Construction With Non-Compact X

Here we assume that X = Rd for some d ≥ 1 and that As-
sumption 1 holds for v(x) = ‖x‖2 . In this case, Z := Pv (X)
becomes the set of probability measures with finite second mo-
ment and Fm is the set of probability measures with finite second
moments bounded by m. We endow here Z with the bounded-
Lipschitz metric ρBL , which metrizes weak convergence (see
Section III-A).

We first describe the discretization procedure for Fm . For each
n ≥ 1, set Kn := [−n, n]d and let qn denote a lattice quantizer
on Kn satisfying

sup
x∈K

‖x − qn (x)‖ < 1/n.

Let Xn denote the set of output levels of qn ; that is, Xn =
qn (Kn ). Define

Qn (x) =

{
qn (x) if x ∈ K

0 if x ∈ Kc.

Then, any measure in Fm can be approximated by probability
measures in

P(Xn ) := {μ ∈ P(X) : μ(Xn ) = 1} .

Indeed, for any μ ∈ Fm , we have

inf
μ ′∈P(Xn )

ρBL (μ, μ′) ≤ inf
μ ′∈P(Xn )

W1(μ, μ′) (13)

≤ inf
Q :X→Xn

∫

X
‖x − Q(x)‖μ(dx)

≤
∫

X
‖x − Qn (x)‖μ(dx)

=
∫

K

‖x − Qn (x)‖μ(dx)+
∫

K c

‖x‖μ(dx)

≤ 1
n

+
∫

{‖x‖>n}
‖x‖2μ(dx)

1
n

≤ (1 + m)
n

. (14)

In the derivation above, (13) follows from (2). Thus, μ in Fm can
be approximated by the μn ∈ P(Xn ), which is induced by the
quantizer Qn , with a bound ρBL (μ, μn ) ≤ (1 + m)/n. Then,
similar to Section V-B, we can further approximate probability
measure μn via the algorithm introduced in Section V-A with
again asymptotic performance guarantees by Theorem 3. Thus,
analogous to compact case, using a sequence of type lattices
Zmn

as given in (12) with a successively refined support set
Xn ⊂ Xn+1 for n ∈ N with mn = |Xn |, one can quantize Z to
obtain a sequence of finite state-action MDPs through (11).

Remark 4: Note that the complexity of the quantization al-
gorithm scales with the dimension of the space on which it
is applied. Therefore, quantizing a belief space when the un-
derlying state space is continuous (compact or noncompact) is
in general computationally very demanding since, in this case,
the quantized space is infinite dimensional. One way to over-
come this issue is to (approximately or exactly) parameterize
the reachable beliefs with a low-dimensional parameter as will
be discussed in detail in the next section.

D. Construction for Special Models Leading to
Quantized Beliefs With Continuous Support

So far, we have obtained quantized beliefs where each such
quantized belief measure was supported on a finite set. For some
applications, this may not be efficient and it may be more de-
sirable to quantize the measurement space appropriately. For
some further applications, a parametric representation of the
set of reachable beliefs may be present and the construction of
bins may be more immediate through quantizing the parame-
ters in a parametric class. What is essential in such models is
that the bins designed to construct the finite belief-MDP corre-
spond to balls which are small under the metrics that metrize the
weak convergence as discussed in Section III-A. Therefore, al-
though the belief space is originally infinite dimensional in such
models, because of the special parametrization of the reachable
beliefs, the complexity of the finite model approximation algo-
rithm can be reduced to the complexity of the quantization of
the parameter space. This drastically decreases the complexity
of the algorithm as can be seen in the numerical example in
Section VI-B. For instance, if we obtain the discretized states
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by quantizing the observation space (which can be done if the
transition probability only depends on the actions as discussed
in the next section), then the complexity of the finite model
approximation algorithm scales with the dimension of the ob-
servation space. Hence, exact or approximate parametrization
of reachable beliefs can drastically reduce the complexity of the
algorithm. This is a very efficient way to overcome the curse-
of-dimensionality in approximation of POMDPs.

1) Quantized Measures Through Quantized Measure-
ments: For this section, we assume that transition probability
p( · |a) is independent of the state variable x, Y ⊂ Rp for some
p ≥ 1, and Assumption 1 holds for some v. In the view of The-
orem 2, as a preprocessing setup, we quantize the action space
A, where the finite set Aq represents the output levels of this
quantizer. Hence, in the sequel, we assume that the action space
is Aq .

Since κ(dx, dy|a) := r(dy|x) ⊗ p(dx|a), we have

R(x ∈ A, y ∈ B|z, a) =
∫

X
κ(A,B|a)z(dx′)

= κ(A,B|a)

and so, the disintegration of R becomes

R(dx, dy|a) = H(dy|a) ⊗ F (dx|a, y).

Then, η is given by

η( · |a) =
∫

Y
δF ( · |a,y )( · ) H(dy|a).

This implies that we can take the following set as the state space
Z of the fully observed model instead of Pv (X):

Z = {F ( · |a, y) : (a, y) ∈ Aq × Y} .

We endow Z with the bounded-Lipschitz metric ρBL . For each
n ≥ 1, set Ln := [−n, n]p and let ln denote a lattice quantizer
on Ln satisfying

sup
y∈Ln

‖y − ln (y)‖ < 1/n.

Let Yn denote the set of output levels of ln ; that is, Yn = ln (Ln ).
Define

qn (y) =

{
ln (y) if y ∈ Ln

0 if y ∈ Lc
n .

Then, finite set Zn ⊂ Z, which is used to quantize Z, is given by

Zn = {F ( · |a, y) : (a, y) ∈ Aq × Yn}
and the corresponding quantizer Qn : Z → Zn is defined as fol-
lows: Given z = F ( · |a, y), we define

Qn (z) = F ( · |a, qn (y)).

Note that to use Qn for constructing finite models, we
have to obtain an upper bound on the ρBL -distance between
z and Qn (z). This can be achieved under various assump-
tions on the system components. One such assumption is the
following: 1) X = Rd for some d ≥ 1, 2) Y is compact, 3)
p(dx|a) = gp(x|a)m(dx) and r(dy|x) = gr (y|x)m(dy), 4) gr

is Lipschitz continuous with Lipschitz constant Kr , gr > θ for

some θ > 0, and sup{(y ,x)∈Y×X} |gr (y, x)| =: ‖gr‖ < ∞. Since
Y is compact, there exists ε(n) for each n such that ε(n) → 0 as
n → ∞ and ‖y − qn (y)‖ ≤ ε(n) for all y ∈ Y. Under the above
assumptions, we have

F (dx|a, y) = f(x|a, y)m(dx)

where

f(x|a, y) =
gr (y|x)gp(x|a)∫

X gr (y|x)gp(x|a)m(dx)
.

Since the bounded-Lipschitz metric ρBL is upper bounded by
the total variation distance, we obtain

ρBL (z,Qn (z)) ≤ ‖z − Qn (z)‖T V

=
∫

X
|f(x|a, y) − f(x|a, qn (y))|m(dx)

≤ 2‖gr‖Kr

θ2 ‖y − qn (y)‖ ≤ 2‖gr‖Kr

θ2 ε(n).

Hence, Qn is a legitimate quantizer for constructing the finite
models. Section VI-B exhibits another example where we have
such an upper bound.

2) Construction From a Parametrically Represented
Class: For some applications, the set of belief measures can be
first approximated by some parametric class of measures, where
parameters belong to some low-dimensional space [23], [50],
[51]. For instance, in [23], densities of belief measures are pro-
jected onto exponential family of densities using the Kullback–
Leibler (KL) divergence, where it was assumed that projected
beliefs are close enough to true beliefs in terms of cost func-
tions. In [51], densities are parameterized by unimodal Gaussian
distributions and parameterized MDP are solved through Monte
Carlo simulation-based method. In [50], densities are repre-
sented by sufficient statistics, and in particular represented by
Gaussian distributions, and the parameterized MDP is solved
through fitted value iteration algorithm. However, among these
works, only the [23] develop rigorous error bounds for their
algorithms using the KL divergence and the other works do not
specify distance measures to quantify parametric representation
approximations.

In these methods, if the parameterized beliefs are good
enough to represent true beliefs as it was shown in [23], then
the method presented in the earlier sections (of first quantiz-
ing the state space, and then quantizing the beliefs on the state
space) may not be necessary and one can, by quantizing the
parameters for the class of beliefs considered, directly con-
struct the finite belief-MDP. As noted earlier, what is essen-
tial in such methods is that the bins designed to construct the
finite belief-MDP correspond to balls which are small under
the metrics that metrize the weak convergence as discussed in
Section III-A. This possible if the projected beliefs are proved to
be close to the true beliefs with respect to some metric that gener-
ates the weak topology or with respect to some (pseudo) distance
which is stronger than weak topology. For instance, since con-
vergence in KL-divergence is stronger than weak convergence,
the projected beliefs constructed in [23] indeed satisfies this
requirement. Hence, one can apply our results to conclude the
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convergence of the reduced model to the original model in [23].
As noted earlier, relative entropy is a very strong pseudodistance
measure which is even stronger than total variation (by Pinsker’s
inequality [24]) and for being able to quantize a set of proba-
bility measures with finitely many balls as defined by such a
distance measure requires very strict assumptions on the allow-
able beliefs and it in particular requires, typical equicontinuity
conditions (see e.g., [25, Lemma 4.3]). In turn, it is in general
necessary to assume that transition probability and observation
channel have very strong regularity conditions.

VI. NUMERICAL EXAMPLES

A. Example with Finite X

We consider a machine repair problem in order to illustrate
our results numerically for finite state POMDPs. In this model,
we have X = A = Y = {0, 1} with the following interpretation:

xt =

{
1 machine is working at time t

0 machine is not working at time t

at =

{
1 machine is being repaired at time t

0 machine is not being repaired at time t

κ is the probability that the machine repair was successful given
an initial “not working” state

Pr{xt+1 = 1|xt = 0, at = 1} = κ.

Finally, the probability that the machine does not break down in
one time step is denoted by α

Pr{xt+1 = 0|xt = 1, at = 0} = α.

The probability that the measured state is not the true state is
given by ε; that is

Pr{yt = 0|xt = 1} = Pr{yt = 1|xt = 0} = ε.

The one-stage cost function for this model is given by

c(x, a) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

R + E x = 0 and a = 1

E x = 0 and a = 0

0 x = 1 and a = 0

R x = 1 and a = 1

where R is defined to be the cost of repair and E is the cost in-
curred by a broken machine. The cost function to be minimized
is the discounted cost function with a discount factor β. In order
to find the approximately optimal policies, we first construct
the belief space formulation of the above model. Note that the
state space of the belief space model is the interval [0,1]. Hence,
we can use uniform quantization on [0,1] to obtain the finite
model. For the numerical results, we use the following parame-
ters: ε = 0.17, κ = 0.9, α = 0.9545, and β = 0.3. We selected
20 different values for the number n of grid points to discretize
[0,1]: n = 10, 20, 30, . . . , 200. The grid points are chosen uni-
formly. For each n, the finite state models are constructed as in
[17, Sec. 2].

Fig. 1. Optimal costs of the finite models when the initial state is x = 1.

Fig. 1 shows the graph of the value functions of the finite
models corresponding to the different values of n (number of
grid points), when the initial state is x = 1. The resulting graph
suggest convergence of the value functions (to the value function
of the original model). Note that the rigorous justification of
eventual convergence is given in the paper; see Theorems 2
and 3.

B. Example With Compact X

In this example we consider the following model:

xt+1 = exp{−θ1at + vt}, t = 0, 1, 2, . . . (15)

yt = xt + ξt , t = 0, 1, 2, . . . (16)

where θ1 ∈ R+ , xt is the state at t, and at is the action at
t. The one-stage “reward” function is u(xt − at), where u is
some utility function. In this model, the goal is to maximize
the discounted reward. This model is the modified and par-
tially observed version of the population growth model in [34,
Sec. 1.3].

The state and action spaces are X = A = [0, L], for some L ∈
R+ , and the observation space is Y = [0,K] for some K ∈ R+ .
Since θ1 is merely a constant, by taking [0, L

θ1
] as our new action

space, instead of dynamics in (15) we can write the dynamics
of the state as

xt+1 = exp{−at + vt}, t = 0, 1, 2 . . . .

The noise processes {vt} and {ξt} are sequences of i.i.d. random
variables which have common densities gv supported on [0, λ]
and gξ supported on [0, τ ], respectively. Therefore, the transition
probability p( · |x, a) is given by

p (D|x, a) =
∫

D

gv (log(v) + a)
1
v
m(dv)

for all D ∈ B(R) and the observation kernel r( · |x) is given by

r (B|x, a) =
∫

B

gξ (ξ − x)m(dξ)

for all B ∈ B(R). To make the model consistent, we must
have exp{−a + v} ∈ [0, L] for all (a, v) ∈ [0, L] × [0, λ]. We
assume that gv and gξ are uniform probability density functions;
that is, gv = 1

λ
on [0, λ] and gξ = 1

τ on [0, τ ]. Hence, Assump-
tion 1 holds for this model with v(x) = 1.
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In the view of Theorem 2, as a preprocessing setup,
we quantize the action space A, where the finite set Aq =
{a1 , a2 , . . . , aq} represents the output levels of this quantizer
with 0 < a1 < a2 < . . . < aq . In the remainder of this example
we assume that the action space is Aq .

We now obtain the stochastic kernels H( · |z, a) and
F ( · |z, a, y) that describe the transition probability η of the
reduced MDP. Indeed, we have H(dy|z, a) = h(y|a)m(dy)
where h(y|a) is given by

h(y|a) =
∫

X
gξ (y − x)gv (log(x) + a)

1
x

m(dx).

Similarly, we have F (dx|z, a, y) = f(dx|a, y)m(dx) where
f(x|z, a, y) is given by

f(x|a, y) =
gξ (y − x)gv (log(x) + a) 1

x∫
X gξ (y − x)gv (log(x) + a) 1

x m(dx)
. (17)

Hence, for any (z, a), the transition probability η( · |z, a) has a
support on the set of probability measures on X having densities
given by (17). This implies that we can take the following set as
the state space Z of the fully observed model instead of P(X):

Z = {f(x|a, y)m(dx) : (a, y) ∈ A × Y and f as in (17)} .

For each n, let qn denote the uniform quantizer on Y having n
output levels; that is, qn : Y → {y1 , . . . , yn} =: Yn ⊂ Y where
yj = (j − 1

2 )Δn , j = 1, . . . , n, and

q−1
n (yj ) =

[
yj − Δn

2
, yj +

Δn

2

)

where Δn = K
n . We define

Zn := {f(x|a, y)m(dx) ∈ Z : (a, y) ∈ Aq × Yn} .

Then, the quantizer Qn : Z → Zn , which is used to construct the
finite model, is defined as follows: Given z = f(x|a, y)m(dx),
we define Qn (z) = f(x|a, qn (y))m(dx).

To be able to use Qn for constructing finite models, we need
to obtain an upper bound on the ρBL -distance between z and
Qn (z). Indeed, one can prove that

ρBL (z,Qn (z)) ≤ ‖z − Qn (z)‖T V ≤ MΔn (18)

for some constant M . The utility function u is taken to be
quadratic function; i.e., u(t) = t2 .

For the numerical results, we use the parameters as: λ =
1, τ = 0.5, and β = 0.2. As a preprocessing setup, we uni-
formly discretize the action space A by using 20 grid points.
Then, we select 99 different values for the number n of grid
points to discretize the state space Z using the quantizer Qn ,
where n varies from 29 to 1436.

We use the value iteration algorithm to compute the value
functions of the finite models. Since the components of the
transition matrices and the cost function matrix can be computed
analytically in this example, complexity of constructing these
matrices is polynomial in the size of the action space (i.e., |Aq |)
and state space (i.e., |Zn |). In addition, it is known that the
computation of an optimal policy using value iteration algorithm
is also polynomial in |Aq |, |Zn |, 1

1−β , and the maximum number

Fig. 2. Optimal rewards of the finite models when the initial state is
x = 2.

of bits B needed to represent any numerator or denominator of
β or one of the components of the transition matrices or cost
function matrix [52]. Therefore, the computation of an optimal
policy for any finite model with n grid points is polynomial in
|Aq |, |Zn |, 1

1−β , and B.
The simulation was implemented by using MATLAB and

it took 411.75 s using an HP EliteDesk 800G2 SFF desktop
computer with CPU Intel Core i7-6700 3.4 GHz 4-core. Fig. 2
displays the graph of the value functions corresponding to the
different values for the number of grid points when the initial
state is x = 2. The resulting graph suggests convergence of
the value functions; the rigorous justification of convergence is
given in Theorems 2 and 3.

VII. CONCLUDING REMARKS

We studied the approximation of discrete-time POMDPs un-
der the discounted cost criterion. An essential observation was
that establishing strong continuity properties for the reduced
(belief) model is quite difficult for general state and action mod-
els, whereas weak continuity can be established under fairly
mild conditions on the transition kernel of the original model
and the measurement equations. This allowed us to apply our
prior approximation results [16], [17], developed under weak
continuity conditions, to partially observed models. Extending
the analysis to average cost problems is a future task.
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Serdar Yüksel (S’02–M’11) received the B.Sc.
degree in electrical and electronics engineer-
ing from Bilkent University, Ankara, Turkey in
2001; the M.S. and Ph.D. degrees in electrical
and computer engineering from the University of
Illinois at Urbana- Champaign, Champaign, IL,
USA in 2003 and 2006, respectively.

He was a Postdoctoral Researcher at Yale
University, New Haven, CT, USA for a year be-
fore joining Queen’s University, Kingston, ON,
Canada, as an Assistant Professor of mathemat-

ics and engineering with the Department of Mathematics and Statistics,
where he is now an Associate Professor. His research interests include
stochastic control, decentralized control, information theory, and applied
probability.

He was the recipient of the 2013 CAIMS/PIMS Early Career Award in
Applied Mathematics. He is an Associate Editor for the IEEE TRANSAC-
TIONS ON AUTOMATIC CONTROL and Automatica.

Prof. Tamás Linder (S’92–M’93–SM’00–F’13)
received the M.S. degree in electrical engineer-
ing from the Technical University of Budapest,
Budapest, Hungary, in 1988, and the Ph.D de-
gree in electrical engineering from the Hungar-
ian Academy of Sciences, Budapest, Hungary,
in 1992.

He was a Postdoctoral Researcher with
the University of Hawaii in 1992 and a Visit-
ing Fulbright Scholar with the Coordinated Sci-
ence Laboratory, University of Illinois at Urbana-

Champaign, Champaign, IL, USA during 1993–1994. From 1994 to
1998 he was a faculty member with the Department of Computer Sci-
ence and Information Theory at the Technical University of Budapest,
Hungary. From 1996 to 1998 he was also a Visiting Research Scholar
with the Department of Electrical and Computer Engineering, University
of California, San Diego, CA, USA. In 1998 he joined Queen’s University,
Kingston, ON, Canada, where he is now a Professor of mathematics and
engineering with the Department of Mathematics and Statistics. His re-
search interests include communications and information theory, source
coding and vector quantization, machine learning, and statistical pattern
recognition.

Dr. Linder was the recipient of the Premier’s Research Excellence
Award of the Province of Ontario in 2002 and the Chancellor’s Research
Award of Queen’s University in 2003. He was an Associate Editor for
Source Coding of the IEEE TRANSACTIONS ON INFORMATION THEORY dur-
ing 2003–2004.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


