Geometric Series of Matrices

Definition: Let T be any square matrix. Then the sequence $\{S_n\}_{n\geq 0}$ defined by

$$S_n = I + T + \ldots + T^{n-1}, \quad S_0 = I,$$

is called the geometric series generated by T. The series converges if the sequence $\{S_n\}_{n\geq 0}$ converges; we then write

$$\sum_{n=0}^{\infty} T^n = \lim_{n \to \infty} S_n.$$

Theorem 11: The geometric series generated by T converges if and only if

(1) $|\lambda_i| < 1$, for each eigenvalue λ_i of T.

If this condition holds, then I - T is invertible and we have

(2)
$$S_n := \sum_{k=0}^{n-1} T^k = (I - T)^{-1} (I - T^n),$$

and hence the series converges to

(3)
$$\sum_{k=0}^{\infty} T^k = (I - T)^{-1}.$$

Remark: Note that condition (1) is equivalent to: (4) $\lim_{n \to \infty} T^n = 0.$