Let A be a square matrix. Then we have proved the following
theorems:

Theorem 7.7 (Page 320) If | \;| < 1 for every eigenvalue of A, then
A is power convergent and lim,,_,, A" = 0.

Recall that an eigenvalue A of A is regular if the Jordan Canonical
form of A has no Jordan blocks of size greater than 1. Equivalently
the multiplicity of A as a root of c¢p4(t) (the algebraic multiplicity of
A) is equal to dim E4(\) (the geometric multiplicity of A).

Theorem 7.8 (Page 320) If A; = 1is aregular, dominant eigenvalue
of A, then A is power convergent and we have

lim A" = E10 7é O,
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where F is the first constituent matrix of A associated to A\; = 1.
Moreover, the other constituent matrices Fy; associated to Ay = 1
are equal to zero:

Ey=-=En-1=0.

We have observed that in the case of the rat-maze problem, which
has transition matrix
0 1/2 1/3
A=\ 1/2 0 2/3
1/2 1/2 0

)

the columns of lim,, ., A" = Ejg are equal. (In fact, they are equal
to the unique stochastic eigenvector of A for eigenvalue A = 1). This
is explained by the following theorem. Recall that an eigenvalue is

simple if its algebraic multiplicity is 1.
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Theorem 7.10 (page 324) If A is power convergent and 1 is a
simple eigenvalue of A, then

. 1 —
lim A" = Eyjy = P av
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where: @ € F4(1) is any non-zero 1-eigenvector of A, and
¥ € F (1) is any non-zero 1-eigenvector of A’.

Proof. In the present discussion it is essential to remember that
w, v, and ¥ are column vectors, with o*, 0, 2%, ¢ bemg the corre-
Spondmg row vectors, so that the matrlx product is just the
usual dot product of u and v, whereas the matrix product ot
is a square matrix of the same size as A. Let P be such that
J = P7'AP is a Jordan matrix, which we may take to be of the
form J = Diag(J(1,1),...). Then, since |[\;| < 1 for ¢ > 1, we see
that

1 0 ... O
(1) lim A" =P lim J"P ' =P|0 ¢ P! =peé P,
0 ... ... 0
where €1 = (1,0,...,0)". Now since €] is a l-eigenvector of J, it

follows that & ;= Pé} (= the first column of P) is a 1-eigenvector of
A (because AZL’ = APéy = PJey = Pey = 7).
Similarly, i := &' P~ (= the first row of P~!) is (the transpose
of) a l-eigenvector of A'. Indeed, since €'J = &}, we see that A =
elP'A = & JP! = &Pl = 4. Taking the transpose yields
Aty = ¢/, which means that 1 is a 1-eigenvector of A*. Thus by the
above equation (1) we obtain



lm A" = P&,é P! = &t = -,
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the latter because 7'y = §'7 = €' P~1P¢e; = e\¢) = 1. From the
construction of P, ¥ is an arbitrary non-zero eigenvector of A with
eigenvalue 1, so we may set « = &. The vector i depends on the
choice of &' so we cannot take ¢/ to be an arbitrary non-zero eigenvector
of A'. However 1 is a simple eigenvalue of both A and A? so every
non-zero 1-eigenvector of A’ is a non-zero multiple of 4. Thus if ¥/ is
an arbitrary non-zero l-eigenvector of A’ we have ¢ = ¢t for some

constant ¢ # 0. We now have

1 1 1
lim A" = =& = ——iici’ = ——iitf
n—oo fty _)tCU ﬁt?}

which is Theorem 7.10.

For the rat-maze matrix

S

0 1/2 1/3
A= 12 0 2/3
1/2 1/2 0
we have observed that @ = (8/27,10/27,9/27)" is the unique stochas-
tic 1-eigenvector of A. Furthermore ¢ = (1,1,1)" is a 1-eigenvector
of A!. Since 1 is stochastic @ - ¥ = @'0' = 1 so Theorem 7.10 vyields

)

8/27 8/27 8/27
lim A" = @t = (u|ud|a) = | 10/27 10/27 /10/27
e 9/27 9/27 9/27



