1. Let $G = \mathbb{R} \times \mathbb{R}$ with addition $(x, y) + (x', y') = (x + x', y + y')$. Let H be the line $y = mx$ through the origin: $H = \{(x, mx) : x \in \mathbb{R}\}$, where m is a fixed real number. Show that H is a subgroup of G and describe the cosets $H + (a, b)$ geometrically.

2. Show that for any group element g, $|g| = |g^{-1}|$. [Hint: Consider two cases: $|g| = \infty$, and $|g| = n$ is finite. Use also the fact that when $|g|$ is finite, $g^k = e \iff |g|$ divides k.]

3. Consider the group \mathbb{Z}_2 with addition modulo 2, and the group \mathbb{Z}_3 with addition modulo 3. Construct the Cayley table for the group $\mathbb{Z}_2 \times \mathbb{Z}_3$ and show that it is cyclic.

4. Let $a^k = b^k$ in a group G, where k is some integer. If $|a| = m$ and $|b| = n$, where m and n are relatively prime, show that $mn|k$. [Hint: Use Corollary 4 of Lagrange’s theorem and show that both m and n divide k.]

5. Let $G = \langle x \rangle$ be a cyclic group generated by x. Fix a positive integer k.

 (a) Show that the set $\langle x^k \rangle$ is a subgroup of G.

 (b) If x has finite order n, show that $\langle x^k \rangle = \langle x^d \rangle$ and hence has n/d elements, where $d = gcd(k, n)$.

Recommended Practice Problems: (Do not hand in)

1. Page 219, # 4. (Humphreys-Prest, 2nd Ed.)
2. Page 230, # 4. (Humphreys-Prest, 2nd Ed.)
3. Page 230, # 5. (Humphreys-Prest, 2nd Ed.)
4. Page 230, # 6. (Humphreys-Prest, 2nd Ed.)
5. Page 230, # 7 (Humphreys-Prest, 2nd Ed.) [Recall that \(G_n \) is the set of invertible congruence classes in \(\mathbb{Z}_n \), see the definition on p. 47 and p. 172 (Example 3).]
6. In each case, find the right and left cosets in \(G \) of the subgroups \(H \) and \(K \).
 (a) \(G = \mathbb{Z}; H = 2\mathbb{Z} \) and \(K = 3\mathbb{Z} \).
 (b) \(G = \mathbb{Z}_{12}; H = 3\mathbb{Z}_{12} \) and \(K = 2\mathbb{Z}_{12} \).
 (c) \(G = \{e, a, a^2, a^3, b, ba, ba^2, ba^3\} \) where \(|a| = 4, |b| = 2\) and \(ab = ba^3; H = \langle a^2 \rangle \) and \(K = \langle b \rangle \).
7. Consider the group \(\mathbb{Z}_n = \{[0], [1], \ldots, [n - 1]\} \), with the addition (modulo \(n \)) operation. Show that it is cyclic.
8. (a) If \(G = \langle a \rangle \) and \(|a| = 30\), find the index of \(\langle a^6 \rangle \) in \(G \).
 (b) Let \(G = \langle a \rangle \) and \(|a| = n\). If \(d > 0 \) and \(d|n \), find the index of \(\langle a^d \rangle \) in \(G \).