
Unit #9 : Definite Integral Properties; Fundamental Theorem of
Calculus

Goals:

• Identify properties of definite integrals

• Define odd and even functions, and relationship to integral values

• Introduce the Fundamental Theorem of Calculus

• Compute simple anti-derivatives and definite integrals

Reading: Textbook reading for Unit #9 : Study Sections 5.4, 5.3, 6.2
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Properties of Definite Integrals

Example: Sketch the area implicit in the integral

∫ π/3

−π/3

cos(x) dx

If you were told that

∫ π/3

0

cos(x) dx =

√
3

2
, find the size of the area you

sketched.
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This example highlights an important and intuitive general property of definite
integrals.

Additive Interval Property of Definite Integrals

∫ b

a

f(x) dx =

∫ c

a

f(x) dx +

∫ b

c

f(x) dx

Explain this general property in words and with a diagram.
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A more rarely helpful, but equally true, corollary of this property is a second
property:

Reversed Interval Property of Definite Integrals

∫ b

a

f(x) dx = −
∫ a

b

f(x) dx

Use the integral

∫ π/3

0

cos(x) dx+

∫

0

π/3

cos(x)dx, and the earlier interval prop-

erty, to illustrate the reversed interval property.
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Give a rationale related to Riemann sums for the Reversed Interval property.
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Even and Odd Functions

These properties can be helpful especially when dealing with even and odd func-
tions.
Define an even function. Give some examples and sketch them.
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Define an odd function. Give some examples and sketch them.
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Integral Properties of Even and Odd Functions
Find a property of odd functions when you integrate on both sides of x = 0.
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Find a property of even functions when you integrate on both sides of x = 0.
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Linearity of Definite Integrals

Example: If

∫ b

a

f(x) dx = 10, then what is the value of

∫ b

a

5f(x) dx?

Sketch an area rationale for this relation.
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Example: If

∫ b

a

f(x) dx = 2, and

∫ b

a

g(x) dx = 4 then what is the value of
∫ b

a

f(x) + g(x) dx? Again, sketch an area rationale for this relation.
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Linearity of Definite Integrals

∫ b

a

kf(x) dx = k

∫ b

a

f(x) dx

∫ b

a

f(x)± g(x) dx =

∫ b

a

f(x) dx±
∫ b

a

g(x) dx
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Simple Bounds on Definite Integrals
Example: Sketch a graph of f(x) = 5 sin(2πx), then use it to make an area
argument proving the statement that

0 ≤
∫ 1

2

0

5 sin (2πx) ≤
5

2
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Simple Maximum and Minimum Values for Definite Integrals
If a function f(x) is continuous and bounded between y = m and y = M on the
interval [a, b], i.e. m ≤ f(x) ≤ M on the interval, then

m(b− a) ≤
∫ b

a

f(x) dx ≤ M(b− a)

Note that the maximum and minimum values we get with the method above are
quite crude. Sometimes you will be asked for much more precise values which can
often be just as easy to find.

Example: Use the graph to find the exact value of

∫

1

0

5 sin(2πx) i.e. not

just a range, but the single correct area value.
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Relative Sizes of Definite Integrals
Example: Two cars start at the same time from the same starting point.
For the first second,

• the first car moves at velocity v1 = t, and

• the second car moves at velocity v2 = t2.

Sketch both velocities over the relevant interval.
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Which car travels further in the first second? Relate this to a definite integral.

Comparison of Definite Integrals
If f(x) ≤ g(x) on an interval [a, b], then

∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx
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The Fundamental Theorem of Calculus

Reading: Section 5.3 and 6.2
We have now drawn a firm relationship between area calculations (and physical
properties that can be tied to an area calculation on a graph). The time has now
come to build a method to compute these areas in a systematic way.

The Fundamental Theorem of Calculus

If f is continuous on the interval [a, b], and we define a related function F (x) such
that F ′(x) = f(x), then

∫ b

a

f(x) dx = F (b)− F (a)
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The fundamental theorem ties the area calculation of a definite integral back to
our earlier slope calculations from derivatives. However, it changes the direction
in which we take the derivative:

• Given f(x), we find the slope by finding the derivative of f(x), or f ′(x).

• Given f(x), we find the area

∫ b

a

f(x) dx by finding F (x) which is the anti-

derivative of f(x); i.e. a function F (x) for which F ′(x) = f(x).



Unit 9 – Definite Integral Properties; Fundamental Theorem of Calculus 19

In other words, if we can find an anti-derivative F (x), then calculating the value
of the definite integral requires a simple evaluation of F (x) at two points (F (b)−
F (a)). This last step is much easier than computing an area using finite Riemann
sums, and also provides an exact value of the integral instead of an estimate.
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Example: Use the Fundamental Theorem of Calculus to find the area
bounded by the x-axis, the line x = 2, and the graph y = x2. Use the fact that
d

dx

(

1

3
x3
)

= x2.
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Sketch the area interpretation of this result.
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We used the fact that F (x) =
1

3
x3 is an anti-derivative of x2, so we were able

use the Fundamental Theorem.

Give another function F (x) which would also satisfy
d

dx
F (x) = x2.

Use the Fundamental Theorem again with this new function to find the area

implied by

∫

2

0

x2 dx.
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Did the area/definite integral value change? Why or why not?

Based on that result, give the most general version of F (x) you can think of.

Confirm that
d

dx
F (x) = x2.
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With our extensive practice with derivatives earlier, we should find it straightfor-
ward to determine some simple anti-derivatives.
Complete the following table of anti-derivatives.

function f(x) anti-derivative F(x)

x2
x3

3
+ C

xn

x2 + 3x− 2
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function f(x) anti-derivative F(x)

cosx

sinx

x + sinx
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function f(x) anti-derivative F(x)

ex

2x

1√
1− x2

1

1 + x2

1

x



Unit 9 – Definite Integral Properties; Fundamental Theorem of Calculus 27

The chief importance of the Fundamental Theorem of Calculus (F.T.C.)
is that it enables us (potentially at least) to find values of definite integrals more
accurately and more simply than by the method of calculating Riemann sums.
In principle, the F.T.C. gives a precise answer to the integral, while calculating a
(finite) Riemann sum gives you no better than an approximation.
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Example: Consider the area of the triangle bounded by y = 4x, x = 0 and
x = 4. Compute the area based on a sketch, and then by constructing an
integral and using anti-derivatives to compute its value.
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Example: Use a definite integral and anti-derivatives to compute the area
under the parabola y = 6x2 between x = 0 and x = 5.
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The last entry in our anti-derivative table was f(x) =
1

x
. It is a bit of a special

case, as we can see in the following example.

Example: Sketch the area implied by the integral

∫ −1

−3

1

x
dx.
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Example: Now use the anti-derivative and the Fundamental Theorem of

Calculus to obtain the exact area under f(x) =
1

x
between x = −3 and x = −1.

Make any necessary adaptations to our earlier anti-derivative table.
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Anti-derivatives and the Fundamental Theorem of
Calculus

The F.T.C. tells us that if we want to evaluate
∫ b

a

f(x) dx

all we need to do is find an anti-derivative F (x) of f(x) and then evaluate F (b)−
F (a).

THERE IS A CATCH. While in some cases this really is very clever and straightfor-
ward, in other cases finding the anti-derivative can be surprisingly difficult. This
week, we will stick with simple anti-derivatives; in later weeks we will develop
techniques to find more complicated anti-derivatives.

Some general remarks at this point will be helpful.
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Remark 1

Because of the importance of finding an anti-derivative of f(x) when you want to

calculate

∫ b

a

f(x) dx, it has become customary to denote the anti-derivative itself

by the symbol
∫

f(x) dx

The symbol

∫

f(x) dx (with no limits on the integral) refers to the

anti-derivative(s) of f(x), and is called the indefinite integral of f(x)

Note that the definite integral is a number, but the indefinite integral is a function
(really a family of functions).
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Remark 2

Since there are always infinitely many anti-derivatives, all differing from each other
by a constant, we customarily write the anti-derivative as a family of functions, in
the form F (x) + C. For example,

∫

x2 dx =
x3

3
+ C

Note that an anti-derivative is a single function, while the indefinite integral is

a family of functions.
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Remark 3

Since the last step in the evaluation of the integral

∫ b

a

f(x) dx, once the anti-

derivative F (x) is found, is the evaluation F (b) − F (a), it is customary to write

F (x)
∣

∣

∣

b

a
in place of F (b)− F (a), as in

∫

4

0

x2 dx =
x3

3

∣

∣

∣

∣

4

0

=
43

3
−

03

3

Remark 4

The variable x in the definite integral

∫ b

a

f(x) dx is called the variable of inte-

gration. It can be replaced by another variable name without altering the value of
the integral.

∫ b

a

f(x) dx =

∫ b

a

f(u) du =

∫ b

a

f(θ) dθ


