
Let A be a square matrix. Then we have proved the following
theorems:

Theorem 7.7 (Page 320) If |λi| < 1 for every eigenvalue of A, then
A is power convergent and limn→∞An = 0.

Recall that an eigenvalue λ of A is regular if the Jordan Canonical
form of A has no Jordan blocks of size greater than 1. Equivalently
the multiplicity of λ as a root of cpA(t) (the algebraic multiplicity of
λ) is equal to dim EA(λ) (the geometric multiplicity of λ).

Theorem 7.8 (Page 320) If λ1 = 1 is a regular, dominant eigenvalue
of A, then A is power convergent and we have

lim
n→∞

An = E10 6= 0,

where E10 is the first constituent matrix of A associated to λ1 = 1.
Moreover, the other constituent matrices E1k associated to λ1 = 1
are equal to zero:

E11 = · · · = E1,m1−1 = 0.

We have observed that in the case of the rat-maze problem, which
has transition matrix

A =




0 1/2 1/3
1/2 0 2/3
1/2 1/2 0


 ,

the columns of limn→∞An = E10 are equal. (In fact, they are equal
to the unique stochastic eigenvector of A for eigenvalue λ = 1). This
is explained by the following theorem. Recall that an eigenvalue is
simple if its algebraic multiplicity is 1.
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Theorem 7.10 (page 324) If A is power convergent and 1 is a
simple eigenvalue of A, then

lim
n→∞

An = E10 =
1

~ut~v︸︷︷︸
scalar

~u~vt︸︷︷︸
matrix

,

where: ~u ∈ EA(1) is any non-zero 1-eigenvector of A, and
~v ∈ EAt(1) is any non-zero 1-eigenvector of At.

Proof. In the present discussion it is essential to remember that
~u,~v, ~x and ~y are column vectors, with ~ut, ~vt, ~xt, ~yt being the corre-
sponding row vectors, so that the matrix product ~ut~v is just the
usual dot product of ~u and ~v, whereas the matrix product ~u~vt

is a square matrix of the same size as A. Let P be such that
J = P−1AP is a Jordan matrix, which we may take to be of the
form J = Diag(J(1, 1), . . . ). Then, since |λi| < 1 for i > 1, we see
that

lim
n→∞

An = P lim
n→∞

JnP−1 = P

0
BBBB@

1 0 . . . 0

0 0
...

...
. . .

. . .
...

0 . . . . . . 0

1
CCCCA
P−1 = P~e1~e

t
1P

−1,(1)

where ~e1 = (1, 0, . . . , 0)t. Now since ~e1 is a 1-eigenvector of J , it
follows that ~x := P~e1 (= the first column of P ) is a 1-eigenvector of
A (because A~x = AP~e1 = PJ~e1 = P~e1 = ~x).

Similarly, ~yt := ~et
1P

−1 (= the first row of P−1) is (the transpose
of) a 1-eigenvector of At. Indeed, since ~et

1J = ~et
1, we see that ~ytA =

~et
1P

−1A = ~et
1JP−1 = ~et

1P
−1 = ~yt. Taking the transpose yields

At~y = ~y, which means that ~y is a 1-eigenvector of At. Thus by the
above equation (1) we obtain
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lim
n→∞

An = P~e1~e
t
1P

−1 = ~x~yt =
1

~xt~y
~x~yt,

the latter because ~xt~y = ~yt~x = ~et
1P

−1P~ei = ~et
1~e1 = 1. From the

construction of P , ~x is an arbitrary non-zero eigenvector of A with
eigenvalue 1, so we may set ~u = ~x. The vector ~y depends on the
choice of ~x so we cannot take ~y to be an arbitrary non-zero eigenvector
of At. However 1 is a simple eigenvalue of both A and At so every
non-zero 1-eigenvector of At is a non-zero multiple of ~y. Thus if ~v is
an arbitrary non-zero 1-eigenvector of At we have ~y = c~v for some
constant c 6= 0. We now have

lim
n→∞

An =
1

~xt~y
~x~yt =

1

~utc~v
~uc~vt =

1

~ut~v
~u~vt

which is Theorem 7.10.

For the rat-maze matrix

A =




0 1/2 1/3
1/2 0 2/3
1/2 1/2 0


 ,

we have observed that ~u = (8/27, 10/27, 9/27)t is the unique stochas-
tic 1-eigenvector of A. Furthermore ~v = (1, 1, 1)t is a 1-eigenvector
of At. Since ~u is stochastic ~u · ~v = ~ut~v = 1 so Theorem 7.10 yields

lim
n→∞

An = ~u~vt = (~u|~u|~u) =




8/27 8/27 8/27
10/27 10/27 /10/27
9/27 9/27 9/27





