Week \#11 : Complex Eigenvalues, Applications of Systems

Goals:

- Solutions for the Complex Eigenvalue Case
- Further Applications of Systems of DEs

Complex Eigenvalue Case

First-order homogeneous systems have the standard form:

$$
\begin{array}{r}
\left|\vec{x}^{\prime}=A \vec{x}\right| \longrightarrow \text { eigenvalues } \rightarrow \\
\text { chaotic poly's }
\end{array}
$$

What happens when the coefficient matrix A has non-real eigenvaluses?
(Note: for the remainder of the course, we will use the more tracitional " i ". instead of $\sqrt{-1}$; it will simplify some of the notation.)
Proposition. If the real matrix A has complex conjugate eigenvalues $\alpha \pm \beta i$ with corresponding eigenvectors $\vec{a} \pm \vec{b} i$, then two linearly independent real vector solutions to $\vec{x}^{\prime}=A \vec{x}$ are

Problem. Solve $\vec{x}^{\prime}(t)=A \vec{x}(t)$ where $A:=\left[\begin{array}{cc}-1 & 2 \\ -1 & -3\end{array}\right]$. \{assumption Find eigenvalues of A : set $\operatorname{det}(A-\Gamma I)=0 \quad \vec{x}(t)=e^{\lambda t} \cdot \vec{v}$

$$
\begin{aligned}
& \left|\begin{array}{lc}
-1-r & 2 \\
-1 & \times 3 \\
-3-r
\end{array}\right|=(-1-r)(-3-r)-(-1)(2) \\
& =3+4 r+r^{2}+2 \\
& \text { quadratic norma } \\
& =\frac{r^{2}+4 r+5}{\text { charac'c poly'l }}=0 \quad r=\frac{-4 \pm \sqrt{4^{2}-4(5)}}{2} \\
& =-2 \pm \frac{1}{2} \sqrt{\Theta 4} \\
& \text { Aside: } \\
& e^{(-2+i) t} \text { is assn } \\
& \text { but not all real solon }
\end{aligned}
$$

$r=-2 \pm 1 i \quad$ (two eignvolves) $\begin{aligned} & \vec{x}_{1}(t)=e^{\alpha t}[\cos (\beta t) \vec{a}-\sin (\beta t) \vec{b}] \\ & \vec{x}_{2}(t)=e^{\alpha t}[\sin (\beta t) \vec{a}+\cos (\beta t) \vec{b}]\end{aligned}$
find eigenvector for

$$
r=\alpha \frac{+\beta}{3} \quad \text { (vector for } r=\alpha-\beta i \text { will be }
$$ the complex conjuggote of this)

Solve $(A-r I) \vec{v}=\overrightarrow{0}$ Treat r^{\prime} as constant, except $i^{2}=-1$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
-1-(-2+i) & 2 \\
-1 & -3-(-2+i)
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\overrightarrow{0} \quad\left[\begin{array}{r}
\\
-1,2+\frac{1}{2} i
\end{array}\right]} \\
& c_{3}\left[\begin{array}{cc}
1-i & 2 \\
-1 & -1-i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] \Rightarrow \\
& \text { not oboioss, but } 3 \text { save } \\
& \begin{array}{r}
(1-i) v_{1}+2 v_{2}=0 \\
r_{1}
\end{array} \\
& \text { bet } v_{1}=1 \\
& \text { shot one row is rederdat. } \\
& 2 v_{2}=-1+i \\
& \left\lvert\, v_{2}=\frac{1}{2}(-1+i)\right.
\end{aligned}
$$

$$
\begin{aligned}
\stackrel{\rightharpoonup}{v} & =\left[\begin{array}{c}
1 \\
-1 / 2+1 / 2 i
\end{array}\right] \times 2=\left[\begin{array}{c}
2 \\
-1+1 i
\end{array}\right] \begin{array}{l}
\vec{x}_{1}(t)=e^{\alpha t}[\cos (\beta t) \vec{a}-\sin (\beta t) \vec{b}] \\
\vec{x}_{2}(t)=e^{\alpha t}[\sin (\beta t) \vec{a}+\cos (\beta t) \vec{b}] \\
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
-1 & 2 \\
-1 & -3
\end{array}\right] \vec{x}(t) \\
\\
=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]+\left[\begin{array}{c}
0 \\
1 \\
\vec{b}
\end{array}\right] \\
\text { for } \\
\stackrel{\rightharpoonup}{a}=-2+i \\
\vdots
\end{array} \quad \alpha=-2
\end{aligned}
$$

FFrom motion theory,

$$
\vec{v}_{2}=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]-\left[\begin{array}{l}
0 \\
1
\end{array}\right] i \text { is inguat. for } r_{2}=-2-i
$$

Use sol'n formula to build the general solution same for g

$$
\begin{aligned}
\vec{x}(t) & =c_{1} e^{-2 t}\left[\cos (t)\left[\begin{array}{c}
2 \\
-1
\end{array}\right]-\sin (t)\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right] \\
& +c_{2} e^{-2 t}\left[\sin (t)\left[\begin{array}{c}
2 \\
-1
\end{array}\right]+\cos (t)\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right]
\end{aligned}
$$

DE:

Problem. Verify your solution is correct.

$$
\underbrace{\vec{x}^{\prime}(t)}_{\text {LHS }}=\underbrace{\left[\begin{array}{cc}
-1 & 2 \\
-1 & -3
\end{array}\right]}_{\text {RHS }} \vec{x}(t)
$$

$$
\begin{aligned}
& x_{1}=e^{-2 t}\left[\cos (t)\left[\begin{array}{c}
2 \\
-1
\end{array}\right]-\sin (t)\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right] \\
& \begin{array}{l}
\text { LHS }=-2 e^{-2 t}\left[\cos (t)\left[\begin{array}{c}
2 \\
-1
\end{array}\right]-\sin (t)\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right]+e^{-2 t}\left[-\sin (t)\left[\begin{array}{c}
2 \\
-1
\end{array}\right]\right] \\
=e^{-2 t}\left[\cos (t)\left[\begin{array}{c}
-4+0 \\
2
\end{array}-1\right]+\sin (t)\left[\begin{array}{cc}
0 & -2 \\
2 & -1
\end{array}\right]\right]
\end{array} \\
& {\left[\begin{array}{c}
1 \\
-4 \\
1
\end{array}\right] \quad\left[\begin{array}{c}
-2 \\
3
\end{array}\right] \quad 2 H S=\text { RHS }} \\
& \text { RHS }=\left[\begin{array}{cc}
-1 & 2 \\
-1 & -3
\end{array}\right]\left(e^{-2 t}\right)\left[\cos (t)\left[\begin{array}{c}
2 \\
-1
\end{array}\right]-\sin (t)\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right] \\
& =\left(e^{-2 t}\right)\left[\cos (t)\left[\begin{array}{c}
-4 \\
1
\end{array}\right]+\sin (t)\left[\begin{array}{c}
-2 \\
+3
\end{array}\right]\right]
\end{aligned}
$$

Problem. Solve $\vec{x}^{\prime}(t)=A \vec{x}(t)$ where

$$
A:=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & -2 \\
3 & 2 & 1
\end{array}\right] \quad \vec{x}(t)=e^{r t} \vec{v}
$$

F ind eigenvalues $\ll v^{N}=A v$

$$
\begin{aligned}
& =\left(1-2 r+r^{2}\right)(1-r)+4(1-r) \\
& =-r^{3}+2 r^{2}-r+r^{2}-2 r+1+4-4 r \\
& =-r^{3}+3 r^{2}-7 r+5=0 \rightarrow \quad(r-1)\left(-r^{2}+2 r-5\right)=0
\end{aligned}
$$

Guess: $r=1: \quad-1+3-7+5=0$
So $(r-1)$ is a foetor quod $\langle r=1 \pm 2 i$ formulas complex pair

Let $r_{1}=1 \quad\binom{$ real distinct }{ eigenvalue }
Find eigenvector

$$
(A-r I) \vec{v}=\overrightarrow{0}
$$

$$
\begin{aligned}
\vec{x}_{1}(t) & =e^{\alpha t}[\cos (\beta t) \vec{a}-\sin (\beta t) \vec{b}] \\
\vec{x}_{2}(t) & =e^{\alpha t}[\sin (\beta t) \vec{a}+\cos (\beta t) \vec{b}] \\
\vec{x}^{\prime}(t) & =\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & -2 \\
3 & 2 & 1
\end{array}\right] \vec{x}(t)
\end{aligned}
$$

$$
\left[\begin{array}{ccc}
0 & 0 & 0 \\
2 & 0 & -2 \\
3 & 2 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\overrightarrow{0}
$$

(3)
(2) $2 v_{1}-2 v_{3}=0$

$$
\begin{aligned}
2 v_{1}-2 v_{3} & =0 \\
v_{3} & =v_{1}=-2
\end{aligned}
$$

so $\vec{v}_{1}=\left[\begin{array}{c}-2 \\ 3 \\ -2\end{array}\right] \rightarrow \begin{gathered}\text { sue solon }\end{gathered} \quad x_{1}(t)=e^{1 \cdot t}-\left[\begin{array}{c}-2 \\ 3 \\ -2\end{array}\right]$

$$
r_{2,3}=1 \pm 2 i
$$

$$
\begin{aligned}
& \vec{x}_{1}(t)=e^{\alpha t}[\cos (\beta t) \vec{a}-\sin (\beta t) \vec{b}] \\
& \vec{x}_{2}(t)=e^{\alpha t}[\sin (\beta t) \vec{a}+\cos (\beta t) \vec{b}]
\end{aligned}
$$

Find eigenvator for $r_{2}=1+2 i$

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
1 & 0 \\
2 & 0 \\
2 & 1 \\
3 & 2
\end{array}\right] \vec{x}(t)
$$

$$
\begin{aligned}
& (A-r I) \vec{v}=\overrightarrow{0} \\
& {\left[\begin{array}{ccc}
1-(1+2 i) & 0 & 0 \\
2 & 1-(1+2 i) & -2 \\
3 & 2 & 1-(1+2)
\end{array}\right]\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\overrightarrow{0}} \\
& \begin{array}{l}
(1)\left[\begin{array}{ccc}
-2 i & 0 & 0 \\
2 & -2 i & -2 \\
3 & 2 & -2 i
\end{array}\right]\left(\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \begin{array}{c}
1 \\
-2 i \\
(2) \\
\text { let } v_{1}=0 \\
\mid v_{2}=1
\end{array} \quad \stackrel{v}{1}^{v_{2}}=\left[\begin{array}{c}
0 \\
1 \\
-i
\end{array}\right]=\left[\begin{array}{c}
0 \\
1 \\
0
\end{array}\right]+i\left[\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right]
\end{array} \\
& v_{3}=-i
\end{aligned}
$$

$$
\begin{aligned}
& \vec{v}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
\vec{a}
\end{array}\right]+i \underset{\substack{b}}{\left[\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right], r_{2}=1+2 i} \begin{array}{c}
\\
\beta
\end{array} \\
& \begin{aligned}
\vec{x}_{1}(t) & =e^{\alpha t}[\cos (\beta t) \vec{a}-\sin (\beta t) \vec{b}] \\
\vec{x}_{2}(t) & =e^{\alpha t}[\sin (\beta t) \vec{a}+\cos (\beta t) \vec{b}]
\end{aligned} \\
& \vec{x}^{\prime}(t)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & -2 \\
3 & 2 & 1
\end{array}\right] \vec{x}(t) \\
& \text { so } x_{2}(t)=e^{t}\left[\cos (2 t)\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right. \\
& \left.-\sin (2 T)\left[\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right]\right] \\
& \vec{x}_{3}=e^{t}\left[\sin (2 t)\left[\begin{array}{l}
0 \\
1 \\
j
\end{array}\right]\right. \\
& \left.+\cos (2 t)\left[\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right]\right]
\end{aligned}
$$

General $s o l^{\prime} n=$ liner combing of x_{1} (real r)

$$
x(t)=c_{1} e^{t}\left[\begin{array}{c}
-2 \\
3 \\
-2
\end{array}\right]+c_{2} x_{2}(t)+c_{3} x_{3}(t)
$$

$$
\begin{aligned}
\vec{x}_{1}(t) & =e^{\alpha t}[\cos (\beta t) \vec{a}-\sin (\beta t) \vec{b}] \\
\vec{x}_{2}(t) & =e^{\alpha t}[\sin (\beta t) \vec{a}+\cos (\beta t) \vec{b}] \\
\vec{x}^{\prime}(t) & =\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & -2 \\
3 & 2 & 1
\end{array}\right] \vec{x}(t)
\end{aligned}
$$

Non-Homogeneous Systems
We now expand our solution approach to include non-homogeneous first-order systems:

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{f}(t)
$$

To solve this non-homogeneous form, we will use the same method as we used for higher-order systems, called the method of undetermined coefficients.

Problem. What are the steps in this method?

- fishing aiff'l fairly of $\vec{f}(t)$
\Leftrightarrow set of fusions $\left\{f_{1}, f_{2} \ldots f_{m}\right\}$
- bud proposed solution

$$
\vec{x}_{N H}=f_{1}(t) \underbrace{\underbrace{u_{1}}_{\text {and }}+f_{2}(t) u_{2}+f_{3}(t) u_{3} t \cdot+f_{m}(t) \vec{u}_{m}}_{\text {underanined coff }}
$$

Problem. Consider the DE system

$$
\vec{x}^{\prime}=\underbrace{\left[\begin{array}{ll}
6 & -7 \\
1 & -2
\end{array}\right]}_{A} \vec{x}+\underbrace{}_{\text {corresp }}\left[\begin{array}{c}
10 e^{2 t} \\
0
\end{array}\right] \text { homg's } D E .
$$

The eigenvalues and corresponding eigenvectors for the matrix A in the system above are

$$
\lambda_{1}=5, \vec{v}_{1}=\left[\begin{array}{l}
7 \\
1
\end{array}\right] \quad \lambda_{2}=-1, \vec{v}_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Find the general solution to the homogeneous part of the system.

$$
\vec{x}_{c}=c_{1} e^{5 t}\left[\begin{array}{l}
7 \\
1
\end{array}\right]+c_{2} e^{-t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

$$
\left.\left.\vec{x}^{\prime}=\left[\begin{array}{ll}
6 & -7 \\
1 & -2
\end{array}\right] \vec{x}-\left[\begin{array}{c}
10 e^{2 t} \\
0
\end{array}\right] \quad \begin{array}{l}
\text { Diff' } \ell \\
\text { fans }
\end{array}\right\} e^{2 t}\right\}
$$

Assume a form for the particular solution for the non-homogeneous form.

$$
\text { Assur } \quad \vec{x}_{N H}=e^{2 t}\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]
$$

Sob in \vec{x}_{w+1}, solve for u_{1}, u_{2}

$$
\begin{aligned}
& \left.\left[\begin{array}{l}
-4 u_{1}+7 u_{2} \\
-u_{1}+4 u_{2}
\end{array}\right]=\left[\begin{array}{c}
10 \\
0
\end{array}\right] \quad \begin{array}{c}
1
\end{array}\right]\left[\begin{array}{cc}
-4 & 7 \\
-4 & 4
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\left[\begin{array}{c}
10 \\
0
\end{array}\right]
\end{aligned}
$$

$$
\vec{x}^{\prime}=\left[\begin{array}{ll}
6 & -7 \\
1 & -2
\end{array}\right] \vec{x}+\left[\begin{array}{c}
10 e^{2 t} \\
0
\end{array}\right]
$$

Find the constants/coefficients in the particular solution.

$$
\begin{aligned}
u_{2}=\frac{-10}{9},\left[\begin{array}{cc}
-1 & 4 \\
0 & -9
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] & =\left[\begin{array}{c}
0 \\
10
\end{array}\right] \\
-u_{1}+4 u_{2} & =0 \\
u_{1} & =4 u_{2}=-\frac{40}{9}
\end{aligned}
$$

so $\quad \vec{x}_{N+}=e^{2 t}\left[\begin{array}{c}-\frac{40}{9} \\ -10 / 9\end{array}\right]=e^{2 t} \cdot \frac{10}{9}\left[\begin{array}{l}-4 \\ -1\end{array}\right]$

$$
\vec{x}(t)=\left[\vec{x}_{c}\right]+\left[\vec{x}_{N H}\right]
$$

Write out the form for the general solution to

$$
\vec{x}(t)=\underbrace{c_{1} e^{5 t}\left[\begin{array}{l}
7 \\
1
\end{array}\right]+c_{2} e^{-t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]}_{\vec{x}_{c}}+\underbrace{\substack{\hat{u_{1}} \\
\text { fuet.ansts } / \text { solar }}}_{\vec{x}_{N H}} \underbrace{t \vec{u}_{2}}_{\substack{\hat{u}_{1} \\
c_{1}}}
$$

Write out the form for the general solution to

$$
\begin{aligned}
& \text { for the general solution to } \\
& \vec{x}^{\prime}=\left[\begin{array}{ll}
6 & -7 \\
1 & -2
\end{array}\right] \vec{x}+\left[\begin{array}{c}
\sin (t) \\
\sin (2 t)
\end{array}\right]
\end{aligned} \begin{aligned}
& \text { diff'l family } \\
& \{\sin (t), \cos (t) \\
& \sin (2 t), \cos (2 t)\}
\end{aligned}
$$

in $\vec{x}=\vec{x}_{c}+\vec{x}_{N H}$ form.

$$
\vec{x}(t)=\underbrace{c_{1} e^{5 t}\left[\begin{array}{l}
7 \\
1
\end{array}\right]+c_{2} e^{-t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]}_{\vec{x}_{c}}+\begin{aligned}
& +\sin (t) \hat{u}_{1}+\cos (t) \hat{u}_{2} \\
& +\sin (2 t) \vec{u}_{3}+\cos (x t) \hat{u}_{4}
\end{aligned}
$$

Write out the form for the general solution to

$$
\vec{x}^{\prime}=\left[\begin{array}{ll}
6 & -7 \\
1 & -2
\end{array}\right] \vec{x}+\left[\begin{array}{c}
0 \\
10 e^{-t}
\end{array}\right] \longrightarrow \operatorname{diff} h \text { family }
$$

in $\vec{x}=\vec{x}_{c}+\vec{x}_{N H}$ form.

$$
\vec{x}=\underbrace{c_{1} e^{5+}\left[\begin{array}{l}
7 \\
1
\end{array}\right]+c_{2} e^{-t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]}_{\vec{x}_{c}}+e^{-t \vec{u}_{2}}
$$

Overlap blu
\vec{x}_{c} and $\vec{x}_{N H}$ solus.
\Rightarrow requires special hamlin.

Repeated Solutions in \vec{x}_{c} and $\vec{x}_{N H}$
If a member of the differential family needed for $\vec{x}_{N H}$, say $f(t)$, is already present in $\vec{x}_{c,}$ then you must include

$$
t \cdot f(t)
$$

and all lower multiples of t in the assumed form for $\vec{x}_{N H}$.
Lo new for systems

Problem. Write the form of the general solution to
in $\vec{x}=\vec{x}_{c}+\vec{x}_{N H}$ form. Recall: for this A matrix, in \vec{x}_{c} alreodys

$$
\begin{aligned}
& \lambda_{1}=5, \vec{v}_{1}=\left[\begin{array}{l}
7 \\
1
\end{array}\right] \\
& \vec{x}=\underbrace{c_{1} e^{5+}\left[\begin{array}{l}
7 \\
1
\end{array}\right]+c_{2} e^{-1 \cdot t}}_{\vec{x}_{c}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\underbrace{t e^{-t} \vec{u}_{1}+e^{-t} \vec{u}_{2}}_{\substack{\text { new } \\
\text { fund } \\
\text { blt of vest costs }}} \\
& \text { overlap } w / \vec{x}_{c} \\
& \text { Find } \vec{u}_{1}, \vec{u}_{2} \text { by subbing in } \\
& \vec{x}_{\sim H} \text { into DE }
\end{aligned}
$$

Problem. Write out the form for the general solution to

$$
\vec{x}^{\prime}=\underbrace{\left[\begin{array}{cc}
0 & 1 \\
-4 & 0
\end{array}\right]}_{A} \vec{x}+\left[\begin{array}{c}
{\left[\begin{array}{c}
\text { sin }(b t) \\
0
\end{array}\right]} \\
\left\{\begin{array}{l}
\operatorname{diff} \ell \operatorname{san}_{y} \\
\sin (b t), \cos (b t)\} \\
\alpha
\end{array}\right.
\end{array}\right.
$$

in $\vec{x}=\vec{x}_{c}+\vec{x}_{N H}$ form.
You are given that the eigenvalues of A are $\lambda_{1,2}=0 \pm 2 i$ and

$$
\begin{aligned}
& \vec{v}_{1,2}=\left[\begin{array}{l}
0 \\
2
\end{array}\right] \pm\left[\begin{array}{l}
1 \\
0
\end{array}\right] \text { i so eigen fetors }
\end{aligned}
$$

$$
\begin{aligned}
& \text { pure oscillation w/const amplitude } \\
& \vec{x}_{\text {NH }}=\sin (b t) \vec{u}_{1}+\cos (b t) \vec{u}_{2} \quad \text { if } \quad b \neq 2 \\
& \text { if } b=2, \sin (2 t) / \cos (2 t) \text { in } \vec{x}_{c} \Rightarrow
\end{aligned}
$$

Explain the conditions for resonance and beats in a first-order DE system.
non-homog's part has

- sinlcoss whexatly the sane
for as $\vec{x}_{c} \rightarrow$ resonance

$$
\frac{t}{\xi} \sin /{ }_{3} t \cos
$$

$$
=\vec{x}_{w+1}{ }^{3}
$$

- sinllos w/ chose to same freq of in \vec{x}_{c}
\rightarrow beats / large aptitude response

Modelling Systems - Interconnected Tanks

Consider the tanks shown below, which show water flowing between the tanks, and the concentration of a salt solution coming in. Within each tank, the water/salt solution is kept well mixed.

Problem. If both tanks start with no salt, sketch what you expect will happen to the concentration within each tank over time.

Problem. Create a system of differential equations that dictate

$$
c=\frac{S}{V}
$$

how the two tank concentrations will evolve over time.
Study first $S_{A}=\operatorname{mass}$ of $\operatorname{solt} i m \operatorname{tank} A$

$$
\begin{aligned}
\left(\frac{g}{m i n}\right) \frac{d s_{A}}{d t} & =\left(\begin{array}{ll}
\text { rate of salt }
\end{array}\right)-\binom{\text { rate salt }}{\text { gig out }} \\
& =\left(\begin{array}{ll}
5 & \left.\frac{L}{\text { min }}\right)\left(\begin{array}{ll}
30 & \frac{g}{L}
\end{array}\right)-\binom{\text { conc }}{\text { min }}\left(\frac{s_{A}}{V_{A}} \frac{g}{L}\right)
\end{array}\right) .
\end{aligned}
$$

$$
\frac{d s_{A}}{d t}=150 \frac{\mathrm{~g}}{\mathrm{~min}}-5 \frac{s_{A}}{v_{n}} \frac{\mathrm{~g}}{\mathrm{~min}}
$$

To covert to

$$
\frac{c_{A}}{c_{\text {mst }} \rightarrow v_{A}} \frac{s_{A}}{d / d t}
$$

$$
\frac{d c_{A}}{d t}=\frac{1}{v_{A}} \frac{d s_{A}}{d t}
$$

$$
\frac{d c_{B}}{d t}=\frac{1}{V_{B}}\left(5 \frac{L}{\min } \cdot c_{A} \frac{g}{L}-5 \frac{\llcorner }{\min } c_{B}\right) \frac{g}{L}
$$

$$
\begin{aligned}
& \frac{d C_{B}}{d t}=\frac{1}{V_{B}}\left(5 C_{A}-5 C_{B}\right) \\
& \frac{\vec{x}^{\prime}(t)}{\frac{d}{d t}\left[\begin{array}{l}
C_{A} \\
C_{D}
\end{array}\right]=\left[\begin{array}{cc}
-5 / V_{A} & 0 \\
5 / V_{B} & -5 / V_{B}
\end{array}\right]\left[\begin{array}{l}
C_{A} \\
C_{B}
\end{array}\right]+\left[\begin{array}{c}
150 / V_{7} \\
0
\end{array}\right]}
\end{aligned}
$$

Problem. Predict the exact salt concentrations over time by solving the system of linear differential equations

$$
\frac{d}{d t} \underbrace{\left[\begin{array}{l}
c_{A} \\
c_{B}
\end{array}\right]}_{\vec{x}(t)}=\underbrace{\left[\begin{array}{cc}
\frac{-1}{10} & 0 \\
\frac{1}{20} & \frac{-1}{20}
\end{array}\right]}_{A}\left[\begin{array}{l}
c_{A} \\
c_{B}
\end{array}\right]+\left[\begin{array}{l}
{\left[\begin{array}{l}
3 \\
0
\end{array}\right]}
\end{array} \quad \text { Goal: } c_{A}=\ldots .\right.
$$

A hos eigenvalues $r_{1}=\frac{-1}{10}, r_{2}=\frac{-1}{20}$

$$
\begin{aligned}
& \vec{v}_{1}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \quad \vec{v}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& \vec{x}_{c}=c_{1} e^{-t / 20}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+c_{2} e^{-t / 20}\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \vec{x}_{N H}=1 \cdot \vec{u}_{\hat{\nu}_{\text {cost }}} \text { sub in to } D E \\
& \frac{d}{d t}(\vec{\Delta}, \vec{\Delta})=\left[\begin{array}{cc}
\frac{-1}{10} & 0 \\
\frac{1}{20} & \frac{-1}{20}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]+\left[\begin{array}{l}
3 \\
0
\end{array}\right] \frac{d}{d t}\left[\begin{array}{l}
c_{A} \\
c_{B}
\end{array}\right]=\left[\begin{array}{cc}
\frac{-1}{10} & 0 \\
\frac{1}{20} & \frac{-1}{20}
\end{array}\right]\left[\begin{array}{l}
c_{A} \\
c_{B}
\end{array}\right]+\left[\begin{array}{l}
3 \\
0
\end{array}\right] \\
& 0=-\frac{u_{1}}{10}+3 \rightarrow u_{1}=30 \\
& 0=\frac{1}{20} u_{1}-\frac{1}{20} u_{2} \quad u_{2}=u_{1}=30 \\
& \text { diff }{ }^{\frac{1}{\prime} l} \\
& \text { gorily } \\
& \text { S } 13 \\
& \begin{array}{l}
\vec{x}_{N \pi}=\left[\begin{array}{l}
30 \\
30
\end{array}\right] g / L ~
\end{array} c_{4} \\
& \left.\begin{array}{l}
{\left[\begin{array}{l}
c_{B}
\end{array}\right]=c_{c_{A}}} \\
c_{B}
\end{array}\right]=c_{1} e^{-t / 10}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+c_{2} e^{-t / 20}\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\left[\begin{array}{c}
30 \\
30
\end{array}\right] \rightarrow\left[\begin{array}{l}
30 \\
30
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& C_{A}(0)=0 \quad \text { Tank System - Example 1-3 } \\
& \text { Solve for } C_{C_{1}, c_{2}}^{C} \quad C_{B}(0)=0 \\
& {\left[\begin{array}{l}
c_{4} \\
c_{B}
\end{array}\right]=c_{1} e^{-t / 10}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+c_{2} e^{-t / 200}\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\left[\begin{array}{l}
30 \\
30
\end{array}\right]} \\
& {\left[\begin{array}{l}
0 \\
0
\end{array}\right]=c_{1}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+c_{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\left[\begin{array}{l}
30 \\
30
\end{array}\right]} \\
& 0=c_{1}+30 \quad c_{1}=-30 \\
& 0=-c_{1}+c_{2}+30 \quad c_{2}=-30+c_{1}=-6 \gamma \\
& {\left[\begin{array}{l}
C_{A} \\
C_{B}
\end{array}\right]=-30 e^{-t_{10}}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]-60 e^{-t_{120}}\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\left[\begin{array}{c}
30 \\
30
\end{array}\right]}
\end{aligned}
$$

Consider the more complicated tank arrangement shown below.

Problem. Given that the initial concentrations are
$c_{A}(0)=0 \mathrm{~g} / \mathrm{L}$ and $c_{B}(0)=90 \mathrm{~g} / \mathrm{L}, \leftarrow$ initial conditions sketch what you would predict for the concentration in each tank over time.

90

Problem. Construct the differentaal equation for the salt concentration in each tank, and write it in matrix form.

$$
\begin{aligned}
& \frac{d c_{A}}{\partial t}=\frac{1}{V_{A}}\left(\begin{array}{c}
\text { Salt ate }- \\
\lim _{\text {abl }} \text { ster } \\
0 \text { int } \\
\mathrm{g} / \mathrm{min}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& c_{A}^{\prime}=-0.09 c_{A}+0.02 c_{B}+2.1 \\
& \frac{d c_{D}}{d t}=\frac{1}{v_{A S O}}\left(9 \cdot c_{A}-(27 / 7) c_{B}\right) \\
& C_{B}^{\prime}=0.18 C_{A}-0.18 C_{B}
\end{aligned}
$$

$$
\begin{aligned}
& c_{A}^{\prime}=-0.09 C_{A}+0.02 C_{B}+2.1 \\
& C_{B}^{\prime}=0.18 c_{A}-0.18 c_{B} \\
& \frac{d}{d t}\left[\begin{array}{l}
C_{A} \\
C_{B}
\end{array}\right]=\left[\begin{array}{cc}
-0.09 & 0.02 \\
0.18 & -0.18
\end{array}\right]\left[\begin{array}{l}
C_{A} \\
c_{B}
\end{array}\right]+\left[\begin{array}{c}
2.1 \\
0
\end{array}\right]
\end{aligned}
$$

Problem. Predict the exact salt concentrations over time by solving the system of linear differential equations

$$
\begin{aligned}
& \vec{x}_{c} \text { : eigenvolures } s_{1}=-0.06 \\
& r_{2}=-0.21 \\
& \text { eigenvector } \quad \stackrel{v}{1}=\left[\begin{array}{l}
2 \\
3
\end{array}\right] \\
& \overrightarrow{v_{2}}=\left[\begin{array}{c}
1 \\
-6
\end{array}\right] \\
& \vec{x}_{c}=c_{1} e^{-0.06 t}\left[\begin{array}{l}
2 \\
6
\end{array}\right]+c_{2} e^{-0.21 t}\left[\begin{array}{c}
1 \\
-6
\end{array}\right]_{t \rightarrow \infty}
\end{aligned}
$$

Assume $\vec{x}_{\mathrm{NH}}=1 \cdot \vec{u}$
Sub into DE

$$
\begin{aligned}
& {\left[\begin{array}{l}
0 \\
d
\end{array}\right] \frac{d}{d t}\left(\frac{1}{\mu}\right)=\left[\begin{array}{cc}
-0,09 & 0,02 \\
0,18 & -0,18
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]^{\frac{d}{d t}\left[\begin{array}{l}
c_{A} \\
c_{B}
\end{array}\right]=\left[\begin{array}{c}
2,1 \\
0
\end{array}\right]=[}} \\
& \begin{array}{cc}
2 \times \\
x
\end{array}\left[\begin{array}{cc}
-0.09 & 0.02 \\
0.18 & -0.18
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\left[\begin{array}{c}
-2.1 \\
0
\end{array}\right] \\
& \begin{aligned}
-0.14 \frac{u_{2}}{}=-4.2 \\
\ldots\left|\begin{array}{l}
u_{2} \\
u_{2} \\
u_{1}
\end{array}=30\right| \mathrm{g} / \mathrm{L}
\end{aligned} \\
& \vec{x}_{N H}=\left[\begin{array}{l}
30 \\
30
\end{array}\right] \\
& \text { diff e fanny } \\
& \{1\} \\
& x(t)=c_{1} e^{-\alpha \Delta c t}\left[\begin{array}{l}
2 \\
3
\end{array}\right]+c_{2} e^{-0.21 t}\left[\begin{array}{c}
1 \\
-6
\end{array}\right]+\left[\begin{array}{c}
30 \\
30
\end{array}\right]
\end{aligned}
$$

Match c_{1}, c_{2} to

$$
C_{A}(0)=0
$$

$$
\begin{aligned}
& \begin{array}{c}
t=0 \\
\\
\end{array} \\
& {\left[\begin{array}{c}
0 \\
98
\end{array}\right]=c_{1} e^{0}\left[\begin{array}{l}
2 \\
3
\end{array}\right]+c_{2} e^{0}\left[\begin{array}{c}
1 \\
-6
\end{array}\right]+\left[\begin{array}{c}
30 \\
30
\end{array}\right] \frac{d}{d t}\left[\begin{array}{l}
c_{A} \\
c_{B}
\end{array}\right]=\left[\begin{array}{cc}
-0.09 & 0.02 \\
0.18 & -0.18
\end{array}\right]\left[\begin{array}{l}
c_{A} \\
c_{B}
\end{array}\right]+\left[\begin{array}{c}
2.1 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{l}
2 \\
3
\end{array}\right] c_{1}+\left[\begin{array}{c}
1 \\
-6
\end{array}\right] c_{2}=\left[\begin{array}{c}
-30 \\
60
\end{array}\right]} \\
& {\left[\begin{array}{cc}
2 & 1 \\
3 & -6
\end{array}\right]\left[\begin{array}{l}
C_{1} \\
C_{2}
\end{array}\right]=\left[\begin{array}{c}
-30 \\
G_{1}
\end{array}\right] \quad \ldots \quad C_{1}=-8} \\
& c_{2}=-14
\end{aligned}
$$

Solution

$$
\begin{gathered}
\text { eiguructor } \\
c_{A}=-8(2) e^{-0.06 t}-14(1) e^{-0.21 t}+30 \\
c_{B}=-8(3] e^{-0.06 t}-14(-6) e^{-0.21 t}+30
\end{gathered}
$$

