
Unit #23 - Lagrange Multipliers

Some problems and solutions selected or adapted from Hughes-Hallett Calculus.

Lagrange Multipliers

In Problems 1−4, use Lagrange multipliers to
find the maximum and minimum values of f
subject to the given constraint, if such values
exist. Make an argument supporting the classi-
fication of your minima and maxima.

1. f(x, y) = x+ y, x2 + y2 = 1

We use the constraint to build the constraint function,
g(x, y) = x2 + y2. We then take all the partial deriva-
tives which will be needed for the Lagrange multiplier
equations:

fx = 1 gx = 2x

fy = 1 gy = 2y

Setting up the Lagrange multiplier equations:

fx = λgx ⇒ 1 = λ2x (1)

fy = λgy ⇒ 1 = λ2y (2)

constraint: ⇒ x2 + y2 = 1 (3)

Taking (1) / (2), (assuming λ 6= 0)

1

1
=
λ2x

λ2y
=
x

y

so y = x

Sub into (3) to find

2x2 = 1 ⇒ x = ±
√

1/2

Combining with y = x, we get the solutions (x, y) =
(
√

1/2,
√

1/2) and (−
√

1/2,−
√

1/2).

Since our constraint is closed and bounded (only points
on the circle x2 + y2 = 1 are allowed), we can simply
compare the value of f at these two points to determine
the maximum and minimum values of f subject to the
constraint.

f(
√

1/2,
√

1/2) = 2
√

1/2

f(−
√

1/2,−
√

1/2) = −2
√

1/2

From this, the maximum of f on x2 + y2 =
1 is at (

√
1/2,

√
1/2) and the minimum is at

(−
√

1/2,−
√

1/2)

2. f(x, y) = xy, 4x2 + y2 = 8

fx = y gx = 8x

fy = x gy = 2y

Set up the Lagrange multiplier equations:

fx = λgx ⇒ y = λ8x (4)

fy = λgy ⇒ x = λ2y (5)

constraint: ⇒ 4x2 + y2 = 8 (6)

Taking (4) / (5), (assuming λ 6= 0)

y

x
=
λ8x

λ2y
=

8x

2y

so y2 = 4x2 or y = ±2x

Sub into (6) to find

4x2 + 4x2 = 8 ⇒ x = ±1

Combining with y = ±2x, we get the solutions (x, y) =
(1, 2), (1,−2), (−1, 2) and (−1,−2).

Since our constraint is closed and bounded, we can sim-
ply compare the value of f at these four points to deter-
mine the maximum and minimum values of f subject
to the constraint.

f(1, 2) = 2

f(1,−2) = −2

f(−1, 2) = −2

f(−1,−2) = 2

From this,

• the maximum of f on the constraint 4x2 + y2 = 8
is at two points, (1, 2) and (-1, -2); the f value
there is +2.

• The minimum of f occurs at (1, -2) and (-1, 2);
the f value there is -2.

3. f(x, y) = x2 + y, x2 − y2 = 1

fx = 2x gx = 2x

fy = 1 gy = −2y
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Set up the Lagrange multiplier equations:

fx = λgx ⇒ 2x = λ(2x) (7)

fy = λgy ⇒ 1 = λ(−2y) (8)

constraint: ⇒ x2 − y2 = 1 (9)

From (7), we must have λ = 1 or x = 0

• If λ = 1, then (8) gives 1 = (1)(−2y), or

y =
−1

2
, and from (9) x2 −

(
−1

2

)2

= 1, so

x = ±
√

1 +
1

4
= ±

√
5

4

• If x = 0, then (9) gives 02 − y2 = 1, but this
has no solution! In other words, no point with
x = 0 belongs to the constraint, so we won’t get
any candidate points from this option.

The solutions to the Lagrange Multiplier equations are

therefore (x, y) = (

√
5

4
,
−1

2
), and (−

√
5

4
,
−1

2
).

The associated function values at these points are:

• f

(√
5

4
,
−1

2

)
= x2 + y =

5

4
+
−1

2
=

3

4

• f

(
−
√

5

4
,
−1

2

)
= x2 + y =

5

4
+
−1

2
=

3

4

Since the constraint is not bounded, it is not as easy
to demonstrate that these values are minimums of f
on the constraint. However, with a little mathematical
insight it can be done in just a few steps:

f(x, y) = x2 + y,

but we are limited to the constraint

x2 − y2 = 1, or x2 = y2 + 1

Substituting this into f , we get

f(x, y) = (y2 + 1) + y = y2 + y + 1 on the constraint

Completing the square gives

f(x, y) =

(
y +

1

2

)2

+
3

4

Since squared values are always positive, we can say that

f(x, y) =

(
y +

1

2

)2

+
3

4
≥ 3

4
on the constraint curve

Therefore, the values we found

(
f =

3

4

)
are minimums

of f on the constraint.

[On a test or exam, this kind of check would not be
expected without some prompting steps.]

4. f(x, y) = x2 + 2y2, x2 + y2 ≤ 4

Note that we are dealing with an inequality for the
constraint. We can consider any point in or on the
boundary of a circle with radius 2. To look on the
boundary, we use Lagrange multipliers. To look at the
interior, we identify the critical points of f(x, y).

We’ll start with the Lagrange multipliers:

fx = 2x gx = 2x

fy = 4y gy = 2y

Set up the Lagrange multiplier equations:

fx = λgx ⇒ 2x = λ2x (10)

fy = λgy ⇒ 4y = λ2y (11)

constraint: ⇒ x2 + y2 = 4 (12)

From (10), either x = 0 or λ = 1. If x = 0, then (12)
says y = ±2. Alternatively, if λ = 1, then (11) means
y = 0, so x = ±2. Our solutions are

(x, y) = (0, 2), (0,−2), (2, 0) and (−2, 0)

At these points,

f(0, 2) = 8

f(0,−2) = 8

f(2, 0) = 4

f(−2, 0) = 4

Before we can say these are global max or mins, we
need to look for critical points in the interior of the
circle x2 + y2 ≤ 4.

Set fx = 0 ⇒ 2x = 0

and fy = 0 ⇒ 4y = 0

The only critical points is (0, 0), and this is in the
interior of the circle. The value of f(0, 0) = 0.

Combining the results on the boundary with the only
critical point we see:

• f(0, 2) and f(0,−2) are global maxes with values
of f = 8

• f(0, 0) is the global min on the region, with f = 0.

A contour diagram showing the region and contours of
f is included below to illustrate the solution.

2



5. (a) Draw contours of f(x, y) = 2x + y for
z = −7,−5,−3,−1, 1, 3, 5, 7.

(b) On the same axes, graph the constraint
x2 + y2 = 5.

(c) Use the graph to approximate the points
at which f has a maximum or a minimum
value subject to the constraint x2+y2 = 5.

(d) Use Lagrange multipliers to find the max-
imum and minimum values of f(x, y) =
2x+ y subject to x2 + y2 = 5.

(a) The contours of f are straight lines with slope −2
(in xy terms), as shown below.

(b) Overlaying the constraint, we are allowed to move
on a circle of radius

√
5.

(c) From the graph, the maximum values occurs
where the constraint circle just touches the f = 5
contour line, at (x, y) = (2, 1). The minimum

value is f = −5, which occurs on the opposite
side of the circle, at (−2,−1).

(d) Computing the constrained optimum locations us-
ing Lagrange multipliers,

fx = 2 gx = 2x

fy = 1 gy = 2y

Set up the Lagrange multiplier equations:

fx = λgx ⇒ 2 = λ2x (13)

fy = λgy ⇒ 1 = λ2y (14)

constraint: ⇒ x2 + y2 = 5 (15)

Taking (13) / (14), (assuming λ 6= 0)

2

1
=
λ2x

λ2y
=
x

y

so 2y = x

Sub into (15) to find

4y2 + y2 = 5 ⇒ y = ±1

Combining with 2y = x, we get the solutions
(x, y) = (2, 1) and (−2,−1). These are the same
points we found in (c), and knowing their z val-
ues, we know that f(2, 1) is a maximum while
f(−2,−1) is a minimum on the constraint.

6. A company manufactures x units of one item
and y units of another. The total cost in dol-
lars, C, of producing these two items is approx-
imated by the function

C = 5x2 + 2xy + 3y2 + 800

(a) If the production quota for the total num-
ber of items (both types combined) is 39,
find the minimum production cost.

(b) Estimate the additional production cost or
savings if the production quota is raised to
40 or lowered to 38.

(a) If the total production is 39, then

x+ y︸ ︷︷ ︸
g(x,y)

= 39︸︷︷︸
k

This is our constraint in the form g(x, y) = k

Setting up the Lagrange multiplier equations,

10x+ 2y︸ ︷︷ ︸
Cx

= λ 1︸︷︷︸
gx

(16)

2x+ 6y︸ ︷︷ ︸
Cy

= λ 1︸︷︷︸
gy

(17)

x+ y = 39 (18)
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Setting (16) equal to (17),

10x+ 2y = 2x+ 6y

8x = 4y

y = 2x

Sub that into (18),

x+ (2x) = 39

x = 13

and so y = 2x = 26

The optimal production levels are x = 13 units and
y = 26 units, giving a total production of 39 units.

(b) We are asked to evaluate the impact on the cost of
adding one or removing one item from the quota.
The Lagrange multiplier value gives us the approx-
imate effect on the cost of adding one unit to the
constraint value k, which in this case is the change
in the quota. Using x = 12 and y = 26, (16) gives
us

λ = 10(13) + 2(26) = 182

so adding one unit to the total production (or pro-
ducing 40 units) will increase the cost by $182.
Similarly, by removing one unit from the quota (or
producing 38 units), the production cost will drop
by $182.

7. A firm manufactures a commodity at two differ-
ent factories. The total cost of manufacturing
depends on the quantities, q1 and q2, supplied
by each factory, and is expressed by the joint
cost function,

C = f(q1, q2) = 2q21 + q1q2 + q22 + 500

The company’s objective is to produce 200
units, while minimizing production costs. How
many units should be supplied by each factory?

We want to minimize

C = f(q1, q2) = 2q21 + q1q2 + q22 + 500

subject to the constraint q1 + q2 = 200 (so g(q1, q2) =
q1 + q2).

Since ∇f = (4q1 +q2, 2q2 +q1) and ∇g = (1, 1), setting
∇f = ∇g gives

4q1 + q2 = λ1

q1 + 2q2 = λ1

Solving, we get

4q1 + q2 = q1 + 2q2

so

3q1 = q2.

We want

q1 + q2 = 200

q1 + 3q1 = 4q1 = 200

Therefore,

q1 = 50

and

q2 = 150

From the problem statement, we can conclude that this
production level will minimize the total manufacturing
cost, given the desired size of production run.

8. Each person tries to balance his or her time be-
tween leisure and work. The trade-off is that
as you work less your income falls. Therefore
each person has indifference curves which con-
nect the number of hours of leisure, l, and in-
come, s. If, for example, you are indifferent
between 0 hours of leisure and an income of
$1125 a week on the one hand, and 10 hours
of leisure and an income of $750 a week on the
other hand, then the points l = 0, s = 1125, and
l = 10, s = 750 both lie on the same indiffer-
ence curve. The table below gives information
on three indifference curves, I, II, and III.

Weekly income Weekly leisure hours
I II III I II III

1125 1250 1375 0 20 40
750 875 1000 10 30 50
500 625 750 20 40 60
375 500 625 30 50 70
250 375 500 50 70 90

(a) Graph the three indifference curves.

(b) You have 100 hours a week available for
work and leisure combined, and you earn
$10/ hour. Write an equation in terms of
l and s which represents this constraint.

(c) On the same axes, graph this constraint.

(d) Estimate from the graph what combina-
tion of leisure hours and income you would
choose under these circumstances. Give
the corresponding number of hours per
week you would work.

(a) The graphs are shown, along with the constraint
from part (c), below.
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(b) Since you’re earning $10 per hour, and s is your
income, s/10 is the number of hours worked. To
limit yourself to 100 hours per week, you must
satisfy l + s/10 = 100

(c) See the graph from (a)

(d) Since the constraint line just touches the indif-
ference curve II at t = 50, s = 500, we can’t
achieve a higher level of satisfaction than level II.
To achieve that level of satisfaction, we should
split our time into t = 50 hours of leisure, and
s/10 = 500/10 = 50 hours of work.

9. The director of a neighborhood health clinic has
an annual budget of $600,000. He wants to al-
locate his budget so as to maximize the number
of patient visits, V , which is given as a function
of the number of doctors, D, and the number of
nurses, N , by

V = 1000D0.6N0.3

A doctor’s salary is $40,000; nurses get $10,000.

(a) Set up the director’s constrained optimiza-
tion problem.

(b) Describe, in words, the conditions which

must be satisfied by
∂V

∂D
and

∂V

∂N
for V

to have an optimum value.

(c) Solve the problem formulated in part (a)

(d) Find the value of the Lagrange multiplier
and interpret its meaning in this problem.

(e) At the optimum point, what is the
marginal cost of a patient visit (that is,
the cost of an additional visit)?

(a) The problem is to maximize

V = 1000D0.6N0.3

subject to the budget constraint that

40, 000 D + 10, 000 N ≤ 600, 000

This will be easier to deal with if we divide by
10,000, so

4D +N ≤ 60

Since there our function, V , always grows larger
with larger N and D, there is no point in us-
ing less than our budget, so we want to find the
maximum value of V on the line 4D + N = 60.
In this problem, then, our constraint function is
g(D,N) = 4D +N .

(b) We want∇V to point in the same direction as∇g,
or mathematically that

VD = λgD

VN = λgN

while satisfying the constraint 4D +N = 60

(c)

VD = 1000(0.6)D−0.4N0.3 gD = 4

VN = 1000(0.3)D0.6N−0.7 gN = 1

Set up the Lagrange multiplier equations:

VD = λgD ⇒ 1000(0.6)D−0.4N0.3 = λ4
(19)

VN = λgN ⇒ 1000(0.3)D0.6N−0.7 = λ1
(20)

constraint: ⇒ 4D +N = 60 (21)

Taking (19) / (20), (assuming λ 6= 0)

1000(0.6)D−0.4N0.3

1000(0.3)D0.6N−0.7
=

4

1

2D−1N1 = 4

N = 2D

Sub into (21) to find

4D + 2D = 60 ⇒ D = 10

Combining with N = 2D, we get the solution that
Nurses (N)= 20 and Doctors (D) = 10. This re-
sults in V = 1000(100.6)(200.3) ≈ 9, 779 visits per
year.

(d) From (c), we can find λ using (2):

λ = 1000(0.3)(10)0.6(20)−0.7 ≈ 146

Since λ =
∇V
∇g

, it represents the change of visitors

for each change in budget. Since our units for the
budget constraint were $10,000 (remember, we di-
vided by 10,000 to simplify in (c)), this means that
increasing the budget by one unit (of $10,000) will
result in handling ≈ 146 more visits. More gen-
erally, we can handle approximately 0.0146 more
patients per dollar increase in budget.

(e) The marginal cost (dollars per patient) is the in-
verse of the quantity in (d) (patients per dol-
lar). Thus each new patient costs roughly
1/(0.0146 patients/dollar) ≈ $68.5 per patient.

5



10. A mountain climber at the summit of a moun-
tain wants to descend to a lower altitude as fast
as possible. The altitude of the mountain is
given approximately by

h(x, y) = 3000− 1

10, 000
(5x2+4xy+2y2) meters

where x, y are horizontal coordinates on the
earth (in meters), with the mountain summit
located above the origin. In thirty minutes, the
climber can reach any point (x, y) on or within a
circle of radius 1000 m. What point should she
travel to in order to get as far down as possible
in 30 minutes?

The mountain climber can reach anywhere in the circle
x2 + y2 ≤ 10002 in the half hour. We want to find the
minimum value of h on (or inside) that circle.

To identify any local minima inside the boundary, we
first look for critical points:

hx =
−(10x+ 4y)

10, 000
hy =

−(4y + 4x)

10, 000

Setting both equal to zero,

−(10x+ 4y)

10, 000
= 0

−(4y + 4x)

10, 000
= 0

5x = −2y y = −x

The only solution to these equations is x = 0, y = 0.
This we were already told is the local (and global) max-
imum at the origin, so we can ignore this in our solu-
tion.

Since there are no local minima within the circle the
hiker can reach, we now look on the boundary of their
1,000 m reachable circle to determine the lowest she
can travel, using Lagrange multipliers. The constraint
is x2 + y2 = 10002, or g(x, y) = x2 + y2:

hx =
−(10x+ 4y)

10, 000
gx = 2x

hy =
−(4y + 4x)

10, 000
gy = 2y

Set up the Lagrange multiplier equations:

hx = λgx ⇒ −(10x+ 4y)

10, 000
= λ2x (22)

hy = λgy ⇒ −(4y + 4x)

10, 000
= λ2y (23)

constraint: ⇒ x2 + y2 = 10002 (24)

Taking (22) / (23), (assuming λ 6= 0)

10x+ 4y

4y + 4x
=
λ2x

λ2y
=
x

y

so (10x+ 4y)y = x(4y + 4x)

5xy + 2y2 = 2xy + 2x2

2y2 + 3xy − 2x2 = 0

Factoring: (2y − x)(y + 2x) = 0

So either 2y = x or y = −2x. Using the constraint
equation, that gives the possibilities

2y = x ⇒ 4y2 + y2 = 10002

y ≈ ±447, x ≈ ±894 (x, y with same signs)

y = −2x ⇒ x2 + 4x2 = 10002

x ≈ ±447, y ≈ ±894 (x, y with opposite signs)

Substituting these values into the height function,
h(x, y), we find that the points with the lowest h val-
ues are (894, 447) and (−894, 447), giving a height of
around 2, 400 meters. The other points give higher
heights, of around 2,900 meters. This means that the
hiker should leave the point (0,0) heading towards ei-
ther of the points (894, 447) or (−894,−447). At the
end of the half hour, she will be as low as she can be,
given her walking speed and the shape of the mountain.

11. For each value of λ the function h(x, y) =
x2 + y2− λ(2x+ 4y− 15) has a minimum value
m(λ).

(a) Find m(λ).

(b) For which value of λ is m(λ) the largest
and what is that maximum value?

(c) Find the minimum value of f(x, y) = x2 +
y2 subject to the constraint 2x + 4y = 15
using the method of Lagrange multipliers
and evaluate λ.

(d) Compare your answers to parts (b) and (c).

(a) When we are looking for m(λ), it means that we
can treat λ as a constant in our function, since
it will be provided later. That means we need to
optimize over x and y, given λ.

There is no (x, y) constraint in this problem, so
we simply look for critical points of h, treating λ
as a constant.

hx = 2x− 2λ

hy = 2y − 4λ

Setting both equal to zero, we get

0 = 2x− 2λ

0 = 2y − 4λ

Solving gives x = λ

and y = 2λ
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So there is only one critical point, at (x, y) =
(λ, 2λ). We can determine the type of critical
point with the second derivative test:

hxx = 2, hyy = 2, hxy = 0

so D = (2)(2)− 02 = 4 > 0

and hxx > 0 (concave up)

meaning (x, y) = (λ, 2λ) is a local minimum.

To find the actual value of h at the critical point,
we sub in the coordinates of the critical point into
the original formula:

h(λ, 2λ) = λ2 + (2λ)2 − λ(2λ+ 4(2λ)− 15)

= λ2 + 4λ2 − 2λ2 − 8λ2 + 15λ

= −5λ2 + 15λ

= 5λ(3− λ)

so m(λ) = 5λ(3− λ)

(b) Now we get to select λ to make m as large as
possible. Since m is only a 1D function, we can
simply differentiate and set the derivative equal to
zero. (Alternatively, we could notice that m is a
parabola in λ, and will have its maximum halfway
between its roots of λ = 0 and λ = 3. That trick
only works because m is quadratic, though, so
we’ll use the more general derivative approach.)

dm

dλ
= −10λ+ 15

Set derivative equal to zero: 0 = −10λ+ 15

λ =
15

10
= 1.5

From m being a quadratic with negative λ2 coef-
ficient, we know this value of λ gives a maximum
of m. The value of m(1.5) = 11.25.

(c) Optimize f(x, y) = x2 + y2 subject to g(x, y) =
2x+ 4y = 15.

fx = 2x gx = 2

fy = 2y gy = 4

Set up the Lagrange multiplier equations:

fx = λgx ⇒ 2x = 2λ (25)

fy = λgy ⇒ 2y = 4λ (26)

constraint: ⇒ 2x+ 4y = 15 (27)

Taking (25) / (26), (assuming λ 6= 0)

2x

2y
=
λ2

λ4

so x =
y

2

Sub into (27) to find

2
(y

2

)
+ 4y = 15 ⇒ y = 3

The value of λ is then λ = x = 1.5.

Showing that this is a minimum of f requires only
noticing that if we move away from this point,
x2 + y2 will grow larger towards infinity. Thus,
we must be at a local (and global) minimum of f
given the constraint.

(d) We notice that the solutions to both of these prob-
lems, (a,b) and (c), are identical. This indicates
that there may be alternative ways to set up or
interpret constrained optimization problems. The
details of these relationships would be included in
more advanced math courses like vector calculus
and optimization.
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