1. Determine in each part below if the given mapping \(\alpha : G \rightarrow G' \) is a homomorphism. If so, identify its kernel \(\text{Ker}(\alpha) \). Also determine whether \(\alpha \) is injective and/or surjective.

[Recall that the kernel of a homomorphism \(\alpha : G \rightarrow G' \) is defined by \(\text{Ker}(\alpha) = \{ g \in G : \alpha(g) = e' \} \), where \(e' \) denotes the identity of group \(G' \).]

(a) \(G = \mathbb{Z} \) under addition, \(G' = \mathbb{Z}_n \), \(\alpha(a) = [a] \) for \(a \in \mathbb{Z} \).
(b) \(G \) group, \(\alpha : G \rightarrow G \) defined by \(\alpha(a) = a^{-1} \), for \(a \in G \).
(c) \(G \) Abelian group, \(\alpha : G \rightarrow G \) defined by \(\alpha(a) = a^{-1} \), for \(a \in G \).
(d) \(G \) group of all nonzero real numbers under multiplication, \(G' = \{1, -1\} \), \(\alpha(r) = 1 \) if \(r \) is positive, \(\alpha(r) = -1 \) if \(r \) is negative.
(e) \(G \) Abelian group, \(n > 1 \) a fixed integer, and \(\alpha : G \rightarrow G \) defined by \(\alpha(a) = a^n \) for \(a \in G \).

2. Let

\[
G = \left\{ \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} : n \in \mathbb{Z} \right\}.
\]

Show that \(G \) is a group under matrix multiplication and that it is isomorphic to \(\mathbb{Z} \) (i.e., \(G \cong \mathbb{Z} \)).

3. Show that

\[
G = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \right\}
\]

is a subgroup of \(GL_2(\mathbb{Z}) \) and is isomorphic to the group \(H = \{1, -1, i, -i\} \) (with the complex multiplication operation).
Recall that $GL_2(\mathbb{Z})$ denotes the group (under matrix multiplication) of all 2×2 invertible integer-valued matrices.]

4. If G is an infinite cyclic group, show that $G \cong \mathbb{Z}$.

5. Answer the following questions.

(a) Define $\alpha : G \to G$ by $\alpha(g) = g^{-1}$. Show that α is an isomorphism (called an automorphism) if and only if G is Abelian.

(b) Let G, G_1, H and H_1 be groups. If $G \cong G_1$ and $H \cong H_1$, show that $G \times H \cong G_1 \times H_1$.
