Unit #10 : Graphs of Antiderivatives; Substitution Integrals

Goals:
e Relationship between the graph of f(x) and its anti-derivative F(x)

e The guess-and-check method for anti-differentiation.

e The substitution method for anti-differentiation.

Reading: Textbook reading for Unit #10 : Study Sections 6.1, 7.1
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The Relation between the Integral and the Derivzﬁi_zfe Graphs

We saw last week that F '\" |
—
if F'(z) is an anti-derivative of flx oF  Sowe F(x) A %/QR?‘IQ&

=\(x)

R'é_ég:gnlzmg that finding anti- derlvatlves would be a central part of evaluating
integrals, we introduced the notation

/f F(z) + C & F'(z) = f(x)

Many times when we can’t easily evaluate or find an anti-derivative by hand, we
can at least sketch what the anti-derivative would look like; there are very clear
relationships between the graph of f(z) and its anti-derivative F'(x).
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Example: Consider the graph of f(x) shown below. Sketch two possible
anti-derivatives of f(x).
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Example:  Consider the graph of g(x) = sin(x) shown below. Sketch two
possible anti-derivatives of g(x).
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The Fundamental Theorem of Calculus lets us add additional detail to the anti-
derivative graph:

b
/f(x)dx:F(b)—F(a):_A;f LD/L\) Y= a o=l

What does this statement tell up about the graph of F(x) and f(x)?
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Re-sketch the earlier anti-derivative graph of sin(x), find the area underneath

one “arch” of the sine graph.
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Example:  Use the area interpretation of AF or F(b) — F(a) to construct
a detailed sketch of the anti-derivative of f(x) for which F(0) = 2.

N gt = Y
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Example: f(z) is
1s shown below.

a continuous function, and f(0) = 1. The graph of f'(x)
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nts of f(x) on the interval x € [0, 6).
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Sketch the graph of f(x) on the interval [0, 6]. )
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At the end of last week, we considered a special case to our table of anti-derivatives.

1
Example: What function, differentiated, gives f(x) = —72
X
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Below is the graph of f(x) = 1/x. Using the answer above, and our sketching
techniques from today’s class, sketch an anti-derivative of f(x). Use the points

F(1)=0 and F(—1) = 0. (heode o K0
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1 .
Ezplain why we need to define /— dxr = In(|z|) + C, not simply In(z) + C.
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We now return to the challenge of finding a formula for an anti-derivative function.
We saw simple cases last week, and now we will extend our methods to handle more
complex integrals.

Anti-differentiation by Inspection: S }2 S = )c_,3 O

The Guess-and-Check Method — -:S—
W,

Reading: Section 7.1 a/&l

Often, even if we do not see an anti-derivative immediately, we can make an edu-
cated guess and eventually arrive at the correct answer.

[See also H-H, p. 332-333]
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Example: Based on your knowledge of derivatives, what should the anti-

derivative of cos(3x), / cos(3x) dx, look like?
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Example: Find / e 2 dx.
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Example: Both of our previous examples had linear “inside’ functions. Here
1s an integral with a quadratic “inside’ function:

/ ze_fg)dx
R
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FEvaluate the integral.
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Why was it important that there be a factor x in front of e™* in this integral?
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Integration by Substitution

We can formalize the guess-and-check method by defining an z termedzate variable

the represents the “inside” function. 4 (,(“Lyq /dx 3 |
Reading: Section 7.1 /J(/ U % x 7( A<

1
Example: Show that [ x°Va*+5 do = 6(x4 +5)32 1 C.
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Relate this result to the chain rule.
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Now use the method of substitution to evaluate /_qf’\/ 2t +5 dx
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Steps in the Method Of Substitution

1. Select a simple function w(x) that appears in the integral.

e Typically, you will also see w’ as a factor in the integrand as well.

d
2. Find —~ by differentiating. Write it in the form dw = ... dx

dx
3. Rewrite the integral using only w and dw (no x nor dzx).
e If you can now evaluate the integral, the substitution was effective.

e If you cannot remove all the 2’s, or the integral became harder instead of eas-
ier, then either try a different substitution, or a different integration method.
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Though it is not required unless specifically requested, it can be reassuring to check
the answer.
Verify that the anti-derivative you found is correct.
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Example: For the integral, O
v
/ et —e e
- - T X x
et 4+ e %4y X = e
( ——~ /,),( - R

both w =e* —e ™ and w = ¢e* 4+ e " are seemingly reasonable substitutions.
Question: Which substitution will change the integral into a simpler form?

l.w=c¢e¢

2. w=e"+e "
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Compare both substitutions in practice.
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sin(x)
1 4 cos?(x)

N

dr. —=

Example: Find /
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Using the Method of Substitution for Definite Integrals

If we are asked to evaluate a definite integral such as

where a substitution will ease the integration, we have two methods for handling
the limits of integration (x = 0 and x = 7/2). P

a) When we make our substitution, convert both the variables x and the limits
(in z) to the new variable; or

b) do the integration keeping the limits explicitly in terms of x, writing the final
integral back in terms of the original x variable as well, and then evaluating.
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UVONE W
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Example: Use method a) to evaluate the integral
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Example: Use method b) method to evaluate
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Non-Obvious Substitution Integrals

Sometimes a substitution will still simplify the integral, even if you don’t see an
obvious cue of “function and its derivative” in the integrand.
Example: Find
1
dr . = 77
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