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MATH 121 - TEST 2 (Based on Assignments 4, 5, 6 and 7)
Version 1A Fall 2010
This test consists of 3 questions to be answered in the space provided.
Show all work and give explanations when needed.

1. (a) Find the local linearization of f(z) = e * around = = 0.
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(b) Use your answer from part (a) to find an approximation for g(z) = e =* near = = 0.

(c) Without referring to your previous answers, find the quadratic Taylor polynomial that approximates g(z) = e™2*

near z = 0.
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Test 2- 1A
2. Consider the family of functions
h(z) = 5(1 — e *)
where k is a positive constant, and x > 0.

(a) Find h(0).

(b) Find A/(0).

¢) Find lim h(x).
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(d) Find the intervals on which h(z) is increasing, and those on which it is decreasing.

(e) Using the information from parts (a-d), sketch two members of the family, using ¥ = 1 and k& = 2. Identify which
graph used which k value, and remember that = > 0.
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3. You want to build a closed cylinder with a surface area of A = 507 cm?. The radius of the cylinder will be 7 cm, and the
height h cm.

Find the dimensions of such a cylinder for which the volume is maximized. Report the radius, height and the volume
of the resulting cylinder.

(You should show that the dimensions you find produce a local maximum for volume; you do not need argue why your
answer produces a global maximum.)
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