Material: Groups and Subgroups

Readings: Sec. 7 and 8.1 (Lecture Notes) and Sec. 4.3 and 5.1 (Humphreys-Prest text)

1. Let G be a group of order 4. Assume that e, a and b are distinct elements of G and that $a^2 = e$ and $b^2 = e$. Show that ab is distinct from a, b and e and hence $G = \{e, a, b, ab\}$. Provide also the Cayley table for this group.

2. Let $G = \{g \in \mathbb{Q} : g \neq -1\}$; that is, G is the set of all rational numbers that are not equal to -1. Define operation $*$ on G as follows: for $a, b \in G$,

$$a * b = a + b + ab.$$

Show that G is an abelian group under the operation $*$.

3. Let G be a group and define the relation of conjugacy on G by aRb iff there exists $g \in G$ such that $b = g^{-1}ag$. Show that this relation R is an equivalence relation on G.

4. In each case, specify the operation under which G is a group and determine whether H is a subgroup of G.

 (a) $G = \mathbb{Z}$; and $H = \{-1, 0, 1\}$.

 (b) $G = GL(2, \mathbb{Z})$, the set of 2×2 integer-valued matrices A with determinant $det(A) = \pm 1$; and

 $$H = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\}.$$

 (c) $G = \mathbb{Z}_6$; and $H = \{[0], [2], [4]\}$.

 (d) $G = \mathbb{Z} \times \mathbb{Z}$; and $H = \{(m, k) \in G : m + k \text{ is even}\}$.

5. Let g and x be elements of a group G.

(a) Show (by induction) that for all positive integers k,

$$(g^{-1}xg)^k = g^{-1}x^k g.$$

(b) Use part (a) to deduce that x and $g^{-1}xg$ have the same order. [Hint: Let $d = |x|$ and $m = |g^{-1}xg|$ and show that $m|d$ and that $d|m$.]

Recommended Practice Problems: (Do not hand in)

1. Page 183, # 1. (Humphreys-Prest, 2nd Ed.)
2. Page 183, # 3. (Humphreys-Prest, 2nd Ed.)
3. Page 183, # 4. (Humphreys-Prest, 2nd Ed.)
4. Page 184, # 5. (Humphreys-Prest, 2nd Ed.)
5. Page 184, # 8. (Humphreys-Prest, 2nd Ed.)
6. Page 211, # 1. (Humphreys-Prest, 2nd Ed.)
7. Page 211, # 2 (Humphreys-Prest, 2nd Ed.)
8. Show that a group G is abelian if $(gh)^3 = g^3h^3$, $(gh)^4 = g^4h^4$ and $(gh)^5 = g^5h^5$ for all g and h in G.
9. Let H, K and N be subgroups of a group G and assume that $H \subseteq N$.
 (a) Show that $(HK) \cap N = H(K \cap N)$.
 (b) If both $H \cap K = N \cap K$ and $HK = NK$ hold, show that $H = N$. (Hint: First observe that $N \subseteq NK$ and that $N = (HK) \cap N$.)