Equilibrium Points

Definition: A vector \vec{u}_{eq} is called an equilibrium point of the discrete linear system

(1) $\vec{u}_{n+1} = A\vec{u}_n + \vec{b}$ if it satisfies the equation (2) $\vec{u}_{eq} = A\vec{u}_{eq} + \vec{b}$, or, equivalently, if we have $(I - A)\vec{u}_{eq} = \vec{b}$. The equilibrium point \vec{u}_{eq} is called stable if we have (3) $\vec{u}_n \to \vec{u}_{eq}$, as $n \to \infty$.

Theorem 16: Suppose that the d.l.s. (1) has an equilibrium point \vec{u}_{eq} . Then, letting

(4)
$$\vec{v}_n = \vec{u}_n - \vec{u}_{eq}$$

denote the deviation from the equilibrium point, we have

$$5) \qquad \qquad \vec{v}_{n+1} = A\vec{v}_n$$

and hence

(6) $\vec{u}_n = A^n (\vec{u}_0 - \vec{u}_{eq}) + \vec{u}_{eq}.$

In particular, if $A^n \to 0$, then \vec{u}_{eq} is stable.