1. Let \(p \) be a prime number. Show the following:

 (a) If \(p > 2 \), then either \(p = 4n + 1 \) or \(p = 4n + 3 \) for some \(n \in \mathbb{N} \).

 (b) If \(p > 3 \), then either \(p = 6n + 1 \) or \(p = 6n + 5 \) for some \(n \in \mathbb{N} \).

 (c) If \(p > 2 \), then \(p^2 = 4n + 1 \) for some \(n \in \mathbb{N} \).

2. In each case, compute \(\gcd(m, n) \) and express it as a linear combination of \(m \) and \(n \).

 (a) \(m = 377 \) and \(n = 29 \).

 (b) \(m = -231 \) and \(n = 150 \).

3. If \(m \) and \(n \) are odd integers, show that \(m^2 - n^2 \) is divisible by 8.

4. (a) If \(d > 0 \), \(d | (11k + 4) \) and \(d | (10k + 3) \) for some integer \(k \), show that \(d = 1 \) or \(d = 7 \).

 (b) If \(d > 0 \), \(d | (35k + 26) \) and \(d | (7k + 3) \) for some integer \(k \), show that \(d = 1 \) or \(d = 11 \).

5. Let \(m \) and \(n \) be integers, and write \(d = \gcd(m, n) \).

 (a) Verify that \(\frac{m}{d} \) and \(\frac{n}{d} \) are integers, and show that they are relatively prime.

 (b) If \(k | d \) and \(k > 0 \), show that \(\gcd\left(\frac{m}{k}, \frac{n}{k}\right) = \frac{d}{k} \).

Recommended Practice Problems: (Do not hand in)

1. Page 15, \# 1. (Humphreys-Prest, 2nd Ed.)

2. Page 15, \# 3. (Humphreys-Prest, 2nd Ed.)
5. Suppose that $p \geq 2$ is an integer with the following property: if m and n are integers with $p | mn$, either $p | m$ or $p | n$. Show that p must be a prime. (Hint: use a proof by contradiction.)