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Abstract-” universal source coding system with vectorquantizer codehook 
transmissions is studied using high resolution quantization theory. Condi- 
tions are derived for the optimal tradeoff between quantizer resolution and 
the information rate used to transmit codebooks. A formula that tightly 
bounds the mean squared error of the universal coding system as afuuction 
of the time between codebook transmissions is experimentally verified and 
found to be tight, and a new and simpler derivation is given. Other research 
in the literature has proposed vector quantizing the transmitted codebooks; 
one conclusion we prove here is that under some reasonable conditions uni- 
form scalar quantization of the transmitted codehooks performs as well as 
vector quantizing them. Ekperimental results are given that support the 
analytic derivations. 

Keywords-Universal lossy source coding, codehook transmission, vector 
quantization. 

I. INTRODUCTION 

Vector Quantization (VQ) plays a critical role as an important 
building block of many lossy data compression systems and is 
generally designed based on the long term statistical behavior 
of a source. In many situations, however, (e.g. image coding) 
sources are encountered where real-time adaptation is desirable. 
An approach to providing this need is for a quantizer to be 
both adaptive and universal in nature. An adaptive quantizer is 
one in which changing source statistics induce changes in the 
quantization procedure or parameters, and a universal quantizer 
is one which is a priori able to successfully encode a large class 
of distinct sources. These two notions are very closely related 
and are encountered in lossless source coding, such as with 
Ziv-Lempel coding and Gallagher’s adaptive Huffman coding. 
However, for lossy source coding, there is a significant gap in 
this area. 

Universal schemes were shown to exist for both fixed rate 
and variable rate lossy coding. Ziv [ll has shown that for metric 
space valued alphabets satisfying some regularity conditions and 
for metric distortion measures, there exist fixed rate universal 
algorithms for the class of all stationary sources that asymptot- 
ically do as well for each source as an optimum source code 
designed for that source. Neuhoff et al. [2] developed a unified 
theory for fixed rate universal source coding, allowing different 
source and reproduction alphabets and more general distortion 
measures, and Matsuyama and Gray 131 have applied the idea 
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of universal coding to tree encoding of speech. Chou [41 has 
designed weighted universal codes for image coding by using a 
finite collection of predesigned VQ codebooks. A short binary 
index is occasionally transmitted to specify to the decoder which 
codebook is being used. This scheme is limited in the sense that 
the number of different codebooks that can be used is rather 
small due to memory constraints. 

Nasrabadi andFeng [9] used the notion of a“super-codebook”, 
a large ordered codebook available at both the encoder and de- 
coder, from which the #irst Ncodevwtors serve a3 an operational 
vector quantizer in coding an image. The operational codebook 
can be adapted by trickling vectors in the super-codebook to the 
top and allowing others to fall down to lower positions. Their 
reordering method is heuristic in nature, and depends on the 
statistics of the previously used codevector indices. One poten- 
tial difficulty with this scheme is that being finite state in nature, 
it cannot easily recover from channel errors. An earlier method 
for adaptive quantization was proposed by Gersho and Yano 
[lo1 that adaptively replenishes codevectors as the source statis- 
tics change, attempting to keep the partial distortions constant 
at each stage. In [ l l l  [121 subsets of a universal codebook are 
used as reduced size codebooks, which are then used to encode 
the source training set. Also, in [Ill, adaptive quantization is 
performed by transmitting (as overhead) new codebooks to a 
receiver. For variable length universal codes see e.g. [5]-[71. 

In this paper, we analyze a universal quantization technique 
based upon the occasional transmission of new codebooks. 
Strictly speaking, the notion of universality we consider is that 
of weak minimax universality (see [2]), This means that the 
analyzed scheme asymptotically achieves the rate distoxtionper- 
formance limit for stationary real sources. The number of in- 
put vectors between successive codebook transmissions will be 
called the block size. The main idea is that periodically, as the 
source statistics change, a new target VQ codebook, Ct, of size 
N ,  is designed in real-time for the current source statistics and is 
then transmitted to the receiver. The real-time VQ design issue 
will not be addressed here, though we note that some fast design 
algorithms do currently exist. These include a fast “on-line” 
clustering technique [131, [141, a method using Kohonen’s self- 
organizing feature maps [151, competitive learning [16], and 
gradient descent algorithms [171, [HI. Transmission of some 
approximation of the target codebook to the receiver requires 
that side-information be sent. The proposed technique is a fixed 
rate transmission scheme and potential channel errors will not 
propagate indefinitely. 

If large amounts of side information are used to describe 
each new target codebook then these transmitted codebooks 
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can be conveyed quite accurately and the performance of the 
actual quantizer that the receiver uses will be very close to that 
of the intended quantizer. However, accurately transmitting 
the target codebook “takes away” bits from the overall rate 
that could instead be used to transmit VQ indices from higher 
resolution codebooks. Thus, for a fixed transmission rate, there 
is a performance tradeoff in how many bits are sent as side 
information and how many as codevector indices. 

Using both the MSE upper bound and the high resolution 
quantization development in [ 191, Chou and Effros [20] derived 
a formula for the optimal tradeoff. The formula shows that for 
large block sizes, the optimal number of bits used to transmit 
each codevector component grows as the logarithm of the block 
size. In Appendix A, we present an alternate and simpler deriva- 
tion of the formula given in [20]. Also, we give, as a function 
of the block size, upper and lower asymptotic bounds on the 
optimal amount of side-information to transmit per codebook 
component. 

We use high resolution quantization theory to analyze the 
performance of the universal coding system. Specifically, the 
optimal tradeoff between overhead bits used for transmitting 
new codebooks and the encoding bits sent as codevector indices 
is determined for various universal codebook designs, and is 
compared to experimental results. Two methods of codebook 
transmission are considered: (i) uniform scalar quantizing the 
codevector components, and (ii) vector quantizing the code- 
vectors themselves. In the second scheme, which we call the 
vector universal scheme (see [21, pg. 6201), the main idea is 
that periodically, as the source statistics change, a new target 
VQ codebook, Ct ,  of size N is designed for the source and then 
matched in a nearest neighbor manner to the N closest vectors 
in a large universal codebook, C,, of size M .  The N matched 
vectors from C, constitute the operational codebook, C,, which 
is used for coding by both the encoder and receiver as an ap- 
proximation to Ct . The operational codebook can be conveyed 
to the receiver by transmitting side information specifying some 
N-vector subset of C,. In this manner, the vector quantizer is 
itself being vector quantized for the purposes of transmitting its 
codebook. This technique improves upon those described in [4] 
and [9]. A theoretical and experimental comparison is given for 
the two schemes considered and we conclude that they perform 
approximately the same over a wide range of block sizes a. 

Simulations results show that for a fixed stationary source 
and transmission rate, as the block size increases so does the 
performance. In practice, however, source statistics often vary 
quite quickly such as in an image source. Thus, there is a tradeoff 
in the choice of block size. If a smaller block size is chosen then 
the model is allowed to be more adaptive, whereas choosing a 
large block size improves the S N R  for a fixed stationary source. 

The paper is organized as follows. Section I1 describes the 
universal source coding scheme using quantization and trans- 
mission of the codebooks, and gives a tractable upper bound 
on the overall MSE of the system. Both scalar and the vec- 
tor universal schemes are discussed. In Section I11 the tradeoff 
between quantization resolution and codebook transmission res- 
olution is analyzed and experimental results are given. Section 
IV provides a theoretical justification for the use of the given 

distortion upper bound in optimizing the system’s performance. 

11. UNIVERSAL SOURCE CODING WITH CODEBOOK TRANSMISSION 

Let X be a k-dimensional random vector with density f, 
and suppose a independent samples of X are encoded by a k- 
dimensional vector quantizer Q having a codebook of size N. 
Further suppose that a partial description of Q is transmitted to 
the receiver consisting on average of b bits per scalar component 
for each of Q’s codevectors. Let T be the overall average rate of 
this quantization system measured in bits per input vector com- 
ponent. Denote Q’s codebook by Ct (the “target codebook”), 
denote the codebook derived from the received description of 
Ct by C, (the “operational codebook), and denote by C, the 
codebook consisting of all possible 2kb codevectors that could 
be transmitted to describe vectors in C,. Note that C, c C,. 
For every a input vectors, a new target codebook Ct is designed 
and transmitted and a new operational codebook C,, approxi- 
mating Ct ,  is received and then used for quantization. Equating 
two expressions for the total number of bits transmitted between 
codebook updates gives 

a r k  = alog, N + kbN. (1) 

The term kbN is the total number of bits used to quantize and 
transmit the N codevectors of Ct and a log2 N is the number of 
bits transmitted as codevector indices for encoding the a source 
vectors (Fig. 1). 

1 I CodwectorTransmission I I 

Codevector Index Tansmission 
a log N biu 

Fig. 1. Universal quantization scheme using codebook transmission. 

For a fixed number a of input vectors to quantize with C,, and 
a fixed transmission rate r, the overall system’s mean squared 
error (MSE) is a function that varies with the choices of b and 
N, subject to the constraint in (1). As b is increased, the code- 
book Ct is transmitted more accurately so that C, becomes a 
closer approximation of Ct. This helps reduce the overall MSE 
by ensuring that input vectors are quantized by codevectors that 
are accurate representations of their intended codevectors, thus 
reducing the additional component of distortion formed by an 
inaccurate description of Ct .  However, as b increases, the con- 
straint equation (1) demands that the codebook size N must de- 
crease, thus reducing the quantizer’s resolution and increasing 
the system’s MSE. Using high resolution quantization theory, 
we analyze this tradeoff to find the optimal pair (bOpt, NOpt)  
minimizing the overall MSE. 

For each i denote the ith codevector and partition cell of 
Ct respectively by y; and R;, and the corresponding quantized 
approximation codevector in C, and its cell by $i and a;. For 
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any codebook C, let D(C) denote its MSE. Throughout this 
paper, the source will be either specified or obvious from the 
context, Assume Ct is optimally designed for the source so that 
each codevector y; is the centroid of its cell R; and each cell Ri 
is a nearest neighbor region, and further assume that the cells 
ki of C, are nearest neighbor regions (though the codevectors 
of C, are not in general centroids of these cells). Then we have: 

i=l 
- N  

. N  

i=l 

(4) 

= D(Ct) + W,), (5)  

where P, = Pr[X E Ri], & = Pr[X E A,], and 

N 

(6)  

is the quantization distortion when the codevectors yi are treated 
as a source and are quantized with the 3;’s. The inequality in (3) 
follows from the fact that the encoding regions 8; are optimal 
for the codebook C,. Equation (4) is obtained using the fact that 
the codevectors of Ct are the conditional means of their cells. 

While the distortion term in (2) is difficult to analyze, the 
upper bound (4) provides a useful decomposition that is more 
amenable to analysis, and is asymptotically accurate since a -+ 

CG since in this case D(C,) i 0, as shown in Section 111. Fur- 
thermore, experiments show that the ‘‘5” in (3) can effectively 
be replaced by “m”. Also, in Section IV a theoretical justifi- 
cation of the tightness of this bound is given using an additive 
noise model for quantizing a scalar target codebook. Thus, the 
overall quantizer distortion can be reasonably approximated as 
the distortion of the target quantizer plus the distortion incurred 
in transmitting the target codebook. 

Zador’s formula [8] gives the asymptotic rth-power distortion 
of an N-point, L-dimensional vector quantizer having a density 

1 
q c q )  = CPillYi - !Jill2 

2=1 

N-+, (7) 
fas 

D r , k , N  = br,bt t f l lk / (k+r)  

where br,k is a constant independent of f  and N, and I l f l l ,  = 

(sRk I f l p ) l ’ P .  Thedistortion D(Ct) can asymptotically becom- 
puted from (7). The quantity D(C,) is the distortion resulting 
from transmitting an imperfect description of the codebook Ct . 
This is the error incurred by quantizing C t ,  using on average b 
bits per codebook component, where e, is viewed as a source, 
whose probability density is the same as the point density of the 
target quantizer. 

Two possibilities for quantizing Ct are considered: (i) uniform 
scalar quantizing each vector component of Ct ,  and (ii) vector 
quantizing Ct with a “universal” codebook C,. 

A. Uniform Scalar Quantization of the Codebook 
Suppose each scalar component of every codevector in the 

codebook Ct is uniformly quantized (Fig. 2) and the support of 
the density f is [u,  w]. The MSE of a uniform scalar quantization 
of Ct with 2b output levels spread over a support region [u, w] is 
asymptotically 

x, - 
Source 
Vector 

2-2b. 
(v - u)2 

D(C,) = - 
12 

a log N, bit: 

=) 
Mdtched Scalar Unifonn Quantizer t 

Codcvector 
Codevecbor 

’ SideInfonnaiion I k- dimensinal VQ 

Operational Codebook Target Codebook 

Fig. 2. Scalar universal scheme for transmission of VQ codebooks. Each 
component of C t  is uniform scalar quantized and transmitted. The received 
description forms C,. Every a input vectors, bNk bits are transmitted to 
describe C, and a logz N bits are sent as codevector indexes. 

The distortion upper bound in (5) can be expressed explicitly as 
a function of b and N (large) as 

D ( N ,  b )  = C1N-2/k + (9) 

where the values of N and b satisfy the constraint (1) for a 
fixed transmission rate T ,  GI = b2,kllfllk,(k+2) from (7), and 

One motivation for scalar uniform quantization of the code- 
book, apart from the fact that this is the simplest available 
method, stems from a minimax viewpoint. Suppose the statis- 
tics of X are unknown except that it takes its values in the 
bounded interval [u, v]. Then among all N-level quantizers for 
X, the uniform quantizer over [u,v]  is optimal in the sense 
that its squared error is less than (v  - u)’(2N)-’ for all in- 
put values, while this obviously does not hold for any other 
N-level quantizer. Moreover, the MSE is also upper bounded 
by (w - u)’(2N)-’ for the uniform quantizer over [u, w]. For 
any other quantizer we can always find a source, with a density 
of support [u, w] whose MSE is larger than this upper bound. 
A more general statement concerning the minimax optimality 
of lattice quantizers for sources of a certain bounded support is 
proved in Appendix B . 
B. Vector Quantization of the Codebook 

This section examines the case where the N vector target 
codebook Ct is encoded for transmission by a k-dimensional 
“universal” vector quantizer with codebook C, containing M >> 

cz = (w - 42/12 from (8). 
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N codevectors. This generalizes the uniform quantization scheme 
presented earlier. C, is assumed available to both the encoder 
and decoder. 

A description is transmitted to the receiver by vector quan- 
tizing the codevectors of Ct to form an operational codebook C, 
(Fig, 3). As in the scalar case, the target codebook is designed 
in real-time based on the current (but unknown a priori) source 
statistics. For each codevector in Ct ,  a nearest codevector in 
C, is chosen and added to C,. If a codevector in C, is chosen 
twice it is thrown out and instead the next nearest unused code- 
vector in C, is added to C,. Similar systems are described in 
[21] and [l l l .  It will be seen that asymptotically as the block 
length a grows, both VQ and uniform scalar quantization of the 
codebook Ct perform about equally well. 

ENCODER DECODER 

Fig. 3. Vector universal scheme for transmission of VQ codebooks. Each 
codevector of C t  is itself vector quantized by being matched to a nearest code- 
vector in C,. 

The target codebook Ct is treated as a vector source that is 
itself quantized by C,. The universal quantizer, however, is in 
general mismatched to the statistics of the codebook source Ct 
since the input source X is assumed unknown ahead of time. On 
the other hand, the target codebook Ct is assumed to be matched 
to the statistics of the source X, since Ct is designed “on the fly” 
(e.g. using the generalized Lloyd algorithm) based on recently 
observed training set vectors. 

As M increases the operational codebook can more closely 
approximate the target codebook, but more of the available bits 
must be dedicated to transmitting C,. We determine the op- 
timum tradeoff between M and N, for a fixed overall rate r 
(bits/sample), analogous to the previous section. C, is treated 
as a “source” to C, and its probability density is assumed equal 
to the k-dimensional point density function given by asymptotic 
theory as 

The asymptotic MSE of the upper bound in (4) is 

where the values of N and b (implicitly a function of M) satisfy 
the constraint (1) for a fixed transmission rate T .  The constants 
in (1 1) are 

where A, (x) is the point density function of the universal code- 
book C, which is an M vector codebook used on a source with 
probability density A,(z). 

The amount of side information used to describe an opera- 
tional codebook C, depends on what type of codebook descrip- 
tion is sent. For fixed rate transmission, the minimum total 
number of bits of side-information needed is the same as the 
number of bits required to specify an arbitrary subset of size N 
from a larger set of size M .  Thus, the average rate, b, in bits per 
codevector component is lower bounded by 

bl = log, ( E ) . kN 

To describe C, by transmitting b = bl bits requires a so- 
phisticated encoding scheme for determining which b bit word 
corresponds to which N vector subset of the M vector codebook 
C,. In principle, though, there do exist methods to accomplish 
this task [22]. A related technique used for source coding is 
described in [23]. To reduce the complexity of describing the 
appropriate N vector subset of C, , we consider two simplified 
techniques. 

In the first, N binary words are transmitted, each containing 
log, M bits that describe the “addresses” of the N codevector 
subset of C,. In this case, b takes on the value 

The second technique uses M bits to describe whether each 
codevector of C, is either in C, or not in C,. Here, b takes on 
the value 

M 
b3 = - 

L N ’  
Simple combinatorial inequalities imply that 

bl I min(b2, b3). (16) 

Furthermore, it can be seen that bz b3 whenever N 5 
M /  logz M. Since N 5 2“k (Le. bounded), this condition 
is met for large enough block lengths a. For this reason, we 
omit the case where b = b3 in the present discussion. The case 
where b = bl is here denoted the optimal case, and b = bz the 
suboptimal case since the latter uses more than the minimum 
number of bits to describe C, as a subset of C,. If the value of 
b = bl is substituted into the constraint equation (l), then for 
fixed a, r,  and L, and a given N, one method of computing the 
value of M is by iterative solution. 
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Using the inequalities 124, eq. (7.14)l 

where h ( z )  = -zlog, 3: - (1 - z)log,(l - z) is the binary 
entropy function, gives 

For large N and a bounded, but large universal codebook size 
M ,  this implies 

(19) 
M 
kN 

keeping in mind that N 5 M. 
For a fixed operational codebook size N ,  and for a large ratio 

of codebook sizes M / N ,  b can be approximated from (19) as 

bl x -h (N /M) ,  

Let us examine how the suboptimal description of the vector 
operational codebook effects the performance of the universal 
scheme. Fix the values of N ,  M ,  and a (this way the distortion 
is also fixed) and let us determine the difference Ar = r2 - r1 
in the transmission rate when r1 is the transmission rate of the 
scheme using the optimal description b = b l ,  and r2 is the 
transmission rate of the scheme with the suboptimal description 
b = b Z .  By (1) and (20) 

a r l k = a l o g 2 N + N  ( 
and 

ar2k = alog, N + Nlog, M ,  

Equation (21) indicates that AT FS 0 when N << a,  i.e., the 
suboptimal description performs as well as the optimal one for 
a large block size a. In this case, due to complexity consider- 
ations, one might prefer the suboptimal scheme. On the other 
hand, for even moderately smaller values of a, (21) predicts a 
signiEcant decrease in the transmission rate when the optimal 
scheme is used. For example, if a = 10,000, N = 21°, and 
k = 1, then Ar = 38, corresponding to a difference in SNR of 
about 5 dB (as seen later in (27)). 

It was noted that the suboptimal scheme with b = b3 is gen- 
erally inferior to the optimal scheme with b = bl . However, if 
a variable transmission rate is allowed then in fact they perform 
equally well asymptotically. In the fixed rate suboptimal scheme 
a single bit is transmitted for each codevector in C, to signify 
whether or not it belongs to C,. Instead suppose the collection of 
these M transmitted bits is treated as the output of a memoryless 
binary source with the probability of a one equal to N / M ,  since 
exactly N of the M transmitted bits are one and the rest are 
zero. If this bit stream is entropy coded (e.g. with an arithmetic 
coder) then the average rate per codevector component of C, 

will be b&(N/M), which is the same as the asymptotic rate for 
bin (19). 

III. RESOLUTION TRADEOFF BETWEEN CODEBOOK 
~ A N S M I S S I O N  AND SOURCE QUANTIZATION 

This section examines the tradeoff between N and b for a 
given rate r as the blocksize (Y varies. As it will turn out, 
an explicit optimum can be found with the assumption that a is 
large. Equations are given based on the scalar universal scheme, 
though the analysis can easily be extended to the vector universal 
scheme. 

By building on our asymptotic development and MSE upper 
bound decomposition here (and in [191), and assuming the sub- 
optimal case b = b2, Chou and Effros [20] recently have used 
a Lagrangian constrained optimization approach to show that 
the b and N which minimize (9) while satisfying (1) are related 
implicitly by 

They also argue that the last term in (22) becomes negligible as 
the block size increases so that for large a the optimal b can be 
explicitly written as 

In Appendix A we use an alternative approach to that in [20] 

By observing that 0 5 N 5 2rk, we can obtain asymptotic 
to prove (22) and (23) with a simpler derivation. 

upper and lower bounds on bOpt from (23): 

For k = 1: 

1 (72 
2 2CI 

5 - 1 log, a + - log -. (26) 
2 

It is shown in Appendix A that N -f 2rk as a --+ 00, so that 
for large input block sizes bOpt approaches the lower bound if 
k 2 3 and the upper bound if k = 1. 

This behavior is depicted inFig. 4 fork = 1 where b is plotted 
versus log, a. The upper and lower bounds are given by the two 
solid parallel lines. It should be noted that the “Experimental” 
optimal curve goes slightly above the upper bound for some a. 
This is due to the fact that the Experimental curve numerically 
(using training sets) finds the pair ( b ,  N )  that minimizes D(C,) 
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whereas the "Theoretical" curve analytically determines the pair 
( b ,  N) that minimizes the upper bound D ( N ,  b) .  Also bopt is 
numerically sensitive to small changes in the distortion since 
dD/db is zero at bopt. 

16 I I I I 

11 

2 L- 2 

Fig. 4. Variation of bopt with a. Sourceis Laplacian truncated to [-4.0,4.0], 
k = 1 and T = 8 bits/sample. The upper and lower bounds are straight lines 
obtained from Eq. (24) by setting logz N = T k  and logz N = 0 respectively. 
The Experimental curve gives the b which experimentally minimizes D(C,). 
The Theoretical cuwe gives the b which minimizes D ( N ,  b )  subject to ark = 
a logz N + kbN. 

The optimal distortion for large a is computed in 1203 by 
substituting (23) into (9) to get 

Since Nopt -+ 2rk as a + 03, considering signal-to-noiseratios 
we have for large a, 

S N R o p t ( a )  = SNRLM - lolog~o ( 1 + - 2 : ) ,  (28) 

where S N R L M  is the signal-to-noise ratio of the optimal (Lloyd- 
Max) k-dimensional quantizer with per sample rate T.  As cy 

grows, the minimum MSE of the universal quantization scheme 
approaches that of an optimal quantizer for an a priori known 
source (i.e. no codebook transmission). The cost of transmitting 
the codebook becomes negligibleas the number of input vectors 
encoded with it increases. Equation (28) gives a precise way 
to determine how closely the codebook transmission scheme 
performs to the Lloyd-Max performance. 

The MSE of a uniform quantizer can be used as a simple 
baseline comparison to the MSE of any universal quantization 
system. The MSE advantage of our codebook transmission 
scheme over plain uniform quantization can be seen from (27) 
to be the same as the usual Lloyd-Max advantage but multiplied 
by a factor of 1 + ( 2 r k / a ) .  It is thus advantageous to use this 
codebook transmission scheme so long as the codebooks can 
be transmitted infrequently enough to guarantee that a is large 
enough to satisfy 

The development in Appendix A can be repeated for the 
vector universal scheme to obtain the same expressions for bop+ 
If b = bz then the optimal universal codebook size A4 is given 
by Mopt = 2kbopr, If b = b l ,  then Mopt can be found iteratively 
from (13). 

A.  Experimental Results 

In this section experimental results are presented for Gaussian 
and Laplacian sources. Some of the sources have been truncated 
to have bounded support regions of various widths. This is a 
realistic model for many sources and also facilitates the design of 
the uniform quantizers for codebook transmission. Otherwise 
one would have to determine the best support region for the 
uniform quantizers which would distract from the main points 
presented here. In computing various asymptotic distortions for 
the experiments, the constant 6 2 , k  in Zador's formulais taken as 
1/12 for IC = 1 and .08333 for k = 4. The latter case assumes 
Gersho's Conjecture and uses the Cube Upper Bound [25]. 

In Fig. 5 the optimal S N R  is plotted for truncated Laplacian 
data as a function of a. For each given a the Experimental Uni- 
versal curve is obtained by determining the N that minimizes 
D(C,) by iteratively trying pairs ( 6 ,  N) with 0 5 N 5 2"k. 
The Theoretical Curve is computed according to (28). For com- 
parison, the performance of a uniform quantizer is shown in 
the figure and acts as a lower bound, and the performance of a 
Lloyd-Max quantizer designed with a priori knowledge of the 
source statistics is shown as an upper bound. For small a the 
overhead of transmitting codebooks is costly in terms of bits 
per source vector so that universal source coding with codebook 
transmission has little advantage over uniform quantization. On 
the other extreme, for large a the overhead of transmitting code- 
books is negligible and the performance of the universal system 
approaches that of Lloyd-Max with a known source. 

Fig. 5. Variation of optimal SNR with the block size a. The source is from 
i.i.d. zero mean, unit variance, Laplacian data tmncated to [-4,4], and IC = 1 ,  
T = 8 bits/sample. 

Fig. 6 shows the comparative SNRs of the universal source 
coding scheme for a truncated Laplacian source and a scalar 

(v - u)2 
b ~ , k l l f l l k / ( k + 2 )  (I -k %) < 7' quantizer. The curves show that the universal scheme performs 

as well as the Lloyd-Max case for practically all rates when (29) 
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a = 50,000. 
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Fig. 6. Comparison of different quantization schemes. Source is from 
i.i.d. zero mean, unit variance, Laplacian data truncated to [-4,4] and is scalar 
quantized, with a = 50,000. 
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source). Each of the universal schemes outperforms the uni- 
form scalar quantizer and each performs nearly as well as the 
quantizers designed for a known source. 

Fig. 8 examines the bit tradeoff for the scalar universal 
scheme, for an i.i.d. Gaussian source with rate T = 2. 

10 

9.6 

FdP.C 

9.2 

8 
3; 

8.8 

8.4 

8 
3 4 5 6 1 

b (bits) 

Fig. 8. Scalar universal scheme for Gaussian source, with IC = 4, T = 
2 bits/sample, and 01 = 50,000. Experimental Curve 1 plots D(C,) and 
Experimental Curve 2 plots D(Ct) + D(C,). The Asymptotic Formula curve 
is D,t. 
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Fig. 7. Experimental performance curves for different schemes. The source 
is from i.i.d. zero mean, unit variance, Gaussian data tmncated to [-2,2] and 
CY = 50,000. The five curves shown from top to bottom are: (1) VQ (IC = 4) 
matched to the source, (2) Scalar universal scheme for VQ (IC = 4), (3) Lloyd- 
Max scalar quantization matched to the source, (4) Scalar universal scheme for 
a scalar quantizer, and (5 )  Uniform scalar quantization. 

Fig. 7 compares the performances for uniform scalar quan- 
tizing the codebook. From bottom to top, the curves shown are 
uniform scalar quantization of the source, uniform scalar quan- 
tization of the scalar codebook (universal), Llloyd-Max scalar 
quantization (known source), uniform scalar quantization of 

(k = 4) codebook (universal), and non-universal VQ 
(k = 4) designed with the generalized Lloyd algorithm (known 

7 I . . . . , . . , , ,  4 .  , , 

3 4 5 6 7 8 9 
b(birr1 

Fig. 9. Comparison of vector universal and scalar universal schemes. The 
sourceisfr0mi.i.d. zeromean,unitvariance,Gaussian datatruncatedto [-2,2], 
k = 4, T = 2. The vector universal C, used is designed for a Laplacian. 

The vector dimension of Ct is k = 4, (Y = 50,000, and b is 
varied. It is seen that the overall SNR first increases and then 
begins to decrease. The place where the SNR peaks gives the 
optimum choice of b. Two experimental curves are given in 
this figure. Experimental Curve 1 gives the SNR from equation 
(2) and Experimental Curve 2 gives the S N R  from MSE upper 
bound in equation (4). All three curves are very close to each 
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other in dBs and thus the Asymptotic Formula curve provides 
an accurate technique for computing the optimal choice of b. 

Fig. 9 shows the dependence of the overall S N R  on b for 
various different fixed values of CY. As CY increases the curves 
approach the curve for VQ with known source statistics. The 
peak of each curve occurs at bOpt.  

Fig. 10 compares the scalar universal scheme and the vector 
universal scheme as the blocksize varies. The scalar and vector 
universal schemes are seen to perform nearly equally well and 
the theoretical predictions are also accurate. 

0 1.000 ia“ 2.000 1a“ 3.000 io4 4.000 i o 4  5.000 id 
a 

Fig. 10. Comparison of vector universal and scalar universal schemes. 
The source is from i.i.d. zero mean, unit variance, Gaussian data truncated to 

[-2,2], Ick = 4, T = 2. The vector universal C, is designed for a Laplacian. 

IV. ADDITIVE NOISE MODEL FOR CODEBOOK QUANTIZATION 
In this section a particular quantization model is introduced 

in order to provide a theoretical justification of the tightness of 
the MSE upper bound in Section 111. 

The optimization described in Section I11 and in [20] mini- 
mizes an upper bound on the system’s MSE. In order for the 
minimization to be useful it is important that the upper bound be 
accurate. Experimental results suggest that the upper bound (4) 
on the distortion of the universal scheme is tight. Unfortunately 
it seems very difficult to prove rigorously that the “5” in (3) can 
effectively be replaced by “%”- One can realize the difficulties 
when considering the question of what exactly happens to the 
multidimensional quantization regions when the codevectors are 
slightly displaced, For this reason we consider a simple model 
for scalar uniform quantization of the scalar target codebook and 
develop an alternative expression for D ( N ,  b) using this model. 
It turns out that the result will not differ significantly from (9), 
the formula for the distortion derived from the upper bound. 

Our approach is to model the codebook quantization as a 
process where the quantization levels of the scalar quantizer are 
perturbed by some noise independent of the quantized signal. 
The MSE of the resulting quantizer is then used as the distortion 
of the universal scheme. 

We next formally define an additive noise model of quan- 

ied in [26]. Let the target N-level quantizer have codebook 
C, = {yl , M, . . . , y ~ }  (all quantizers use nearest neighbor re- 
gions) and define an (random) operational quantizer by its code- 
book C, = {y1+ & ,  & + 2 2 ,  . . . , y~ + Z N } ,  where the random 
variables Zi represent the “noise” introduced by uniform quan- 
tization of the codebook C,. Assume that the Zi’s are i.i.d. and 
independent of the quantized random variable X and that their 
ranges are small enough compared to the quantization intervals 
so that 12; 1 < min{yt - Y;-~, yt+l - yt}. Let u2 denote the 
variance of each Zi. 

We do not assert that the above model accurately describes 
the process of codebook quantization. The condition on the 
independence of the Zi’s, for example, can hardly be justified. 
But lacking a more exact model, we use this one to heuristi- 
cally derive an analytic expression on the effect of codebook 
quantization. 

The following proposition asserts that the average distortion 
in this model, E,[D(C,)], can be expressed in terms of D(Ct) 
and c?, the common variance of the Zi’s. 

Proposition I. If the source X has a continuous density f, then 
for a large number of quantization levels N, 

(30) 

where the expectation is with respect to the Zi’s, and the ap- 
proximate identity means that 

1 
EZ[D(C,)] = q c t )  + f ’  

N 2  E,[D(C,)]- -0’ - tN2D(Ct )  as N +co. ( 2 l )  

Proof. For each i, define fk = yt + Zi. Then, 

If Ai = yi+1- yi is small, then since f is continuous, we can use 
the approximation f(z) w pi/Ai, where pi = sy’+’ f(z) dz. 
Using this approximation and the definitions of & and &, we 
get that both terms in the summation in (3 1) are approximately 

2 Pi Ai 2 dx = -(Ai 24Ai - Zi + (32) 

Some algebra and the fact that the Zi ’s are mutually independent 
and have common first, second, and third moments show that 

E,[(A~ - zi + zi+1)3] = E,[A: - 3A:(Zi - z ;+~)  
+ 3 a i ( z i  - zi+1)2 - (2; - zi+1)3] 

tization. Some of the properties of this model were stud- = Ai +6Aau2. (33) 
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It is easy to show that the first two integrals in (31) are negligible 
for large N ,  therefore asymptotically 

Since the first term in (34) is known from the asymptotic theory 
to be approximately the distortion of the fine quantizer Ct, the 

Note that although a sketch of proof is actually given, the 
proof can be made exact, assuming that the conditions on the 

Let us now examine the relation between (30) and (9). Since 
the variance u2 corresponds to the variance of the quantization 
noise of uniform quantization of the txget codebook, we can put 
u2 = w 2 - 2 b .  Thus we obtain the alternative expression (in 
place of (9)) for the overall distortion 

proof is complete. 0 

Zi 'S hold. 

D ( N ,  b) = D ( Q N )  + ACT' = C1N-2 + 622-26, (35) 

where e2 = & Cz. In this way, the entire minimization procedure 
of Section I11 applies with the substitution of CZ by 6 2 .  In what 
follows we show that the changes in the optimizing parameters 
are negligible. 

Let us consider expression (23) for the optimizing parameters 
when k = 1. We have 

2 

and denoting by 
(for the given blocklength a)  we obtain 

and Rapt the parameters optimizing (35) 

(37) 
1 C?, 1 1 1 

2 2 2 2 '  
gopt = - log, a + -log, fiopt + - log2 c, - - 

It follows from the rate constraint (1) that either gOpt 5 bopt 
and fiopt L Nopt, or else gopt > bopt and ifIopt L Nopt. We 
will show that the latter case cannot happen. First, introduce the 
quantities 

D1 C1 NGt + C2Z-2bopt D2 = C1 No;: + 622-2b0~t 

0 3  = C1fl$ + e22-280pi 0 4  = C1fi,$ + C22-2^b0p1 

and assume that goopt > bopt and Rapt < No,,. Then DZ > 0 3 ,  

since gopt and fiopt minimize ( 3 3 ,  and it follows that 

where 2-2b0pt - 2-2^b0pt > 0. But since 0 < 
from (38) 

< C2 we have 

which is equivalent to 0 4  < 0 1 ,  a contradiction since bopt and 
Nopt minimize (9). Thus bopt < bop+. 

,. 

Subtracting (37) from (36) results in 

which means that the optimal rate for the uniform quantizer is 
changed by less than 1/2 bit. The change Rapt - No,, can be 
estimated by using the derivative (41) of N with respect to b: 

AN = P o p t  - Nopt 
AT2 
" o p t  @opt - b o p t ) .  (39) 

2 3 -  
a log, e + bopt Nopt 

For example, if CY = 10,000, Nopt = 2*, and bopt = 10, then 
AN w 2, a negligible increase, 

Also, for large CY since Nopt does not change very much, 
neither does the minimum MSE Dopt in (27). In summary, using 
the additive noise model above shows that the upper bound in 
(3) is in fact approximately equal to the distortion D(Co) of the 
operational codebook, and that the optimal choice of b and N 
are closely preserved. 

V. CONCLUSIONS 
We have examined a universal quantization scheme that pe- 

riodically transmits new VQ codebooks to update the decoder 
as the input statistics change. A mathematically tractable upper 
bound is presented that enables an asymptotic analysis of the 
tradeoff between quantization resolution and codebook trans- 
mission quality. Two models have been tested, one in which the 
initial target codebook is uniform scalar quantized, and the other 
in which the vector codebook is itself vector quantized. In both 
the cases there exists a tradeoff in the number of bits dedicated 
as side information and the number of bits used in specifying the 
codebook vectors once the transmitted codebook can be used. 
Asymptotic analysis gives a theoretical justification of this trade- 
off and this is confirmed by experiments. The effect of block 
size on the performance is presented for some specific source 
distributions. For small block sizes the performance of neither 
schemes is very good. For a fixed memoryless source density 
the performance increases as the block size increases and the 
overhead of transmitting new codebooks becomes negligible. 

APPENDIX A 
A. Derivation of Equations (22) and (23) 

take the derivative of the distortion in (9) with respect to b: 
Let us ignore for the moment that b and N are discrete and 

2 dN 
db k db  
-D(N, d b)  = --C1N-~-'--- 2 - 2(ln2)Cze-2bh2, (40) 

where N is implicitly a function of b as given by (1). Though 
(1) can not be explicitly solved for N ,  it can be differentiated 
implicitly to give 

kN2 
a/  ln2 + kbN ' 

= 0 in (40) and substituting (41) yields 

(41) - - dN 
db 
-- 

Now setting 

2 -  2b - N 2 1 k S  (2 + kb ln2) .  
c1 N 
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After taking the logarithm of both sides and rearranging terms 
we get equation (22). To see that dD(N,  b) /db  = 0 for the 
b which minimizes D ( N ,  b )  subject to the constraint (l), it is 
enough to see that dD(2rk,  O ) / d b  < 0 and aD( 1, a ~ ) / B b  > 0. 
From (40) it follows that these two inequalities are satisfied 
whenever a is large enough that 

The following simple argument shows that the last term in (22) 
becomes negligible as the block size increases. To see that 

use the inequality (9) to get 

D ( N ,  b )  2 C12-2r, (44) 

which follows from the fact that N 5 2kr by (1). This implies 
that liminf D ( N ,  b )  2 C12-2r. If we make the dependence of 
N and b on Q explicit by introducing the notations N ( a )  and 

a+ 00 

b(a) it is easy to-see that this lower bound is achieved in 
limit if and only if lim N ( a )  = 2k‘ and lim b(a) = 
But by (1) this is possible if and only if lim b(a)/a = 0 
lim b(a) = 00. This in turn implies 

a-ca a-P 00 

a” 

a+bO 

kbN kb2k’ - 5 - - 0  as a+0O, 
a a 

I the 

and 
00. 

(45) 

and (43) is proved. 
We have found the best noninteger solution bRpt .  Since the 

nearest integer to bopt differs from bop$ by at most 1/2,  it can 
be seen that the integer solution gives the same asymptotic dis- 
tortion formula as the noninteger solution. This follows from 
the fact that d N / d b  tends to zero as a grows without bound. 
Thus, in (23) the quantity Nopl does not change much (in the 
ratio sense) from its value based on choosing the nearest integer 
to b,t . 0 

APPENDIX B 
A. Minimax Optimality of Best Lattice Quantizer 

Consider the class of k-dimensional probability densities that 
vanish outside the bounded region S, and denote the volume of 
S by V(S) .  We assert that the best resolution constrained k- 
dimensional lattice quantizer is the optimal minimax universal 
quantizer for this class of densities in the high resolution sense. 
By this we mean the following. Consider a sequence Qn of k- 
dimensional n-level quantizers all matched to the support region 
S. Let QA be the sequence of quantizers whose codepoints are 
the intersection of the supportregion and an appropriately scaled 
given optimal lattice. (By the optimal lattice we mean the one 
with the smallest normalized second moment K l ) .  As it is usual 
in asymptotic quantization arguments we make the assumption 
that the codepoints of Qn have a limiting point density A, and 
their quantization cells have approximately the same normalized 

second moment K. Then for any density f in the class, the 
asymptotic distortion of Qn is given by 

Since the point density A, of the lattice quantizer is the uniform 
density over S, we have 

= K{ [V(s)]2/k. (47) 

But by choosing from the class the uniform density f = l /V(S) 
over S, we get 

= [V(S)I2Ik, (48) 

where Jensen’s inequality has been applied to the convex func- 
tion d(z) = z -2 /k ,  Since we assumed that the lattice has the 
smallest possible second moment, we have KI 5 IC, therefore 
(46), (47), and (48) show that D(Qn) is eventually larger than 
D ( Q 3  
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