Week #11 : Complex Eigenvalues, Applications of Systems

Goals:

- Solutions for the Complex Eigenvalue Case
- Further Applications of Systems of DEs

Complex Eigenvalue Case

First-order homogeneous systems have the standard form:

What happens when the coefficient matrix A has non-real eigenvalues?

(Note: for the remainder of the course, we will use the more traditional <u>"i</u>" instead of $\sqrt{-1}$; it will simplify some of the notation.) Proposition. If the real matrix A has complex conjugate eigenvalues $\alpha \pm \beta$ i with corresponding eigenvectors $\vec{a} \pm \vec{b}$ i, then two linearly independent real vector solutions to $\vec{x}' = A\vec{x}$ are 0057 5-2 and $e^{\bigotimes t} \left| \sin(\dot{\beta}t)\vec{a} + \cos(\dot{\beta}t)\vec{b} \right|$ $\cos(\beta t)\vec{a} - \sin(\beta t)\vec{b}$ earlief: e cos(pt)

Problem. Solve $\vec{x}'(t) = A\vec{x}(t)$ where $A := \begin{bmatrix} -1 & 2 \\ -1 & -3 \end{bmatrix}$. assumption Find eigenvalues of A: set det(A - rI) = 0 $\vec{x}'(t) = e^{it}$ $\begin{vmatrix} -1 - r & 2 \\ -1 & -3 - r \end{vmatrix} = (-1 - r)(-3 - r) - (-1)(2)$ quadratic Formula $= 3 + 4r + r^{2} + 2$ $\Gamma = -\frac{4\pm\sqrt{4^2-4(5)}}{4\pm\sqrt{4^2-4(5)}}$ = r² + 4r + 5 = 0 charac'a poly 12 = -2 ± 1 JO4 $= -2 \pm \sqrt{-1}$ conylex rodt3 $\int = -2 \pm 1 i$ 7 = 7Aside: (2+i)t assi'n but not all real solly

$$\vec{x}_{1}(t) = e^{\alpha t} \begin{bmatrix} \cos(\beta t)\vec{a} - \sin(\beta t)\vec{b} \end{bmatrix}$$

$$\Gamma = -2 \pm 1 i \qquad (\pm w_{0} \text{ ergenvalues}) \quad \vec{x}_{2}(t) = e^{\alpha t} \begin{bmatrix} \sin(\beta t)\vec{a} + \cos(\beta t)\vec{b} \end{bmatrix}$$

$$\vec{x}_{2}(t) = e^{\alpha t} \begin{bmatrix} \sin(\beta t)\vec{a} + \cos(\beta t)\vec{b} \end{bmatrix}$$

$$\vec{x}_{2}(t) = \begin{bmatrix} -1 & 2 \\ -1 & -3 \end{bmatrix} \vec{x}(t)$$

$$\Gamma = \alpha \pm \beta^{2} i \qquad (\text{ weder for } \Gamma = \alpha - \beta^{2} i \quad w_{1}^{2} \| \text{ be } \text{ the corplex conjugate } \vec{b} + \text{the corpl$$

(

 $\vec{x}_1(t) = e^{\alpha t} \left| \cos(\beta t) \vec{a} - \sin(\beta t) \vec{b} \right|$ $\vec{n} = \begin{bmatrix} 1 \\ -\frac{1}{2} + \frac{1}{2} \end{bmatrix} \times 2 = \begin{bmatrix} 2 \\ -1 + \frac{1}{2} \end{bmatrix}$ $\vec{x}_2(t) = e^{\alpha t} \left[\sin(\beta t) \vec{a} + \cos(\beta t) \vec{b} \right]$ $\vec{x}'(t) = \begin{bmatrix} -1 & 2\\ -1 & -3 \end{bmatrix} \vec{x}(t)$ $= \begin{bmatrix} 2 \\ -1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ for r = -2 + C x = -2 $\beta = +1$ $\overline{N_2} = \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ i is eigned. for $r_2 = -2 - i$ sol'a formula to build the general solution $\overline{z}(t) = C_1 \mathcal{R} \left[\cos(t) \left(\frac{2}{-1} \right) - \sin(t) \left[\frac{0}{1} \right] \right]$ $+c_2 e^{-2t} \left[sin(t) \int_{-i}^{2} + cos(t) \int_{i}^{0} \right]$

Problem. Solve $\vec{x}'(t) = A\vec{x}(t)$ where $A := \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ 3 & 2 & 1 \end{bmatrix} \quad () \quad \vec{x}(t) = e^{-t} \overset{*}{\sim}$ c ~ ~ A ~ Find eigenvalues aut (A-rI)=0 charae's poly ? $- \left[o + (2)(-2)(1-r) + o \right]$ $= (1 - 2r + r^{2})(rr) + 4(1 - r)$ $= -r^{3} + 2r^{2} - r + r^{2} - 2r + 1 + 4 - 4r$

 $= -r^{3} + 3r^{2} - 7r + 5 = 0 \qquad (r-i)(-r^{2}+2r-5) = 0$ $(r-i)(r^{2}-2r+5) = 0$ $(r-i)(r^{2}-2r+5) = 0$ $quod \qquad (r-i)(r^{2}-2r+5) = 0$ $quod \qquad (r-i) \pm 2i$ $quod \qquad (r-i) \pm 2i$ $Formula \qquad conplex pair$

 $\vec{x}_1(t) = e^{\alpha t} \left| \cos(\beta t) \vec{a} - \sin(\beta t) \vec{b} \right|$ Let $\Gamma_{,=} \setminus (\text{real distinct})$ $x_1(t) = e^{\alpha t} \begin{bmatrix} \cos(\beta t)\dot{a} - \sin(\beta t)b \\ \sin(\beta t)\ddot{a} + \cos(\beta t)\vec{b} \end{bmatrix}$ $\vec{x}_2(t) = e^{\alpha t} \begin{bmatrix} \sin(\beta t)\vec{a} + \cos(\beta t)\vec{b} \end{bmatrix}$ Find Eigh ventor $\vec{x}'(t) = \begin{vmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ 3 & 2 & 1 \end{vmatrix} \vec{x}(t)$ $\widehat{O} = \overleftarrow{\pi}(\mathcal{I}_{7} - A)$ $\begin{bmatrix} 0 & 0 & 0 \\ -2 & 0 & -2 \\ -2 & -$ 3~, +2~~ =0 (3) $n_1 = -2n_2$ pick $n_1 = -2n_2$ pick $n_2 = 3$ $2m_{1} - 2m_{2} = 0$ $x_3 = x_1 = -2$ So $n_{r_1}^2 = \begin{vmatrix} -2 \\ 3 \\ -2 \end{vmatrix}$ one Sell'n $r_1(t) = 2 - \begin{vmatrix} 3 \\ -2 \end{vmatrix}$

$$\begin{aligned} \zeta_{2,5} &= 1 \pm 2 \cdot c & \qquad \vec{x}_{1}(t) = e^{\alpha t} \begin{bmatrix} \cos(\beta t) \vec{a} - \sin(\beta t) \vec{b} \end{bmatrix} \\ \vec{x}_{2}(t) &= e^{\alpha t} \begin{bmatrix} \sin(\beta t) \vec{a} + \cos(\beta t) \vec{b} \end{bmatrix} \\ \vec{x}_{2}(t) &= e^{\alpha t} \begin{bmatrix} \sin(\beta t) \vec{a} + \cos(\beta t) \vec{b} \end{bmatrix} \\ \vec{x}_{2}(t) &= \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ 3 & 2 & 1 \end{bmatrix} \vec{x}(t) \\ \begin{bmatrix} 1 - (1 + \tau z) & 0 & 0 \\ 2 & 1 - (1 + \tau z) & -2 \\ 3 & 2 & 1 - (1 + \tau z) \end{bmatrix} \\ \vec{x}_{2} &= \vec{0} \end{aligned}$$

$$\begin{aligned} \begin{bmatrix} -2i & 0 & 0 \\ 2 & -2i & -2 \\ 3 & 2 & 1 - (1 + \tau z) \end{bmatrix} \begin{bmatrix} v_{1} \\ v_{2} \\ v_{3} \end{bmatrix} = \vec{0} \end{aligned}$$

$$\begin{aligned} \begin{bmatrix} 0 \\ -2i & v_{3} \\ z \\ -2i & v_{3} \end{bmatrix} = \vec{0} \end{aligned}$$

$$\begin{aligned} \begin{bmatrix} 0 \\ -2i & v_{3} \\ z \\ -2i & v_{3} \end{bmatrix} = \vec{0} \end{aligned}$$

$$\begin{aligned} \begin{bmatrix} 0 \\ -2i & v_{3} \\ z \\ -2i & v_{3} \end{bmatrix} = \vec{0} \end{aligned}$$

$$\begin{aligned} \begin{bmatrix} 0 \\ -2i & v_{3} \\ z \\ -2i & v_{3} \end{bmatrix} = \vec{0} \end{aligned}$$

Complex Eigenvalues - Example - 4

し

$$\vec{x}_{2} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \\ -1 \\ -1 \end{pmatrix}, \quad \hat{x}_{2} = 1 + 2i \quad \vec{x}_{1}(t) = e^{\alpha t} \begin{bmatrix} \cos(\beta t)\vec{a} - \sin(\beta t)\vec{b} \end{bmatrix}$$
$$\vec{x}_{2}(t) = e^{\alpha t} \begin{bmatrix} \sin(\beta t)\vec{a} + \cos(\beta t)\vec{b} \end{bmatrix}$$
$$\vec{x}_{2}(t) = e^{\alpha t} \begin{bmatrix} \sin(\beta t)\vec{a} + \cos(\beta t)\vec{b} \end{bmatrix}$$
$$\vec{x}'(t) = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ 3 & 2 & 1 \end{bmatrix} \vec{x}(t)$$
$$\approx \quad x_{2}(t) = e^{t} \begin{bmatrix} \cos(2t) \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix} \\ - \sin(2t) \begin{bmatrix} 0 \\ -1 \\ -1 \end{bmatrix} \\ - \sin(2t) \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix} \\ + \cos(2t) \begin{bmatrix} 0 \\ -1 \\ -1 \end{bmatrix} \end{bmatrix}$$

General solin = linit combin of
$$r(real r)$$

 $r(real r)$
 $r(real r)$

$$\vec{x}_1(t) = e^{\alpha t} \begin{bmatrix} \cos(\beta t)\vec{a} - \sin(\beta t)\vec{b} \end{bmatrix}$$
$$\vec{x}_2(t) = e^{\alpha t} \begin{bmatrix} \sin(\beta t)\vec{a} + \cos(\beta t)\vec{b} \end{bmatrix}$$
$$\vec{x}'(t) = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ 3 & 2 & 1 \end{bmatrix} \vec{x}(t)$$

Non-Homogeneous Systems

We now expand our solution approach to include **non-homogeneous** first-order systems:

$$\vec{x}'(t) = A\vec{x}(t) + \left| \vec{f}(t) \right|^{\ell}$$

To solve this non-homogeneous form, we will use the same method as we used for higher-order systems, called the

method of undetermined coefficients.

Problem. What are the steps in this method?

- filing diff's family of f(t)
(> set of functions {f, fz... F.m})
realized
- Suite proposed solution

$$\vec{X}_{NH} = f_1(t)\vec{x}_1 + f_2(t)u_2 + f_3(t)u_3 + ... + f_m(t)\vec{u}_m$$

and
modelswired coffs

Problem. Consider the DE system

 $\vec{x}' = \begin{bmatrix} 6 & -7 \\ 1 & -2 \end{bmatrix} \vec{x} + \begin{bmatrix} 10e^{2t} \\ 0 \end{bmatrix}$ The eigenvalues and corresponding eigenvectors for the matrix A in the system above are

I non - homog'r

$$\lambda_1 = 5, \ \vec{v}_1 = \begin{bmatrix} 7\\1 \end{bmatrix} \qquad \qquad \lambda_2 = -1, \ \vec{v}_2 = \begin{bmatrix} 1\\1 \end{bmatrix}$$

Find the general solution to the *homogeneous* part of the system.

$$\vec{r}_{c} = c_1 e^{st} \begin{bmatrix} 7\\ 1 \end{bmatrix} + c_2 e^{-t} \begin{bmatrix} 1\\ 1 \end{bmatrix}$$

$$\vec{x}' = \begin{bmatrix} 6 & -7 \\ 1 & -2 \end{bmatrix} \vec{x} + \begin{bmatrix} 10e^{2t} \\ 0 \end{bmatrix} \quad \begin{bmatrix} \mathbf{D} \cdot \mathbf{f} \cdot \mathbf{f} \cdot \mathbf{g} \\ \mathbf{f} \cdot \mathbf{f} \cdot \mathbf{f} \end{bmatrix} \quad \{e^{2t}\}$$
Assume a form for the *particular* solution for the *non-homogeneous*

5

ц,

Assn $3c_{NH} = e [u_2]$ Sub $\overline{u} = 3c_{NH}$, solve for u_1, u_2

form.

$$2 e^{2t} \vec{u} = \begin{bmatrix} 6 & -7 \\ 1 & -2 \end{bmatrix} e^{2t} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} + e^{2t} \begin{bmatrix} 10 \\ 0 \end{bmatrix} \begin{bmatrix} -1 & 4 \\ 0 & -q \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 0 \\ -q \\ u_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -q \\ u_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} -1 & 4 \\ 0 \\ 0 \\ -q \\ u_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -q \\ u_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -q \\ u_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -q \\ u_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -q \\ u_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -q \\ u_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -q \\ u_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -q \\ u_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -q \\ u_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -q \\ u_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -q \\ u_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -q \\ u_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -q \\ u_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -q \\ u_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\vec{x'} = \begin{bmatrix} 6 & -7 \\ 1 & -2 \end{bmatrix} \vec{x} + \begin{bmatrix} 10e^{2t} \\ 0 \end{bmatrix}$$

Find the constants/coefficients in the particular solution.

$$u_{2} = -\frac{10}{q} , \quad \begin{pmatrix} -1 & 4 \\ 0 & -q \end{pmatrix} \begin{bmatrix} u_{1} \\ u_{2} \end{bmatrix} \begin{bmatrix} 0 \\ 10 \end{bmatrix} \\ -u_{1} + 4 u_{2} = 0 \\ u_{1} = 4 u_{2} = -\frac{u_{0}}{q} \\ u_{1} = 4 u_{2} = -\frac{u_{0}}{q} \\ \hline u_{1} = -\frac{u_{0}}{q} \\ u_{1} = -\frac{u_{0}}{q} \\ \hline u_{1} = -\frac{u_{0}}{q} \\ \hline u_{1} = -\frac{u_{0}}{q} \\ u_{1} =$$

Write out the form for the general solution to $\vec{x}' = \begin{bmatrix} 6 & -7 \\ 1 & -2 \end{bmatrix} \vec{x} + \begin{bmatrix} \sin(t) \\ \sin(2t) \end{bmatrix} \qquad \begin{array}{l} & \xi \sin(t) \\ & \xi \sin(t) \\ & \sin(2t) \end{bmatrix} \qquad \begin{array}{l} & \xi \sin(t) \\ & \xi \sin($

The second

Repeated Solutions in \vec{x}_c and \vec{x}_{NH}

If a member of the differential family needed for \vec{x}_{NH} , say f(t), is already present in \vec{x}_{c} , then you must include

$t \cdot f(t)$

and all lower multiples of \underline{t} in the assumed form for \vec{x}_{NH} .

Lone for systems

Problem. Write the form of the general solution to

$$\vec{x}' = \begin{bmatrix} 6 & -7 \\ 1 & -2 \end{bmatrix} \vec{x} + \begin{bmatrix} 0 \\ 10e^{-t} \end{bmatrix} \quad \text{diff'} \ \text{formly}$$
in $\vec{x} = \vec{x}_c + \vec{x}_{NH}$ form. Recall: for this A matrix, $\vec{x}_c = c \ \text{droodys}$

$$\lambda_1 = 5, \ \vec{v}_1 = \begin{bmatrix} 7 \\ 1 \end{bmatrix} \qquad \lambda_2 = -1, \ \vec{v}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ \vec{x}_{p,n} = \vec{x}_{p,n} = c \ \vec{v}_{p,n} =$$

Problem. Write out the form for the general solution to

$$\vec{x}' = \begin{bmatrix} 0 & 1 \\ -4 & 0 \end{bmatrix} \vec{x} + \begin{bmatrix} \sin(bt) \\ 0 \end{bmatrix} \left\{ \begin{array}{c} \sin(t) \\ \sin(t) \\$$

$$\vec{x}_{NH} = \frac{\sin(bt)\vec{u}_{1} + \cos(bt)\vec{u}_{2}}{\sin(xt)} = \frac{\sin(bt)\vec{u}_{1}}{\sin(xt)} = \frac{\sin(bt)\vec{u}_{2}}{\sin(xt)} = \frac{\sin(bt)\vec{u}_{2}}{\sin(xt)} = \frac{\sin(bt)\vec{u}_{2}}{\sin(xt)} = \frac{\sin(bt)\vec{u}_{2}}{\sin(bt)\vec{u}_{3}} = \frac{\sin(bt)\vec{u}_{2}}{\sin(bt)\vec{u}_{3}} = \frac{\sin(bt)\vec{u}_{2}}{\sin(bt)\vec{u}_{3}} = \frac{\sin(bt)\vec{u}_{2}}{\sin(bt)\vec{u}_{3}} = \frac{\sin(bt)\vec{u}_{2}}{\sin(bt)\vec{u}_{3}} = \frac{\sin(bt)\vec{u}_{2}}{\sin(bt)\vec{u}_{3}} = \frac{\sin(bt)\vec{u}_{3}}{\sin(bt)\vec{u}_{3}} = \frac{\sin(bt)\vec{u}_{3}}$$

Explain the conditions for resonance and beats in a first-order DE system.

non-homog's part has - sinles wexatly the same Frog as Te, I resonance t sin/tcas - sin los is chose to some freq of in x, (beats / large aplitude response

Modelling Systems - Interconnected Tanks

Consider the tanks shown below, which show water flowing between the tanks, and the concentration of a salt solution coming in. Within each tank, the water/salt solution is kept well mixed.

Problem. If both tanks start with no salt, sketch what you expect will happen to the concentration within each tank over time.

Problem. Create a system of differential equations that dictate how the two tank concentrations will evolve over time.

SA = mass of solt (g) κA Study First (g) dsn = (rate of salt) - (rate salt) min dt = (rate of salt) - (rate salt) $= \left(5 \quad \frac{L}{\min}\right) \left(3 \quad \frac{5}{L}\right) - \left(5 \quad \frac{L}{\min}\right) \left(\frac{5 \quad \frac{9}{V_{\rm A}}}{L}\right)$ 5 SA g Vn min 150 st 6-t $\frac{dc_A}{V_A} = \frac{1}{V_A}$ 50 non-hong's

Problem. Predict the exact salt concentrations over time by solv-ing the system of linear differential equations

Consider the more complicated tank arrangement shown below.

Problem. Construct the differential equation for the salt concentration in each tank, and write it in matrix form.

$$\frac{dc_{A}}{dt} = \frac{1}{V_{A}} \left(\begin{bmatrix} 7 \times 30 + 2 \cdot c_{B} \end{bmatrix} - \begin{pmatrix} 9 \cdot c_{+} \end{pmatrix} \right)$$

$$\frac{dt}{dt} = \frac{1}{V_{A}} \left(\begin{bmatrix} 7 \times 30 + 2 \cdot c_{B} \end{bmatrix} - \begin{pmatrix} 9 \cdot c_{+} \end{pmatrix} \right)$$

$$\frac{dt}{dt} = \frac{1}{V_{A}} \left(\begin{bmatrix} 7 \times 30 + 2 \cdot c_{B} \end{bmatrix} - \begin{pmatrix} 9 \cdot c_{+} \end{pmatrix} \right)$$

$$\frac{dt}{dt} = \frac{1}{V_{A}} \left(\begin{bmatrix} 7 \times 30 + 2 \cdot c_{B} \end{bmatrix} - \begin{pmatrix} 9 \cdot c_{+} \end{pmatrix} \right)$$

$$\frac{dc_{0}}{dt} = \frac{1}{\sqrt{850}} \left(9 \cdot c_{4} - (2x+2)c_{8} \right)$$

$$\frac{c_{1}'}{c_{8}} = 0.18 c_{4} - 0.18 c_{8}$$

$$c_{A} = -0.09 c_{A} + 0.02 c_{B} + 2.1$$

 $c_{B}^{\prime} = 0.18 c_{A} - 0.18 c_{B}$

$$\frac{d}{dt} \begin{pmatrix} C_A \\ C_B \end{pmatrix} = \begin{bmatrix} -0.09 & 0.02 \\ 0.18 & -0.18 \end{bmatrix} \begin{pmatrix} C_A \\ C_B \end{pmatrix} + \begin{bmatrix} 2.1 \\ 0 \end{bmatrix}$$

Problem. Predict the exact salt concentrations over time by solving the system of linear differential equations

A

 $\frac{d}{dt} \begin{bmatrix} c_A \\ c_B \end{bmatrix}$

5

 $\left\lceil c_{A} \right\rceil$

=

$$\vec{r}_{c} = c_{1}e^{-0.06t} \begin{bmatrix} 2\\ 3 \end{bmatrix} = \begin{bmatrix} 2\\ 3 \end{bmatrix} = \begin{bmatrix} 2\\ -6 \end{bmatrix}$$

$$\vec{r}_{c} = c_{1}e^{-0.06t} \begin{bmatrix} 2\\ 3 \end{bmatrix} + c_{2}e^{-0.2(t)} \begin{bmatrix} -6\\ -6 \end{bmatrix}$$

$$\rightarrow 0 \quad c_{3} \notin \infty$$

7 2

