1. Suppose that group G has subgroups of orders 45 and 75. If $|G| < 400$, determine $|G|$.

Hint: Given two integers a and b, then the least common multiple of a and b – denoted by $\text{lcm}(a, b)$ – is the positive integer m that satisfies: (i) m is a multiple of both a and b, and (ii) If l is a multiple of both a and b, then l is a multiple of m.

2. Show that for any group element g, $|g| = |g^{-1}|$. [Hint: Consider two cases: $|g| = \infty$, and $|g| = n$ is finite and use the fact that if $|g|$ is finite, then $g^k = e \iff |g|$ divides k.]

3. Let G be a group of order n and let m be an integer that is relatively prime to n.

 (a) If $g^m = e$ in G, show that $g = e$.

 (b) Show that each $g \in G$ has an mth root, that is, that $g = a^m$ for some $a \in G$.

4. If H and K are subgroups of a group and $|H|$ is prime, show that either $H \subseteq K$ or $H \cap K = \{e\}$.

5. Consider the group $\text{GL}(2, \mathbb{R})$, which is the set of 2×2 invertible real-valued matrices.

 (a) Show that

 $$H = \left\{ \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \text{ such that } n \in \mathbb{Z} \right\}$$

 is a cyclic subgroup of $\text{GL}(2, \mathbb{R})$.

 (b) Let $A, B \in \text{GL}(2, \mathbb{R})$ be

 $$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}.$$

 Find $|A|$, $|B|$ and $|AB|$, i.e, the orders of A, B, and AB.

Material: Cyclic groups, cosets, Lagrange’s theorem, group quotients

Reading: Sec. 8.2 and 9 (Lecture Notes) and Sec. 5.2 (Humphreys-Prest text)
Recommended Practice Problems:

1. Page 219, # 4. (Humphreys-Prest, 2nd Ed.)

2. Page 230, # 4. (Humphreys-Prest, 2nd Ed.)

3. Page 230, # 5. (Humphreys-Prest, 2nd Ed.)

4. Page 230, # 6. (Humphreys-Prest, 2nd Ed.)

5. Page 230, # 7 (Humphreys-Prest, 2nd Ed.) [Recall that G_n is the set of invertible congruence classes in \mathbb{Z}_n, see the definition on p. 47 and p. 172 (Example 3).]

6. In each case, find the right and left cosets in G of the subgroups H and K.
 (a) $G = \mathbb{Z}; H = 2\mathbb{Z}$ and $K = 3\mathbb{Z}$.
 (b) $G = \mathbb{Z}_{12}; H = 3\mathbb{Z}_{12}$ and $K = 2\mathbb{Z}_{12}$.
 (c) $G = \{e, a, a^2, a^3, b, ba, ba^2, ba^3\}$ where $|a| = 4$, $|b| = 2$ and $ab = ba^3$; $H = \langle a^2 \rangle$ and $K = \langle b \rangle$.

7. Consider the group $\mathbb{Z}_n = \{[0], [1], \ldots, [n - 1]\}$, with the addition (modulo n) operation. Show that it is cyclic.

8. (a) If $G = \langle a \rangle$ and $|a| = 30$, find the index of $\langle a^6 \rangle$ in G.
 (b) Let $G = \langle a \rangle$ and $|a| = n$. If $d > 0$ and $d|n$, find the index of $\langle a^d \rangle$ in G.

2