Control of Stochastic Systems

Serdar Yüksel
Queen’s University, Mathematics and Statistics

Lecture Notes

July 17, 2021
This document is a set of supplemental lecture notes that has been used for MTHE 472 / MATH 872: Control of Stochastic Systems at Queen’s University and for EEE 446/546: Control and Optimization of Stochastic Systems at Bilkent University. These have also been used at the University of Passau.
Contents

1 Review of Probability ... 3
 1.1 Introduction .. 3
 1.2 Measures and Integration .. 3
 1.2.1 Borel σ-field ... 4
 1.2.2 Measurable Function .. 5
 1.2.3 Measure ... 5
 1.2.4 The Extension Theorem (Optional) 6
 1.2.5 Integration .. 6
 1.2.6 Fatou’s Lemma, the Monotone Convergence Theorem and the Dominated Convergence Theorem 7
 1.3 Probability Space and Random Variables 8
 1.3.1 More on Random Variables and Probability Density Functions ... 8
 1.3.2 Independence and Conditional Probability 9
 1.4 Stochastic Processes and Markov Chains 10
 1.4.1 Markov Chains .. 10
 1.5 Appendix ... 11
 1.5.1 Proof of Theorem 1.2.1 .. 11
 1.6 Exercises .. 11

2 Controlled Markov Chains ... 13
 2.1 Controlled Markov Models ... 13
 2.1.1 Fully Observed Markov Control Problem Model 13
 2.1.2 Classes of Control Policies .. 14
 2.2 Performance of Policies .. 15
 2.3 Markov Chain Induced by a Markov Policy 16
 2.4 Partially Observed Models and Reduction to a Fully Observed Model ... 17
2.5 Decentralized Stochastic Control .. 18
2.6 Controlled Continuous-Time Stochastic Systems 18
2.7 Exercises ... 19

3 Classification of Markov Chains .. 23
3.1 Countable State Space Markov Chains .. 23
 3.1.1 Recurrence and transience ... 25
 3.1.2 Stability and invariant measures ... 27
 3.1.3 Invariant measures via an occupational characterization 27
3.2 Uncountable Standard Borel State Spaces ... 32
 3.2.1 Invariant probability measures .. 33
 3.2.2 Existence of an invariant probability measure 35
 3.2.3 On small and petite sets: sufficient conditions 36
3.3 Rates of Convergence to Equilibrium ... 38
3.4 Further Conditions on the Existence and Uniqueness of Invariant Probability Measures ... 39
 3.4.1 Markov chains with the Feller property .. 39
 3.4.2 Quasi-Feller chains .. 40
 3.4.3 Cases without the Feller condition .. 41
3.5 Ergodicity Properties .. 41
 3.5.1 Uniqueness of an invariant probability measure and unique ergodicity 41
 3.5.2 Ergodic theorems for positive Harris recurrent chains 42
 3.5.3 Further ergodic theorems for Markov chains 43
3.6 Exercises ... 44

4 Martingale Methods and Foster-Lyapunov Criteria for Stabilization of Markov Chains ... 47
4.1 Martingales ... 47
 4.1.1 More on expectations and conditional probability 47
 4.1.2 Some properties of conditional expectation .. 49
 4.1.3 Discrete-time martingales .. 49
 4.1.4 Doob’s optional sampling theorem .. 50
 4.1.5 Doob’s maximal inequality (optional) ... 51
 4.1.6 An important martingale convergence theorem 52
 4.1.7 The ergodic theorem .. 54
 4.1.8 This section is optional: Further martingale theorems 54
 4.1.9 Azuma-Hoeffding inequality for martingales with bounded increments 55
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3.1 Non-linear Filter in the Standard Borel setup</td>
<td>112</td>
</tr>
<tr>
<td>6.3.2 Measurability Issues, Proof of Theorem 6.1.1 and its Extension to Polish Spaces</td>
<td>114</td>
</tr>
<tr>
<td>6.3.3 Continuity Properties of Belief-MDP</td>
<td>115</td>
</tr>
<tr>
<td>6.3.4 A useful structural result: Concavity of the value function in the priors</td>
<td>116</td>
</tr>
<tr>
<td>6.4 Filter Stability</td>
<td>117</td>
</tr>
<tr>
<td>6.5 Bibliographic Notes</td>
<td>118</td>
</tr>
<tr>
<td>6.6 Exercises</td>
<td>118</td>
</tr>
<tr>
<td>7 The Average Cost Problem</td>
<td>121</td>
</tr>
<tr>
<td>7.1 Average Cost and the Average Cost Optimality Equation (ACOE) or Inequality (ACOI)</td>
<td>121</td>
</tr>
<tr>
<td>7.2 The Value Iteration Approach to the Average Cost Problem</td>
<td>124</td>
</tr>
<tr>
<td>7.3 The Vanishing Discounted Cost Approach to the Average Cost Problem</td>
<td>126</td>
</tr>
<tr>
<td>7.3.1 Standard Borel State and Action Spaces, ACOE and ACOI</td>
<td>127</td>
</tr>
<tr>
<td>7.4 The Convex Analytic Approach to Average Cost Markov Decision Problems</td>
<td>131</td>
</tr>
<tr>
<td>7.4.1 Finite State/Action Setup</td>
<td>132</td>
</tr>
<tr>
<td>7.4.2 General State/Action Spaces under Weak Continuity</td>
<td>134</td>
</tr>
<tr>
<td>7.4.3 General State/Action Spaces under Strong Continuity in Actions</td>
<td>135</td>
</tr>
<tr>
<td>7.4.4 Optimality of Deterministic Stationary Policies</td>
<td>137</td>
</tr>
<tr>
<td>7.4.5 ACOI through duality with the convex analytic method</td>
<td>137</td>
</tr>
<tr>
<td>7.4.6 Sample-Path Optimality</td>
<td>137</td>
</tr>
<tr>
<td>7.5 Constrained Markov Decision Processes</td>
<td>140</td>
</tr>
<tr>
<td>7.6 Bibliographic Notes</td>
<td>140</td>
</tr>
<tr>
<td>7.7 Exercises</td>
<td>140</td>
</tr>
<tr>
<td>8 Numerical Methods, Reinforcement Learning and Approximation Methods</td>
<td>143</td>
</tr>
<tr>
<td>8.1 Value and Policy Iteration Algorithms</td>
<td>143</td>
</tr>
<tr>
<td>8.1.1 Value Iteration</td>
<td>143</td>
</tr>
<tr>
<td>8.1.2 Policy Iteration</td>
<td>143</td>
</tr>
<tr>
<td>8.2 Stochastic Learning Algorithms</td>
<td>145</td>
</tr>
<tr>
<td>8.2.1 Q-Learning</td>
<td>146</td>
</tr>
<tr>
<td>8.3 Approximation through Quantization of the State and the Action Spaces</td>
<td>149</td>
</tr>
<tr>
<td>8.3.1 Finite Action Approximation to MDPs</td>
<td>149</td>
</tr>
<tr>
<td>8.3.2 Finite State Approximation to MDPs</td>
<td>152</td>
</tr>
<tr>
<td>8.3.3 Finite Model MDP Approximation: Quantization of Both the State and Action Spaces</td>
<td>154</td>
</tr>
<tr>
<td>8.4 Bibliographic Notes</td>
<td>154</td>
</tr>
</tbody>
</table>
9 Decentralized Stochastic Control

9.1 Introduction

9.2 Witsenhausen’s Intrinsic Model

9.3 Classification of information structures

9.3.1 Classical, quasiclassical and nonclassical information structures

9.3.2 A state space model

9.4 Solutions to Static Teams

9.5 Static Reduction of Dynamic Teams

9.5.1 Dynamic teams with quasi-classical (partially nested) information structures

9.5.2 Nonclassical case: Witsenhausen’s equivalent model and static reduction of sequential dynamic teams

9.6 Expansion of information Structures: A recipe for identifying sufficient information

9.7 Convexity of Decentralized Stochastic Control Problems

9.7.1 Convexity of static team problems and an equivalent representation of cost functions

9.7.2 Convexity of Sequential Dynamic Teams

9.8 The Strategic Measures Approach

9.8.1 Measurable policies as a subset of randomized policies and strategic measures

9.8.2 Sets of strategic measures for static teams

9.8.3 Sets of strategic measures for dynamic teams in the absence of static reduction

9.8.4 Measurability properties of sets of strategic measures

9.9 Existence of Optimal Solutions

9.9.1 Some Applications and Revisiting Existence Results for Classical (Single-DM) Stochastic Control

9.10 Approximation of Optimal Solutions via Finite Approximations

9.11 Dynamic Programming Approaches to Team Decision Problems

9.11.1 Dynamic programming approach based on Common Information and a Controlled Markov State

9.11.2 A Universal Dynamic Program

9.12 Bibliographic Notes

9.13 Exercises

10 Controlled Stochastic Differential Equations

10.1 Continuous-time Markov processes

10.1.1 Two ways to construct a continuous-time Markov process

10.1.2 The Brownian motion
Introduction

In a differential equations or a signals and systems course, one learns about the behaviour of a system described by differential or difference equations. For such systems, under mild regularity conditions, a given initial condition (in the absence of disturbances) leads to a unique solution/output.

In many engineering or applied mathematics areas, one has the liberty to affect the flow of the system through adding a control term. Control theory is concerned with shaping the input-output behaviour of a system by possibly utilizing feedback from system outputs under various design criteria and constraints. The way control actions or variables are generated based on the information available at the controller is called the control policy or control law.

In deterministic control theory, a given initial state and a given control policy uniquely specifies the realized path. Despite this idealization, deterministic theory has had tremendous impact and success in many applications with commonly considered criteria being system stability (e.g. convergence to a point or a set with respect to initial state conditions, or boundedness of the output corresponding to any bounded input), reference tracking, robustness to incorrect models and disturbances (which may appear in the system itself or in measurements available at the controller), and optimal control.

However, in many setups and applications, the deterministic theory is not directly applicable. In such systems, disturbances appear in both the dynamics of a system and in the information available to the controller. On the latter setup, approaching such informational aspects of control is perhaps what particularly distinguishes the stochastic theory from its deterministic counterpart in both the analysis and the versatility in applications (also including those in decentralized setups where multiple decision makers are present either in a cooperative or in an adversarial context). Furthermore, the concepts on stability require a different approach since stabilization to a point or often to a compact set/formation/manifold is often too much to ask in a stochastic system. The solution concepts for stochastic systems in continuous-time or discrete-time can be significantly different from those in a deterministic setup.

Some application areas include: optimal regulation and tracking; optimal filtering of noisy measurements with respect to a hidden dynamical system and control of such systems; operations research; mathematical finance and investment; stochastic and data-driven learning; stability and optimization of communication networks; information theory (in particular for setups involving causality and feedback); robust design of control systems under approximation errors, incorrect models and priors; stability analysis and stabilization of stochastic dynamical systems; decentralized stochastic control of large systems; stochastic control in the presence of adverse decision makers (as in stochastic game theory); and stochastic networked control (control under information constraints between various components of a control system).

We will see that many concepts and principles from deterministic control theory carry over to the stochastic setup. For a stochastic system, we will see that even though a control policy and an initial condition does not uniquely determine the path that a controlled process may take, the probability measure on the future paths is uniquely specified given a policy. Likewise, the concepts of stability, optimality and observability will all find corresponding interpretations (though with significant generalizations, refinements, but also limitations). Results from geometric control theory and robust control theory will lead to remarkable insights. However, these connections require a strong foundation on probability (and often other areas of applied and pure mathematics, and engineering): before we proceed with the technical study of the subject, which will also touch on the aforementioned application areas, in the first chapter a concise but sufficiently detailed review of probability theory will be presented.
1

Review of Probability

1.1 Introduction

Before discussing controlled Markov chains, we first discuss some preliminaries about probability theory. Many events in the physical world are uncertain; that is, with a given prior knowledge (such as an initial condition) regarding a process, the future values of the process are not exactly predictable. Probability theory attempts to develop an understanding for such uncertainty in a consistent way given a number of properties to be satisfied.

Examples of stochastic processes include: a) The temperature in a city at noon throughout some October: This process takes values in \(\mathbb{R} \), b) The sequence of outputs of a communication channel modeled by an additive scalar Gaussian noise when the input is given by \(x = \{x_1, \ldots, x_n\} \in \mathbb{R}^n \) (the output process lives in \(\mathbb{R}^n \)), c) Infinite copies of a coin flip process (living in \(\{H, T\}^{\mathbb{Z}^+} \), where \(H \) denotes the head and \(T \) denotes the tail outcome), d) The trajectory of a plane flying from point A to point B (taking values in \(C([t_0, \infty)) \), the space of all continuous paths in \(\mathbb{R}^3 \) with \(x_{t_0} = A, x_{t_f} = B \) for some \(t_0 < t_f \in \mathbb{R} \), e) The exchange rate between the Canadian dollar and the American dollar on a given time index \(T \).

Some of these processes take values in countable spaces, some do not. If the state space \(\mathbb{X} \) in which a random variable takes values is finite or countably infinite, it suffices to associate with each point \(x \in \mathbb{X} \) a number which determines the likelihood of the event that \(x \) is the value of the process. However, when \(\mathbb{X} \) is uncountable, further technical intricacies arise; here the notion of an event needs to be carefully defined. First, if some event \(A \) takes place, it must be that the complement of \(A \) (that is, this event not happening) must also be defined. Furthermore, if \(A \) and \(B \) are two events, then the intersection must also be an event. This line of thought will motivate us for a more formal analysis below. In particular, one needs to construct probability values by first defining values for certain events and extending such probabilities to a larger class of events in a consistent fashion (in particular, one does not first associate probability values to single points as we do in countable state spaces). These issues are best addressed with a precise characterization of probability and random variables.

Hence, probability theory can be used to model uncertainty in the real world in a consistent way according some properties that we expect such measures should admit. In the following, we will develop a rigorous definition for probability. For a more complete exposition the reader could consult with the standard texts on probability theory, such as [29, 37, 67, 75, 188] and texts on stochastic processes, such as [86, 92, 204].

1.2 Measures and Integration

Let \(\mathbb{X} \) be a collection of points. Let \(\mathcal{F} \) be a collection of subsets of \(\mathbb{X} \) with the following properties such that \(\mathcal{F} \) is a \(\sigma \)-field (also called a \(\sigma \)-algebra), that is:

- \(\mathbb{X} \in \mathcal{F} \)
- If \(A \in \mathcal{F} \), then \(\mathbb{X} \setminus A \in \mathcal{F} \)
• If $A_k \in \mathcal{F}, k = 1, 2, 3, \ldots$, then $\bigcup_{k=1}^{\infty} A_k \in \mathcal{F}$ (that is, the collection is closed under countably many unions).

By De Morgan’s laws, and set properties, it can be shown that the collection has to be closed under countable intersections as well.

For example, the full power-set of any set is a σ-field.

If the third item above holds for only finitely many unions or intersections, then, the collection of subsets is said to be a field or algebra.

With the above, $(\mathbb{X}, \mathcal{F})$ is termed a measurable space (that is we can associate a measure to this space; which we will discuss shortly).

Remark 1.1. Subsets in σ-fields can be interpreted to represent information that a controller has with regard to an underlying process. We will discuss this interpretation further and this will be a recurring theme in our discussions in the context of stochastic control problems.

A σ–field \mathcal{J} is generated by a collection of sets \mathcal{A}, if \mathcal{J} is the smallest σ–field containing the sets in \mathcal{A}, and in this case, we write $\mathcal{J} = \sigma(\mathcal{A})$.

Exercise 1.2.1 Let $\mathbb{X} = \{a, b, c\}$. Find (i) $\sigma(\{a\})$, (ii) $\sigma(\{a\}, \{b\}, \{c\})$.

We consider an important special case in the following.

1.2.1 Borel σ–field

An important class of σ-fields is the Borel σ–field on a metric (or more generally, topological) space. Such a σ–field is the one which is generated by open sets. The term open naturally depends on the space being considered. For this course, we will mainly consider spaces which are complete, separable and metric spaces (such as the space of real numbers \mathbb{R}, or countable sets) see Appendix $[A]$. Recall that in a metric space with metric d, a set U is open if for every $x \in U$, there exists some $\epsilon > 0$ such that $\{y : d(x, y) < \epsilon\} \subset U$. We note also that the empty set is a special open set.

The Borel σ–field on \mathbb{R} is then the one generated by sets of the form (a, b), that is, open intervals (it is very important to note here that every open set in \mathbb{R} can be expressed a union of countably many open intervals). It is also important to note that not all subsets of \mathbb{R} are Borel sets, that is, elements of the Borel σ–field; see e.g. Exercise $[1.6.7]$

We will denote the Borel σ–field on a space \mathbb{X} as $\mathcal{B}(\mathbb{X})$.

Exercise 1.2.2 Show that for every $a \in \mathbb{R}$, $\{a\} \in \mathcal{B}(\mathbb{R})$.

We can also define a Borel σ–field on a product space. Let \mathbb{X} be a complete, separable, metric space (with metric d). Let $\mathbb{X}^{\mathbb{Z}_+}$ denote the infinite product of \mathbb{X} so that with $x = (x_0, x_1, x_2, \ldots)$, where $x_k \in \mathbb{X}$ for $k \in \mathbb{Z}_+$. If this space is endowed with the product metric (such a metric is defined as: $\rho(x, y) = \sum_{i=0}^{\infty} 2^{-i} \frac{d(x_i, y_i)}{1 + d(x_i, y_i)}$), sets of the form $\prod_{i \in \mathbb{Z}_+} A_i$, where possibly only finitely many of these sets are not equal to \mathbb{X} and these sets are open; and unions of such sets form open sets.

We define cylinder sets in this product space as:

$$B_{\{A_m, m \in I\}} = \{x \in \mathbb{X}^{\mathbb{Z}_+}, x_m \in A_m, m \in I\},$$

with $A_m \in \mathcal{B}(\mathbb{X})$ and where $I \subset \mathbb{Z}$ with $|I| < \infty$, that is, the set has finitely many elements. Thus, in the above, if $x \in B_{\{A_m, m \in I\}}$, then, $x_m \in A_m$ for $m \in I$ and the remaining terms (that is, the x_m values for $m \notin I$) can be taken arbitrarily from \mathbb{X}. The σ–field generated by such open cylinder sets is the Borel σ–field on the product space. Such a construction is important for stochastic processes (and is the reason why while studying certain properties of stochastic processes one often only considers finite dimensional distributions).
Remark 1.2. A metric space which is complete and separable is called a Polish space. A Borel subset of a Polish space is called a standard Borel space [174]. A very important fact is that any Polish space is related to either a finite set, or \mathbb{R}, through a bijection (that is, via a measurable function -to be defined further below- with a measurable inverse).

1.2.2 Measurable Function

If (X, \mathcal{F}) and (Y, \mathcal{G}) are measurable spaces; we say a mapping from $h : (X, \mathcal{F}) \to (Y, \mathcal{G})$ is a measurable function if

$$h^{-1}(B) := \{ x : h(x) \in B \} \in \mathcal{F}, \quad \forall B \in \mathcal{G}$$

It is instructive to view measurability in terms of informativeness of a σ-field. Let $X = \{a, b, c\}$ and let \mathcal{F}_1 be as in Exercise 1.2.1(i) and \mathcal{F}_2 be as in Exercise 1.2.1(ii). Let $Y = \{0, 1\}$ and $\mathcal{G} = \sigma(\{0\}, \{1\})$. Now, let $F : X \to Y$ be a map so that $F^{-1}(0) = \{a, b\}$ and $F^{-1}(1) = \{c\}$. Then, we can conclude that this map defines a measurable function from $(X, \mathcal{F}_1) \to (Y, \mathcal{G})$ but it is not a measurable function from $(X, \mathcal{F}_2) \to (Y, \mathcal{G})$; the reason is that the information on whether $F(x) = 1$ (that is, $x = c$) is not an element of \mathcal{F}_1 (and thus, this information that $x = c$ or not, is not available as information under \mathcal{F}_1).

In the particular case involving the Borel σ-fields, if $(X, \mathcal{B}(X))$ and $(Y, \mathcal{B}(Y))$ are measurable spaces; we say a mapping from $h : X \to Y$ is (Borel) measurable if

$$h^{-1}(B) = \{ x : h(x) \in B \} \in \mathcal{B}(X), \quad \forall B \in \mathcal{B}(Y)$$

Theorem 1.2.1 To show that a function is measurable, it is sufficient to check the measurability of the inverses of sets that generate the σ-algebra on the image space.

See Section 1.5.1 for a proof. Therefore, for Borel measurability, it suffices to check the measurability of the inverse images of open sets. Furthermore, for real valued functions, to check the measurability of the inverse images of open sets, it suffices to check the measurability of the inverse images sets of the form $\{(-\infty, a], a \in \mathbb{R}\}$, $\{(-\infty, a), a \in \mathbb{R}\}$, $\{(a, \infty), a \in \mathbb{R}\}$ or $\{[a, \infty), a \in \mathbb{R}\}$, since each of these generate the Borel σ-field on \mathbb{R}. In fact, here we can restrict a to be \mathbb{Q}-valued, where \mathbb{Q} is the set of rational numbers.

1.2.3 Measure

Let (X, \mathcal{F}) be a measurable space. A positive measure μ on (X, \mathcal{F}) is a map from \mathcal{F} to $[0, \infty]$ which is countably additive such that for $A_k \in \mathcal{F}$ and $A_k \cap A_j = \emptyset$:

$$\mu \left(\bigcup_{k=1}^{\infty} A_k \right) = \sum_{k=1}^{\infty} \mu(A_k).$$

Definition 1.2.1 μ is a probability measure if it is positive and $\mu(X) = 1$.

Definition 1.2.2 A measure μ is finite if $\mu(X) < \infty$, and σ–finite if there exist a collection of subsets $A_k \in \mathcal{F}$ such that $X = \bigcup_{k=1}^{\infty} A_k$ with $\mu(A_k) < \infty$ for all k.

On the real line \mathbb{R}, the Lebesgue measure is defined on the Borel σ–field (in fact on a somewhat larger field obtained through adding all subsets of Borel sets of measure zero: this is known as completion of a σ-field) such that for $A = (a, b)$, $\mu(A) = b - a$. Borel σ-field of subsets is a strict subset of Lebesgue measurable sets, that is there exist Lebesgue measurable sets which are not Borel sets. For a definition and the construction of Lebesgue measurable sets, see [29]. Countable subsets of \mathbb{R} all have zero Lebesgue measure but there also exist Lebesgue measurable sets of measure zero which contain uncountably many elements, for a well-studied example see the Cantor set [67]. Not all subsets of \mathbb{R} are Lebesgue measurable (and thus, not Borel either), see e.g. Exercise 1.6.7.
1.2.4 The Extension Theorem (Optional)

Theorem 1.2.2 (The Extension Theorem) Let \mathcal{M} be an algebra, and suppose that there exists a measure P satisfying that (i) there exists countably many sets $A_n \in \mathcal{X}$ such that $\mathcal{X} = \bigcup_n A_n$, with $P(A_n) < \infty$, (ii) For pairwise disjoint sets A_n, if $A_n \in \mathcal{M}$, then $P(\bigcup_n A_n) = \sum_n P(A_n)$. Then, there exists a unique measure P' on the $\sigma-$field generated by \mathcal{M}, $\sigma(\mathcal{M})$, which is consistent with P on \mathcal{M}.

The above is useful since, when one states that two measures are equal it suffices to check whether they are equal on the set of sets which generate the $\sigma-$field, and not necessarily on the entire $\sigma-$field.

The following is a refinement useful for stochastic processes. It, in particular, does not require a probability measure defined apriori before an extension [2]:

Theorem 1.2.3 (Kolmogorov’s Extension Theorem) Let \mathcal{X} be a complete and separable metric space and for all $n \in \mathbb{N}$ let μ_n be a probability measure on \mathcal{X}^n, the n product of \mathcal{X}, such that

$$\mu_n(A_1 \times A_2 \times \cdots \times A_n) = \mu_{n+1}(A_1 \times A_2 \times \cdots \times A_n \times \mathcal{X}),$$

for every n and every sequence of Borel sets A_k. Then, there exists a unique probability measure μ on $(\mathcal{X}^\infty, \mathcal{B}(\mathcal{X}^\infty))$ which is consistent with each of the μ_n’s.

A further related result, which often in stochastic control is cited in the context of extensions, is the Ionescu Tulcea Extension Theorem [96, Appendix C]; where conditional probability measures (stochastic kernels) are defined (instead of probability measures on finite dimensional product spaces) as a starting assumption, before an extension to the infinite product space is established.

Thus, if the $\sigma-$field on a product space is generated by the collection of finite dimensional cylinder sets, one can define a measure in the product space which is consistent with the finite dimensional distributions.

Likewise, we can construct the Lebesgue measure on $\mathcal{B}(\mathbb{R})$ by defining it on finitely many unions and intersections of intervals of the form (a, b), $[a, b)$, $(a, b]$ and $[a, b]$, and the empty set, thus forming an algebra (or a field), and extending this to the Borel $\sigma-$field. Thus, the relation $\mu(a, b) = b - a$ for $b > a$ is sufficient to define the Lebesgue measure.

Remark 1.3. A related general result is as follows: Let \mathcal{S} be a σ-field. A class of subsets $\mathcal{A} \subset \mathcal{S}$ is called a separating class if two probability measures that agree on \mathcal{A} agree on the entire \mathcal{S}. A class of subsets is a π-system if it is closed under finite intersections. The class \mathcal{A} is a separating class if it is both a π-system and it generates the σ-field \mathcal{S}; see [28] or [29].

1.2.5 Integration

Let h be a non-negative measurable function from $(\mathcal{X}, \mathcal{B}(\mathcal{X}))$ to $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. The Lebesgue integral of h with respect to a measure μ can be defined in three steps:

First, for $A \in \mathcal{B}(\mathcal{X})$, define $1_{\{x \in A\}}$ (or $1_{\{x \in A\}}$, or $1_A(x)$) as an indicator function for event $x \in A$, that is the value that the function takes is 1 if $x \in A$, and 0 otherwise. In this case, define

$$\int_\mathcal{X} 1_{\{x \in A\}} \mu(dx) := \mu(A).$$

Now, let us define simple functions h such that, there exist A_1, A_2, \ldots, A_n all in $\mathcal{B}(\mathcal{X})$ and positive numbers b_1, b_2, \ldots, b_n such that $h_n(x) = \sum_{k=1}^n b_k 1_{\{x \in A_k\}}$. For such functions, define

$$\int_\mathcal{X} h_n(x) \mu(dx) := \sum_{k=1}^n b_k \mu(A_k).$$
Now, for any given measurable h, there exists a sequence of simple functions h_n such that $h_n(x) \to h(x)$ monotonically, that is $h_{n+1}(x) \geq h_n(x)$ (for a construction, if h only takes non-negative values, consider partitioning the positive real line to two intervals $[0, n)$ and $[n, \infty)$, and partition $[0, n)$ to $n2^n$ uniform intervals, define $h_n(x)$ to be the lower floor of the interval that contains $h(x)$: thus

$$h_n(x) = k2^{-n}, \quad \text{if} \quad k2^{-n} \leq h(x) < (k + 1)2^{-n}, \quad k = 0, 1, \cdots, n2^n - 1,$$

and $h_n(x) = n$ for $h(x) \geq n$. By definition, and since $h^{-1}([k2^{-n}, (k + 1)2^{-n}))$ is Borel, h_n is a simple function. If the function takes also negative values, write $h(x) = h_+(x) - h_-(x)$, where h_+ is the non-negative part and $-h_-$ is the negative part, and construct the same for $h_-(x))$. We define the limit (which exists as a real valued monotonically increasing sequence) as the Lebesgue integral:

$$\lim_{n \to \infty} \int h_n(x) \mu(dx) =: \int h(x) \mu(dx)$$

We note that the notation $\int h d\mu$ or $\int h(x) d\mu(x)$ can also be used in place of $\int h(x) \mu(dx)$.

There are three important convergence theorems which we will not discuss in detail, the statements of which will be given in class.

1.2.6 Fatou’s Lemma, the Monotone Convergence Theorem and the Dominated Convergence Theorem

Theorem 1.2.4 (Monotone Convergence Theorem) If μ is a σ–finite positive measure on $(\mathcal{X}, \mathcal{B}(\mathcal{X}))$ and \{\(f_n, n \in \mathbb{Z}_+\}\} is a sequence of measurable functions from \mathcal{X} to \mathbb{R} which pointwise, monotonically, converge to f so that $0 \leq f_n(x) \leq f_{n+1}(x)$ for all n, and

$$\lim_{n \to \infty} f_n(x) = f(x),$$

for μ–almost every x, then

$$\int_{\mathcal{X}} f(x) \mu(dx) = \lim_{n \to \infty} \int_{\mathcal{X}} f_n(x) \mu(dx)$$

Theorem 1.2.5 (Fatou’s Lemma) If μ is a σ–finite positive measure on $(\mathcal{X}, \mathcal{B}(\mathcal{X}))$ and \{\(f_n, n \in \mathbb{Z}_+\}\} is a sequence of measurable functions (bounded from below) from \mathcal{X} to \mathbb{R}, then

$$\int_{\mathcal{X}} \liminf_{n \to \infty} f_n(x) \mu(dx) \leq \liminf_{n \to \infty} \int_{\mathcal{X}} f_n(x) \mu(dx)$$

Theorem 1.2.6 (Dominated Convergence Theorem) If (i) μ is a σ–finite positive measure on $(\mathcal{X}, \mathcal{B}(\mathcal{X}))$, (ii) g is a Borel measurable function with

$$\int_{\mathcal{X}} g(x) \mu(dx) < \infty,$$

and (iii) \{\(f_n, n \in \mathbb{Z}_+\}\} is a sequence of measurable functions from \mathcal{X} to \mathbb{R} which satisfy $|f_n(x)| \leq g(x)$ for μ–almost every x, and $\lim_{n \to \infty} f_n(x) = f(x)$, then:

$$\int_{\mathcal{X}} f(x) \mu(dx) = \lim_{n \to \infty} \int_{\mathcal{X}} f_n(x) \mu(dx)$$

Note that for the monotone convergence theorem, there is no restriction on boundedness; whereas for the dominated convergence theorem, there is a boundedness condition. On the other hand, for the dominated convergence theorem, the pointwise convergence does not have to be monotone.

There also exist generalized versions of these theorems, where the measures themselves are time-varying, but converge to a limit measure in some appropriate sense; see in particular Theorem D.1.3 (building on [121, 172]). These will be discussed later in further detail (and will be seen to be particularly important for stochastic control applications).
1.3 Probability Space and Random Variables

Let (Ω, \mathcal{F}) be a measurable space. If P is a probability measure, then the triple (Ω, \mathcal{F}, P) forms a probability space. Here Ω is a set called the sample space. \mathcal{F} is called the event space, and this is a σ–field of subsets of Ω.

Let (E, \mathcal{E}) be another measurable space and $X : (\Omega, \mathcal{F}, P) \to (E, \mathcal{E})$ be a measurable map. We call X an E–valued random variable. The image under X is a probability measure on (E, \mathcal{E}), called the law of X.

The σ-field generated by the events $\{\{w : X(w) \in A\}, A \in \mathcal{E}\}$, that is $\{X^{-1}(A), A \in \mathcal{E}\}$, is called the σ–field generated by X and is denoted by $\sigma(X)$.

Consider a coin flip process, with possible outcomes $\{H, T\}$, heads or tails. We have a good intuitive understanding on the environment when someone tells us that a coin flip leads to the value H with probability $\frac{1}{2}$. Based on the definition of a random variable, we view then a coin flip outcome as a deterministic function from some space (Ω, \mathcal{F}, P) to the binary output space consisting of a head and a tail event. Here, P denotes the uncertainty measure (you may think of the initial condition of the coin when it is being flipped, the flow dynamics in the air, the conditions on the surface where the coin touches etc.; we encode all these aspects and all the uncertainty in the universe with the abstract space (Ω, \mathcal{F}, P)). You can view then the σ–field generated by such a coin flip as a partition of Ω: if certain things take place the outcome is a H and otherwise it is a T.

A useful fact about measurable functions (and thus random variables) is the following result.

Theorem 1.3.1 Let f_n be a sequence of measurable functions from (Ω, \mathcal{F}) to a complete separable metric space $(\mathbb{X}, \mathcal{B}(\mathbb{X}))$. Then, $\limsup_{n \to \infty} f_n(x)$, $\liminf_{n \to \infty} f_n(x)$ are measurable. In particular, if $f(x) = \lim_{n \to \infty} f_n(x)$ exists, then f is measurable.

Similar to Theorem 1.2.1, this theorem implies that to verify whether a real valued mapping f is a Borel measurable function, it suffices to check if $f^{-1}(a, b) \in \mathcal{B}(\mathbb{R})$ for $a < b$ since one can construct a sequence of simple functions which will converge to any measurable f, as discussed earlier. It suffices then to check if $f^{-1}(−\infty, a) \in \mathcal{B}(\mathbb{R})$ for $a \in \mathbb{R}$.

1.3.1 More on Random Variables and Probability Density Functions

Consider a probability space $(\mathbb{X}, \mathcal{B}(\mathbb{X}), P)$ and consider an \mathbb{R}–valued random variable U measurable with respect to $(\mathbb{X}, \mathcal{B}(\mathbb{X}))$.

This random variable induces a probability measure μ on $\mathcal{B}(\mathbb{R})$ such that for some $(a, b) \in \mathcal{B}(\mathbb{R})$:

$$\mu((a, b)) = P(U \in (a, b]) = P\left(\{x : U(x) \in (a, b]\}\right) = P(U^{-1}((a, b]))$$

When U is \mathbb{R}–valued, the expectation of U is given with

$$E[U] = \int_{\mathbb{R}} \mu(dx)x,$$

whenever this is defined (i.e., $E[|U|] < \infty$). We define $F(x) = \mu(−\infty, x]$ as the cumulative distribution function of U. If $F(x) = \int_{−\infty}^{x} p(s)\lambda(ds)$ for some p, λ is called the probability density function (with respect to the Lebesgue measure) of μ. If such a density function exists, we can then write

$$E[U] = \int_{\mathbb{R}} p(x)x\,dx$$

If a probability density function p exists, the measure μ is said to be absolutely continuous with respect to the Lebesgue measure. In particular, the density function p is the Radon-Nikodym derivative of μ with respect to the Lebesgue measure λ in the sense that for all Borel A: $\int_{A} p(x)\lambda(dx) = \mu(A)$. A probability density function does not always exist. In particular,
whenever there is a probability mass on a given point, then a probability density function does not exist; hence in \(\mathbb{R} \), if for some \(x, \mu(\{x\}) > 0 \), then we say there is a probability mass at \(x \), and a density function does not exist.

However, one can also consider density functions with respect to more general positive measures (that is, different from the Lebesgue measure), we will consider such conditions later in the notes. If \(X \) is countable, we can write \(P(\{x\}) = p(x) \), where \(p \) is called the probability mass function; this can be viewed as a density with respect to the (discrete) counting measure.

Some examples of commonly encountered random variables, with their probability density or mass functions, are as follows:

- **Gaussian** (with mean \(\mu \) and variance \(\sigma^2 \): \(N(\mu, \sigma^2) \)):
 \[
p(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \quad x \in \mathbb{R}
 \]

- **Exponential** (with parameter \(\lambda \)):
 \[
 F(x) = 1 - e^{-\lambda x}, \quad p(x) = \lambda e^{-\lambda x} \quad x \in \mathbb{R}_+
 \]

- **Uniform on \([a, b]\)** (\(U([a, b]) \)):
 \[
 F(x) = \frac{x-a}{b-a}, \quad p(x) = \frac{1}{b-a} \quad x \in [a, b]
 \]

- **Poisson with rate \(\lambda > 0 \) on \(\mathbb{Z}_+ \)**
 \[
 p(m) = \frac{\lambda^m e^{-\lambda}}{m!}, \quad m \in \mathbb{Z}_+
 \]

- **Binomial** (\(B(n, p) \)):
 \[
 p(k) = \binom{n}{k} p^k (1-p)^{n-k} \quad k \in \{0, 1, \ldots, n\}
 \]
 If \(n = 1 \), we also call a binomial variable a **Bernoulli** variable.

1.3.2 Independence and Conditional Probability

Consider \(A, B \in \mathcal{B}(X) \) such that \(P(B) > 0 \). The quantity

\[
P(A|B) = \frac{P(A \cap B)}{P(B)}
\]

is called the conditional probability of event \(A \) given \(B \). The measure \(P(\cdot|B) \) defined on \(\mathcal{B}(X) \) is itself a probability measure. If

\[
P(A|B) = P(A)
\]

Then, \(A, B \) are said to be independent events.

A countable collection of events \(\{A_n\} \) is independent if for any finitely many sub-collections \(A_{i_1}, A_{i_2}, \ldots, A_{i_m} \), we have that

\[
P(A_{i_1}, A_{i_2}, \ldots, A_{i_m}) = P(A_{i_1})P(A_{i_2}) \cdots P(A_{i_m}).
\]

Here, we use the notation \(P(A, B) = P(A \cap B) \). A sequence of events is said to be pairwise independent if for any two pairs \((A_m, A_n) \): \(P(A_m, A_n) = P(A_m)P(A_n) \). Pairwise independence is a weaker concept than independence, that is there exist examples where a collection of random variables is pairwise independent but not independent.
Conditional probability and expectation will be discussed in more detail later in Chapter 4.

1.4 Stochastic Processes and Markov Chains

One can define a sequence of random variables as a single random variable living in the product set, that is we can consider \(\{x_1, x_2, \cdots, x_N, \cdots \} \) as an individual random variable \(X \) which is an \(\mathbb{X}^{\mathbb{Z}^+} \)-valued random variable, where now the events are to be defined on the product space.

Let \(\mathbb{X} \) be a complete, separable, metric space and let \(T = \mathbb{Z} \) or \(T = \mathbb{Z}_+ \). Let \(B(\mathbb{X}) \) denote the Borel sigma-field over \(\mathbb{X} \). Let \(\Sigma = \mathbb{X}^T \), denote the sequence space of all one-sided (with \(T = \mathbb{Z}_+ \)) or two-sided (with \(T = \mathbb{Z} \)) infinitely many random variables drawn from \(\mathbb{X} \). Thus, if \(T = \mathbb{Z}, x \in \Sigma \), then \(x = \{\ldots, x_{-1}, x_0, x_1, \ldots \} \) with \(x_t \in \mathbb{X} \). Let \(X_n : \Sigma \rightarrow \mathbb{X} \) denote the coordinate function such that \(X_n(x) = x_n \). Let \(B(\Sigma) \) denote the smallest sigma-field containing all cylinder sets of the form \(\{x: x_i \in B_i, m \leq i \leq n\} \) where \(B_i \in B(\mathbb{X}) \), for all integers \(m, n \). We can define a probability measure by a characterization on these finite dimensional cylinder sets, by (the extension) Theorem 1.2.3.

A similar characterization also applies for continuous-time stochastic processes, where \(T \) is uncountable. The extension requires more delicate arguments, since finite-dimensional characterizations are too weak to uniquely define a sigma-field on a space of continuous-time paths which is consistent with such distributions. Such technicalities arise in the discussion for continuous-time Markov chains and controlled processes, typically requiring a construction where realizations take values from a separable product space (such as the space of continuous sample paths).

In much of these notes, our focus will primarily be on discrete-time processes; however, the analysis for continuous-time processes essentially follows from similar constructions with further structures that one needs to impose on continuous-time processes (such as the continuity of the sample paths). Some detailed discussion on this is presented in Chapter 10.

1.4.1 Markov Chains

If the probability measure on an \(\mathbb{X}^{\mathbb{Z}^+} \)-valued sequence is such that for every \(k \in \mathbb{N} \), for every Borel \(A_{k+1} \) and \((P\text{-almost surely})\) all realizations \(x_{[0,k]} \),

\[
P(x_{k+1} \in A_{k+1} | x_k, x_{k-1}, \ldots, x_0) = P_k(x_{k+1} \in A_{k+1} | x_k),
\]

for some conditional probability measure \(P_k \), then \(\{x_k\} \) is said to be a Markov chain. If \(P_k \) is a constant and does not depend on \(k \), the chain is said to be a time-homogeneous chain, otherwise it is time-inhomogeneous. Thus, for a Markov chain, the immediate state is sufficient to predict the future (and past variables are not needed).

One way to construct a Markov chain is via the following: Let \(\{x_t, t \geq 0\} \) be a random sequence with state space \((\mathbb{X}, B(\mathbb{X})) \), and defined on a probability space \((\Omega, \mathcal{F}, P) \), where \(B(\mathbb{X}) \) denotes the Borel \(\sigma \)-field on \(\mathbb{X} \), \(\Omega \) is the sample space, \(\mathcal{F} \) a sigma field of subsets of \(\Omega \), and \(P \) a probability measure. For \(x \in \mathbb{X} \) and \(D \in B(\mathbb{X}) \), we let \(P(x, D) := P(x_{t+1} \in D | x_t = x) \) denote the transition probability from \(x \) to \(D \), that is the probability of the event \(\{x_{t+1} \in D\} \) given that \(x_t = x \). Thus, the Markov chain is completely determined by the transition probability and the probability of the initial state, \(P(x_0) = p_0 \). Hence, the probability of the event \(\{x_{t+1} \in D\} \) for any \(t \) can be computed recursively by starting at \(t = 0 \), with \(P(x_1 \in D) = \sum_x P(x_1 \in D | x_0 = x)P(x_0 = x) \), and iterating with a similar formula for \(t = 1, 2, \ldots \) (building on the Ionescu Tulcea Extension Theorem [96 Appendix C]).

Hence, if the probability of the same event given some history of the past and the present does not depend on the past, and hence is given by the same quantity regardless of the past realizations as long as the present realization is fixed (almost surely), the chain is a Markov chain. As an example, consider the following linear system:

\[
x_{t+1} = ax_t + u_t,
\]

where \(\{u_t\} \) is an independent sequence of random variables for some \(a \in \mathbb{R} \). The process \(\{x_t\} \) is Markov. We also note that every time-homogeneous Markov chain admits a stochastic, functional and sample-path, realization of the form
\[x_{k+1} = f(x_k, w_k) \] where \(f \) is measurable and \(w_k \) is an i.i.d. \([0, 1] \)-valued process (see \([84, \text{Lemma 1.2}]\) or \([36, \text{Lemma 3.1}]\)).

We will continue our discussion on Markov chains after discussing controlled Markov chains.

1.5 Appendix

1.5.1 Proof of Theorem \([1.2.1]\)

Observe that set operations satisfy that for any \(B \in \mathcal{B}(\mathbb{Y}) \):

\[
h^{-1}(\mathbb{Y} \setminus B) = \mathbb{X} \setminus h^{-1}(B) \quad \text{and} \quad h^{-1}(\bigcup_{i=1}^{\infty} B_i) = \bigcup_{i=1}^{\infty} h^{-1}(B_i), \quad h^{-1}(\bigcap_{i=1}^{\infty} B_i) = \bigcap_{i=1}^{\infty} h^{-1}(B_i).
\]

Define the set of all subsets of \(\mathbb{Y} \) whose inverses are Borel:

\[
\mathcal{M} := \{ B \subset \mathbb{Y} : h^{-1}(B) \in \mathcal{B}(\mathbb{X}) \}.
\]

Note that \(\mathbb{Y} \subset \mathcal{M} \) and by the discussion above, this set is closed under countably many unions. Thus, this \(\mathcal{M} \) is a \(\sigma \)-algebra over \(\mathbb{Y} \). Note also that this set contains open sets in \(\mathbb{Y} \), by the fact that \(h \) is measurable, and since this set contains open sets (and that \(\mathcal{B}(\mathbb{Y}) \) is the smallest \(\sigma \)-algebra containing open sets), it must be that \(\mathcal{B}(\mathbb{Y}) \subset \mathcal{M} \).

1.6 Exercises

Exercise 1.6.1

a) Let \(H \) be some set and for all \(\beta \in H \), \(\mathcal{F}_\beta \) be a \(\sigma \)-field of subsets over some set \(\mathbb{X} \). Let

\[
\mathcal{F} = \bigcap_{\beta \in H} \mathcal{F}_\beta
\]

Show that \(\mathcal{F} \) is also a \(\sigma \)-field on \(\mathbb{X} \).

For a space \(\mathbb{X} \), on which a metric is defined, the Borel \(\sigma \)-field is generated by the collection of open sets. This means that, the Borel \(\sigma \)-field is the smallest \(\sigma \)-field containing open sets, and as such it is the intersection of all \(\sigma \)-fields containing open sets.

b) Show that any open set in \(\mathbb{R} \) under the usual distance \(d(x, y) = |x - y| \), can be written as a countable union of intervals. A consequence of this result is that, on \(\mathbb{R} \), the Borel \(\sigma \)-field is the smallest \(\sigma \)-field containing open intervals.

c) Is the set of rational numbers an element of the Borel \(\sigma \)-field on \(\mathbb{R} \)? Is the set of irrational numbers an element?

d) Let \(\mathbb{X} \) be a countable set. On this set, let us define a metric as follows:

\[
d(x, y) = \begin{cases} 0, & \text{if } x = y \\ 1, & \text{if } x \neq y \end{cases}
\]

Show that, the Borel \(\sigma \)-field on \(\mathbb{X} \) is generated by the collection of singletons \(\{\{x\}, x \in \mathbb{X}\} \); this is the power set, that is, the set of all subsets of \(\mathbb{X} \).

e) Let \(\mathbb{X} = \mathbb{R} \) and consider the distance function \(d \) defined as above in part d). Is the \(\sigma \)-field generated by open sets according to this metric the same as the Borel \(\sigma \)-field on \(\mathbb{R} \) (under the usual distance metric on \(\mathbb{R} \))?

Exercise 1.6.2

A Borel subset of a complete, separable and metric (i.e., a Polish) space is called a standard Borel space. If \((\mathbb{X}, \mathcal{B}(\mathbb{X})) \) and \((\mathbb{Y}, \mathcal{B}(\mathbb{Y})) \) are standard Borel spaces; we say a mapping from \(h : \mathbb{X} \rightarrow \mathbb{Y} \) is (Borel) measurable if
Review of Probability

$$h^{-1}(B) = \{x : h(x) \in B\} \in \mathcal{B}(\mathbb{X}), \; \forall B \in \mathcal{B}(\mathbb{Y})$$

Prove the following statement: To show that a function \(h \) is Borel measurable, it is sufficient to check the measurability of the invers (under \(h \)) of open sets in \(\mathbb{Y} \).

Exercise 1.6.3 Investigate the following limits in view of the convergence theorems.

a) Check if \(\lim_{n \to \infty} \int_0^1 x^n \, dx = \int_0^1 \lim_{n \to \infty} x^n \, dx \).

b) Check if \(\lim_{n \to \infty} \int_0^1 nx^n \, dx = \int_0^1 \lim_{n \to \infty} nx^n \, dx \).

c) Define \(f_n(x) = n \cdot 1_{(0 \leq x \leq \frac{1}{n})} \). Find \(\lim_{n \to \infty} \int f_n(x) \, dx \) and \(\int \lim_{n \to \infty} f_n(x) \, dx \). Are these equal?

Exercise 1.6.4

a) Let \(X \) and \(Y \) be real-valued random variables defined on a given probability space. Show that \(X^2 \) and \(X + Y \) are also random variables.

b) Let \(\mathcal{F} \) be a \(\sigma \)-field of subsets over a set \(\mathcal{X} \) and let \(A \in \mathcal{F} \). Prove that \(\{A \cap B, B \in \mathcal{F}\} \) is a \(\sigma \)-field over \(A \) (that is a \(\sigma \)-field of subsets of \(A \)).

Hint for part a: The following equivalence holds: \(\{X + Y < x\} \equiv \cup_{r \in \mathbb{Q}} \{X < r, Y < x - r\} \). To check if \(X + Y \) is a random variable, it suffices to check if the event \(\{X + Y < x\} = \{\omega : X(\omega) + Y(\omega) < x\} \) is an element of \(\mathcal{F} \) for every \(x \in \mathbb{R} \).

Exercise 1.6.5 Let \(f_n \) be a sequence of measurable functions from \((\Omega, \mathcal{F}) \) to \((\mathbb{R}, \mathcal{B}(\mathbb{R})) \). Show \(f(\omega) = \limsup_{n \to \infty} f_n(\omega) \) and \(g(\omega) = \liminf_{n \to \infty} f_n(\omega) \) define measurable functions.

Exercise 1.6.6 Let \(X \) and \(Y \) be real-valued random variables defined on a given probability space \((\Omega, \mathcal{F}, \mathbb{P}) \). Suppose that \(X \) is measurable on \(\sigma(Y) \). Show that there exists a function \(f \) such that \(X = f(Y) \).

This result also holds if \(X \) and \(Y \) are standard Borel valued random variables.

Exercise 1.6.7 Consider the interval \([0, 1]\). We have seen that the Lebesgue measure \(\lambda \) satisfies \(\lambda([a, b]) = U([a, b]) = b - a \) for \(0 \leq a \leq b \leq 1 \). Consider now the following question: does every subset \(S \subset [0, 1] \) admit a Lebesgue measure? In the following we will provide a counterexample, known as the Vitali set.

Let us define an equivalence class among points in \([0, 1]\) such that \(x \sim y \) if \(x - y \in \mathbb{Q} \). This equivalence definition partitions \([0, 1]\) into disjoint sets. Note that there are countably many points in each equivalence class.

Let \(A \) be a subset which picks exactly one element from each equivalence class (here, we adopt what is known as the Axiom of Choice \(\mathcal{AC} \)). Since \(A \) contains an element from each equivalence class, each point of \([0, 1]\) is contained in the union \(\cup_{q \in \mathbb{Q}} (A + q) \). Furthermore, since \(A \) contains only one point from each equivalence class, the sets \(A + q \), for different \(q \), are disjoint, for otherwise there would be two sets which could include a common point: \(A + q \) and \(\mathcal{A} + q' \) would include a common point, leading to the result that the difference \(x - q = z \) and \(x - q' = z \) are both in \(A \), a contradiction, since there should be at most one point which is in the same equivalence class as \(x - q = z \). The Lebesgue measure is shift-invariant, therefore \(\lambda(A) = \lambda(A + q) \). But \([0, 1] = \cup_{q} (A + q) \). Since a countable sum of identical non-negative elements can either become \(\infty \) or 0, the contradiction follows: We can’t associate a number to this set and as a result, this set is not a Lebesgue measurable set (and also not a Borel set).
In the following, we discuss controlled Markov models.

2.1 Controlled Markov Models

Consider the following model.

\[x_{t+1} = f(x_t, u_t, w_t), \tag{2.1} \]

where \(x_t \) is an \(X \)-valued state variable, \(u_t \) a \(U \)-valued control action variable, \(w_t \) a \(W \)-valued an i.i.d noise process, and \(f \) a measurable function. We assume that \(X, U, W \) are Borel subsets of complete, separable, metric spaces (such complete, separable and metric spaces are called Polish spaces); such subsets of these spaces are also called standard Borel. We assume that all random variables live in some probability space \((\Omega, F, P) \).

Using stochastic realization results (see Lemma 1.2 in \[84]\), or Lemma 3.1 of \[36]\), it can be shown that the model above in (2.1) contains the class of all \((X \times U)^{Z^+}\)-valued stochastic processes which satisfy the following probabilistic characterization: for all Borel sets \(B \in B(X) \), \(t \geq 0 \), and all realizations \(x_{[0,t]}, u_{[0,t]} \):

\[P(x_{t+1} \in B | x_{[0,t]} = a_{[0,t]}, u_{[0,t]} = b_{[0,t]}) =: T(B | a_t, b_t) \tag{2.2} \]

where \(T(\cdot | x, u) \) is a stochastic kernel from \(X \times U \) to \(X \) (so that for every \(B \), \(T(B | \cdot, \cdot) \) is a measurable function on \(X \times U \), and for every fixed \((a, b) \in X \times U\), \(T(\cdot | a, b) \) is a probability measure on \((X, B(X)) \). That is, all stochastic processes that satisfy (2.2) admit a realization in the form (2.1), almost surely. Since a system of the form (2.1) satisfies (2.2), it follows that the representations in these equations are equivalent.

A stochastic process which satisfies (2.2) is called a controlled Markov chain.

For the process \(\{x_t, u_t\} \) to define a stochastic process, in addition to a transition kernel and an initial measure on \(x_0 \), we need to specify the dependence of \(u_t \) on the history of the process. Once this is established, through the extension theorems discussed earlier (and in particular the Ionescu Tulcea Extension Theorem), one can construct a stochastic process \(\{x_t, u_t, t \geq 0\} \). This dependence is defined by a control policy.

2.1.1 Fully Observed Markov Control Problem Model

A Fully Observed Markov Control Problem is a five tuple

\[(X, U, \{U(x), x \in X\}, T, c),\]

where
A deterministic admissible control policy

Let H be a state transition kernel, that is $H(x,u) = P(x_{t+1} = x_t | x_t = x, u_t = u)$, as defined above.

2.1.2 Classes of Control Policies

Admissible Control Policies Γ_A

Let $H_0 := X$, $H_t := H_{t-1} \times X$ for $t = 1, 2, \ldots$. We let h_t denote an element of H_t, where $h_t = \{x_{[0,t]}, u_{[0,t-1]}\}$. A deterministic admissible control policy γ is a sequence of functions $\{\gamma_t, t \geq 0\}$ such that $\gamma : H_t \rightarrow U$; that is, $u_t = \gamma_t(h_t)$.

We can also state this as follows. Let us write u for x,u and likewise let us emphasize that H is a state transition kernel, that is $H(x,u) = P(x_{t+1} = x_t | x_t = x, u_t = u)$, as defined above.

$\mathbb{K} = \{(x,u) : u \in \mathbb{U}(x) \in \mathcal{B}(\mathbb{U}), x \in \mathbb{X}\}$ is the set of state, control pairs that are feasible. There might be different states where different control actions are possible/feasible.

\mathbb{T} is a state transition kernel, that is $T(A|x,u) = P(x_{t+1} \in A|x_t = x, u_t = u)$, as defined above.

$c : \mathbb{K} \rightarrow \mathbb{R}_+$ is the cost.

Markov Control Policies Γ_M

A deterministic Markov control policy γ is a sequence of functions $\{\gamma_t\}$ from $X \times \mathbb{Z}_+ \rightarrow \mathbb{U}$ such that $u_t = \gamma_t(x_t)$ for each $t \in \mathbb{Z}_+$.

A policy is randomized Markov if the induced strategic measure satisfies $P^\gamma(u_t \in C|h_t) = \gamma_t(u_t \in C|x_t)$, $C \in \mathcal{B}(\mathbb{U})$, for all t and P^γ-almost all x_t. Hence, the control action only depends on the state and the time, and not the past history.

Stationary Control Policies Γ_S

A deterministic stationary control policy γ is a sequence of identical functions $\{\gamma, \gamma, \gamma, \cdots\}$ from $X \rightarrow \mathbb{U}$ such that $u_t = \gamma(x_t)$ for each $t \in \mathbb{Z}_+$.

A policy is randomized stationary if
2.2 Performance of Policies

Consider a Markov control problem with an objective given as the minimization of

\[J(\nu_0, \gamma) = E_{\nu_0}^\gamma \left[\sum_{t=0}^{N-1} c(x_t, u_t) + c_N(x_N) \right] \]

where \(\nu_0 \) denotes the distribution on \(x_0 \) and \(c_N \) is a terminal state cost function. For the case with \(x_0 = x \), so that \(\nu_0 = \delta_x \), we often simply write

\[J(\delta_x, \gamma) = J(x, \gamma) = E_{\delta_x}^\gamma \left[\sum_{t=0}^{N-1} c(x_t, u_t) + c_N(x_N) \right] = E_{\delta_x}^\gamma \left[\sum_{t=0}^{N-1} c(x_t, u_t) + c_N(x_N) | x_0 = x \right] \]

Such a cost problem is known as a **Finite Horizon Optimal Control problem**.

We will also consider costs of the following form:

\[J_\beta(\nu_0, \gamma) = E_{\nu_0}^\gamma \left[\sum_{t=0}^{\infty} \beta^t c(x_t, u_t) \right] \]

for some \(\beta \in (0, 1) \). This is called a **Discounted Optimal Control Problem**.

Finally, we will study costs of the following form:

\[J_\infty(\nu_0, \gamma) = \limsup_{N \to \infty} \frac{1}{N} E_{\nu_0}^\gamma \left[\sum_{t=0}^{N-1} c(x_t, u_t) \right] \]

Such a problem is known as the **Average Cost Optimal Control Problem**.

As before, let \(\Gamma_A \) denote the class of admissible policies, \(\Gamma_M \) denote the class of Markov policies, \(\Gamma_S \) denote the class of Stationary policies. These policies can be both randomized or deterministic. We may also denote the randomized policies with \(\Gamma_{RA}, \Gamma_{RM} \) and \(\Gamma_{RS} \) if randomization needs to be made explicit.

For each of the criteria above, in these notes, we will investigate existence, structural and approximation results and also computational and numerical as well as simulation based solution methods.

In a general setting, we note the following relation

\[\inf_{\gamma \in \Gamma_A} J(\nu_0, \gamma) \leq \inf_{\gamma \in \Gamma_M} J(\nu_0, \gamma) \leq \inf_{\gamma \in \Gamma_S} J(\nu_0, \gamma), \]

since the set of policies is progressively shrinking
We will show, however, that for the optimal control of a Markov chain, under mild conditions, Markov policies are always optimal (that is there is no loss in optimality in restricting the policies to be Markov); that is, it is sufficient to consider only Markov policies. This is an important result in stochastic control. That is,

\[\inf_{\gamma \in \Gamma_A} J(\nu_0, \gamma) = \inf_{\gamma \in \Gamma_M} J(\nu_0, \gamma) \]

We will also show that, under somewhat more restrictive conditions, stationary policies are optimal (that is, there is no loss in optimality in restricting the policies to be stationary). This will typically exclude finite horizon problems and under mild conditions we will have that

\[\inf_{\gamma \in \Gamma_A} J_\beta(\nu_0, \gamma) = \inf_{\gamma \in \Gamma_S} J_\beta(\nu_0, \gamma) \]

and

\[\inf_{\gamma \in \Gamma_A} J_\infty(\nu_0, \gamma) = \inf_{\gamma \in \Gamma_{RS}} J_\infty(\nu_0, \gamma) \]

Furthermore, we will show that, under some stronger conditions,

\[\inf_{\gamma \in \Gamma_S} J_\infty(\nu_0, \gamma) \]

is independent of the initial distribution \(\nu_0 \) (or the initial condition) on \(x_0 \).

For further relations between such policies, see Chapter 5 and Chapter 7.

The last two results are computationally very important, as there are powerful computational algorithms that allow one to develop such stationary policies. We will be discussing these in Chapter 8.

We will also show that for almost all the criteria above, though under some conditions for the average cost setup, optimal policies can be assumed to be deterministic.

In the following set of notes, we will first consider further properties of Markov chains, since under a Markov control policy, the controlled state becomes a Markov chain. We will then get back to controlled Markov chains and the development of optimal control policies in Chapter 5.

The classification of Markov Chains in the next chapter will implicitly characterize the set of problems for which stationary policies contain optimal admissible policies and when an optimal cost may not depend on the initial state distribution.

2.3 Markov Chain Induced by a Markov Policy

Theorem 2.3.1 Let the control policy be randomized Markov. Then, the controlled Markov chain induces an \(\mathbb{X} \)-valued Markov chain, that is, the state process itself becomes a Markov chain:

\[P^\gamma_{x_0}(x_{t+1} \in B | x_t = b_t, x_{t-1} = b_{t-1}, \ldots, x_0 = b_0) = Q^\gamma_t(x_{t+1} \in B | x_t = b_t), \quad B \in \mathcal{B}(\mathbb{X}), t \geq 1, \]

for \(P \) almost every realization of the past variables \(b_t, \ldots, b_0 \), where \(Q^\gamma_t \) is a possibly time-dependent stochastic kernel defining a Markov chain. If the control policy is a stationary policy, then the induced Markov chain \(\{x_t\} \) is time-homogenous; that is, the transition kernel \(Q^\gamma_t \) for the induced Markov chain does not depend on time.

Proof. Let us consider the case where \(\mathbb{U} \) is countable, the uncountable case follows similarly. Let \(B \in \mathcal{B}(\mathbb{X}) \). It follows that,

\[P^\gamma_{x_0}(x_{t+1} \in B | x_t = b_t, x_{t-1} = b_{t-1}, \ldots, x_0 = b_0) \]

\[P^\gamma_{x_0}(x_{t+1} \in B, u_t \in \mathbb{U} | x_t = b_t, x_{t-1} = b_{t-1}, \ldots, x_0 = b_0) \]
As noted, \(y_t \) depends stochastically only on \(x_t \) and \(u_t \). The essential issue here is that the control only depends on \(x_t \), and since \(x_{t+1} \) depends stochastically only on \(x_t \) and \(u_t \) (being a controlled Markov chain), the desired result follows. If \(\gamma_t(u_t|x_t = b_i) = \gamma(u_t|x_t = b_i) \), that is, \(\gamma_t = \gamma \) for all \(t \) values so that the policy is stationary, the resulting chain satisfies

\[
P^\gamma(x_{t+1} \in B|x_t, x_{t-1}, \ldots, x_0) = Q^\gamma(x_{t+1} \in B|x_t),
\]

for some \(Q^\gamma \). Thus, the transition kernel does not depend on time and the chain is time-homogenous. \(\diamond \)

2.4 Partially Observed Models and Reduction to a Fully Observed Model

Consider a partially observable stochastic control problem with the following dynamics.

\[
x_{t+1} = f(x_t, u_t, w_t), \quad y_t = g(x_t, v_t).
\]

Here, \(x_t \) is the \(\mathbb{X} \)-valued state, \(u_t \) is the \(\mathbb{U} \)-valued control, \(y_t \) is the \(\mathbb{Y} \)-valued observation (measurement) process. Furthermore, \(\{w_t, v_t\} \) are i.i.d noise processes and \(\{u_t\} \) is independent of \(\{v_t\} \). The controller only has causal access to \(\{y_t\} \).

As noted, \(y_t \) denotes an observation variable taking values in \(\mathbb{Y} \), a subset of \(\mathbb{R}^n \) in the context of this review. The controller only has causal access to the second component \(\{y_t\} \) of the process: A **deterministic admissible control policy** \(\gamma \) is a sequence of functions \(\{\gamma_t\} \) so that \(u_t = \gamma_t(y_0, \ldots, y_{t-1}) \).

We will see that one could transform a partially observable Markov Decision Problem to a Fully Observed Markov Decision Problem via an enlargement of the state space. In particular, we obtain via the properties of total probability the following dynamical recursion (here, we assume that the state space is countable; the extension to more general spaces will be considered in Chapter 6):

\[
\pi_t(A) := P(x_t \in A|y_{[0,t]}, u_{[0,t-1]}) = \sum_{x_{t-1}} \pi_{t-1}(x_{t-1})P(u_{t-1}|y_{[0,t-1]}, u_{[0,t-2]})P(y_t|x_t)P(x_t|x_{t-1}, u_{t-1}) \times P(x_t|x_{t-1}, u_{t-1})
\]

\[
= \sum_{x_{t-1}} \sum_{x_{t-1}} \pi_{t-1}(x_{t-1})P(y_t|x_t)P(x_t|x_{t-1}, u_{t-1})
\]

\[
= P(z_{t-1}, u_{t-1}, y_t)(A),
\]

for some \(F \). It follows that \(F : \mathcal{P}(\mathbb{X}) \times \mathbb{U} \times \mathbb{Y} \to \mathcal{P}(\mathbb{X}) \) is a Borel measurable function, as we will discuss in further detail in Chapter 6. Thus, the conditional measure process becomes a controlled Markov chain in \(\mathcal{P}(\mathbb{X}) \) (where \(\mathcal{P}(\mathbb{X}) \) denotes the set of probability measures on \(\mathbb{X} \), we will endow this set with the metric giving rise to the weak convergence topology, to be discussed later):

Theorem 2.4.1 The process \(\{\pi_t, u_t\} \) is a controlled Markov chain. That is, under any admissible control policy, given the action at time \(t \geq 0 \) and \(\pi_t, \pi_{t+1} \) is conditionally independent from \(\{\pi_s, u_s, s \leq t-1\} \).
Proof. This follows from the observation that for any $B \in \mathcal{B}(\mathcal{P}(\mathcal{X}))$, by (2.4)

$$P(\pi_{t+1} \in B | \pi_s, u_s, s \leq t) = \sum_{y_{t+1} = y} 1 \{F(\pi_t, u_t, y) \in B\} P(y_{t+1} = y | \pi_s, u_s, s \leq t)$$

$$= \sum_{y_{t+1} = y} \sum_x P(\pi_{t+1} = x_{t+1} = x) P(x_{t+1} = x | \pi_s, u_s, s \leq t)$$

$$= \sum_{y_{t+1} = y} \sum_x P(\pi_{t+1} = x_{t+1} = x) \sum_{x'} P(x_{t+1} = x | x_t = x', u_t) \pi_t(x')$$

$$= P(\pi_{t+1} \in B | \pi_t, u_t) \tag{2.5}$$

Let the cost function to be minimized be

$$E_{x_0}^{\gamma} \left[\sum_{t=0}^{T-1} c(x_t, u_t) \right],$$

where $E_{x_0}^{\gamma} \left[\cdots \right]$ denotes the expectation over all sample paths with initial state given by x_0 under policy γ.

Now, using a property known as iterated expectations that we will be discussing in detail in Chapter 4, we can write:

$$E_{x_0}^{\gamma} \left[\sum_{t=0}^{T-1} c(x_t, u_t) \right] = E_{x_0}^{\gamma} \left[\sum_{t=0}^{T-1} E[c(x_t, u_t) | y_t, y_s, u_s, s \leq t - 1] \right] = E_{x_0}^{\gamma} \left[\sum_{t=0}^{T-1} \tilde{c}(\pi_t, u_t) \right],$$

where

$$\tilde{c}(\pi, u) = \sum_x c(x, u) \pi(x), \quad \pi \in \mathcal{P}(\mathcal{X}).$$

We can thus transform the system into a fully observed Markov model as follows. The stochastic transition kernel \mathcal{K} is given by:

$$\mathcal{K}(B | \pi, u) = \sum_y 1 \{P(y | x_{t+1}) \in B\} P(y | x_t) \pi(x), \quad \forall B \in \mathcal{B}(\mathcal{P}(\mathcal{X})), $$

with $1_{\{\cdots\}}$ denoting the indicator function.

It follows that $(\mathcal{P}(\mathcal{X}), U, \mathcal{K}, \tilde{c})$ defines a completely observable controlled Markov process.

Thus, the fully observed Markov Decision Model we will consider is sufficiently rich to be applicable to a large class of controlled stochastic systems.

2.5 Decentralized Stochastic Control

We will consider situations in which there are multiple decision makers. We will leave this discussion to Chapter 9.

2.6 Controlled Continuous-Time Stochastic Systems

We will also study setups where the time index is a continuum. We leave this discussion to Chapter 10.
2.7 Exercises

Exercise 2.7.1 a) Let \(f \) be an arbitrary measurable function from \(\mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R} \). Show that a controlled stochastic process defined with
\[
x_{t+1} = f(x_t, u_t, w_t),
\]
with \(\{w_t\} \) an independent and identically distributed noise sequence is a controlled Markov chain.

b) Study Lemma 3.1 and Corollary 3.1 of [36].

Exercise 2.7.2 A common example in mathematical finance applications is the portfolio selection problem where a controller (investor) would like to optimally allocate his wealth between a stochastic stock market and a market with a guaranteed income: Consider a stock with an i.i.d. random return \(\sigma_t \) and a bank account with fixed interest rate \(r > 0 \). These are modeled by:
\[
X_{t+1} = X_t u_t (1 + \sigma_t) + X_t (1 - u_t) (1 + r), \quad X_0 = 1
\]
and
\[
X_{t+1} = X_t (1 + r + u_t (\sigma_t - r))
\]
Here, \(u_t \in [0, 1] \) denotes the proportion of the money that the investor invests in the stock market. Suppose that the goal is to maximize \(E[\log(X_T)] \). Then, we can write:
\[
\log(X_T) = \log\left(\prod_{k=0}^{T-1} \frac{X_{k+1}}{X_k}\right) = \sum_{k=0}^{T-1} \log((1 + r + u_t (\sigma_t - r)))
\] (2.6)

Formulate the problem as an optimal stochastic control problem by clearly identifying the state and the control action spaces, the information available at the controller, the transition kernel, and a cost functional mapping the actions and states to \(\mathbb{R} \).

Exercise 2.7.3 Consider an inventory-production system given by
\[
x_{t+1} = x_t + u_t - w_t,
\]
where \(x_t \) is \(\mathbb{R} \)-valued, with the one-stage cost
\[
c(x_t, u_t, w_t) = bu_t + h \max(0, x_t + u_t - w_t) + p \max(0, w_t - x_t - u_t)
\]
Here, \(b \) is the unit production cost, \(h \) is the unit holding (storage) cost and \(p \) is the unit shortage cost; here we take \(p > b \). At any given time, the decision maker can take \(u_t \in \mathbb{R}_+ \). The demand variable \(w_t \sim \mu \) is a \(\mathbb{R}_+ \)-valued i.i.d. process, independent of \(x_0 \), with a finite mean where \(\mu \) is assumed to admit a probability density function. The goal is to minimize
\[
J(x, \gamma) = E_2^x [\sum_{t=0}^{T-1} c(x_t, u_t, w_t)]
\]
The controller at time \(t \) has access to \(I_t = \{x_s, u_s, s \leq t - 1\} \cup \{x_t\} \).

Formulate the problem as an optimal stochastic control problem by clearly identifying the state, the control action spaces, the information available at the controller, the transition kernel and a cost functional mapping the actions and states to \(\mathbb{R} \).

Exercise 2.7.4 A fishery manager annually has \(x_t \) units of fish and sells \(u_t x_t \) of these where \(u_t \in [0, 1] \). With the remaining ones, the next year’s production is given by the following model
\[
x_{t+1} = w_t x_t (1 - u_t) + w_t,
\]
with \(x_t \) is given and \(w_t \) is an independent, identically distributed sequence of random variables and \(w_t \geq 0 \) for all \(t \) and therefore \(E[w_t] = \tilde{w} \geq 0. \)

The goal is to maximize the profit over the time horizon \(0 \leq t \leq T - 1. \) At time \(T, \) he sells all of the fish.

Formulate the problem as an optimal stochastic control problem by clearly identifying the state, the control actions, the information available at the controller, the transition kernel and a cost functional mapping the actions and states to \(\mathbb{R}. \)

Exercise 2.7.5 An investor’s wealth dynamics is given by the following:

\[
x_{t+1} = u_t w_t,
\]

where \(\{w_t\} \) is an i.i.d. \(\mathbb{R}_+ \)-valued stochastic process with \(E[w_t] = 1. \) The investor has access to the past and current wealth information and his previous actions. The goal is to maximize:

\[
J(x_0, \gamma) = E_{x_0}^\gamma \left[\sum_{t=0}^{T-1} \sqrt{x_t - u_t} \right].
\]

The investor’s action set for any given \(x \) is: \(\mathbb{U}(x) = [0, x]. \)

Formulate the problem as an optimal stochastic control problem by clearly identifying the state, the control action spaces, the information available at the controller, the transition kernel and a cost functional mapping the actions and states to \(\mathbb{R}. \)

Exercise 2.7.6 Consider an unemployed person who will have to work for years \(t = 1, 2, \ldots, 10 \) if she takes a job at any given \(t. \)

Suppose that each year in which she remains unemployed; she may be offered a good job that pays 10 dollars per year (with probability \(1/4 \)); she may be offered a bad job that pays 4 dollars per year (with probability \(1/4 \)); or she may not be offered a job (with probability \(1/2 \)). These events of job offers are independent from year to year (that is the job market is represented by an independent sequence of random variables for every year).

Once she accepts a job, she will remain in that job for the rest of the ten years. That is, for example, she cannot switch from the bad job to the good job.

Suppose the goal is maximize the expected total earnings in ten years, starting from year \(1 \) up to year 10 (including year 10).

State the problem as a Markov Decision Problem, identify the state space, the action space and the transition kernel.

Exercise 2.7.7 (Zero-Delay Source Coding) Let \(\{x_t\}_{t \geq 0} \) be an \(\mathcal{X} \)-valued discrete-time Markov process where \(\mathcal{X} \) can be a finite set or \(\mathbb{R}^n. \) Let there be an encoder which encodes (quantizes) the source samples and transmits the encoded versions to a receiver over a discrete noiseless channel with input and output alphabet \(\mathcal{M} := \{1, 2, \ldots, M\}, \) where \(M \) is a positive integer. The encoder policy \(\eta \) is a sequence of functions \(\{\eta_t\}_{t \geq 0} \) with \(\eta_t : \mathcal{M}^t \times (\mathcal{X})^{t+1} \rightarrow \mathcal{M}. \) At time \(t, \) the encoder transmits the \(\mathcal{M} \)-valued message

\[
q_t = \eta_t(I_t)
\]

with \(I_0 = x_0, \) \(I_t = (q_{t,t-1}, x_{t,0:t}) \) for \(t \geq 1, \) where. The collection of all such zero-delay encoders is called the set of admissible quantization policies and is denoted by \(\Gamma_A. \) A zero-delay receiver policy is a sequence of functions \(\gamma = \{\gamma_t\}_{t \geq 0} \) of type \(\gamma_t : \mathcal{M}^{t+1} \rightarrow \mathcal{U}, \) where \(\mathcal{U} \) denotes the finite reconstruction alphabet. Thus

\[
u_t = \gamma_t(q_{0:t}), \quad t \geq 0.
\]

For the finite horizon setting the goal is to minimize the average cumulative cost (distortion)

\[
J_{\pi_0}(\eta, \gamma, T) = E_{\pi_0}^\eta \left[\frac{1}{T} \sum_{t=0}^{T-1} c_0(x_t, u_t) \right], \tag{2.7}
\]
for some $T \geq 1$, where $c_0 : X \times U \rightarrow \mathbb{R}$ is a nonnegative cost (distortion) function, and $E_{\pi_0}^{\xi,\gamma}$ denotes expectation with initial distribution π_0 for x_0 and under the quantization policy Π and receiver policy γ.

Express this problem as a controlled Markov chain problem. Later on, we will provide further refinements. There is a rich history behind this problem, see e.g., [202], [193], [181] and [206, 212].

Exercise 2.7.8 Suppose that there are two decision makers DM^1 and DM^2. Suppose that the information available to DM^1 is a random variable Y^1 and the information available to DM^2 is Y^2, where these random variables are defined on a probability space (Ω, \mathcal{F}, P). Suppose that for $i = 1, 2$, Y^i is Y^i-valued and these are standard Borel spaces.

Suppose that the sigma-field generated by Y^1 is a subset of the sigma-field generated by Y^2, that is $\sigma(Y^1) \subset \sigma(Y^2)$. That is, the information contained in Y^1 is a subset of the information contained in Y^2 (Recall here that the sigma-field generated by a random variable Y is the smallest sigma-field over Ω on which Y is measurable).

Further, suppose that the decision makers wish to minimize the following cost function:

$$E[c(\omega, u)],$$

where $c : \Omega \times U \rightarrow \mathbb{R}_+$ is a measurable cost function (on $\mathcal{F} \times \mathcal{B}(U)$), where $\mathcal{B}(U)$ is a sigma-field over U. Here, for $i = 1, 2$, $u^i = \gamma^i(Y^i)$ is generated by a measurable function γ^i on the sigma-field generated by the random variable Y^i. Let Γ^i denote the space of all such policies.

Prove that

$$\inf_{\gamma^1 \in \Gamma^1} E[c(\omega, u^1)] \geq \inf_{\gamma^2 \in \Gamma^2} E[c(\omega, u^2)].$$

Hint: Make the argument that every policy $u^1 = \gamma^1(Y^1)$ can be expressed as $u^2 = \gamma^2(Y^2)$ for some $\gamma^2 \in \Gamma^2$; see Exercise 1.6.6.
3.1 Countable State Space Markov Chains

In this chapter, we first review Markov chains where the state takes values in a finite or a countably infinite set \mathbb{X}. In the following, we will consider (Ω, \mathcal{F}, P) to be the probability space on which all of the random variables are defined.

We assume that ν_0 is an initial distribution for the Markov chain, so that $P(x_0 \in \cdot) = \nu_0(\cdot)$ (also denoted with, $x_0 \sim \nu_0$). The process $\Phi = \{x_0, x_1, \ldots, x_n, \ldots\}$ is a (time-homogeneous) Markov chain with the probability measure on the sequence space satisfying:

$$P_{\nu_0}(x_0 = a_0, x_1 = a_1, x_2 = a_2, \ldots, x_n = a_n) = \nu_0(x_0 = a_0)P(x_1 = a_1|x_0 = a_0)P(x_2 = a_2|x_1 = a_1)\ldots P(x_n = a_n|x_{n-1} = a_{n-1}) \quad (3.1)$$

If the initial condition is known to be a fixed state $a_0 \in \mathbb{X}$, we use $P_{a_0}(\cdot)$ in place of $P_{\delta_{a_0}}(\cdot)$. The initial condition probability and the transition kernel uniquely identify the probability measure on the product space $\mathbb{X}^\mathbb{N}$, by the extension theorems presented in Chapter 1. We could represent the probabilistic evolution in terms of a matrix:

$$P(i,j) := P(x_{t+1} = j|x_t = i) \geq 0, \quad i,j \in \mathbb{X}.$$

Here $P(\cdot, \cdot)$ is a probability transition kernel, that is for every $i \in \mathbb{X}$, $P(i, \cdot)$ is a probability measure on \mathbb{X}, in particular with $\sum_j P(i,j) = 1$ for every i. Let P be an $|\mathbb{X}| \times |\mathbb{X}|$ matrix with entries given with $P(i,j) \geq 0$. Such a matrix P is called a stochastic matrix.

Let $\pi_k(i) = P(x_k = i)$ for $k \in \mathbb{Z}_+$ and $i \in \mathbb{X}$. Let $\pi_k = [\pi_k(i), i \in \mathbb{X}]$. It follows that

$$\pi_1(j) = \sum_i \pi_0(i)P(i,j)$$

and with P denoting the transition matrix given with $P(i,j)$ as defined above,

$$\pi_{k+1} = \pi_k P, \quad k \in \mathbb{Z}_+ \quad (3.2)$$

Note here that we represent π_k as a row vector. By induction, we could verify that for $k \in \mathbb{N}$:

$$P^k(i,j) := P(x_{t+k} = j|x_t = i) = \sum_{m \in \mathbb{X}} P(i,m)P^{k-1}(m,j)$$

We will see that whether the sequence $\{\pi_k\}$ admits a limit and the dependence properties of this limit on π_0 (or ν_0) have significant implications on the characterization of Markov chains, and later, in stabilization and optimization of controlled Markov chains.
In the following, we characterize Markov Chains based on transience, recurrence and communication. We then consider the issue of the existence of an invariant distribution. Later, we will extend the analysis to uncountable space Markov chains.

Communication

If there exists an integer \(k \in \mathbb{Z}_+ \) such that \(P(x_{t+k} = j| x_t = i) = P^k(i,j) > 0 \), and another integer \(l \in \mathbb{Z}_+ \) such that \(P(x_{t+l} = i|x_t = j) = P^l(j,i) > 0 \) then state \(i \) communicates with state \(j \).

A set \(C \subset \mathbb{X} \) is said to be communicating if every two elements (states) of \(C \) communicate with each other.

If every member of the set can communicate to every other member, such a chain is said to be irreducible.

The period of a state is defined to be the greatest common divisor of \(\{ k > 0 : P^k(i,i) > 0 \} \).

A Markov chain is called aperiodic if the period of all states is 1.

Absorbing Set

A set \(C \) is called absorbing if \(P(i,C) = 1 \) for all \(i \in C \). That is, if the state is in \(C \), then the state cannot get out of the set \(C \).

The Markov chain is irreducible if the smallest absorbing set is the entire \(\mathbb{X} \) itself.

The Markov chain is indecomposable if \(\mathbb{X} \) does not contain two disjoint absorbing sets.

Occupation, Hitting and Stopping Times

For any set \(A \subset \mathbb{X} \), the occupation time \(\eta_A \) is the number of visits of \(\{x_t\} \) to set \(A \):

\[
\eta_A = \sum_{t=0}^{\infty} 1_{\{x_t \in A\}},
\]

where \(1_E \) denotes the indicator function for an event \(E \), that is, it takes the value 1 when \(E \) takes place, and is otherwise 0.

Remark 3.1. Another common notation for the indicator function is the following: Let \(A \) be an event (a subset of some \(\sigma \)-field). Then \(1_A(x) = 1 \) if \(x \in A \) and 0 otherwise.

Let \(A \subset \mathbb{X} \). Define

\[
\tau_A := \min\{k > 0 : x_k \in A\},
\]

to be the first time that the state visits \(A \); we call this the return time to set \(A \). We also define a very similar notion, called a hitting time:

\[
\sigma_A = \min\{k \geq 0 : x_k \in A\}.
\]

The variable \(\tau_A \) defined above is an example for stopping times:

Definition 3.1.1 A \(\mathbb{Z}_+ \cup \{\infty\} \)-valued random variable \(\tau \) is a stopping time (with respect to the process \(\{x_0, x_1, \cdots\} \)), if for all \(n \in \mathbb{Z}_+ \), the event \(\{\tau = n\} \in \sigma(x_0, x_1, x_2, \ldots, x_n) \), that is the event is in the sigma-field generated by the random variables up to time \(n \).

Any realistic decision takes place at a time which is a stopping time. Consider an optimal investment problem: if an investor claims to stop investing (e.g., purchasing houses) when the investment (value of the housing market) is at its local peak, the
decision instant could not be a stopping-time in general: this peak-time is not a stopping time because to find out whether the investment value is at its peak, the next realization should be known, and this information is not available up to any given time in a causal fashion for a non-trivial (i.e., non-deterministic) stochastic process.

One important property of Markov chains is the **strong Markov property.** This says the following: If we sample a Markov chain according to a stopping time rule, the sampled Markov chain starts from the sampled instant as a Markov chain with the same transition probabilities as if the sampling instant is time 0:

Proposition 3.1.1 For a (time-homogenous) Markov chain with a countable state space \mathbb{X}, the strong Markov property holds: that is, if τ is a stopping time with $P(\tau < \infty) = 1$, then almost surely for any $m \in \mathbb{N}$:

$$P(x_{\tau+m} = a|x_\tau = b_0, x_{\tau-1} = b_1, \ldots) = P(x_{\tau+m} = a|x_\tau = b_0) = P^m(b_0, a).$$

Proof. We consider $m = 1$, for larger m the result follows identically. For an event with $\{x_\tau = b_0, x_{\tau-1} = b_1, \ldots\}$ with $P(x_\tau = b_0, x_{\tau-1} = b_1, \ldots) > 0$, we have that

$$\begin{align*}
P(x_{\tau+1} = a|x_\tau = b_0, x_{\tau-1} = b_1, \ldots) &= \frac{P(x_{\tau+1} = a, x_\tau = b_0, x_{\tau-1} = b_1, \ldots)}{P(x_\tau = b_0, x_{\tau-1} = b_1, \ldots)} \\
&= \sum_{k=0}^{\infty} P(\tau = k, x_{\tau+1} = a, x_\tau = b_0, x_{\tau-1} = b_1, \ldots) \\
&= \sum_{k=0}^{\infty} \frac{P(x_{\tau+1} = a|x_\tau = b_0) P(\tau = k, x_\tau = b_0, x_{k-1} = b_1, \ldots)}{P(x_\tau = b_0, x_{\tau-1} = b_1, \ldots)} \\
&= \frac{P(b_0, a) \sum_{k=0}^{\infty} P(\tau = k, x_k = b_0, x_{k-1} = b_1, \ldots)}{P(x_\tau = b_0, x_{\tau-1} = b_1, \ldots)} \\
&= P(b_0, a) P(x_\tau = b_0, x_{\tau-1} = b_1, \ldots) \\
&= P(b_0, a) \\
\end{align*}$$

(3.3)

Note that the assumption $P(\tau < \infty) = 1$ is critically used in the proof. In (3.3), we use the fact that τ is a stopping time.

3.1 Recurrence and transience

Let us define

$$U(x, A) := E_x[\sum_{t=1}^{\infty} 1_{x_t \in A}] = \sum_{t=1}^{\infty} P^t(x, A)$$

and define

$$L(x, A) := P_x(\tau_A < \infty),$$

which is the probability of the chain visiting set A, once the process starts at state x.

Definition 3.1.2 A set $A \subset \mathbb{X}$ is recurrent if the Markov chain visits A infinitely often (in expectation), when the process starts in A. This is equivalent to

$$E_x[\eta_A] = \infty, \quad \forall x \in A$$

(3.5)
That is, if the chain starts at a given state \(x \in A \), it comes back to the set \(A \), and does so infinitely often. If a state is not recurrent, it is transient.

Definition 3.1.3 A state \(\alpha \) is transient if

\[
U(\alpha, \alpha) = E_\alpha[\eta_\alpha] < \infty.
\]

Equation (3.6) can also be written as

\[
\sum_{i=1}^{\infty} P_i(\alpha, \alpha) < \infty,
\]

which in turn is implied by

\[
P_i(\tau_i < \infty) < 1,
\]
as we will show further below.

The reader should connect the above with the strong Markov property: once the process hits a state, it starts from the state as if it is time 0 (regardless of the the past); the process recurs itself.

Definition 3.1.4 A set \(A \subset X \) is positive recurrent if

\[
E_x[\tau_A] < \infty, \quad \forall x \in A.
\]

There is a more general notion of recurrence, named Harris recurrence:

Definition 3.1.5 A set \(A \) is Harris recurrent if \(P_x(\eta_A = \infty) = 1 \) for all \(x \in A \). An irreducible Markov chain is Harris recurrent if

\[
P_x(\eta_A = \infty) = 1, \quad \forall x \in X, A \subset X.
\]

Let \(\tau_i(1) := \tau_i \) and for \(i \geq 1 \),

\[
\tau_i(k + 1) = \min\{n > \tau_i(k) : x_n = i\}
\]

We have the following result. The proof, which builds on the continuity of probability (Theorem B.1.2), is presented later in the chapter, see Theorem 3.2.1.

Theorem 3.1.1 If \(P_i(\tau_i < \infty) = 1 \), then \(P_i(\eta_i = \infty) = 1 \).

One can verify that (3.6) is equivalent to \(L(i, i) < 1 \).

Theorem 3.1.2 If \(P_i(\tau_i < \infty) < 1 \), then \(E_i[\tau_i] < \infty \) and thus the state \(i \in X \) is transient.

To show this, it suffices to first verify the relation

\[
P_i(\tau_i(k) < \infty) = P_i(\tau_i(k - 1) < \infty)P_i(\tau_i(1) < \infty),
\]
and then use the equality \(E[\eta] = \sum_{k=1}^{\infty} P(\eta \geq k) \).

We will investigate the Harris recurrence property further while studying uncountable state space Markov chains, however one needs to note that even for countable state space chains Harris recurrence is stronger than recurrence as we make explicit next.

Remark 3.2. Harris recurrence is stronger than recurrence. In one, an expectation is considered; in the other, a probability is considered. Consider the following example: Let \(X = \mathbb{N} \), \(P(1, 1) = 1 \) and for \(x > 1 \): \(P(x, x + 1) = 1 - 1/x^2 \) and \(P(x, 1) = 1/x^2 \). Then, for \(x \geq 2 \):
3.1 Countable State Space Markov Chains

\[P_x(\tau_1 = \infty) = \prod_{t \geq x, t \in \mathbb{N}} (1 - 1/t^2) > 0. \]

Thus, the set \{1, 2\} is not Harris recurrent, but it is recurrent. See Exercise 3.6.6.

3.1.2 Stability and invariant measures

Stability is an important concept, but it has different meanings in different contexts. This notion will be made more precise in the following chapter. Nonetheless, perhaps the weakest form of stochastic stability in the context of these notes is the existence of an invariant probability measure.

Recall from (3.2) that the occupation probabilities satisfy the recursions:

\[\pi_1 = \pi_0 P \]

And for \(t > 1 \):

\[\pi_{t+1} = \pi_t P = \pi_0 P^{t+1} \]

One important property of Markov chains is whether the above iteration leads to a fixed point. Such a fixed point \(\pi \) is called an invariant probability measure. Thus, a probability measure in a countable state Markov chain is invariant if

\[\pi = \pi P \]

This is equivalent to

\[\pi(j) = \sum_{i \in \mathbb{X}} \pi(i) P(i, j), \quad \forall j \in \mathbb{X} \]

We note that, if such a \(\pi \) exists, it must be written in terms of \(\pi = \pi_0 \lim_{t \to \infty} P^t \), for some \(\pi_0 \). Clearly, \(\pi_0 \) can be \(\pi \) itself, but often \(\pi_0 \) can be any initial probability measure under irreducibility/aperiodicity conditions (where aperiodicity can be relaxed if convergence of the averages \(\lim_{t \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} \pi_0 P^t \) is considered) which will be discussed further. Invariant probability measures are especially important in stochastic control, due to ergodicity theorems (which show that temporal averages converge to statistical averages with probability 1), as we will discuss later in the chapter. Finally, how fast \(\lim_{t \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} \pi_0 P^t \) converges to invariance is another very important question to be studied.

3.1.3 Invariant measures via an occupational characterization

The following is one of the most consequential results in this chapter.

Theorem 3.1.3 For a Markov chain, if there exists an element \(i \) such that \(E_i[\tau_i] < \infty \); the following is an invariant probability measure:

\[\mu(j) = E \left[\frac{\sum_{k=0}^{\tau_i-1} 1\{x_k=j\}}{E_i[\tau_i]} \right| x_0 = i], \quad j \in \mathbb{X} \]

Proof. We will show for every \(j \in \mathbb{X} \) that

\[E \left[\frac{\sum_{k=0}^{\tau_i-1} 1\{x_k=j\}}{E_i[\tau_i]} \right| x_0 = i] = \sum_{s \in \mathbb{X}} P(s, j) E \left[\frac{\sum_{k=0}^{\tau_i-1} 1\{x_k=s\}}{E_i[\tau_i]} \right| x_0 = i], \]

which establishes the desired result.

\[1 \]

1In the following, to make the random nature of \(x_k \) terms explicit, we will use capital letters \(X_k \) to emphasize randomness. In the notes, we will occasionally follow this route, since for conditional expectations, often it is very crucial to distinguish between random variables and their realizations.
Note that \(E[1_{\{X_{t+1} = j\}}] = P(X_{t+1} = j) \) and \(P(s, j) = E[1_{\{X_{k+1} = j\}} | X_k = s] \). Hence,

\[
\sum_s P(s, j) E \left[\frac{\sum_{k=0}^{\tau_i-1} 1_{\{X_k = s\}}}{E_i[\tau_i]} \, | \, X_0 = i \right] = E \left[\frac{\sum_{k=0}^{\tau_i-1} \sum_s P(s, j) 1_{\{X_k = s\}}}{E_i[\tau_i]} \, | \, X_0 = i \right] = E_i[\tau_i]
\]

(3.7)

where we use the fact that the number of visits to a given set does not change whether we include either \(t = 0 \) or \(\tau_i \), since \(X_0 = X_{\tau_i} = i \). Here, (3.8) follows from the fact that the process is a Markov chain, (3.9) and (3.10) follow from the properties of conditional expectation and that \(\tau_i \) is a stopping time (we will discuss such properties in Chapter 4), and (3.11) follows from the law of the iterated expectations, see Theorem 4.1.3. In the above (3.7) follows from the fact that

\[
E[1_{\{X_{k+1} = j\}} | X_k = s, X_{k-1}, X_{k-2}, \ldots] = E[1_{\{X_{k+1} = j\}} | X_k = s] = E[1_{\{X_{k+1} = j\}}] | X_k = s]
\]

Finally, observe that if \(E_i[\tau_i] < \infty \), then the above measure indeed is a probability measure, as it follows that

\[
\sum \mu(j) = \sum_j E \left[\frac{\sum_{k=0}^{\tau_i-1} 1_{\{X_k = j\}}}{E_i[\tau_i]} \, | \, X_0 = i \right] = 1.
\]

This concludes the proof.
Theorem 3.1.4 Every finite state space Markov chain admits an invariant probability measure. This invariant measure is unique if the chain is irreducible.

A common proof technique on the existence of invariant probability measures for finite state Markov chains builds on an important result called the Perron-Frobenius Theorem. However, we will present a more general result in the context of Markov chains later in Theorem 3.4.1.

Theorem 3.1.5 For an irreducible Markov chain with countable \(\mathbb{X} \), there can be at most one invariant probability measure.

Proof. Let \(\pi(i) \) and \(\pi'(i) \) be two different invariant probability measures. Define \(D := \{ i : \pi(i) > \pi'(i) \} \). Then,

\[
\pi(D) = \sum_{i \in D} \pi(i)P(i, D) + \sum_{i \notin D} \pi(i)P(i, D)
\]

\[
\pi'(D) = \sum_{i \in D} \pi'(i)P(i, D) + \sum_{i \notin D} \pi'(i)P(i, D)
\]

implies that

\[
\pi(D) - \pi'(D) = \sum_{i \in D} (\pi(i) - \pi'(i))P(i, D) + \sum_{i \notin D} (\pi(i) - \pi'(i))P(i, D)
\]

and thus

\[
\sum_{i \in D} (\pi(i) - \pi'(i))(1 - P(i, D)) = \sum_{i \notin D} (\pi(i) - \pi'(i))P(i, D)
\]

The first term is strictly positive (since \(P(i, D) = 1 \) cannot hold for all \(i \in D \) due to irreducibility, for otherwise \(D \) would be absorbing). The second term is not positive, hence a contradiction. \(\diamond \)

An implication of the above is the following important and very elegant result, known as Kac’s lemma:

Theorem 3.1.6 (Kac’s Lemma) Let \(\{ x_i \} \) be irreducible and \(\pi \) be its invariant probability measure. Then,

\[
\pi(i) = \frac{1}{E_i[\tau_i]}, \quad i \in \mathbb{X}.
\]

Remark 3.3. Consider the random walk on \(\mathbb{Z} \) given with the transition kernel \(P(x, x + 1) = P(x, x - 1) = \frac{1}{2} \) for \(z \in \mathbb{Z} \). In this case, we have that for every \(i \in \mathbb{Z} \), \(E_i[\tau_i] = \infty \), and hence there does not exist an invariant probability measure. But, it has an invariant measure defined with: \(\mu(\{i\}) = K \), \(i \in \mathbb{Z} \), for an arbitrary (fixed) \(K \in \mathbb{R} \). That \(E_i[\tau_i] = \infty \) can be established through the following reasoning: if there were an invariant probability measure, than for every state \(i \), the measure \(\frac{1}{E_i[\tau_i]} \) would take the same value. But the sum of these (countably infinitely many) identical values would need to be 1, leading to a contradiction. Then, \(E_i[\tau_i] \) cannot be finite for any \(i \).

Rates of convergence to invariant measures and Dobrushin’s ergodic coefficient

Consider the iteration \(\pi_{t+1} = \pi_t P \), with a given \(\pi_0 \). We would like to know when this iteration converges to a limit and how fast this convergence is. Here, the reader is referred to Appendix A for a review of vector and function spaces.

A map \(T \) from one complete normed linear (that is, a Banach) space \(\mathbb{X} \) to itself is called a contraction if for some \(0 \leq \rho < 1 \)

\[
\|T(x) - T(y)\| \leq \rho \|x - y\|, \quad \forall x, y \in \mathbb{X}.
\]

Theorem 3.1.7 A contraction map in a Banach space has a unique fixed point.

Proof. \(\{T^n(x)\} \) forms a Cauchy sequence: First note that, \(\|T^k(x) - T^{k-1}(x)\| \leq \rho \|T^{k-1}(x) - T^{k-2}(x)\| \leq \rho \|T^{k-2}(x) - T^{k-3}(x)\| \leq \cdots \leq \rho^{k-1} \|T(x) - x\| \). Then,
uniformly over all \(u \). Suppose that there are two (different) fixed points with the following property:

\[
\| T^n(x) - x \| \leq \sum_{k=1}^{n} \| T^k(x) - T^{k-1}(x) \| \leq \sum_{k=1}^{n} \rho^{k-1} \| T(x) - x \|
\]

implying that

\[
\| T^n(x) \| \leq \| x \| + \| T^n(x) - x \| \leq \| x \| + \| T(x) - x \| \frac{1}{1 - \rho} =: M(x)
\]

uniformly over all \(n \). Now, for every \(n, m \geq N \), we have that \(\| T^n(x) - T^m(x) \| \leq \rho^N \| T^{n-m}(x) \| \leq 2M(x)p^N \). This implies that the sequence is Cauchy. By completeness, the Cauchy sequence has a limit. For uniqueness, suppose that there are two (different) fixed points with \(u = T(u) \) and \(v = T(v) \). Then \(\| u - v \| = \| T(u) - T(v) \| \leq \rho\| u - v \| \), a contradiction. Thus, \(u = v \).

Contraction Mapping via Dobrushin’s Ergodic Coefficient Consider a countable state Markov Chain with one-step transition kernel \(P \). Define the Dobrushin coefficient as

\[
\delta(P) = \min_{i,k} \left(\sum_{j \in \mathbb{X}} \min(P(i,j), P(k,j)) \right)
\]

Observe that for two scalars \(a, b \)

\[
|a - b| = a + b - 2 \min(a, b).
\]

Let us define for a vector \(v \) the \(l_1 \) norm:

\[
\|v\|_{1} = \sum_{i \in \mathbb{X}} |v_i|.
\]

The set of all countable index real-valued vectors (that is functions which map \(\mathbb{Z} \to \mathbb{R} \)) with a finite \(l_1 \) norm

\[
\{v : \|v\|_{1} < \infty\}
\]

is a complete normed linear space, and as such, is a Banach space. With these observations, we state the following:

Theorem 3.1.8 [Dobrushin] [64] For any two probability measures \(\pi, \pi' \), it follows that

\[
\|\pi P - \pi' P\|_{1} \leq (1 - \delta(P))\|\pi - \pi'\|_{1}
\]

Proof. Let \(\psi(i) = \pi(i) - \min(\pi(i), \pi'(i)) \) for all \(i \in \mathbb{X} \). Further, let \(\psi'(i) = \pi'(i) - \min(\pi(i), \pi'(i)) \). Since

\[
0 = \sum_{i} \pi(i) - \pi'(i) = \sum_{i: \pi(i) > \pi'(i)} \pi(i) - \pi'(i) + \sum_{i: \pi'(i) > \pi(i)} \pi(i) - \pi'(i)
\]

we have that \(\|\psi\|_{1} = \|\psi'\|_{1} \), and since

\[
\sum_{i} |\pi(i) - \pi'(i)| = \sum_{i: \pi(i) > \pi'(i)} \psi(i) + \sum_{i: \pi'(i) > \pi(i)} \psi'(i)
\]

we have that

\[
\sum_{i} |\pi(i) - \pi'(i)| = \|\psi\|_{1} + \|\psi'\|_{1}
\]

and thus

\[
\|\pi - \pi'\|_{1} = \|\psi - \psi'\|_{1} = 2\|\psi\|_{1} = 2\|\psi'\|_{1}
\]

Now,

\[
\|\pi P - \pi' P\|_{1} = \|\psi P - \psi' P\|_{1}
\]

\[
= \sum_{j} \sum_{i} |\psi(i) P(i,j) - \psi'(k) P(k,j)|
\]

Therefore,

\[
\|\pi P - \pi' P\|_{1} \leq (1 - \delta(P))\|\pi - \pi'\|_{1}
\]
measures is not a linear space, but viewed as a closed subset of \mathbb{R} and as every Cauchy sequence in a Banach space has a limit, so does this process. We emphasize that the set of probability measures πP, ψ, ψ' have that for every initial state, almost surely

$$\lim_{t \to \infty} \sum_{i,j} \psi(i)\psi'(k) P(i,j) - \psi(i)\psi'(k) P(k,j) = 0$$

Thus, the map

$$\pi \in \mathcal{P}(\mathbb{X}) \mapsto \pi P \in \mathcal{P}(\mathbb{X}),$$

where $\mathcal{P}(\mathbb{X})$ is the set of probability measures on \mathbb{X} viewed as a subset of $l_1(\mathbb{X}; \mathbb{R})$, is a contraction mapping if $\delta(P) > 0$. As a result, the sequence $\{\pi_0 P^n, n \in \mathbb{Z}_+\}$ is Cauchy by Theorem 3.1.7 and as every Cauchy sequence in a Banach space has a limit, so does this process. We emphasize that the set of probability measures is not a linear space, but viewed as a closed subset of $l_1(\mathbb{X}; \mathbb{R})$, the sequence will have a limit. Since πP is also a probability measure for every $\pi \in \mathcal{P}(\mathbb{X})$, the limit must also be a probability measure. The limit is the invariant probability measure.

It should also be emphasized that Dobrushin’s theorem tells us how fast the sequence of probability measures $\{\pi_0 P^n\}$ converges to the invariant probability measure π for an arbitrary π_0: since $\pi P^n = \pi$, we have that

$$\|\pi_0 P^n - \pi\|_1 = \|\pi_0 P^n - \pi P^n\|_1 \leq (1 - \delta(P))^n \|\pi_0 - \pi\|_1 \leq 2(1 - \delta(P))^n, \quad n \in \mathbb{Z}_+$$

Ergodic theorem for countable state space chains

In Exercise 4.5.12 we will prove the ergodic theorem: let $\{x_t\}$ be a Harris recurrent Markov chain with an invariant probability measure μ (such a process is called positive Harris recurrent, as we will define in the next section). We then have that for every initial state, almost surely

$$\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^T f(x_t) = \sum_i f(i) \mu(i)$$

for bounded f (if f is not bounded, then the initial state may be more restricted, but will include a set of measure 1 under μ). This is a very important theorem, as this property is what establishes an important connection with average cost stochastic control. Under a stationary control policy leading to a unique invariant probability measure μ on the state and control process (which is a Markov chain), with a bounded function c it follows that almost surely,

$$\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^T c(x_t, u_t) = \sum_{x,u} c(x,u) \mu(x,u).$$

Remark 3.4. The ergodic theorem is what makes a dynamic optimization problem equivalent to a static optimization problem under mild technical conditions. This will set the core ideas in the convex analytic approach and the linear programming approach that will be discussed later.
3.2 Uncountable Standard Borel State Spaces

We now extend the discussion above to the uncountable state space setting. We will consider state spaces that are standard Borel; as noted earlier, these are Borel subsets of complete, separable and metric spaces. We note again that the spaces that are complete, separable and metric are also called Polish spaces.

Let \(\{ x_t, t \in \mathbb{Z}_+ \} \) be a Markov chain with a Polish \((\mathcal{X}, \mathcal{B}(\mathcal{X})) \), and defined on a probability space \((\Omega, \mathcal{F}, \mathbf{P})\), where \(\mathcal{B}(\mathcal{X}) \) denotes the Borel \(\sigma \)-field on \(\mathcal{X} \), \(\Omega \) is the sample space, \(\mathcal{F} \) a sigma field of subsets of \(\Omega \), and \(\mathbf{P} \) a probability measure. Let \(P(x, D) := \mathbf{P}(x_{t+1} \in D | x_t = x) \) denote the transition probability from \(x \) to \(D \), that is the probability of the event \(\{ x_{t+1} \in D \} \) given that \(x_t = x \).

We could compute \(\mathbf{P}(x_{t+k} \in D | x_t = x) \) inductively as follows:

\[
\mathbf{P}(x_{t+k} \in D | x_t = x) = \int \cdots \int P(x_t, dx_{t+1}) \cdots P(x_{t+k-2}, dx_{t+k-1}) P(x_{t+k-1}, D)
\]

As such, we have for all \(n \geq 1 \), states \(x \) and Borel sets \(A \), \(P^n(x, A) := \mathbf{P}(x_{t+n} \in A | x_t = x) = \int \cdots \int P^n-1(x, dy) P(y, A) \), with \(P^1(\cdot, \cdot) := \mathbf{P}(\cdot, \cdot) \).

Definition 3.2.1 A Markov chain is \(\mu \)-irreducible, if for any set \(B \in \mathcal{B}(\mathcal{X}) \) such that \(\mu(B) > 0 \), and any \(x \in \mathcal{X} \), there exists some integer \(n > 0 \) (possibly depending on \(B \) and \(x \)), such that \(P^n(x, B) > 0 \), where \(P^n(x, B) \) is the transition probability in \(n \) stages, that is \(P(x_{t+n} \in B | x_t = x) \).

A maximal irreducibility measure \(\psi \) is an irreducibility measure such that for all other irreducibility measures \(\phi \), we have \(\psi(B) > 0 \Rightarrow \phi(B) = 0 \) for any \(B \in \mathcal{B}(\mathcal{X}) \) (that is, all other irreducibility measures are absolutely continuous with respect to \(\psi \)). In the text, whenever a chain is said to be irreducible, irreducibility with respect to a maximal irreducibility measure is implied. We also define \(\mathcal{B}^+(\mathcal{X}) = \{ A \in \mathcal{B}(\mathcal{X}) : \psi(A) > 0 \} \) where \(\psi \) is a maximal irreducibility measure. A maximal irreducibility measure \(\psi \) exists for a \(\mu \)-irreducible Markov chain (see [134, Proposition 4.2.2]), for example \(\psi(B) = \sum_{n \in \mathbb{Z}_+} 2^{-n} P^n(x, B) \mu(dx) \).

As an example, consider the following linear system:

\[
x_{t+1} = ax_t + w_t,
\]

This chain is Lebesgue irreducible if \(w_t \) is a Gaussian variable. The definitions for recurrence and transience follow those in the countable state space setting.

Definition 3.2.2 A set \(A \in \mathcal{B}(\mathcal{X}) \) is called recurrent if

\[
E_x[\sum_{t=1}^{\infty} 1_{x_t \in A}] = \sum_{t=1}^{\infty} P^t(x, A) = \infty, \quad \forall x \in \mathcal{X}.
\]

A \(\psi \)-irreducible Markov chain is called recurrent if, for \(A \) with \(\psi(A) > 0 \),

\[
E_x[\sum_{t=1}^{\infty} 1_{x_t \in A}] = \sum_{t=1}^{\infty} P^t(x, A) = \infty, \quad \forall x \in \mathcal{X},
\]

Definition 3.2.3 A set \(A \in \mathcal{B}(\mathcal{X}) \) is Harris recurrent if

\[
P_x(\eta_A = \infty) = 1, \quad A \in \mathcal{B}(\mathcal{X}), \quad \forall x \in A,
\]

(3.18)

A \(\psi \)-irreducible Markov chain is Harris recurrent if

\[
P_x(\eta_A = \infty) = 1, \quad A \in \mathcal{B}(\mathcal{X}), \psi(A) > 0, \quad \forall x \in \mathcal{X}.
\]
Theorem 3.2.1 *Harris recurrence of a set A is equivalent to*

\[P_x(\tau_A < \infty) = 1, \quad \forall x \in A. \]

Proof. Let \(\tau_A(1) \) be the first time the state hits \(A \). By the Strong Markov Property, the Markov chain sampled at successive intervals \(\tau_A(1), \tau_A(2) \) and so on is also a Markov chain. Let \(Q \) be the transition kernel for this sampled Markov Chain. Now, the probability of \(\tau_A(2) < \infty \) can be computed recursively as

\[
P(\tau_A(2) < \infty) = \int_A Q_{x \tau_A(1)}(x \tau_A(1), dy) P_y(\tau_A(1) < \infty) = 1
\]

(3.19)

By induction, for every \(n \in \mathbb{N} \)

\[
P(\tau_A(n + 1) < \infty) = \int_A Q_{x \tau_A(1)}(x \tau_A(1), dy) P_y(\tau_A(n) < \infty) = 1
\]

(3.20)

Now,

\[P_x(\eta_A \geq k) = P_x(\tau_A(k - 1) < \infty), \]

since \(k \) times visiting a set requires \(k \) times returning to a set, when the initial state \(x \) is in the set. As such,

\[P_x(\eta_A \geq k) = 1, \forall k \in \mathbb{Z}_+ \]

is identically equal to 1. Define \(B_k = \{ \omega \in \Omega : \eta(\omega) \geq k \} \), and it follows that \(B_{k+1} \subset B_k \) for all \(k \in \mathbb{N} \). By the continuity of probability (see Theorem B.1.2), \(P(\bigcap B_k) = \lim_{k \to \infty} P(B_k) \), it follows that \(P_x(\eta_A = \infty) = 1 \). The other direction for equivalence follows from the definitions of occupation time \(\eta_A \) and return time \(\tau_A \).

Definition 3.2.4 *If a Harris recurrent Markov chain chain admits an invariant probability measure, then the chain is called positive Harris recurrent.*

3.2.1 Invariant probability measures

Definition 3.2.5 *For a Markov chain with transition probability \(P \), a probability measure \(\pi \) is invariant if*

\[
\pi(D) = \int_X P(x, D) \pi(dx), \quad D \in \mathcal{B}(X).
\]

Uncountable chains act like countable ones when there is a single atom \(\alpha \subset X \) which satisfies a finite mean return property to be discussed below.

Definition 3.2.6 *A set \(\alpha \) is called an atom if there exists a probability measure \(\nu \) such that*

\[
P(x, A) = \nu(A), \quad \forall x \in \alpha, \forall A \in \mathcal{B}(X).
\]

If the chain is \(\psi \)-irreducible and \(\psi(\alpha) > 0 \), then \(\alpha \) is called an accessible atom.

In case there is an accessible atom \(\alpha \), we have the following result the proof of which follows the same steps of those of Theorem 3.1.3 and 3.1.5.

Theorem 3.2.2 *For a \(\psi \)-irreducible Markov chain for which \(E^\alpha[\tau_\alpha] < \infty \), the following is the invariant probability measure:*

\[
\pi(A) = E^\alpha \left[\sum_{k=0}^{\tau_\alpha - 1} 1_{\{x_k \in A\}} \big| x_0 = \alpha \right], \quad A \in \mathcal{B}(X)
\]
Small Sets and Nummelin and Athreya-Ney’s Splitting Technique

In case an atom is not present, we may be able to construct an artificial atom:

Definition 3.2.7 A set \(A \in \mathcal{B}(\mathcal{X}) \) is \((n, \mu)\)-small on \((\mathcal{X}, \mathcal{B}(\mathcal{X}))\) if for some positive measure \(\mu \) and \(n \in \mathbb{N} \)

\[
P^n(x, B) \geq \mu(B), \quad \forall x \in A, \text{ and } B \in \mathcal{B}(\mathcal{X})
\]

Often, we simply say that a set is small without specifying the smallness measure \(\mu \) or time index \(m \). Small sets exist for irreducible Markov chains. A useful result in the theory of small sets is the following.

Theorem 3.2.3 [134, Thm 5.2.2] Let \(\{x_t\} \) be \(\mu \)-irreducible. Then, for every Borel \(B \) with \(\mu(B) > 0 \), there exists \(m \geq 1 \) and a \(\nu_m \)-small set \(C \subset B \) with \(\mu(C) > 0 \) and \(\nu_m(C) > 0 \).

The results on recurrence apply to uncountable chains with no atom provided there is a small set or a petite set (to be discussed further below). In the following, we construct an artificial atom through what is commonly known as the splitting technique, see [144] [145] (see also [14]).

Suppose a set \(A \) is 1-small. Define a process \(z_t = (x_t, a_t), z_t \in \mathcal{X} \times \{0, 1\} \). That is we enlarge the state space. Suppose that when \(x_t \notin A \), \(\{a_t\}, \{x_t\} \) evolve independently from each other. However, when \(x_t \in A \), we pick a Bernoulli random variable, and with probability \(\delta \) the state visits \(A \times \{1\} \) and with probability \(1 - \delta \) visits \(A \times \{0\} \). From \(A \times \{1\} \), the transition for the next time stage is given by \(\frac{\nu(dx)}{\delta} \) and from \(A \times \{0\} \), it visits the future time stage with probability

\[
P(dx_{t+1}|x_t) - \nu(dx_{t+1}) \quad \frac{1}{1 - \delta}
\]

where \(\delta = \nu(\mathcal{X}) \). In this case, \(A \times \{1\} \) is an accessible atom, and one can verify that the marginal distribution of the original Markov process \(\{x_t\} \) has not been altered.

The following can be established using the construction above.

Proposition 3.2.1 If

\[
\sup_{x \in A} E[\min(t > 0 : x_t \in A)|x_0 = x] < \infty
\]

then,

\[
\sup_{z \in (A \times \{1\})} E[\min(t > 0 : z_t \in (A \times \{1\}))|z_0 = z] < \infty.
\]

Now suppose that a set \(A \) is \(m \)-small. Then, we can construct a split chain for the sampled process \(x_{mn}, n \in \mathbb{N} \). Note that this sampled chain has a transition kernel as \(P^m \). We replace the discussion for the 1-small case with the sampled chain (also known as the \(m \)-skeleton of the original chain). If one can show that the sampled chain has an invariant measure \(\pi_m \), then (see [134, Theorem 10.4.5]):

\[
\pi(B) := \frac{1}{m} \sum_{k=0}^{m-1} \int \pi_m(dx) P^k(x, B)
\]

is invariant for \(P \). Furthermore, \(\pi \) is also invariant for the sampled chain with kernel \(P^m \). Hence if \(P^m \) leads to a unique invariant probability measure, \(\pi = \pi_m \).

From small to petite sets

Definition 3.2.8 [134] A set \(A \in \mathcal{B}(\mathcal{X}) \) is \(\nu_T \)-petite on \((\mathcal{X}, \mathcal{B}(\mathcal{X}))\) if for some distribution \(T \) on \(\mathbb{N} \), and some positive measure \(\nu_T \),

\[
\sum_{n=0}^{\infty} P^n(x, B)T(n) \geq \nu_T(B), \quad \forall x \in A, \text{ and } B \in \mathcal{B}(\mathcal{X}).
\]
By [134, Proposition 5.5.6], if a Markov chain is ψ-irreducible and if a set C is ν-petite, then T can be taken to be a geometric distribution $\alpha_i(i) = (1 - \epsilon)^i \epsilon$, $i \in \mathbb{N}$ (with the randomly sampled chain also known as the resolvent kernel).

Another useful result to be utilized later is as follows.

Theorem 3.2.4 [134] Let $\{x_t\}$ be μ-irreducible and let A be ν-petite. Then, there exists a sampling distribution such that A is ψ-petite where ψ is a maximal irreducibility measure. Furthermore, A is ψ-petite for a sampling distribution with finite mean.

Definition 3.2.9 A ψ-irreducible Markov chain is periodic with period d if there exists a partition of $\mathbb{X} = \bigcup_{i=1}^{d} \mathbb{X}_i \cup D$ so that $P(x, \mathbb{X}_{i+1}) = 1$ for all $x \in \mathbb{X}_i$ and $P(x, \mathbb{X}_1) = 1$ for all $x \in \mathbb{X}_d$, with $\psi(D) = 0$. If no such $d > 1$ exists, the chain is aperiodic.

Another useful result is the following.

Theorem 3.2.5 [134, Theorem 5.5.3] For an aperiodic and irreducible Markov chain $\{x_t\}$ every petite set is ν-small for some appropriate ν (but now ν may not be a maximal irreducibility measure; compare with Theorem 3.2.4).

Thus, the main benefit of using petite sets, over small sets, is that these sets allow for periodicity in the study for invariance properties of Markov chains.

The discussion up to (3.21) and the split chain argument applies also for an arbitrary sampling distribution K on \mathbb{N}. Suppose that we have

$$
\int \pi_K(dx) \left(\sum_n K(n) P^n(x,B) \right) = \pi_K(B), \quad B \in B(\mathbb{X})
$$

Then,

$$
\pi(B) := \int \sum_m K(m) \sum_{k=0}^{m-1} \pi_K(dx) P^k(x,B)
$$

is an invariant measure for the original chain so that $\pi = \pi P$. By normalizing this measure, we obtain an invariant probability measure for the original chain, provided that $\sum_m n K(n) < \infty$ (see Theorem 3.2.4).

Exercise 3.2.1 Show that (3.23) is an invariant probability measure given that (3.22) holds.

3.2.2 Existence of an invariant probability measure

We state the following very consequential results on the existence of invariant probability measures for Markov chains.

Theorem 3.2.6 Consider an aperiodic and irreducible Markov chain $\{x_t\}$. If there exists a set A which is also an m-small set for some $m \in \mathbb{Z}_+$, and if the set satisfies

$$
\sup_{x \in A} E[\min(t > 0 : x_t \in A) | x_0 = x] < \infty,
$$

then the Markov chain admits an invariant probability measure.

Note that for $m = 1$, we don’t need irreducibility or aperiodicity, by directly following the splitting construction presented. In the following, we relax aperiodicity, in any case.

Theorem 3.2.7 (Meyn-Tweedie) Consider a Harris recurrent Markov chain $\{x_t\}$. If there exists a μ-petite set A for some positive measure μ, and if the set satisfies
Theorem 3.2.8 For a \(\mu \)-irreducible Markov chain with invariant probability measure \(\pi \), the following holds:

\[
\pi(A) = \int_C \pi(dx) E_x \left[\sum_{k=0}^{\tau_A-1} 1_{\{x_k \in A\}} \right], \quad \forall A \in B(X), \mu(A) > 0, \pi(C) > 0
\]

The above can also be extended to compute the expected values of a function of the Markov states. The above can be verified along the same lines used for the countable state space case (see Theorem 3.1.3).

3.2.3 On small and petite sets: sufficient conditions

Establishing the smallness or petiteness of a set may be difficult to directly verify. In the following, we present a few conditions that may be used to establish petiteness properties.

T-chains. By [134] p. 131, for a Markov chain with transition kernel \(P \) and \(K \) a probability measure on natural numbers, if there exists for every \(E \in B(\mathbb{X}) \), a lower semi-continuous function \(N(\cdot, E) \) such that \(\sum_{n=0}^{\infty} P^n(x, E)K(n) \geq N(x, E) \) for a sub-stochastic kernel \(N(\cdot, \cdot) \) with \(N(x, \mathbb{X}) > 0 \) for all \(x \in \mathbb{X} \), the chain is called a T-chain.

Theorem 3.2.9 ([134] Theorem 6.2.5) For a T-chain which is irreducible, every compact set \(S \) is petite.

Proof Sketch. We will prove the result with the stronger assumption \(P(x, A) \) is continuous in \(x \) for every Borel \(A \) (that is, \(P \) is strong Feller). Note that this implies that \(\sum_{n=0}^{\infty} P^n(x, B)K(n) \) is continuous for every sampling distribution \(K \). Due to irreducibility, by Theorem 3.2.3, a petite set \(B \) exists so that with a positive \(\nu \) measure, for every Borel \(C \), we have
Now there exists \(K \) such that \(
\sum_{n=0}^{\infty} P^n(x, B) \mathcal{K}(n) \)
puts a positive measure on \(B \) for every \(x \in X \), due to irreducibility and that \(B \) has positive measure under the irreducibility measure. Since

\[
\sum_{n=0}^{\infty} P^n(x, B) K_n \geq \nu(C), \quad \forall x \in B.
\]

For a countable state space, under irreducibility, every finite set \(S \) is petite.

Tweedie’s uniform countable additivity condition. Tweedie [185] considers the following. If \(S \) is such that the following uniform countable additivity condition

\[
\lim_{n \to \infty} \sup_{x \in S} P^n(x, B_n) = 0, \quad \text{(3.24)}
\]

is satisfied for \(B_n \downarrow \emptyset \), then \(S \) is petite (and for example, (4.7) to be studied in Chapter 4 implies the existence of an invariant probability measure). In this case, there exists at most finitely many invariant probability measures. By [134, Proposition 5.5.5 (iii)], under irreducibility, the Harris recurrent component of the space can be expressed as a countable union of petite sets \(C_n \) with \(\bigcup_{n=1}^{\infty} C_n \) with \(\bigcup_{m=1}^{\infty} C_m \to \emptyset \) as \(m \to \infty \). By Lemma 4 of Tweedie (2001), under uniform countable additivity, any set \(\bigcup_{i=1}^{M} C_i \) is uniformly accessible from \(S \). Therefore, if the Markov chain is irreducible, the condition (3.24) implies that the set \(S \) is petite. This may be easier to verify for a large class of applications. Under further conditions (such as if \(S \) is compact and \(V \) used in a drift criterion (4.7) has compact level sets), then the analysis will lead sufficient conditions leading to (3.24). In particular, [185, Lemma 1] notes that if \(S \) is bounded and \(V \) is continuous (and thus uniformly bounded on \(S \)), it suffices to test (3.24) only for \(B_n \) sets inside sets on which \(V \) is bounded (that is with \(B_1 \) such that \(\sup_{x \in B_1} V(x) < \infty \)).

In applications, this is often much easier to apply, see e.g. [216].

A further condition. We have the following complementary condition, where irreducibility can be relaxed, but the strong Feller property is imposed.

Proposition 3.7. Assume that

(i) The transition kernel \(T \) is bounded from below by a conditional probability measure that admits a density with respect to some positive measure \(\phi \). In other words there exist a measurable \(f : X \times U \times X \to \mathbb{R}_+ \), such that

\[
P(x, D) \geq \int_D f(x, y) \phi(dy)
\]

for every \(D \in B(X) \).

(ii) The function \(f(x, y) \) is continuous in \(x \) for every fixed \(y \).

(iii) It holds that

\[
\int_X (\inf_{x \in A} f(x, y)) \phi(dy) > 0
\]

for every nonempty compact set \(A \subset X \).

Then, every compact set is 1-small.
Proof. The measurable selection results in [114, 169] and [100, Theorem 2] show that, for any compact \(A \subset X\), there exist measurable functions \(g\) and \(F\) such that

\[
\inf_{x \in A} f(x, y) = \min_{x \in A} f(x, y) =: F(g(y), y) \tag{3.25}
\]

Thus, we have for all \(x \in A\)

\[
P(x, D) \geq \int_D \inf_{x \in A} f(x, y) \phi(dy)
= \int_D F(g(y), y) \phi(dy) =: \nu(D) \tag{3.26}
\]

for some finite (sub-probability) measure \(\nu\). Thus, every compact set is \(1\)-small.

\[\Box\]

3.3 Rates of Convergence to Equilibrium

We can extend Dobrushin’s contraction result for the uncountable state space case. In this general setup, we define the Dobrushin coefficient for a Markov chain with transition kernel \(P\) as

\[
\delta(P) = \inf_{(x,y),A_n} \sum_{i=1}^n \min\{P(x, A_i), P(y, A_i)\} \tag{3.27}
\]

where the infimum is over all \(x, y \in X\) and all finite partitions \(A_n := \{A_n^i, i = 1, \cdots, n\}\) consisting of disjoint sets whose union is \(X\). Note that this definition holds for both continuous or countable \(X\). We then have for two probability measures \(\pi, \pi'\)[64]

\[
\|\pi P - \pi' P\|_{TV} \leq (1 - \delta(P))\|\pi - \pi'\|_{TV}.
\]

As such, if \(\delta(P) > 0\), the iterations \(\pi_t = \pi_{t-1} P\) converge to a unique fixed point geometrically fast. To better appreciate this coefficient, first note that by the property that \(|a - b| = a + b - 2 \min(a, b)\), the Dobrushin’s coefficient in (3.12) can be written as (for the countable state space case):

\[
\delta(P) = 1 - \frac{1}{2} \max_{i,k} \sum_j |(P(i, j) - P(k, j)|
\]

For the continuous setup, in case \(P(x, dy)\) is the transition kernel admitting a density for each \(x\) (that is \(P(x, A) = \int_A p(x, y) dy\) with probability density function \(p(x, \cdot)\)), the expression

\[
\delta(P) = 1 - \frac{1}{2} \sup_{x,z} \int_{\mathbb{R}} |p(x, y) - p(z, y)| dy,
\]

is the Dobrushin’s ergodic coefficient for \(\mathbb{R}\)–valued Markov processes.

The versatility of using Dobrushin’s coefficient for establishing rates of convergence manifests itself in the following conditions (noted from [94, Theorem 3.2]).

Theorem 3.3.1 Consider the following conditions.

(i) There exists a state \(x^* \in X\) and a number \(\beta > 0\) such that \(P(\{x^*\}|x) \geq \beta\) for all \(x \in X\).

(ii) There exist \(n \in \mathbb{N}\) and a measure \(\mu\) such that \(P^n(\cdot|x) \geq \mu(\cdot)\) for all \(x \in X\).

(iii) There exist \(n \in \mathbb{N}\) and a positive number \(\beta < 1\) so that for all \(x, x' \in X\)

\[
\|P^n(\cdot|x) - P^n(\cdot|x')\|_{TV} \leq 2\beta.
\]

(iv) There exist \(c > 0, \beta \in (0, 1)\) such that there is a probability measure \(\pi\) with
3.4 Further Conditions on the Existence and Uniqueness of Invariant Probability Measures

\[\| P_n(x) - \pi \| \leq c \beta^n, \quad x \in \mathbb{X}, n \in \mathbb{N} \]

We have that

(i) \implies (ii) \iff (iii) \iff (iv)

Note that condition \(R2 \) amounts to the entire state space being \(n \)-small. The results above can be established through an analysis based on Dobrushin’s ergodic coefficient. In the next chapter, we will provide more relaxed conditions leading to rates of convergence, even though those conditions will not lead to a uniform (over \(x \in \mathbb{X} \)) rate of convergence.

3.4 Further Conditions on the Existence and Uniqueness of Invariant Probability Measures

3.4.1 Markov chains with the Feller property

This section uses certain properties of sets of probability measures, reviewed briefly in Section D.

Definition 3.4.1 A Markov chain is weak Feller if

\[\int_{\mathbb{X}} P(x, dz) v(z) \]

is continuous in \(x \) for every continuous and bounded \(v \) on \(\mathbb{X} \).

Theorem 3.4.1 Let \(\{x_t\} \) be a weak Feller Markov process living in a compact subset of a complete, separable metric space. Then \(\{x_t\} \) admits an invariant probability measure.

Proof. Proof follows the observation that the space of probability measures on a compact set is tight (that is, it is weakly sequentially pre-compact), see Appendix D for a discussion on weak convergence. Consider a sequence

\[
\mu_T = \frac{1}{T} \sum_{t=0}^{T-1} \mu_0 P^t, \quad T \geq 1,
\]

There exists a subsequence \(\mu_{T_k} \) which converges weakly to some \(\mu^* \). It follows that for every continuous and bounded function \(f \)

\[
\langle \mu_{T_k}, f \rangle := \int_{\mathbb{X}} \mu_{T_k}(dx) f(x) \to \langle \mu^*, f \rangle.
\]

Likewise, since \(P f(x) = \int f(x_1) P(dx_1|x_0 = x) \) is continuous in \(x \) (by the weak Feller condition), it follows that

\[
\langle \mu_{T_k}, P f \rangle := \int_{\mathbb{X}} \mu_{T_k}(dx) \left(\int P(x, dy) f(y) \right) \to \langle \mu^*, P f \rangle.
\]

Now,

\[
(\mu_{T_k} - \mu_{T_k} P)(f) = \frac{1}{T_k} E_{\mu_0} \left[\sum_{k=0}^{T_k-1} P^k f - \sum_{k=0}^{T_k-1} P^{k+1} f \right] = \frac{1}{T_k} E_{\mu_0} \left[f(x_0) - f(x_{T_k}) \right] \to 0. \quad (3.28)
\]

Thus,

\[
(\mu_{T_k} - \mu_{T_k} P)(f) = \langle \mu_{T_k}, f \rangle - \langle \mu_{T_k} P, f \rangle = \langle \mu_{T_k}, f \rangle - \langle \mu_{T_k}, P f \rangle \to \langle \mu^* - \mu^* P, f \rangle = 0.
\]

Now, if the relation \(\langle \mu^* - \mu^* P, f \rangle = 0 \) holds for every continuous and bounded function, it also holds for any measurable function \(f \): This is because continuous functions are dense in measurable functions under the supremum norm (in other words, continuous and bounded functions form a separating class for the space of probability measures, see e.g. p. 13 in [28] or Theorem 3.4.5 in [70]). Thus, \(\mu^* \) is an invariant probability measure. \(\diamond \)
Remark 3.8. The theorem applies identically if instead of a compact set assumption, one assumes that the sequence μ_k takes values in a weakly compact set; that is if the sequence admits a weakly converging subsequence.

Remark 3.9. Reference [122] gives the following example to emphasize the importance of the Feller property: Consider a Markov chain evolving in $[0, 1]$ given by: $P(x, x/2) = 1$ for all $x \neq 0$ and $P(0, 1) = 1$. This chain does not admit an invariant measure.

In the following, we generalize the above result to a case where the state space \mathbb{X} is not compact, but is locally compact.

Theorem 3.4.2 Let $\{x_t\}$ be a weak Feller Markov process taking values from a locally compact \mathbb{X}. Suppose further for some initial probability measure μ_0, with

$$
\mu_T = \frac{1}{T} \sum_{t=0}^{T-1} \mu_0 P^t, \quad T \geq 1,
$$

we have that for some compact B

$$
\liminf_{T \to \infty} \mu_T(B) > 0.
$$

Then, $\{x_t\}$ admits an invariant probability measure.

Proof. The proof builds on an application of the Banach-Alaoglu theorem; the space of signed measures under the total variation norm with finite total variation is the topological dual of the space of continuous functions which vanish at infinity, and the unit ball in this space is weak*-compact by the Banach-Alaoglu theorem. By an argument similar to the proof of Theorem 3.4.1 then there exists a subsequence μ_{T_k} which converges in the weak* sense to a limit μ^*. Since μ^* cannot be the trivial (all-zero) measure, μ^* must be invariant and positive. Normalizing this measure implies that there exists an invariant probability measure. \hfill \diamond

3.4.2 Quasi-Feller chains

Often, one does not have the Feller property, but the set of discontinuity is appropriately negligible.

Assumption 3.4.1 Pf is continuous on $\mathbb{X} \setminus D$ where D is a closed set with $P(X_{t+1} \in D|x) = 0$ for all x. Furthermore, with $D_\epsilon = \{z : d(z, D) < \epsilon\}$ for $\epsilon > 0$ and d the metric on \mathbb{X}, for some $K < \infty$, we have that for all x and $\epsilon > 0$

$$
P\left(X_{t+1} \in D_\epsilon | x_t = x \right) \leq K\epsilon.
$$

Theorem 3.4.3 Suppose that Assumption [3.4.1] holds. If the state space is compact, there exists an invariant probability measure for the Markov chain.

Proof. The sequence of expected empirical probability measures

$$
v_n(A) = E_x \left[\frac{1}{n} \sum_{k=0}^{n-1} 1_{\{X_k \in A\}} \right]
$$

is tight, and thus there exists a weakly converging subsequence. Assumption [3.4.1] implies that every converging subsequence v_{n_k} of is such that for all $\epsilon > 0$

$$
\limsup_{n_k \to \infty} v_{n_k}(D_\epsilon) \leq K\epsilon.
$$

Note that with $v = \lim_{n_k \to \infty} v_{n_k}$, it follows from the Portmanteau theorem (see e.g. [67 Thm.11.1.1]) that

$$
v(D_\epsilon) \leq K\epsilon.
$$
While considering a weakly converging empirical occupation sequence \(v_{t_k} \) and letting this sequence have an accumulation point \(v^* \), we will show that \(v^* \) is invariant.

Observe that the transitioned probability measure \(v_{t_k} P \) satisfies the following for every continuous and bounded \(f \): Consider \(\langle v_{t_k}, Pf \rangle = \langle v_{t_k}, g_f \rangle + \langle v_{t_k}, Pf - g_f \rangle \), where \(g_f \) is a continuous function which is equal to \(Pf \) outside an open neighborhood of \(D \) and is continuous with \(\|g_f\|_\infty = \|Pf\|_\infty \leq \|f\|_\infty \). The existence of such a function follows from the Tietze-Urysohn extension theorem \[67\], where the closed set is given by \(X \setminus D \). It then follows from Assumption 3.4.1 that, for every \(\epsilon > 0 \) a corresponding \(g_f \) can be found so that \(\langle v_{t_k}, Pf - g_f \rangle \leq K\|f\|_\infty \epsilon \), and since \(\langle v_{t_k}, g_f \rangle \to \langle v^*, g_f \rangle \), it follows that

\[
\limsup_{t_k \to \infty} |\langle v_{t_k}, Pf \rangle - \langle v^*, Pf \rangle| \\
= \limsup_{t_k \to \infty} |\langle v_{t_k}, Pf - g_f \rangle - \langle v^*, Pf - g_f \rangle| \\
\leq \limsup_{t_k \to \infty} |\langle v_{t_k}, Pf - g_f \rangle| + |\langle v^*, Pf - g_f \rangle| \\
\leq 2K'\epsilon
\]

Here, \(K' = 2K\|f\|_\infty \) is fixed and \(\epsilon \) may be made arbitrarily small. We conclude that \(v^* \) is invariant.

Remark 3.10. In his definition for quasi-Feller chains, Lasserre assumes the state space to be locally compact. In the proof above \[213\] tightness is invoked directly with no use of convergence properties of the set of functions which decay to zero as is done in \[98\], for a related result see Gersho \[82\].

3.4.3 Cases without the Feller condition

One can relax the weak Feller condition and instead consider spaces of probability measures which are setwise sequentially pre-compact. The proof of this result follows from a similar observation as \[3.28\] but with weak convergence replaced by setwise convergence (see Appendix \[D\]). Note that in this case, if \(\mu_{T_k} \to \mu^* \) setwise, it follows that \(\mu_{T_k} P(f) \to \mu^* P(f) \) and thus \(\mu^* \) is invariant. It can be shown (as in the proof of Theorem 3.4.1) that a (sub)sequence of occupation measures which converges setwise, converges to an invariant probability measure. A sufficient condition for a sequence of probability measures to be setwise sequentially compact is that there exists a finite measure \(\pi \) such that \(v_k \leq \pi \) for all \(k \in \mathbb{N} \).

As an example, consider a system of the form:

\[
x_{t+1} = f(x_t) + w_t
\]

where \(w_t \) admits a distribution with a bounded density function, which is positive everywhere and \(f \) is bounded. This system admits an invariant probability measure which is unique.

3.5 Ergodicity Properties

3.5.1 Uniqueness of an invariant probability measure and unique ergodicity

For a Markov chain, the uniqueness of an invariant probability measure implies the ergodicity of the measure; such a Markov chain is often referred to as uniquely ergodic.

The following definition will be useful.

Definition 3.11. Let \(\pi \) be a probability measure on \(\mathbb{X} \) with metric \(d \). The support of \(\pi \) is defined with

\[
\text{supp } \pi := \{ x : \pi(B_r(x)) > 0 \},
\]
where
\[B_r(x) = \{ y \in X : d(x, y) < r \}. \]

Theorem 3.5.1 Let \(\{x_t\} \) be a \(\psi \)-irreducible Markov chain which admits an invariant probability measure. The invariant measure is unique.

Proof. Let there be two invariant probability measures \(\mu_1 \) and \(\mu_2 \). Then, there exists two mutually singular invariant probability measures \(\nu_1 \) and \(\nu_2 \), that is \(\nu_1(B_1) = 1 \) and \(\nu_2(B_2) = 1 \), \(B_1 \cap B_2 = \emptyset \) and that \(P^n(x, B_1^c) = 0 \) for all \(x \in B_1 \) and \(n \in \mathbb{Z}_+ \) and likewise \(P^n(z, B_2^c) = 0 \) for all \(z \in B_1 \) and \(n \in \mathbb{Z}_+ \). This then implies that the irreducibility measure has zero support on \(B_1^c \) and zero support on \(B_2^c \) and thus on \(X \), leading to a contradiction. \(\diamond \)

Definition 3.12. For a Markov chain with transition kernel \(P \), a point \(x \) is accessible if for every \(y \) and every open neighborhood \(O \) of \(x \), there exists \(k > 0 \) such that \(P^k(y, O) > 0 \).

One can show that if a point is accessible, it belongs to the (topological) support of every invariant measure (see, e.g., Lemma 2.2 in [89]). The support (or spectrum) of a probability measure is defined to be the set of all points \(x \) for which every open neighbourhood of \(x \) has positive measure. A Markov chain \(V_t \) is said to have the strong Feller property at \(x \) if \(E[f(X_{t+1}) | X_t = x] \) is continuous at \(x \) for every measurable and bounded \(f \).

Theorem 3.5.2 \([89, 151]\) If a Markov chain has the strong Feller property at an accessible point, then the chain can have at most one invariant probability measure.

Proof. Let there be two invariant probability measures \(\mu_1 \) and \(\mu_2 \). Then, there exists two mutually singular invariant probability measures \(\nu_1 \) and \(\nu_2 \), that is \(\nu_1(B_1) = 1 \) and \(\nu_2(B_2) = 1 \), \(B_1 \cap B_2 = \emptyset \) and that \(P^n(x, B_1^c) = 0 \) for all \(x \in B_1 \) and \(n \in \mathbb{Z}_+ \) and likewise \(P^n(z, B_2^c) = 0 \) for all \(z \in B_1 \) and \(n \in \mathbb{Z}_+ \). Now, every point \(x \) in \(S \) is so that one can approach \(x \) through two sequences \(y_n, z_n \), one in \(B_1 \) and one in \(B_2 \) whose evaluations of \(P^n(\cdot, B_1^c) \) are 1 apart from each other as \(y_n, z_n \) converge to one another (through \(x \)). This violates strong continuity. \(\diamond \)

Another useful result is the following. Let us first recall the following: A family of functions \(F \) mapping a metric space \(S \) to \(\mathbb{R} \) is said to be equicontinuous at a point \(x_0 \in S \) if, for every \(\epsilon > 0 \), there exists a \(\delta > 0 \) such that \(d(x, x_0) \leq \delta \implies |f(x) - f(x_0)| \leq \epsilon \) for all \(f \in F \). The family \(F \) is said to be equicontinuous if it is equicontinuous at each \(x \in S \).

Definition 3.13. \([134, \text{Chapter 6}]\) A Markov chain with transition kernel \(P \) is called an \(\epsilon \)-chain if for each continuous function \(f \) with compact support, the sequence of functions \(\{ \int P^n(x, dy) f(y), n \in \mathbb{Z}_+ \} \) is equi-continuous on compact sets.

Theorem 3.5.3 \([134, \text{Prop. 18.4.2}]\) If a Markov chain is an \(\epsilon \)-chain, \(X \) is compact, and a reachable state \(x^* \) exists, then there exists a unique invariant probability measure.

3.5.2 Ergodic theorems for positive Harris recurrent chains

Let \(c \in L_1(\mu) := \{ f : \int |f(x)| \mu(dx) < \infty \} \). Suppose that \(\mu \) is an invariant probability measure for a Markov chain. Then, by the individual ergodic theorem (e.g., \([99, \text{Theorem 2.3.4}]\)) it follows that for \(\mu \) almost everywhere \(x \in X \):

\[
\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} c(x_t) = \int c(x) \mu(dx) \quad (P_x \text{ almost surely})
\]

(That is conditioned on \(x_0 = x \), with probability one, the above holds). Furthermore, again with \(c \in L_1(\mu) \), for \(\mu \) almost everywhere \(x \in X \).
3.5 Ergodicity Properties

\[
\lim_{T \to \infty} \frac{1}{T} E_x \left[\sum_{t=1}^{T} c(X_t) \right] = \int c(x) \mu(dx),
\]

On the other hand, the positive Harris recurrence property allows the almost sure convergence to take place for every initial condition: If \(\mu \) is the invariant probability measure for a positive Harris recurrent Markov chain, it follows that for all \(x \in \mathcal{X} \) and for every \(c \in L_1(\mu) \) [134, Theorem 17.1.7] or [99, Theorem 4.2.13]

\[
\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} c(X_t) = \int c(x) \mu(dx),
\]

almost surely. However, for every \(c \in L_1(\mu) \), while (3.31) holds for all \(x \in \mathcal{X} \), it is not generally true that

\[
\lim_{T \to \infty} \frac{1}{T} E_x \left[\sum_{t=1}^{T} c(X_t) \right] = \int c(x) \mu(dx).
\]

Thus, we can not in general relax the boundedness condition for the convergence of the expected costs. However, with \(c \) bounded, for all \(x \in \mathcal{X} \)

\[
\lim_{T \to \infty} \frac{1}{T} E_x \left[\sum_{t=1}^{T} c(X_t) \right] = \int c(x) \mu(dx) \quad (3.32)
\]

This follows as a consequence of Fatou’s lemma and (3.31). Further refinements are possible via return properties to small sets and \(f \)-regularity of cost functions [2, 134]; e.g., this convergence holds if Theorem 4.2.4 holds for the given \(f \) and for some Lyapunov function \(V \) with \(X_0 = x \in \{ z : V(z) < \infty \} \); see the proof of Theorem 4.2.4 and [134, Theorem 14.0.1] for further related results. We refer the reader to [134, Chapters 14 and 17] or [99, Chapters 2 and 4] for additional discussions. See Exercise 3.6.7.

3.5.3 Further ergodic theorems for Markov chains

Although beyond the scope of this course, for completeness, we state the following. When an invariant probability measure is known to exist for a Markov chain, we state the following ergodicity results.

Theorem 3.5.4 [98, Theorems 2.3.4-2.3.5] Let \(\bar{P} \) be an invariant probability measure for a Markov process.

(i) [Individual ergodic theorem] Let \(X_0 = x \). For every \(f \in L_1(\bar{P}) \)

\[
\frac{1}{N} E_x \left[\sum_{n=0}^{N-1} f(X_n) \right] \to f^*(x),
\]

for all \(x \in B_f \) where \(\bar{P}(B_f) = 1 \) (where \(B_f \) denotes that the set of convergence may depend on \(f \)) for some \(f^* \).

(ii) [Mean ergodic theorem] Furthermore, the convergence \(\frac{1}{N} E_x \left[\sum_{n=0}^{N-1} f(X_n) \right] \to f^*(x) \) is in \(L_1(\bar{P}) \).

Theorem 3.5.5 [98, Theorem 2.5.1] Let \(\bar{P} \) be an invariant probability measure for a Markov process. With \(X_0 = x \), for every \(f \in L_1(\bar{P}) \)

\[
\frac{1}{N} \sum_{n=0}^{N-1} f(X_n) \to f^*(x),
\]

for all \(x \in B_f \) where \(\bar{P}(B_f) = 1 \) for some \(f^*(x) \) with

\[
\int \bar{P}(dx) f^*(x) = \int \bar{P}(dx) f(x)
\]
One may state further refinements; see [98] for the locally compact case and [207] for the Polish state space case.

Theorem 3.5.6 [207, Prop. 5.4] or [99, Theorem 3.1(g)] Let \(\bar{P} \) be an invariant probability measure for a Markov process.

(i) [Ergodic decomposition and weak convergence] For \(x, \bar{P} \) a.s.,
\[
\frac{1}{N} \mathbb{E}_x \left[\sum_{t=0}^{N-1} 1 \{ x_n \in \cdot \} \right] \to \bar{P}_x(\cdot) \text{ weakly and } \bar{P} \text{ is invariant for } \bar{P}_x(\cdot) \text{ in the sense that }
\]
\[
\bar{P}(B) = \int P_x(B) \bar{P}(dx)
\]

(ii) [Convergence in total variation] For all \(\mu \in \mathcal{P}(X) \) which satisfies that \(\mu \ll \bar{P} \) (that is, \(\mu \) is absolutely continuous with respect to \(\bar{P} \)), there exists an invariant \(v^* \) such that
\[
\| E_\mu \left[\frac{1}{N} \sum_{t=0}^{N-1} 1 \{ T^\tau X \in \cdot \} \right] - v^*(\cdot) \|_{TV} \to 0.
\]

3.6 Exercises

Exercise 3.6.1 For a countable state space Markov chain, prove that if \(\{ x_t \} \) is irreducible, then all states have the same period.

Exercise 3.6.2 Prove that
\[
P_x(\tau_A = 1) = P(x, A),
\]
and for \(n \geq 1, \)
\[
P_x(\tau_A = n) = \sum_{i \in A} P(x, i) P_i(\tau_A = n - 1)
\]

Exercise 3.6.3 Let \(\{ x_t \} \) be a Markov chain defined on state space \(\{ 0, 1, 2 \} \). Let the one-stage probability transition matrix be given by:
\[
P = \begin{bmatrix}
0 & 1 & 0 \\
1/2 & 0 & 1/2 \\
0 & 2/3 & 1/3
\end{bmatrix}
\]

Compute \(E[\min(t \geq 0 : x_t = 2)|x_0 = 0] \), that is the expected minimum number of stages for the state to move from 0 to 2.

Exercise 3.6.4 Show that irreducibility of a Markov chain in a finite state space implies that every set \(A \) and every \(x \) satisfies \(U(x, A) = \infty \).

Exercise 3.6.5 Show that for an irreducible Markov chain, either the entire chain is transient, or recurrent.

Exercise 3.6.6 Show that for \(\alpha_t \in (0, 1), \)
\[
\prod_{t=0}^{\infty} (1 - \alpha_t) > 0
\]
if and only if \(\sum_t \alpha_t < \infty \).

Hint. For one direction, use \(\log(1 - x) < -x \) for \(x \in (0, 1) \). For the other direction, use \(\lim_{x \to 0} \frac{\log(1 - x)}{x} = -1 \) and that as a result for small enough \(x : \log(1 - x) > -2x \) and that \(\sum_t \alpha_t < \infty \) implies that \(\alpha_t \to 0 \).
Exercise 3.6.7 In view of Exercise 3.6.6 let us revise the example given in Remark 3.2. Let $X = \mathbb{N}$, $P(1, 1) = 1$ and for $x > 1$: $P(x, x + 1) = 1 - 1/x$ and $P(x, 1) = 1/x$. This chain is then Positive Harris Recurrent with invariant measure δ_1 and irreducibility measure also δ_1. Show that with $f(x) = x - 1$:

$$\lim_{N \to \infty} E_x \left[\sum_{k=0}^{N-1} f(x_k) \right] \neq E_{\delta_1}[f(X)] = 0, \quad x \neq 1$$

Thus, expected empirical summations do not necessarily converge to the summation under the invariant measure when the function is not bounded. Note that this would be the case if the functions are bounded. See Remark 3.2 and observe that sample path convergence here does not imply the convergence of expected averages. Note, however, that by the more general individual ergodic theorem, if μ is invariant, and $f \in L_1(\mu)$, then for μ almost surely all x

$$\lim_{N \to \infty} E_x \left[\sum_{k=0}^{N-1} f(x_k) \right] = \mu(dx)f(x)$$

Exercise 3.6.8 If $P_a(\tau_a < \infty) < 1$, show that $E_a[\sum_{k=1}^{\infty} 1_{\{x_k = a\}}] < \infty$.

Exercise 3.6.9 If $P_a(\tau_a = \infty) < 1$, show that $P_a(\sum_{k=1}^{\infty} 1_{\{x_k = a\}} = \infty) = 1$.

Exercise 3.6.10 (Gambler’s Ruin) Consider an asymmetric random walk defined as follows: $P(x_{t+1} = x+1|x_t = x) = p$ and $P(x_{t+1} = x-1|x_t = x) = 1 - p$ for any integer x. Suppose that $x_0 = x$ is an integer between 0 and N. Let $\tau = \min\{k > 0 : x_k \notin [1, N - 1]\}$. Compute $P_x(x_\tau = N)$ (you may use Matlab for your solution).

Hint: Observe that one can obtain a recursion as $P_x(x_\tau = N) = pP_{x+1}(x_\tau = N) + (1-p)P_{x-1}(x_\tau = N)$ for $1 \leq x \leq N - 1$ with boundary value conditions $P_N(x_\tau = N) = 1$ and $P_0(x_\tau = N) = 0$. One observes that

$$P_{x+1}(x_\tau = N) - P_x(x_\tau = N) = \frac{1-p}{p} \left(P_x(x_\tau = N) - P_{x-1}(x_\tau = N) \right)$$

and in particular

$$P_N(x_\tau = N) - P_{N-1}(x_\tau = N) = \left(\frac{1-p}{p} \right)^{N-1} \left(P_1(x_\tau = N) - P_0(x_\tau = N) \right)$$

Exercise 3.6.11 Let $x_{t+1} = f(x_t) + w_t$, where $f : \mathbb{R} \to \mathbb{R}$ is continuous and $\{w_t\}$ is an i.i.d. real valued noise sequence.

a) Show that $\{x_t\}$ is weak-Feller, regardless of the random variable w_t.

b) Show that $\{x_t\}$ is strong-Feller, if w_t is a Gaussian random variable with a positive variance.

Exercise 3.6.12 a) Consider a Markov chain defined on \mathbb{Z}_+ with the transition kernel

$$P(x_0 = x+1|0 = x) = \frac{1}{x+1}, \quad x \neq 0, x \in \mathbb{Z}_+,$$

$$P(x_0 = 0|0 = x) = \frac{1}{x+1}, \quad x \neq 0, x \in \mathbb{Z}_+,$$

with

$$P(x_0 = 1|0 = 0) = 1.$$

Does there exist an invariant probability measure π for this Markov chain? If so, what is one such measure?

b) Consider a Markov chain defined on \mathbb{Z}_+ with the transition kernel
\[P(x_1 = x + 1 | x_0 = x) = \frac{1}{x+1}, \quad x \neq 0, x \in \mathbb{Z}_+, \]
\[P(x_1 = 0 | x_0 = x) = 1 - \frac{1}{x+1}, \quad x \neq 0, x \in \mathbb{Z}_+, \]
with
\[P(x_1 = 1 | x_0 = 0) = 1. \]

Does there exist an invariant probability measure \(\pi \) for this Markov chain? If so, what is one such measure?

\(b \) Consider a Markov chain defined on \([0, 1]\) with the transition kernel:
\[P(x_1 = \frac{x}{2} | x_0 = x) = 1, \quad x \neq 0, x \in [0, 1], \]
\[P(x_1 = 1 | x_0 = 0) = 1. \]

Does there exist an invariant probability measure \(\pi \) for this Markov chain? If so, what is one such measure?

\textbf{Exercise 3.6.13} Consider a square and join opposite corners of this square by straight lines meeting at the point \(C \). Consider the symmetric random walk performed by a particle on these 5 vertices, starting at some vertex \(A \). Find
\(a \) the expected time to return to \(A \),
\(b \) the expected number of visits to \(C \) before returning to \(A \),
\(c \) the expected time to return to \(A \) given that there is no prior visit to \(C \).
Martingale Methods and Foster-Lyapunov Criteria for Stabilization of Markov Chains

In this chapter, we will study stochastic stability of Markov chains through martingale methods and Foster-Lyapunov type stability criteria.

4.1 Martingales

In this section, we introduce martingales and discuss a number of important martingale theorems. Only a few of these will be critical within the scope of our coverage, some others are presented for the sake of completeness.

These are very important for us to understand stabilization of controlled stochastic systems. These also will pave the way to optimization of dynamical systems. The second half of this chapter is on the stabilization of Markov Chains.

4.1.1 More on expectations and conditional probability

Let \((\Omega, \mathcal{F}, P)\) be a probability space and let \(\mathcal{G}\) be a subset of \(\mathcal{F}\) which is itself a \(\sigma\)-field (such a collection is said to be a sub-\(\sigma\)-field of \(\mathcal{F}\)). Let \(X\) be a \(\mathbb{R}\)-valued random variable measurable with respect to \((\Omega, \mathcal{F})\) with a finite absolute expectation that is

\[
E[|X|] = \int_{\Omega} |X(\omega)| P(d\omega) < \infty,
\]

where \(\omega \in \Omega\). We call such random variables integrable.

We say that \(\Xi\) is the conditional expectation random variable (and is also called a version of the conditional expectation) \(E[X|\mathcal{G}]\), of \(X\) given \(\mathcal{G}\) if

1. \(\Xi\) is \(\mathcal{G}\)-measurable.
2. For every \(A \in \mathcal{G}\),

\[
E[1_A \Xi] = E[1_A X],
\]

where we have

\[
E[1_A \Xi] = \int_{\Omega} \Xi(\omega) 1_{\omega \in A} P(d\omega)
\]

For example, if the information that we know about a process is whether an event \(A \in \mathcal{F}\) happened or not -that is, the sub-\(\sigma\)-field is \(\sigma(\{A\}) = \{\emptyset, \Omega, A, \Omega \setminus A\}\)-, then:

\[
X_A := E[X|A] = \frac{1}{P(A)} \int_A P(d\omega) X(\omega).
\]
This follows from the fact that \(\int_A E[X|A](\omega)P(d\omega) = E[X|A] \int_A P(d\omega) \) since \(E[X|A](\omega) \) cannot distinguish between any \(\omega \in A \); this is a consequence of the fact that the conditional expectation is \(\sigma(\{A\}) \)-measurable. Thus, we can simply write \(E[X|A] \) for the conditional expectation rather than \(E[X|A](\omega) \). If the information we have is that \(A \) did not take place:

\[
X_{A^c} := E[X|A^c] = \frac{1}{P(\Omega \setminus A)} \int_{\Omega \setminus A} P(d\omega)X(\omega).
\]

Thus, the conditional expectation given by the sigma-field generated by \(A \) is given by:

\[
E[X|\sigma(\{A\})] = X_A 1_{\omega \in A} + X_{A^c} 1_{\omega \notin A}.
\]

Note that conditional probability can be expressed as

\[
P(X \in B|G) = E[1_{X \in B}]|G],
\]

hence, conditional probability is a special case of conditional expectation.

The notion of conditional expectation is key for the development of stochastic processes which evolve according to a transition kernel. This is useful for optimal decision making when a partial information is available with regard to a random variable.

The following discussion is optional until the next subsection.

Theorem 4.1.1 (Radon-Nikodym) Let \(\mu \) and \(\nu \) be two \(\sigma \)-finite positive measures on \((\Omega, F) \) such that \(\nu(A) = 0 \) implies that \(\mu(A) = 0 \) (that is \(\mu \) is absolutely continuous with respect to \(\nu \)). Then, there exists a measurable function \(f : \Omega \to \mathbb{R}_+ \) such that for every \(A \):

\[
\mu(A) = \int_A f(\omega)\nu(d\omega).
\]

The representation above is unique, up to points of measure zero. With the above discussion, the conditional expectation \(X = E[X|F'] \) exists for any sub-\(\sigma \)-field \(F' \subset F \), as the following discussion shows. Let \(X \) be an integrable non-negative random variable and observe that for any Borel \(A \in F' \)

\[
\int_A \left(E[X|F'](\omega) \right) P(d\omega) = \int_A X(\omega) P(d\omega).
\]

We may view \(\zeta(A) := \int_A X(\omega) P(d\omega) \) as a measure (defined on the measurable space \((\Omega, F') \)) which is absolutely continuous with respect to \(P \), and thus, \(E[X|F'](\omega) \), is the Radon-Nikodym derivative of this measure with respect to \(P \) (This discussion extends to arbitrary integrable variables by considering the negative valued portion of the variable separately).

In case \(X \) is a random variable which is of second-order, another way to establish existence is through a Hilbert theoretic approach, by viewing the conditional expectation as the projection of \(X \) onto a subspace consisting of the set of all functions measurable on \(F' \). We will revisit this later in the notes while deriving the Kalman Filter in Chapter 6. However, for this we would require that \(X \) to be square-integrable (that is, a second-order random variable).

It is a useful exercise to now consider the \(\sigma \)-field generated by an observation variable, and what a conditional expectation means in this case.

Theorem 4.1.2 Let \(X \) be a \(\mathbb{X} \) valued random variable, where \(\mathbb{X} \) is a complete, separable, metric space and \(Y \) be another \(\mathbb{Y} \)-valued random variable, Then, \(X \) is \(F_Y \) (the \(\sigma \)-field generated by \(Y \)) measurable if and only if there exists a measurable function \(f : \mathbb{Y} \to \mathbb{X} \) such that \(X = f(Y(\omega)) \).

With the above, the expectation \(E[X|Y = y_0] \) can be defined, this expectation is a measurable function of \(Y \).
4.1.2 Some properties of conditional expectation:

One very important property is given by the following.

Iterated expectations:

Theorem 4.1.3 If $\mathcal{H} \subset \mathcal{G} \subset \mathcal{F}$, and X is \mathcal{F}–measurable and integrable, then it follows that:

$$E[E[X|\mathcal{G}]|\mathcal{H}] = E[X|\mathcal{H}]$$

Proof. Proof follows by taking a set $A \in \mathcal{H}$, which is also in \mathcal{G} and \mathcal{F}. Let η be the conditional expectation variable with respect to \mathcal{H}. Then it follows that

$$E[1_A \eta] = E[1_A X]$$

Now let $E[X|\mathcal{G}] = \eta'$. Then, it must be that $E[1_A \eta'] = E[1_A X]$ for all $A \in \mathcal{G}$ and hence for all $A \in \mathcal{H}$. Thus, we have that for all $A \in \mathcal{H}$

$$E[1_A \eta'] = E[1_A \eta]$$

Thus, $E[\eta'|\mathcal{H}] = \eta$.

Theorem 4.1.4 Let $\mathcal{G} \subset \mathcal{F}$, and Y be \mathcal{G}–measurable. Let X be \mathcal{F}–measurable and XY be integrable. Then, P almost surely

$$E[XY|\mathcal{G}] = YE[X|\mathcal{G}]$$

Proof. First assume that $Y = Y_n$ is a simple function (a simple random variable of the form: $Y_n(\omega) = \sum_{i=1}^{n} a_i 1_{\omega \in A_i}$). Let us call $E[X|\mathcal{G}] = \eta$ and call $E[XY|\mathcal{G}] = \zeta$.

Then, for all $A \in \mathcal{G}$

$$\int_A Y_n \eta(\omega) P(d\omega) = \int_A \sum_{i=1}^{n} a_i 1_{\omega \in A_i} \eta(\omega) P(d\omega)$$

$$= \sum_{i=1}^{n} a_i \int_{A \cap A_i} \eta(\omega) P(d\omega) = \sum_{i=1}^{n} a_i \int_{A \cap A_i} X(\omega) P(d\omega)$$

(4.1)

Here, the last equality in (4.1) holds since $A \cap A_i \in \mathcal{G}$. On the other hand,

$$\int_A \zeta(\omega) P(d\omega) = \int_A X(\omega) Y_n(\omega) P(d\omega)$$

$$= \int_A \sum_{i=1}^{n} a_i 1_{\omega \in A_i} X(\omega) P(d\omega) = \sum_{i=1}^{n} a_i \int_{A \cap A_i} X(\omega) P(d\omega)$$

Thus, for all $A \in \mathcal{G}$

$$\int_A Y_n X P(d\omega) = \int_A E[XY_n|\mathcal{G}] P(d\omega) = \int_A Y_n E[X|\mathcal{G}] P(d\omega),$$

(4.2)

and the two conditional expectations $E[XY_n|\mathcal{G}]$ and $Y_n E[X|\mathcal{G}]$ are equal. Now, the proof is complete by noting that any integrable Y can be approached from below monotonically by a sequence of simple functions measurable on \mathcal{G}. The monotone convergence theorem leads to the desired result.

4.1.3 Discrete-time martingales

Let (Ω, \mathcal{F}, P) be a probability space. An increasing family $\{\mathcal{F}_n\}$ of sub-σ–fields of \mathcal{F} is called a filtration.
A sequence of random variables defined on \((\Omega, \mathcal{F}, P)\) is said to be adapted to \(\mathcal{F}_n\) if \(X_n\) is \(\mathcal{F}_n\)-measurable, that is \(X_n^{-1}(D) = \{w \in \Omega : X_n(w) \in D\} \in \mathcal{F}_n\) for all Borel \(D\). This holds for example if \(\mathcal{F}_n = \sigma(X_m, m \leq n), n \geq 0\); in this case we call the filtration, the natural filtration.

Given a filtration \(\mathcal{F}_n\) and a sequence of real random variables adapted to it, \((X_n, \mathcal{F}_n)\) is said to be a martingale if

\[
E[|X_n|] < \infty
\]

and

\[
E[X_{n+1}|\mathcal{F}_n] = X_n.
\]

We will often take the sigma-fields to be the natural filtration \(\mathcal{F}_n = \sigma(X_1, X_2, \ldots, X_n)\).

Let \(n > m \in \mathbb{Z}_+\). Since \(\mathcal{F}_m \subset \mathcal{F}_n\), it must be that \(A \in \mathcal{F}_m\) should also be in \(\mathcal{F}_n\). Thus, if \(X_n\) is a martingale sequence,

\[
E[1_A X_n] = E[1_A X_{n-1}] = \cdots = E[1_A X_m].
\]

Thus, \(E[X_n|\mathcal{F}_m] = X_m\).

If we have that

\[
E[X_n|\mathcal{F}_m] \geq X_m
\]

then \(\{X_n\}\) is called a submartingale.

And, if

\[
E[X_n|\mathcal{F}_m] \leq X_m
\]

then \(\{X_n\}\) is called a supermartingale.

A useful concept related to filtrations is that of a stopping time, which we discussed while studying Markov chains. A stopping time is a random time, whose occurrence is measurable with respect to the filtration in the sense that for each \(n \in \mathbb{N}\), \(\{T \leq n\} \in \mathcal{F}_n\).

Definition 4.1.1 (Filtration up to a stopping time) Let \(\mathcal{F}_t\) denote a filtration and \(\tau\) be a stopping time with respect to this filtration so that for every \(k, \{\tau \leq k\} \in \mathcal{F}_k\). Then, the \(\sigma\)-field of events up to \(\tau\), \(\mathcal{F}_\tau\), is the collection of all events \(A \in \mathcal{F}\) that satisfies:

\[
A \cap \{\tau \leq t\} \in \mathcal{F}_t, \quad \forall t \in \mathbb{Z}_+.
\]

Intuitively, the filtration up to a stopping time is all the information generated by a stochastic process up to the stopping time.

4.1.4 Doob’s optional sampling theorem

Theorem 4.1.5 Suppose \((X_n, \mathcal{F}_n)\) is a martingale sequence, and \(\rho, \tau < n\) are (uniformly) bounded stopping times with \(\rho \leq \tau\). Then,

\[
E[X_\tau|\mathcal{F}_\rho] = X_\rho
\]

Proof. We observe that

\[
E[X_\tau - X_\rho|\mathcal{F}_\rho] = E[\sum_{k=\rho}^{\tau-1} X_{k+1} - X_k|\mathcal{F}_\rho]
\]

\[
= E[\sum_{k=\rho}^{\infty} 1_{\{\tau > k\}} (X_{k+1} - X_k)|\mathcal{F}_\rho]
\]

\[
= E[\sum_{k=\rho}^{n} 1_{\{\tau > k\}} (X_{k+1} - X_k)|\mathcal{F}_\rho]
\]
is well-defined. Furthermore, by an application of continuity in probability
\[\lim_{n \to \infty} \mathbb{E}[X_{k+1} - X_k] = 0 \]
relation above applies for all
\[n \in \mathbb{N} \]
where the first inequality follows from Markov’s inequality and the last from Doob’s optional sampling theorem. The

Proof. Let
\[\tau = \min\{ n \geq 0 : X_n = 5 \} \]
then the result would have been applicable even if we didn’t have a finite upper bound on the stopping times. This requires
in particular a dominated convergence result for the sequence \(\sum_{k=\rho}^n 1_{\{\tau \geq k\}} (X_{k+1} - X_k) \) and the almost sure finiteness of \(\tau \). If these hold, then we can indeed apply the argument above. More on this will be discussed below in Theorem 4.1.13.

4.1.5 Doob’s maximal inequality (optional)

Theorem 4.1.6 For a non-negative supermartingale \(M_n \), for all \(\lambda > 0 \),
\[P(\sup_{0 \leq n < \infty} M_n \geq \lambda) \leq \frac{M_0}{\lambda} \]

Proof. Let \(\tau^N = \min\{ n \geq 0 : M_n \geq \lambda \} \) for some \(N \in \mathbb{N} \). Then,
\[P(\max_{0 \leq n < N} M_n \geq \lambda) = P(M_{\tau^N} \geq \lambda) \leq \frac{E[M_{\tau^N}]}{\lambda} \leq \frac{M_0}{\lambda}, \]
where the first inequality follows from Markov’s inequality and the last from Doob’s optional sampling theorem. The
relation above applies for all \(N \in \mathbb{N} \), and since the left hand side is non-decreasing in \(N \), the limit of it as \(N \to \infty \) is well-defined. Furthermore, by an application of continuity in probability \(\lim_{N \to \infty} P(\max_{0 \leq n < N} M_n \geq \lambda) = P(\sup_{0 \leq n < \infty} M_n \geq \lambda) \), and the result follows.
4.1.6 An important martingale convergence theorem

We first discuss **Doob’s upcrossing lemma**. Let \((a, b)\) be a non-empty interval. Let \(X_0 \in (a, b)\). Define a sequence of stopping times

\[
T_1 = \min\{N; \min(0 \leq n \leq N, X_n \leq a)\} \quad T_2 = \min\{N; \min(T_1 \leq n \leq N, X_n \geq b)\}
\]

\[
T_3 = \min\{N; \min(T_2 \leq n \leq N, X_n \leq a)\} \quad T_4 = \min\{N; \min(T_3 \leq n \leq N, X_n \geq b)\}
\]

and for \(m \geq 1:\)

\[
T_{2m-1} = \min\{N; \min(T_{2m-2} \leq n \leq N, X_n \leq a)\} \quad T_{2m} = \min\{N; \min(T_{2m-1} \leq n \leq N, X_n \geq b)\}
\]

The number of upcrossings of \((a, b)\) up to time \(N\) is the random variable \(\zeta_N(a, b)\) = the maximum number of times between 0 and \(N\), \(\{X_n\}\) crosses the strip \((a, b)\) from below \(a\) to above \(b\).

Note that \(X_{T_2} - X_{T_1}\) has the expectation zero, if the sequence is a martingale.

Theorem 4.1.7 Let \(X_T\) be a supermartingale sequence. Then,

\[
E[\zeta_N(a, b)] \leq E[\max(0, a - X_N)] \leq E[|X_N|] + |a| \cdot E\left[\min\left(-\frac{a}{b-a}\right)\right].
\]

Proof.

There are three possibilities that might take place: The process can end, at time \(N\) while the process is below \(a\), between \(a\) and \(b\), or above \(b\). If it crosses above \(b\), then we have completed an upcrossing. In view of this, we may proceed as follows:

Let \(\beta_N := \min(m : T_{2m} = N \quad \text{or} \quad T_{2m-1} = N)\) (note that if \(T_{2m-1} = N\), \(T_{2m} = N\) as well). Here, \(\beta_N\) is measurable on \(\sigma(X_1, X_2, \ldots, X_N)\), so it is a stopping time. Then, by the supermartingale property

\[
0 \geq E\left[\sum_{i=1}^{\beta_N} X_{T_{2i}} - X_{T_{2i-1}}\right]
\]

\[
= E\left[\sum_{i=1}^{\beta_N} X_{T_{2i}} - X_{T_{2i-1}}\right] 1_{\{T_{2\beta_N-1} \neq N\}} 1_{\{T_{2\beta_N} = N\}} + E\left[\sum_{i=1}^{\beta_N} X_{T_{2i}} - X_{T_{2i-1}}\right] 1_{\{T_{2\beta_N-1} = N\}} 1_{\{T_{2\beta_N} = N\}}
\]

\[
= E\left[\sum_{i=1}^{\beta_N-1} (X_{T_{2i}} - X_{T_{2i-1}}) + X_N - X_{T_{2\beta_N-1}}\right] 1_{\{T_{2\beta_N-1} \neq N\}} 1_{\{T_{2\beta_N} = N\}}
\]

\[
+ E\left[\sum_{i=1}^{\beta_N-1} (X_{T_{2i}} - X_{T_{2i-1}})\right] 1_{\{T_{2\beta_N-1} = N\}}
\]

\[
= E\left[\sum_{i=1}^{\beta_N} X_{T_{2i}} - X_{T_{2i-1}}\right] + E\left[(X_N - X_{T_{2\beta_N}}) 1_{\{T_{2\beta_N-1} \neq N\}} 1_{\{T_{2\beta_N} = N\}}\right]
\]

(4.5)

Thus,

\[
E\left(\sum_{i=1}^{\beta_N-1} X_{T_{2i}} - X_{T_{2i-1}}\right) \leq -E[(X_N - X_{T_{2\beta_N}}) 1_{\{T_{2\beta_N-1} \neq N\}} 1_{\{T_{2\beta_N} = N\}}]
\]

\[
\leq E[\max(0, a - X_N) 1_{\{T_{2\beta_N} = N\}}] \leq E[\max(0, a - X_N)]
\]

(4.6)
Since, $E\left(\sum_{i=1}^{\beta_N-1} X_{T_2i} - X_{T_2i-1}\right) \geq E[\beta_N - 1](b - a)$, it follows that $\zeta_N(a, b) = (\beta_N - 1)$ satisfies:

$$E[\zeta_N](b - a) \leq E[\max(0, a - X_N)] \leq |a| + E[|X_N|],$$

and the result follows.

Recall that a sequence of random variables X_n defined on a probability space (Ω, \mathcal{F}, P) converges to X almost surely (a.s.) if

$$P\left(w : \lim_{n \to \infty} X_n(w) = X(w)\right) = 1.$$

Theorem 4.1.8 Suppose X_n is a supermartingale and $\sup_{n \geq 0} E[\max(0, -X_n)] < \infty$. Then $\lim_{n \to \infty} X_n = X$ exists (almost surely). The same result applies for submartingales, by considering $-X_n$ regarded as a supermartingale and the condition $\sup_{n \geq 0} E[\max(0, X_n)] < \infty$. A sufficient condition for both cases is that

$$\sup_{n \geq 0} E[|X_n|] < \infty.$$

Proof. The proof follows from Doob’s upcrossing lemma. Now, for any fixed a, b (independent of ω) with $a < b$, by the upcrossing lemma we have that

$$E[\zeta_N(a, b)] \leq E[\max(0, a - X_N)] \leq E[|X_N|] + |a| \overline{\frac{b - a}{(b - a)}},$$

which is uniformly bounded. The above holds for every N. Since $\zeta_N(a, b)$ is a monotonically increasing sequence in N, by the monotone convergence theorem it follows that

$$\lim_{N \to \infty} E[\zeta_N(a, b)] = E[\lim_{N \to \infty} \zeta_N(a, b)] < \infty.$$

Thus, for every fixed a, b, the number of up-crossings has to be finite. Hence, the limsup cannot be above b and the liminf cannot be below a, for otherwise the number of up-crossings would be infinite. It then follows that

$$P(\omega : |\limsup X_n(\omega) - \liminf X_n(\omega)| > (b - a)) = 0,$$

since this probability can be expressed also as

$$P\left(\cup_{r \in \mathbb{Q}} \left\{ \omega : \limsup X_n(\omega) > (b - a + r), \liminf X_n(\omega) < r \right\} \right),$$

By a union bound argument, the probability is upper bounded by the probability of a countable union of zero probability events which is zero. Finally, a continuity of probability argument then leads to

$$P\left(\omega : |\limsup X_n(\omega) - \liminf X_n(\omega)| > 0 \right) = 0.$$

We can also show that the limit variable has finite absolute expectation.

Theorem 4.1.9 (Submartingale Convergence Theorem) Suppose X_n is a submartingale and $\sup_{n \geq 0} E[|X_n|] < \infty$. Then $X := \lim_{n \to \infty} X_n$ exists (almost surely) and $E[|X|] < \infty$.

Proof. Note that, $\sup_{n \geq 0} E[|X_n|] < \infty$, is a sufficient condition both for a submartingale and a supermartingale in Theorem 4.1.8. Hence $X_n \to X$ almost surely. For finiteness, suppose $E[|X|] = \infty$. By Fatou’s lemma,

$$\limsup_{n \to \infty} E[|X_n|] \geq \liminf_{n \to \infty} E[|X_n|] \geq E[\liminf_{n \to \infty} |X_n|] = \infty.$$
54 4 Martingale Methods and Foster-Lyapunov Criteria for Stabilization of Markov Chains

But this is a contradiction as we had assumed that \(\sup_n E[|X_n|] < \infty \).

\[\text{\ding{182}} \]

4.1.7 The ergodic theorem

Please see Exercise 4.5.12.

4.1.8 This section is optional: Further martingale theorems

This section is optional. If you wish not to read it, please proceed to the discussion on stabilization of Markov Chains.

Theorem 4.1.10 Let \(X_n \) be a martingale such that \(X_n \) converges to \(X \) in \(L_1 \) that is \(E[|X_n - X|] \rightarrow 0 \). Then,

\[X_n = E[X|F_n], \quad n \in \mathbb{N} \]

We will use the following while studying the convex analytic method, as well as on the stabilization of Markov chains while extending the optional sampling theorem to situations where the sampling (stopping) time is not bounded from above by a finite number. Let us define uniform integrability:

Definition 4.1.2 A sequence of random variables \(\{X_n\} \) is uniformly integrable if

\[\lim_{K \rightarrow \infty} \sup_n \int_{|X_n| \geq K} |X_n| P(dX_n) = 0 \]

This implies that

\[\sup_n E[|X_n|] < \infty \]

Let for some \(\epsilon > 0 \),

\[\sup_n E[|X_n|^{1+\epsilon}] < \infty. \]

This implies that the sequence is uniformly integrable as

\[\sup_n \int_{|X_n| \geq K} |X_n| P(dX_n) \leq \sup_n \int_{|X_n| \geq K} \left(\frac{|X_n|}{K} \right)^\epsilon |X_n| P(dX_n) \leq \sup_n \frac{1}{K^\epsilon} E[|X_n|^{1+\epsilon}] \rightarrow 0, \]

as \(K \rightarrow \infty \). The following is a very important result:

Theorem 4.1.11 If \(X_n \) is a uniformly integrable martingale, then \(X = \lim_{n \rightarrow \infty} X_n \) exists almost surely (for all sequences with probability 1) and in \(L_1 \), and \(X_n = E[X|F_n] \).

Theorem 4.1.12 Let \(X \) be integrable and \(F_n \) be a filtration (not necessarily the natural filtration). Then, \(M_n = E[X|F_n] \) is uniformly integrable.

Proof. First note that by Jensen’s inequality \(E[X|F_n] \leq E[|X||F_n] \) (since \(|\cdot| \) is a convex function). Therefore, by Markov’s inequality, for any \(K \in \mathbb{R}_+ \):

\[P(|E[X|F_n]| > K) \leq E[|E[X|F_n]|]/K \leq E[|X||F_n]|/K = \frac{E[|X|]}{K}, \]

which decays to zero as \(K \rightarrow \infty \).

Now, consider the measure defined with \(|X(\omega)|dP(\omega) \): For any set sequence \(A_m \) with \(P(A_m) \rightarrow 0 \), we have that
4.2 Stability of Markov Chains: Foster-Lyapunov Techniques

\[\lim_{m \to \infty} E[1_{A_m} | X] = 0 \]

This follows from a contradiction argument: suppose this is not true, then there exists a subsequence \(A_{m_k} \) with \(E[1_{A_{m_k}} | X] \geq \epsilon \) some fixed \(\epsilon > 0 \) and a further subsequence \(A_{m'_{k}} \) with a finite \(\sum_{m'_{k}} P(A_{m'_{k}}) \). Then a monotone convergence theorem violation can be established so that with \(B_n = \bigcup_{m'_{k} \geq n} A_{m'_{k}} \), \(E[1_{B_n} | X] \not\to 0 \) where \(B_n \) is a monotone decreasing sequence whose measure vanishes. Therefore

\[\limsup_{K \to \infty} \lim_{n \to \infty} E[|X| | F_n] \leq \limsup_{K \to \infty} E[|X| | F_\tau] = 0. \]

Optional Sampling Theorem For Uniformly Integrable Martingales

Theorem 4.1.13 Let \((X_n, F_n)\) be a uniformly integrable martingale sequence, and \(\rho, \tau \) are finite stopping times with \(\rho \leq \tau \). Then,

\[E[X_\tau | F_\rho] = X_\rho \]

Proof. See the discussion following (4.4). As an alternative argument, consider the following: by Uniform Integrability, it follows that \(\{X_t\} \) has a limit. Let this limit be \(X_\infty \), which is integrable by Theorem 4.1.9. It follows that \(E[X_\infty | F_\tau] = \lim_{n \to \infty} E[X_n | F_\tau] = \lim_{n \to \infty} X_{\min(n, \tau)} = X_\tau \) and by iterated expectations

\[E[E[X_\infty | F_\tau] | F_\rho] = X_\rho \]

which is also equal to \(E[X_\tau | F_\rho] = X_\rho \).

\(\diamond \)

4.1.9 Azuma-Hoeffding inequality for martingales with bounded increments

The following is an important concentration result:

Theorem 4.1.14 Let \(X_t \) be a martingale sequence such that \(|X_t - X_{t-1}| \leq c\) for every \(t \), almost surely. Then for any \(x > 0 \),

\[P\left(\frac{X_t - X_0}{t} \geq x \right) \leq 2e^{-\frac{tx^2}{2}} \]

As a result, \(\frac{X_t}{t} \to 0 \) almost surely.

4.2 Stability of Markov Chains: Foster-Lyapunov Techniques

A Markov chain’s stability can be characterized by drift conditions, as we discuss below in detail.
4.2.1 Criteria for existence of invariant probability measures and positive Harris recurrence

Theorem 4.2.1 (Foster-Lyapunov for Positive Recurrence) \[134\] Let \(S \) be a petite set, \(b \in \mathbb{R}, \epsilon > 0, \) and \(V : \mathbb{X} \to \mathbb{R}_+ \).

If the following is satisfied for all \(x \in \mathbb{X} \):

\[
\int_{\mathbb{X}} P(x, dy)V(y) = E[V(x_{t+1})|x_t = x] \leq V(x) - \epsilon + b1_{\{x \in S\}},
\]

then the chain is positive Harris recurrent (and thus a unique invariant probability measure \(\pi \) exists).

Proof. We will first assume that \(S \) is such that \(\sup_{x \in S} V(x) < \infty \). Define \(\bar{M}_0 := V(x_0) \), and for \(t \geq 1 \)

\[
\bar{M}_t := V(x_t) - \sum_{i=0}^{t-1} (-\epsilon + b1_{\{x_i \in S\}})
\]

We have that

\[
E[\bar{M}_{t+1}|x_s, s \leq t] \leq \bar{M}_t, \quad \forall t \geq 0.
\]

It follows from (4.7) that \(E[|M_t|] \leq \infty \) for all \(t \) and thus, \(\{M_t\} \) is a supermartingale sequence with respect to the natural filtration \(\mathcal{F}_t = \sigma(x_0, \ldots, x_t) \). Now, define a stopping time: \(\tau^N := \min(N, \tau) \), where \(\tau = \min\{i > 0 : x_i \in S\} \). Note that the stopping time \(\tau^N \) is bounded. Hence, we have, by the martingale optional sampling theorem

\[
E[M_{\tau^N}|x_0] \leq M_0.
\]

Thus, we obtain

\[
\epsilon E_{x_0} \sum_{i=0}^{\tau^N-1} 1 \leq V(x_0) + bE_{x_0} \sum_{i=0}^{\tau^N-1} 1_{\{x_i \in S\}}
\]

Thus,

\[
\epsilon E_{x_0} [\tau^N - 1 + 1] \leq V(x_0) + b,
\]

and by the monotone convergence theorem,

\[
\lim_{N \to \infty} E_{x_0} [\tau^N] \leq E_{x_0} [\tau] \leq \frac{V(x_0) + b}{\epsilon}.
\]

(Note that, the first equality above is a consequence of the drift criterion:

\[
\frac{V(x_0) + b}{\epsilon} \geq \lim_{N \to \infty} E_{x_0} [\tau^N] \geq \lim_{N \to \infty} \sup_{N \in \mathbb{R}} (NP_{x_0} (\tau \geq N) + E_{x_0} [\tau_{1_{\{N > \tau\}}}) \geq \lim_{N \to \infty} NP_{x_0} (\tau \geq N),
\]

implying that \(P_{x_0} (\tau \geq N) \to 0 \) as \(N \to \infty \) and that \(P_{x_0} (\tau < \infty) = 1 \). Now, if we had that

\[
\sup_{x \in S} V(x) < \infty,
\]

the proof would essentially be complete in view of Theorem 3.2.7. The fact that \(E_{x}[\tau] \leq \frac{V(x)+b}{\epsilon} < \infty \) for any \(x \in \mathbb{X} \) leads to the Harris recurrence of the chain since this implies that \(P_{x_0} (\tau < \infty) = 1 \) for every \(x \) and petiteness implies that the chain would be positive Harris recurrent \([134\) Proposition 9.1.7] (see also \([38\) Theorem 3.1]).

Typically, condition (4.8) is satisfied. However, the theorem statement does not impose this condition. Then, we proceed with constructing another petite set on which (4.8) holds. Following \([134\ Chapter 11\), define for some \(l \in \mathbb{Z}_+ \)

\[
V_C(l) = \{x \in C : V(x) \leq l\}
\]

We will show that \(B := V_C(l) \) is itself a petite set which is recurrent and satisfies the uniform finite-mean-return property. Observe that, by a continuity of probability argument, for sufficiently large \(l, \nu(B) > 0 \). Since \(C \) is petite for some measure \(\nu \), we have that
\[K_a(x, B) \geq 1_{\{x \in C\}} \nu(B), \quad x \in \mathbb{X}, \]
where \(K_a(x, B) = \sum_{i \in \mathbb{N}} a(i)P^i(x, B) \), and hence
\[1_{\{x \in C\}} \leq \frac{1}{\nu(B)} K_a(x, B) \]

Now, for \(x \in B \),
\[E_x[\tau_B] \leq V(x) + b E_x[\sum_{k=0}^{\tau_B - 1} 1_{\{x_k \in C\}}] \leq V(x) + b E_x[\sum_{k=0}^{\tau_B - 1} \frac{1}{\nu(B)} K_a(x_k, B)] \]
\[= V(x) + b \frac{1}{\nu(B)} E_x[\sum_{k=0}^{\tau_B - 1} K_a(x_k, B)] = V(x) + b \frac{1}{\nu(B)} E_x[\sum_{i} a(i)P^i(x_k, B)] \]
\[= V(x) + b \frac{1}{\nu(B)} \sum_{i} a(i)E_x[\sum_{k=0}^{\tau_B - 1} 1_{\{x_k+1 \in B\}}] \]
\[\leq V(x) + b \frac{1}{\nu(B)} \sum_{i} a(i)(1 + i), \]
(4.12)

where (4.11) follows since at most once the process can hit \(B \) between 0 and \(\tau_B - 1 \). Now, the petiteness measure can be adjusted such that \(\sum_{i} a_i < \infty \) (by Theorem 3.2.4 or [134, Proposition 5.5.6]), leading to the result that
\[\sup_{x \in B} E_x[\tau_B] \leq \sup_{x \in B} V(x) + b \frac{1}{\nu(B)} \sum_{i} a(i)(1 + i) < \infty. \]

Finally, since \(C \) is petite, so is \(B \) and it can be shown that \(P_x(\tau_B < \infty) = 1 \) for all \(x \in \mathbb{X} \). This concludes the proof. \(\diamond \)

Remark 4.1. Note that irreducibility of the Markov chain is not imposed a priori, as discussed in Remark 3.3 building on [134, Proposition 9.1.7] or [58, Theorem 3.1], the drift criterion and the small/petite nature of the set leads to an irreducible Markov chain taking values in a proper subset of \(\mathbb{X} \).

Remark 4.2. Meyn and Tweedie [134, Theorem 13.0.1] show that under the hypotheses of Theorem 4.16 together with aperiodicity, it also follows that for any initial state \(x \in \mathbb{X} \),
\[\lim_{n \to \infty} \sup_{B \in \mathcal{B}(\mathbb{X})} |P^n(x, B) - \pi(B)| = 0, \]
that is \(P^n(x, \cdot \cdot \cdot) \) converges to \(\pi \) in total variation, for every \(x \in \mathbb{X} \). This follows from a coupling argument, to be discussed further in the chapter.

Exercise 4.2.1 Consider a queuing system with
\[Q_{t+1} = \max(Q_t + A_t - N1_{Q_t \geq N}, 0) \]
where \(A_t \) is an i.i.d. Poisson arrival process with rate \(\lambda \) so that
\[P(A_t = m) = e^{-\lambda} \frac{\lambda^m}{m!}, \quad m \in \mathbb{Z}_+ \]
Suppose that \(N > \lambda \). Show that \(Q_t \) is positive Harris recurrent.

Remark 4.3. We note that if \(x_t \) is aperiodic and irreducible and such that for some small set \(\sup_{x \in A} E[\min(t > 0 : x_t \in A)|x_0 = x] < \infty \), then the sampled chain \(\{x_{km}\} \) is such that \(\sup_{x \in A} E[\min(km > 0 : x_{km} \in A)|x_0 = x] < \infty \), and the split chain discussion in Section 3.2.1 applies (See [134, Theorem 11.3.14]). The argument for this builds on the fact that,
with \(\sigma_C = \min(k \geq 0 : x_k \in C) \), \(V(x) := 1 + E_x[\sigma_C] \), it follows that \(E[V(x_{t+1})|x_t = x] \leq V(x) - 1 + b1_{\{x \in C\}} \) and iterating the expectation \(m \) times we obtain that

\[
E[V(x_{t+m})|x_t = x] \leq V(x) - m + bE_x[\sum_{k=0}^{m-1} 1_{\{x_k \in C\}}].
\]

By [134], it follows that \(E_x[\sum_{k=0}^{m-1} 1_{\{x_k \in C\}}] \leq m1_{\{x \in C\}} + me \) for some petite set \(C \) and \(\epsilon > 0 \) (this follows from the observation that \(\{ x : P^k(x, C) \geq \epsilon \} \) will be included in the petite set for at least one \(k \) with \(1 \leq k \leq m - 1 \) and the complement of these sets \(\{ x : P^k(x, C) < \epsilon \} \) will contribute to an upper bound of \(me \)). This set is petite also for the sampled chain (see Lemma 4.2.1). As a result, we have a drift condition for the \(m \)-skeleton, the return time for an artificial atom constructed through the split chain is finite and hence an invariant probability measure for the \(m \)-skeleton, and thus by (3.21), an invariant probability measure for the original chain exists.

\[\square\]

In the following, we relax the existence of a petite set or irreducibility, but impose that the space is locally compact (and not just Polish or standard Borel). This builds on [134, Theorem 12.3.4] or [99, Theorem 7.2.4].

Theorem 4.2.2 If the Markov chain is weak Feller, the space is locally compact, and \(S \) is compact; under (4.7), there exists an invariant probability measure.

Proof. Iterating (4.7) we obtain that, with

\[
P^{(n)}(x, S) := \frac{1}{n} E_x[\sum_{k=0}^{n-1} 1_{\{x_k \in S\}}],
\]

we arrive at

\[
\lim_{n \to \infty} \inf P^{(n)}(x, S) \geq \frac{\epsilon}{b}.
\]

The result then follows from Theorem 3.4.2.

\[\square\]

There are other versions of Foster-Lyapunov criteria, as we discuss in the following.

4.2.2 Criterion for finite expectations

Theorem 4.2.3 [Comparison Theorem] Let \(V : X \to \mathbb{R}_+ \), \(f, g : X \to \mathbb{R}_+ \). Let \(\{x_n\} \) be a Markov chain on \(X \). If the following is satisfied:

\[
\int_X P(x, dy)V(y) \leq V(x) - f(x) + g(x), \quad x \in X,
\]

then, for any stopping time \(\tau \) with \(P(\tau < \infty) = 1 \), it follows that

\[
E[\sum_{i=0}^{\tau-1} f(x_i)] \leq V(x_0) + E[\sum_{i=0}^{\tau-1} g(x_i)].
\]

Proof. As in Theorem 4.16 define \(\tilde{M}_0 := V(x_0) \), and for \(t \geq 1 \)

\[
\tilde{M}_t := V(x_t) - \sum_{i=0}^{t-1} (f(x_i) - g(x_i)).
\]

It follows that

\[
E[\tilde{M}_{t+1}|x_s, s \leq t] \leq \tilde{M}_t, \quad \forall t \geq 0.
\]

Now, define a stopping time: \(\tau^N = \min(\tau, \min(k > 0 : k + V(x_k) + \sum_{i=0}^{k-1} f(x_i) + g(x_k) \geq N)) \). Note that the stopping time \(\tau^N \) is bounded. It then follows that (through defining a supermartingale: \(M_t := \tilde{M}_{\min(t, \tau^N)} \)), and by the martingale
optional sampling theorem:
\[E[M_{\tau N} | x_0] \leq M_0 = V(x_0). \]
Hence, we obtain
\[E \left[V(x_{\tau N}) + \sum_{i=0}^{\tau N-1} f(x_i) - g(x_i) \big| x_0 \right] \leq M_0 = V(x_0), \]
and thus by the fact that the terms inside the expectations are separately integrable, we have that
\[E \left[\sum_{i=0}^{\tau N-1} f(x_i) \big| x_0 \right] \leq M_0 = V(x_0) + E \left[\sum_{i=0}^{\tau N-1} g(x_i) \big| x_0 \right] - E[V(x_{\tau N}) | x_0]. \]

Now, since each of the terms in the expectations is positive, and that \(E[V(x_{\tau N}) | x_0] \geq 0 \), the monotone convergence theorem implies the desired result.

Theorem 4.2.3 above also allows for the computation of useful bounds. For example if \(g(x) = b 1_{\{x \in A\}} \), then one obtains that \(E[\sum_{i=0}^{\tau N-1} f(x_i)] \leq V(x_0) + b. \) In view of the invariant measure properties, if \(f(x) \geq 1 \), this provides a bound on \(\int \pi(dx) f(x) \), as we note next.

Theorem 4.2.4 [Criterion for finite expectations] \([134] \) Let \(S \) be a petite set, \(b \in \mathbb{R}_+ \) and \(V : \mathbb{X} \to \mathbb{R}_+ \), \(f : \mathbb{X} \to [\epsilon, \infty) \) for some \(\epsilon > 0 \). Let \(\{x_n\} \) be a Markov chain on \(\mathbb{X} \).

(i) If the following is satisfied:
\[\int_{\mathbb{X}} P(x, dy) V(y) \leq V(x) - f(x) + b 1_{\{x \in S\}}, \quad x \in \mathbb{X}, \quad (4.13) \]
then for every \(x_0 = z \in \mathbb{X} \),
\[\lim_{T \to \infty} \frac{1}{T} \sum_{i=0}^{T-1} f(x_i) = \int \mu(dx) f(x) < \infty, \quad (4.14) \]
almost surely, where \(\mu \) is the invariant probability measure on \(\mathbb{X} \).

(ii) If \(\{x_i\} \) is positive Harris recurrent, even if \(f : \mathbb{X} \to \mathbb{R}_+ \) (and not \(f : \mathbb{X} \to [\epsilon, \infty) \)) and \(S = \mathbb{X} \) itself (that is, with no indicator function), (4.13) implies (4.14).

That under Theorem 4.2.4, the process is a positive Harris recurrent Markov chain is a consequence of Theorem 4.7. The proof of Theorem 4.2.4 will then build on the following result and the ergodicity of a positive Harris recurrent Markov chain.

Theorem 4.2.5 Let (4.13) hold (but with not necessarily an irreducibility assumption), or the following more relaxed form hold:
\[\int_{\mathbb{X}} P(x, dy) V(y) \leq V(x) - f(x) + b, \quad x \in \mathbb{X} \quad (4.15) \]
Under every invariant probability measure \(\pi \), \(\int \pi(dx) f(x) \leq b. \)

Proof. By Theorem 4.2.3, with taking \(T \) to be a deterministic stopping time, for any initial condition \(x_0 = z \)
\[\lim \sup_{T} \frac{1}{T} E_z \left[\sum_{k=0}^{T} f(x_k) \right] \leq \lim \sup_{T} \frac{1}{T} \left(V(z) + bT \right) = b. \]

Now, suppose that \(\pi \) is any invariant probability measure. Fix \(N < \infty \), let \(f_N = \min(N, f) \), and apply Fatou’s Lemma as follows, where we use the notation \(\pi(f) = \int \pi(dx) f(x) \),
Show that the random walk on \(\mathbb{Z} \) is recurrent.

\[\pi(f_N) = \limsup_{n \to \infty} \pi\left(\frac{1}{n} \sum_{t=0}^{n-1} P^t f_N\right) \leq \pi\left(\limsup_{n \to \infty} \frac{1}{n} \sum_{t=0}^{n-1} P^t f_N\right) \leq b.\]

Fatou’s Lemma is justified to obtain the first inequality, because \(f_N \) is bounded. The second inequality holds since \(f_N \leq f \).

Remark 4.4. If \(S \) is further petite, then once the petite set is visited, any other set with a positive measure (under an irreducibility measure, since the petiteness measure can be used to construct an irreducibility measure) is visited with probability 1 infinitely often and hence the chain is Harris recurrent.

Exercise 4.2.2 Show that the random walk on \(\mathbb{Z} \) is recurrent.
4.2.4 Criterion for transience

Criteria for transience is somewhat more difficult to establish. One convenient way is to construct a stopping time sequence and show that the state does not come back to some set infinitely often. We state the following.

Theorem 4.2.7 ([134], [89]) Let $V : \mathbb{X} \to \mathbb{R}_+$. If there exists a set A such that $E[V(x_{t+1})|x_t = x] \leq V(x)$ for all $x \notin A$ and $\exists \bar{x} \notin A$ such that $V(\bar{x}) < \inf_{z \in A} V(z)$, then $\{x_t\}$ is not recurrent, in the sense that $P_\bar{x}(\tau_A < \infty) < 1$.

Proof. Let $x = \bar{x}$. Proof follows from observing that

$$V(x) \geq \int_{y} V(y)P(x,dy) \geq (\inf_{z \in A} V(z))P(x,A) + \int_{y \notin A} V(y)P(x,dy) \geq (\inf_{z \in A} V(z))P(x,A).$$

It thus follows that

$$P(\tau_A < 2) = P(x,A) \leq \frac{V(x)}{(\inf_{z \in A} V(z))}.$$

Likewise,

$$V(\bar{x}) \geq \int_{y} V(y)P(\bar{x},dy)$$

$$\geq (\inf_{z \in A} V(z))P(\bar{x},A) + \int_{y \notin A} P(\bar{x},dy)\left((\inf_{s \in A} V(s))P(y,A) + \int_{s \notin A} V(s)P(y,ds)\right)$$

$$\geq (\inf_{z \in A} V(z))P(\bar{x},A) + \int_{y \notin A} P(\bar{x},dy)((\inf_{s \in A} V(s))P(y,A))$$

$$= (\inf_{z \in A} V(z))\left(P(\bar{x},A) + \int_{y \notin A} P(\bar{x},dy)P(y,A)\right).$$

(4.17)

Thus, noting that $P(\{\omega : \tau_A(\omega) < 3\}) = \int_A P(\bar{x},dy) + \int_{y \notin A} P(\bar{x},dy)P(y,A)$, we observe:

$$P_\bar{x}(\tau_A < 3) \leq \frac{V(\bar{x})}{(\inf_{z \in A} V(z))}.$$

Thus, this follows for any n: $P_\bar{x}(\tau_A < n) \leq \frac{V(\bar{x})}{(\inf_{z \in A} V(z))} < 1$. Continuity of probability measures (by defining: $B_n = \{\omega : \tau_A < n\}$ and observing $B_n \subset B_{n+1}$ and that $\lim_{n} P(\tau_A < n) = P(\cup_n B_n) = P(\tau_A < \infty) < 1$) now leads to $P_\bar{x}(\tau_A < \infty) < 1$.

Observe the striking difference with the inf-compactness condition leading to recurrence and the condition above, leading to non-recurrence.

4.2.5 Criterion for almost sure convergence to equilibrium

The following build on stochastic stability theorems due to Khasminskii [152] and Kushner [116].

Theorem 4.2.8 (i) Let x_n be Markov so that for some $V : \mathbb{X} \to \mathbb{R}_+$ and $k : \mathbb{X} \to \mathbb{R}_+$, we have that

$$E[V(x_{n+1})|x_n = x] \leq V(x) - k(x), \quad x \in \mathbb{X}.$$

Then, $k(x_n) \to 0$ with probability 1.
(ii) Let \(S_\lambda := \{ x : V(x) \leq \lambda \} \), and suppose that
\[
E[V(x_{n+1})|x_n = x] \leq V(x) - k(x), \quad x \in S_\lambda.
\]
If \(x_0 \in S_\lambda \), then,
\[
P_{x_0} \left(\sup_{0 \leq n < \infty} V(x_n) \geq \lambda \right) \leq \frac{V(x_0)}{\lambda}.
\] (4.18)

Hence, the paths remain in \(Q_\lambda \) with probability at least \(1 - \frac{V(x_0)}{\lambda} \). Furthermore, for paths that remain in \(Q_\lambda \), \(k(x_n) \to 0 \) with probability 1.

(iii) Suppose that for each \(\gamma > 0 \), there exists \(\delta > 0 \) so that \(k(x) \geq \delta \) for \(|x| \geq \gamma \) and that \(k(0) = 0 \). Then, the origin is globally asymptotically stable with probability 1, that is, \(\lim_{n \to \infty} x_n = 0 \) almost surely.

(iv) Suppose that for some increasing function \(c : \mathbb{X} \to \mathbb{R}^+ \) with \(c(0) = 0 \) and \(c(x) > 0 \) for all \(x \neq 0 \), we have that \(c(|x|) \leq V(x) \) and for some \(\alpha > 0 \)
\[
E[V(x_{n+1})|x_n = x] \leq V(x) - \alpha V(x), \quad x \in \mathbb{X}.
\]
Then, the system is exponentially asymptotically stable in the sense that:
\[
P_{x_0} \{ \sup_{N \leq n < \infty} V(x_n) \geq \lambda \} \leq \frac{V(x_0)(1 - \alpha)^N}{\lambda}.
\]

Proof.

(i) By arguments presented earlier, it follows that \(0 \leq E_{x_0}[V(x_n)] \leq V(x_0) - E_{x_0}[\sum_{m=0}^{n-1} k(x_m)] \). Thus, \(E_{x_0}[\sum_{m=0}^{\infty} k(x_m)] < \infty \). But then, \(\sum_{m=0}^{\infty} k(x_m) < \infty \) almost surely and thus \(k(x_m) \to 0 \) almost surely.

(ii) Let us stop the process \(x_n \) on first leaving \(S_\lambda \). Then, for this stopped process, the drift equation holds with \(k(x) = 0 \) for \(x \notin S_\lambda \), and (i) applies. On the other hand, the bound in (4.18) builds on Doob’s maximal inequality Theorem 4.1.6 which notes that for a non-negative supermartingale, for all \(\lambda > 0 \),
\[
P(\max_{0 \leq n < \infty} M_n \geq \lambda) \leq \frac{M_0}{\lambda}
\]

Let \(M_n = V(x_n) \), and the result then follows.

(iii) By (i), we have that \(k(x_n) \to 0 \); the hypothesis then implies that \(x_n \to 0 \).

(iv) Observe first that \(M_n := \frac{V(x_n)}{(1 - \alpha)^n} \) is also a supermartingale. Apply Doob’s maximal inequality (Theorem 4.1.6) as follows:
\[
P(\sup_{N \leq n < \infty} \frac{V(x_n)}{(1 - \alpha)^n} \geq \frac{\lambda}{(1 - \alpha)^n}) \leq \frac{V(x_0)(1 - \alpha)^N}{\lambda} \leq \frac{M_0(1 - \alpha)^N}{\lambda}.
\]

\(\diamond \)

4.2.6 State dependent drift criteria: Deterministic and random-time

It is also possible that, in many applications, the controllers act on a system intermittently. In this case, we have the following results [216]. These extend the deterministic state-dependent results presented in [134], [135]: Let \(\tau_z, z \geq 0 \) be a sequence of stopping times, measurable on a filtration, possible generated by the state process.
Theorem 4.2.9 \cite{foster-lyapunov} Suppose that \(\{x_t\} \) is a \(\varphi \)-irreducible and aperiodic Markov chain. Suppose moreover that there are functions \(V : \mathbb{X} \to (0, \infty) \), \(\delta : \mathbb{X} \to [1, \infty) \), \(f : \mathbb{X} \to [1, \infty) \), a small set \(C \) on which \(V \) is bounded, and a constant \(b \in \mathbb{R} \), such that

\[
E[V(x_{\tau_i+1}) \mid \mathcal{F}_{\tau_i}] \leq V(x_{\tau_i}) - \delta(x_{\tau_i}) + b1_{C}(x_{\tau_i})
\]
\[
E\left[\sum_{k=\tau_i}^{\tau_i+1-1} f(x_k) \mid \mathcal{F}_{\tau_i}\right] \leq \delta(x_{\tau_i}), \quad i \geq 0.
\] (4.19)

Then the following hold:

(i) \(\{x_t\} \) is positive Harris recurrent, with unique invariant distribution \(\pi \)
(ii) \(\pi(f) := \int f(x) \pi(dx) < \infty \).
(iii) For any function \(g \) that is bounded by \(f \), in the sense that \(\sup_x |g(x)|/f(x) < \infty \), we have convergence of moments in the mean, and the strong law of large numbers holds:

\[
\lim_{t \to \infty} E_x[g(x_t)] = \pi(g)
\]
\[
\lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} g(x_i) = \pi(g) \quad \text{a.s., } x \in \mathbb{X}
\]

By taking \(f(x) = 1 \) for all \(x \in \mathbb{X} \), we obtain the following corollary to Theorem 4.2.9.

Corollary 4.2.1 \cite{foster-lyapunov} Suppose that \(\{x_t\} \) is a \(\varphi \)-irreducible Markov chain. Suppose moreover that there is a function \(V : \mathbb{X} \to (0, \infty) \), a petite set \(C \) on which \(V \) is bounded, and a constant \(b \in \mathbb{R} \), such that the following hold:

\[
E[V(x_{\tau+z}) \mid \mathcal{F}_{\tau}] \leq V(x_{\tau}) - 1 + b1_{C}(x_{\tau})
\]
\[
\sup_{z \geq 0} E[\tau_{z+1} - \tau_z \mid \mathcal{F}_{\tau}] < \infty.
\] (4.20)

Then \(\{x_t\} \) is positive Harris recurrent.

More on invariant probability measures

Without the irreducibility condition, if the chain is weak Feller, if (4.7) holds with \(S \) compact, then there exists at least one invariant probability measure as discussed in Section 3.4.1.

Theorem 4.2.10 \cite{foster-lyapunov} Suppose that \(\{x_t\} \) is a Feller Markov chain, not necessarily \(\varphi \)-irreducible. If (4.19) holds with \(C \) compact then there exists at least one invariant probability measure. Moreover, there exists \(c < \infty \) such that, under any invariant probability measure \(\pi \),

\[
E_\pi[f(x)] = \int_\mathbb{X} \pi(dx) f(x) \leq c.
\] (4.21)

Petite sets and sampling

Unfortunately the techniques we reviewed earlier that rely on petite sets become unavailable in the random time drift setting considered in Section 4.2.6 as a petite set \(C \) for \(\{x_t\} \) is not necessarily petite for \(\{x_{\tau_n}\} \).

Lemma 4.2.1 \cite{foster-lyapunov} Suppose \(\{x_t\} \) is an aperiodic and irreducible Markov chain. If there exists sequence of stopping times \(\{\tau_n\} \) independent of \(\{x_t\} \), then any \(C \) that is small for \(\{x_t\} \) is petite for \(\{x_{\tau_n}\} \).
Proof. Since C is petite, it is small by Theorem 3.2.5 for some m. Let C be (m, δ, ν)-small for $\{x_t\}$.

\[
P^{\tau_1}(x, \cdot) = \sum_{k=1}^{\infty} P(\tau_1 = k)P^k(x, \cdot)
\geq \sum_{k=m}^{\infty} P(\tau_1 = k) \int P^m(x, dy)P^{k-m}(y, \cdot)
\geq \sum_{k=m}^{\infty} P(\tau_1 = k) \int 1_C(x)\delta \nu(dy)P^{k-m}(y, \cdot)
\]

which is a well defined measure. Therefore defining $\kappa(\cdot) = \int \nu(dy) \sum_{k=m}^{\infty} P(\tau_1 = k)P^{k-m}(y, \cdot)$, we have that C is $(1, \delta, \kappa)$-small for $\{x_{\tau_n}\}$.

Thus, one can relax the condition that V is bounded on C in Theorem 4.2.9 if the sampling times are deterministic. Another condition is when the sampling instances are hitting times to a set which contains C.

4.3 Convergence Rates to Equilibrium

In addition to obtaining bounds on the rate of convergence through Dobrushin’s coefficient, a more relaxed and powerful approach is via Foster-Lyapunov drift conditions and an associated coupling analysis.

Regularity and ergodicity are concepts closely related through the work of Meyn and Tweedie \[134\], \[138\] and Tuominen and Tweedie \[184\].

Definition 4.3.1 A set $A \in \mathcal{B}(\mathcal{X})$ is called (f, r)-regular if

\[
\sup_{x \in A} E_x[\sum_{k=0}^{\tau_n-1} r(k)f(x_k)] < \infty
\]

for all $B \in \mathcal{B}^+(\mathcal{X})$. A finite measure ν on $\mathcal{B}(\mathcal{X})$ is called (f, r)-regular if

\[
E_\nu[\sum_{k=0}^{\tau_n-1} r(k)f(x_k)] < \infty
\]

for all $B \in \mathcal{B}^+(\mathcal{X})$, and a point x is called (f, r)-regular if the measure δ_x is (f, r)-regular.

This leads to a lemma relating regular distributions to regular atoms.

Lemma 4.3.1 If a Markov chain $\{x_t\}$ has an atom $\alpha \in \mathcal{B}^+(\mathcal{X})$ and an (f, r)-regular distribution λ, then α is an (f, r)-regular set.

Definition 4.3.2 $(f$-norm$)$ For a function $f : \mathcal{X} \to [1, \infty)$ the f-norm of a measure μ defined on $(\mathcal{X}, \mathcal{B}(\mathcal{X}))$ is given by

\[
\|\mu\|_f = \sup_{g \leq f} \int \mu(dx)g(x).
\]

The total variation norm is the f-norm when $f = 1$, denoted by $\|\cdot\|_{TV}$.

Definition 4.3.3 A Markov chain $\{x_t\}$ with invariant distribution π is (f, r)-ergodic if
One creates two Markov chains having the same one-step transition probabilities. Let
\(\{x_n\} \) and \(\{x'_n\} \) be two Markov chains that have probability transition kernel \(P(x, \cdot) \), and let \(C \) be an \((m, \delta, \nu)\)-small set. We use the coupling construction provided by Roberts and Rosenthal [156], building on the splitting technique presented in Section 3.2.1.

Let \(x_0 = x \) and \(x'_0 \sim \pi \) where \(\pi \) is the invariant probability measure for both Markov chains. 1. If \(x_n = x'_n \) then \(x_{n+1} = x'_{n+1} \sim P(x_n, \cdot) \)

2. Else, if \((x_n, x'_n) \in C \times C \) then with probability \(\delta \), \(x_{n+m} = x'_{n+m} \sim \nu(\cdot) \) with probability \(1 - \delta \) then independently

\[
x_{n+m} \sim \frac{1}{1-\delta}(P^m(x_n, \cdot) - \delta \nu(\cdot))
\]
\[
x'_{n+m} \sim \frac{1}{1-\delta}(P^m(x'_n, \cdot) - \delta \nu(\cdot))
\]

3. Else, independently \(x_{n+m} \sim P^m(x_n, \cdot) \) and \(x'_{n+m} \sim P^m(x'_n, \cdot) \).

The in-between states \(x_{n+1}, \ldots, x_{n+m-1}, x'_{n+1}, \ldots, x'_{n+m-1} \) are distributed conditionally given \(x_n, x'_n, x_{n+m}, x'_{n+m} \).

By the Coupling Inequality and the previous discussion with Nummelin’s Splitting technique in Section 3.2.1 we have

\[
\|P^m(x, \cdot) - \pi(\cdot)\|_{TV} \leq P(x_n \neq x'_n).
\]

Remark 4.5. Through the coupling inequality one can show that \(\pi_0 P^n \to \pi \) in total variation. Furthermore, if Theorem 4.2.4 holds, one can also show that with some further analysis if the initial condition is a fixed deterministic state \(\int \left(P^n(z, dz) - \pi(dz) \right) f(z) \to 0 \), where \(f \) is not necessarily bounded. This does not imply, however, \(\int \left((\pi_0 P^n)(dz) - \pi(dz) \right) f(z) \to 0 \) for a random initial condition. A sufficient condition for the latter to occur is that \(\int \pi_0(dz) V(z) < \infty \) provided that Theorem 4.2.4 holds (see Theorem 14.3.5 in [134]).
4.3.1 Rates of convergence: Geometric ergodicity

In this section, following [134] and [156], we review results stating that a strong type of ergodicity, geometric ergodicity, follows from a simple drift condition. An irreducible Markov chain is said to satisfy the univariate drift condition if there are constants \(\lambda \in (0, 1) \) and \(b < \infty \), along with a function \(V : X \to [1, \infty) \), and a small set \(C \) such that

\[
PV \leq \lambda V + b1_C. \tag{4.24}
\]

Theorem 4.3.1 ([156, Theorem 9]) Suppose \(\{x_t\} \) is an aperiodic, irreducible Markov chain with invariant distribution \(\pi \). Suppose \(C \) is a \((1, \epsilon, \nu)\)-small set and \(V : X \to [1, \infty) \) satisfies the univariate drift condition with constants \(\lambda \in (0, 1) \) and \(b < \infty \). Then \(\{x_t\} \) is geometrically ergodic.

That geometric ergodicity follows from the univariate drift condition with a small set \(C \) is proven by Roberts and Rosenthal by using the coupling inequality to bound the TV-norm, but an alternate proof is given by Meyn and Tweedie [134] resulting in the following theorem.

Theorem 4.3.2 ([134, Theorem 15.0.1]) Suppose \(\{x_t\} \) is an aperiodic and irreducible Markov chain. Then the following are equivalent:

(i) \(E_x[\tau_B] < \infty \) for all \(x \in X \), \(B \in B^+(X) \), the invariant distribution \(\pi \) of \(\{x_t\} \) exists and there exists a petite set \(C \), constants \(\gamma < 1 \), \(M > 0 \) such that for all \(x \in C \)

\[
|P^n(x, C) - \pi(C)| < M\gamma^n.
\]

(ii) For a petite set \(C \) and for some \(\kappa > 1 \)

\[
\sup_{x \in C} E_x[\kappa^T_C] < \infty.
\]

(iii) For a petite set \(C \), constants \(b > 0 \) \(\lambda \in (0, 1) \), and a function \(V : X \to [1, \infty) \) (finite for some \(x \)) such that

\[
PV \leq \lambda V + b1_C.
\]

Any of the conditions imply that there exists \(r > 1, R < \infty \) such that for any \(x \)

\[
\sum_{n=0}^{\infty} r^n \|P^n(x, \cdot) - \pi(\cdot)\|_V \leq RV(x).
\]

We note that if (iii) above holds, (ii) holds for all \(\kappa \in (1, \lambda^{-1}) \).

We now show that under (4.24), Theorem 4.3.2 (ii) holds. If (4.24) holds, the sequence \(\{M_n\} \) is supermartingale (with respect to the natural filtration), where \(M_0 = V(x_0) \). Then, with (4.24), defining \(\tau_B^N = \min\{N, \tau_B\} \) for \(B \in B^+(X) \) gives, by Doob’s optional sampling theorem,

\[
E_x \left[\lambda^{-\tau_B^N} V(x_{\tau_B^N}) \right] \leq V(x)
\]

\[
+ E_x \left[\sum_{n=0}^{\tau_B^N-1} b1_C(x_n)\lambda^{-(n+1)} \right] \tag{4.25}
\]

for any \(B \in B^+(X) \), and \(N \in \mathbb{Z}_+ \).
Since V is bounded above on C, we have that $C \subset \{V \leq L_1\}$ for some L_1 and thus,

$$\sup_{x \in C} E_x \left[\lambda^{-\tau C} V(x + \tau C) \right] \leq L_1 + \lambda^{-1} b.$$

and by the monotone convergence theorem, and the fact that V is bounded from below by 1 everywhere and bounded from above on C,

$$\sup_{x \in C} E_x \left[\lambda^{-\tau C} \right] \leq L_1(1 + \lambda^{-1} b).$$

Using the coupling inequality, Roberts and Rosenthal [156] prove that geometric ergodicity follows from the univariate drift condition. They show that under mild conditions [156, Prop. 11], the univariate drift condition implies a drift condition for the pair of Markov chains who will be coupled in the small set $C \times C$:

Proposition 4.6 (Proposition 11 of [156]). Suppose the univariate drift condition (4.24) is satisfied for $V : \mathbb{X} \to [1, \infty)$ and constants $\lambda \in (0, 1)$ $b < \infty$ and small set C. Letting $d = \inf_{x \in C} V(x)$, if $d > \frac{b}{\lambda} - 1$, then the bivariate drift condition is satisfied for $h(x, y) = \frac{1}{2}(V(x) + V(y))$ and $\alpha^{-1} = \lambda + b/(d + 1) > 1$; that is, we have the following condition.

$$\bar{P}h(x, y) \leq h(x, y) / \alpha \quad (x, y) \notin C \times C$$

$$\bar{P}h(x, y) < \infty \quad (x, y) \in C \times C$$

where

$$\bar{P}h(x, y) = \int_{\mathbb{X}} \int_{\mathbb{X}} h(z, w) P(x, dz) P(y, dw)$$

But now if one applies Theorem [4.3.2](ii), the desired coupling condition and hence the convergence rate result will follow. We also note that the univariate drift condition allows us to assume that V is bounded on C without any loss (see Lemma 14 of [156]).

4.3.2 Subgeometric ergodicity

Here, we review the class of subgeometric rate functions (see [89, Sec. 4], [57, Sec. 5], [134], [65], [184]).

Let A_0 be the family of functions $r : \mathbb{N} \to \mathbb{R}_{\geq 0}$ such that

- r is non-decreasing, $r(1) \geq 2$

and

$$\frac{\log r(n)}{n} \downarrow 0 \quad \text{as } n \to \infty$$

The second condition implies that for all $r \in A_0$ if $n > m > 0$ then

$$n \log r(n + m) \leq n \log r(n) + m \log r(n) \leq n \log r(n) + n \log r(m)$$

so that

$$r(m + n) \leq r(m)r(n) \quad \text{for all } m, n \in \mathbb{N}. \quad (4.26)$$

The class of subgeometric rate functions A defined in [184] is the class of sequences r for which there exists a sequence $r_0 \in A_0$ such that

$$0 < \liminf_{n \to \infty} \frac{r(n)}{r_0(n)} \leq \limsup_{n \to \infty} \frac{r(n)}{r_0(n)} < \infty.$$
The main theorem we cite on subgeometric rates of convergence is due to Tuominen and Tweedie [184].

Theorem 4.3.3 (Theorem 2.1 of [184]) Suppose that \(\{x_t\}_{t \in \mathbb{N}} \) is an irreducible and aperiodic Markov chain on state space \(\mathbb{X} \) with stationary transition probabilities given by \(P \). Let \(f : \mathbb{X} \to [1, \infty) \) and \(r \in \Lambda \) be given. The following are equivalent:

(i) there exists a petite set \(C \in \mathcal{B}(\mathbb{X}) \) such that

\[
\sup_{x \in C} E_x \left[\sum_{k=0}^{\tau_C - 1} r(k)f(x_k) \right] < \infty
\]

(ii) there exists a sequence \(\{V_n\} \) of functions \(V_n : \mathbb{X} \to [0, \infty) \), a petite set \(C \in \mathcal{B}(\mathbb{X}) \) and \(b \in \mathbb{R}_+ \) such that \(V_0 \) is bounded on \(C \),

\[
V_0(x) = \infty \Rightarrow V_1(x) = \infty,
\]

and

\[
PV_{n+1} \leq V_n - r(n)f + br(n)1_C, \quad n \in \mathbb{N}
\]

(iii) there exists an \((f, r)\)-regular set \(A \in \mathcal{B}^+(\mathbb{X}) \).

(iv) there exists a full absorbing set \(S \) which can be covered by a countable number of \((f, r)\)-regular sets.

Theorem 4.3.4 [184] If a Markov chain \(\{x_t\} \) satisfies Theorem 4.3.3 for \((f, r)\) then \(r(n)\|P^n(x_0, \cdot) - \pi(\cdot)\|_f \to 0 \) as \(n \) increases.

The conditions of Theorem 4.3.3 may be hard to check, especially (ii), comparing a sequence of Lyapunov functions \(\{V_k\} \) at each time step. We briefly discuss the methods of Douc et al. [65] (see also Hairer [89]) that extend the subgeometric ergodicity results and show how to construct subgeometric rates of ergodicity from a simpler drift condition. [65] assumes that there exists a function \(V : \mathbb{X} \to [1, \infty] \), a concave monotone nondecreasing differentiable function \(\phi : [1, \infty] \to (0, \infty] \), a set \(C \in \mathcal{B}(\mathbb{X}) \) and a constant \(b \in \mathbb{R} \) such that

\[
PV + \phi V \leq V + b1_C.
\]

(4.27)

If an aperiodic and irreducible Markov chain \(\{x_t\} \) satisfies the above with a petite set \(C \), and if \(V(x_0) < \infty \), then it can be shown that \(\{x_t\} \) satisfies Theorem 4.3.3(ii). Therefore \(\{x_t\} \) has invariant distribution \(\pi \) and is \((\phi V, 1)\)-ergodic so that

\[
\lim_{n \to \infty} \|P^n(x, \cdot) - \pi(\cdot)\|_{\phi V} = 0 \quad \text{for all } x \in \mathbb{X}.
\]

The results by Douc et al. build then on trading off \((\phi V, 1)\) ergodicity for \((1, r_\phi)\)-ergodicity for some rate function \(r_\phi \), by carefully constructing the function utilizing concavity; see Propositions 2.1 and 2.5 of [65] and Theorem 4.1(3) of [89].

To achieve ergodicity with a nontrivial rate and norm one can invoke a result involving the class of pairs of ultimately non decreasing functions, defined in [65]. The class \(\mathcal{Y} \) of pairs of ultimately non decreasing functions consists of pairs \(\Psi_1, \Psi_2 : \mathbb{X} \to [1, \infty] \) such that \(\Psi_1(x)\Psi_2(y) \leq x + y \) and \(\Psi_i(x) \to \infty \) for one of \(i = 1, 2 \).

Proposition 4.7. Suppose \(\{x_t\} \) is an aperiodic and irreducible Markov chain that is both \((1, r)\)-ergodic and \((f, 1)\)-ergodic for some \(r \in \Lambda \) and \(f : \mathbb{X} \to [1, \infty) \). Suppose \(\Psi_1, \Psi_2 : \mathbb{X} \to [1, \infty) \) are a pair of ultimately non decreasing functions. Then \(\{x_t\} \) is \((\Psi_1 \circ f, \Psi_2 \circ r)\)-ergodic.

Therefore we can show that if \((\Psi_1, \Psi_2) \in \mathcal{Y} \) and a Markov chain satisfies the condition (4.27), then it is \((\Psi_1 \circ \phi \circ V, \Psi_2 \circ r_\phi)\)-ergodic.

Thus, we observe that the hitting times to a small set is a very important measure in characterizing not only the existence of an invariant probability measure, but also how fast a Markov chain converges to equilibrium. Further results exist in the literature to obtain more computable criteria for subgeometric rates of convergence, see e.g. [65].
Rates of convergence under random-time state-dependent drift criteria

The following result builds on and generalizes Theorem 2.1 in [216].

Theorem 4.3.5 [219] Let \(\{x_t\} \) be an aperiodic and irreducible Markov chain with a small set \(C \). Suppose there are functions \(V : X \to (0, \infty) \) with \(V \) bounded on \(C \), \(f : X \to [1, \infty) \), \(\delta : X \to [1, \infty) \), a constant \(b \in \mathbb{R} \), and \(r \in \Lambda \) such that

\[
E[V(x_{\tau_n+1}) \mid x_{\tau_n}] \leq V(x_{\tau_n}) - \delta(x_{\tau_n}) + b\mathbb{1}_C(x_{\tau_n})
\]

\[
E\left[\sum_{k=\tau_n}^{\tau_{n+1}-1} f(x_k)r(k) \mid \mathcal{F}_{\tau_n} \right] \leq \delta(x_{\tau_n}).
\]

Then \(\{x_t\} \) satisfies Theorem 4.3.3 and is \((f, r)\)-ergodic.

Further conditions and examples are available in [219].

4.4 Conclusion

This concludes our discussion for controlled Markov chains via martingale methods. We will revisit one more application of martingales while discussing the convex analytic approach to controlled Markov problems. We observed that drift criteria are very powerful tools to establish various forms of stochastic stability and instability.

4.5 Exercises

Exercise 4.5.1 Let \(X \) be an integrable random variable defined on \((\Omega, \mathcal{F}, P)\). Let \(\mathcal{G} = \{\Omega, \emptyset\} \). Show that \(E[X \mid \mathcal{G}] = E[X] \), and if \(\mathcal{G} = \sigma(X) \) then \(E[X \mid \mathcal{G}] = X \).

Exercise 4.5.2 Consider (4.4) and through this relation establish a sufficient condition on the martingale sequence \(X_n \) so that the optimal sampling theorem would be applicable even if the stopping times in Theorem 4.1.5 would not necessarily be bounded from above by a deterministic constant.

Exercise 4.5.3 A useful property of martingales is that a stopped martingale is a martingale. This is very useful for proving stability results when one lives in a bounded set since the stopped martingale sequence will typically be uniformly bounded (and hence the optional sampling theorem will be applicable without requiring a stopping time to be uniformly bounded). Let \(\tau \) be a stopping time that is finite almost surely. Let \(X_t, \mathcal{F}_t \) be a martingale sequence. Define \(M_t = X_{\min(t, \tau)} \). Show that \((M_t, \mathcal{F}_t)\) is a martingale sequence:

\[
E[M_{n+1} \mid \mathcal{F}_n] = M_n
\]

Hint: Write \(M_{n+1} = M_n + 1_{\{\tau > n\}}(M_{n+1} - M_n) \). Then, show that \(E[1_{\{\tau > n\}}(M_{n+1} - M_n) \mid \mathcal{F}_n] = 1_{\{\tau > n\}}E[M_{n+1} - M_n \mid \mathcal{F}_n] = 0 \).

Exercise 4.5.4 a) Consider a Controlled Markov Chain with the following dynamics:

\[
x_{t+1} = ax_t + bu_t + w_t,
\]

where \(w_t \) is a zero-mean Gaussian noise with a finite variance, \(a, b \in \mathbb{R} \) are the system dynamics coefficients. One controller policy which is admissible (that is, the policy at time \(t \) is measurable with respect to \(\sigma(x_0, x_1, \ldots, x_t) \) and is a mapping to \(\mathbb{R} \)) is the following:
u_t = - \frac{a + 0.5}{b} x_t.

Show that \{x_t\}, under this policy, has a unique invariant probability measure.

b) Consider a similar setup to the one earlier, with \(b = 1 \):

\[x_{t+1} = ax_t + u_t + w_t, \]

where \(w_t \) is a zero-mean Gaussian noise with a finite variance, and \(a \in \mathbb{R} \) is a known number.

This time, suppose, we would like to find a control policy such that there exists an invariant probability measure \(\pi \) for \(\{x_t\} \) and under this invariant probability measure

\[E_\pi[x^2] < \infty \]

Further, suppose we restrict the set of control policies to be linear, time-invariant; that is of the form \(u(x_t) = k x_t \) for some \(k \in \mathbb{R} \).

Find the set of all \(k \) values for which there exists an invariant probability measure that has a finite second moment.

Hint: Use Foster-Lyapunov criteria.

Exercise 4.5.5 Suppose that some price process \(\{x_t, t \in \mathbb{Z}_+\} \) is given by the following dynamics:

\[x_{t+1} = \max(x_t + w_t, 0), \quad t \in \mathbb{Z}_+, \]

where \(\{w_t\} \) is a sequence of independent and identically distributed \(\{-1, 1\} \)-valued random variables with mean \(\bar{w} > 0 \). Furthermore, \(x_0 \in \mathbb{Z}_+, x_0 > 0 \) is a given initial condition for the process.

Is the price process recurrent in the sense that, \(P_{x_0}(\tau_0 < \infty) = 1 \), where \(\tau_0 = \min(l > 0 : x_l = 0) \)?

Exercise 4.5.6 Consider a queuing process, with i.i.d. Poisson arrivals and departures, with arrival mean \(\mu \) and service mean \(\lambda \) and suppose the process is such that when a customer leaves the queue, with probability \(p \) (independent of time) it comes back to the queue. That is, the dynamics of the system satisfies:

\[L_{t+1} = \max(L_t + A_t - N_t + p_t N_t, 0), \quad t \in \mathbb{N}, \]

where \(E[A_t] = \lambda, E[N_t] = \mu \) and \(E[p_t] = p \).

For what values of \(\mu, \lambda \) is such a system stochastically stable? Prove your statement.

Exercise 4.5.7 Consider a two server-station network; where a router routes the incoming traffic, as is depicted in Figure 4.1:

Let \(L_1^1, L_1^2 \) denote the number of customers in stations 1 and 2 at time \(t \). Let the dynamics be given by the following:

\[L_{t+1}^1 = \max(L_t^1 + u_t A_t - N_t^1, 0), \quad t \in \mathbb{N}. \]
\[L_{t+1}^2 = \max(L_t^2 + (1 - u_t)A_t - N_t^2, 0), \quad t \in \mathbb{N}. \]

Customers arrive according to an independent Bernoulli process, \(A_t \), with mean \(\lambda \). That is, \(P(A_t = 1) = \lambda \) and \(P(A_t = 0) = 1 - \lambda \). Here \(u_t \in [0, 1] \) is the router action.

Station 1 has a Bernoulli service process \(N_1^t \) with mean \(n_1 \), and Station 2 with \(n_2 \).

Suppose that a router decides to follow the following algorithm to decide on \(u_t \): If a customer arrives, the router simply sends the incoming customer to the shortest queue.

Find sufficient conditions (on \(\lambda, n_1, n_2 \)) for this algorithm to lead to a stochastically stable system with invariant measure \(\pi \) which satisfies \(E_\pi[L^1 + L^2] < \infty \).

Note: For this problem, we acknowledge the lecture notes of Prof. Bruce Hajek: ECE567 Communication Network Analysis, University of Illinois at Urbana-Champaign [91].

Exercise 4.5.8 Let there be a single server, serving two queues; where the server serves the two queues adaptively in the following sense:

The dynamics of the two queues is expressed as follows:

\[L_{i+1}^t = \max(L_i^t + A_i^t - N_i^t, 0), \quad i = 1, 2; \quad t \in \mathbb{N} \]

where \(L^i_t \) is the total number of arrivals which are still in the queue at time \(t \) and \(A^i_t \) is the number of customers that have just arrived at time \(t \).

We assume \(\{A^i_t\} \) to have an independent, identical distribution (i.i.d.) which is Poisson, with mean \(\lambda_i \), that is for all \(k \in \mathbb{Z}_+ \):

\[P(A^i_t = k) = \frac{\lambda_i^k e^{-\lambda_i}}{k!}, \quad k \in \{0, 1, 2, \ldots\}. \]

\(\{N^i_t\} \) for \(i = 1, 2 \) is the service process. Suppose that the service process has an i.i.d. Poisson distribution, where the mean at time \(t \) depends on the number of customers such that:

\[E[N^1_t] = \mu L^1_t / (L^1_t + L^2_t), \]

\[E[N^2_t] = \mu L^2_t / (L^1_t + L^2_t). \]

Thus, \(\{N^1_t + N^2_t\} \) is Poisson with mean \(\mu \).

a) When is it that the system is stochastically stable, that is for what values of \(\lambda_1, \lambda_2, \mu \)? Here, by stochastic stability we mean both recurrence and positive (Harris) recurrence (i.e., the existence of an invariant probability measure). Please be explicit.

b) When the system is stable with an invariant probability measure \(\pi \), can you find a bound for \(E_\pi[L^1 + L^2] \) as a function of \(\lambda_1, \lambda_2, \mu \)?

Exercise 4.5.9 Consider the following two-server system:

\[x_{i+1}^1 = \max(x_i^1 + A_i^1 - u_i^1, 0) \]

\[x_{i+1}^2 = \max(x_i^2 + A_i^2 + u_i^1 1_{(u_i^1 \leq x_i^1 + A_i^1)} - u_i^2, 0), \quad (4.29) \]

where \(1(__) \) denotes the indicator function and \(A_i^1, A_i^2 \) are independent and identically distributed (i.i.d.) random variables with geometric distributions, that is, for \(i = 1, 2 \):

\[P(A_i^1 = k) = p_i(1 - p_i)^k \quad k \in \{0, 1, 2, \ldots\}, \]
for some scalars p_1, p_2 such that $E[A_1^1] = 1.5$ and $E[A_1^2] = 1$.

Suppose the control actions u_1^1, u_2^1 are such that $u_1^1 + u_2^1 \leq 5$ for all $t \in \mathbb{Z}_+$ and $u_1^1, u_2^1 \in \mathbb{Z}_+$. At any given time t, the controller has to decide on u_1^1 and u_2^1 with knowing $\{x_s^1, x_s^2, s \leq t\}$ but not knowing A_1^1, A_1^2.

Is this server system stochastically stabilizable by some policy, that is, does there exist an invariant probability measure under some control policy?

If your answer is positive, provide a control policy and show that there exists a unique invariant distribution.

Exercise 4.5.10 Let there be a single server, serving two queues; where the server serves the two queues adaptively in the following sense. The dynamics of the two queues is expressed as follows:

$$L_{t+1}^i = \max(L_t^i + A_t^i - N_t^i, 0), \quad i = 1, 2; \quad t \in \mathbb{Z}_+$$

where L_t^i is the total number of arrivals which are still in the queue at time t and A_t^i is the number of customers that have just arrived at time t.

We assume, for $i = 1, 2$, $\{A_t^i\}$ has an independent and identical distribution (i.i.d.) which is Bernoulli so that $P(A_t^i = 1) = \lambda_i = 1 - P(A_t^i = 0)$.

Suppose that the service process is given by:

$$N_t^1 = 1_{\{L_t^1 \geq L_t^2\}}, \quad N_t^2 = 1_{\{L_t^2 > L_t^1\}}$$

For what values of λ_1, λ_2 is the system stochastically stable? Here, by stochastic stability we mean the existence of an invariant probability measure.

Exercise 4.5.11 Let X be a real random variable with $E[|X|] < \infty$. Let Y_0, Y_1, Y_2, \cdots be a sequence of random variables. Let \mathcal{F}_n be the σ-field generated by Y_0, Y_1, \ldots, Y_n. a) Is it the case that

$$\lim_{n \to \infty} E[X|\mathcal{F}_n]$$

exists? b) Is it the case that

$$\lim_{n \to \infty} E[X|\mathcal{F}_n] = E[X|\mathcal{F}_\infty],$$

where $\mathcal{F}_\infty := \sigma(Y_1, Y_2, \cdots)$

Exercise 4.5.12 Prove the Ergodic Theorem for a countable state space; that is the result that for an irreducible Markov chain $\{x_t\}$ living in a countable space \mathbb{X}, which has a unique invariant probability measure μ, the following applies almost surely:

$$\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} f(x_t) = \sum_i f(i) \mu(i),$$

for every bounded $f : \mathbb{X} \to \mathbb{R}$.

Hint: You may proceed as follows. Define a sequence of empirical occupation measures for $T \in \mathbb{N}$, $A \in \mathcal{B}(\mathbb{X})$:

$$\nu_T(A) = \frac{1}{T} \sum_{t=0}^{T-1} 1_{\{x_t \in A\}}, \quad \forall A \in \mathcal{B}(\mathbb{X}).$$

Now, define:

$$F_t(A) = \left(\sum_{s=1}^{t} 1_{\{x_s \in A\}} - t \sum_{x \in \mathbb{X}} P(A|x) \nu_t(x) \right)$$
Let \(F_t = \sigma(x_0, \cdots, x_t) \). Verify that, for \(t \geq 2 \),

\[
E[F_t(A) | F_{t-1}] = E \left[\left(\sum_{s=1}^{t} 1_{\{x_s \in A\}} - \sum_{s=0}^{t-1} \sum_{x} P(A|x)1_{\{x_{s}=x\}} \right) \bigg| F_{t-1} \right]
\]

\[
= E \left[\left(1_{\{x_t \in A\}} - \sum_{x} P(A|x)1_{\{x_{t-1}=x\}} \right) \bigg| F_{t-1} \right]
\]

\[
+ \left(\sum_{s=1}^{t-1} 1_{\{x_s \in A\}} - \sum_{s=0}^{t-2} \sum_{x} P(A|x)1_{\{x_{s}=x\}} \right)
\]

\[
= 0 + \left(\sum_{s=1}^{t-1} 1_{\{x_s \in A\}} - \sum_{s=0}^{t-2} \sum_{x} P(A|x)1_{\{x_{s}=x\}} \right) \bigg| F_{t-1}
\]

\[
= F_{t-1}(A),
\]

where the last equality follows from the fact that \(E[1_{\{x_t \in A\}} | F_{t-1}] = P(x_t \in A | F_{t-1}) \). Furthermore,

\[
|F_t(A) - F_{t-1}(A)| \leq 1.
\]

Now, we have a sequence which is a martingale sequence. We will invoke a martingale convergence theorem; which is applicable for martingales with bounded increments. By a version of the martingale stability theorem, it follows that

\[
\lim_{t \to \infty} \frac{1}{t} F_t(A) = 0
\]

You need to now complete the remaining steps.

Exercise 4.5.13 Let \(\tau \) be a stopping time with respect to the filtration \(F_t \). Let \(X_n \) be a (discrete-time) sequence of random variables so that each \(X_n \) is \(F_n \)-measurable. Show that \(X_\tau \) is \(F_\tau \)-measurable.

Hint: We need to show that for every real \(a; \{X_\tau \leq a\} \cap \{\tau \leq k\} = \cup_{m=0}^{k} \{X_\tau \leq a\} \cap \{\tau = m\} \) and that for each \(m, \{X_\tau \leq a\} \cap \{\tau = m\} \in F_m \subset F_k \).

Exercise 4.5.14 [A convergence theorem useful in stochastic approximation] Let \(X_k, \beta_k, Y_k \) be three sequences of non-negative random variables defined on a common probability space and \(F_k \) be a filtration so that all three random sequences are adapted to it. Suppose that

\[
E[X_{k+1} | F_k] \leq (1 + \beta_k)X_k + Y_k, \quad k \in \mathbb{N}.
\]

Show that the limit \(\lim_{n \to \infty} X_n \) exists and is finite with probability one conditioned on the event that \(\sum_{k \in \mathbb{N}} \beta_n < \infty \) and \(\sum_{k \in \mathbb{N}} Y_n < \infty \).

Hint: Define

\[
M_n = X'_n - \sum_{m=1}^{n-1} Y'_m,
\]

where \(X'_n = \frac{X_n}{\prod_{s=1}^{n-1}(1+\beta_s)} \) and \(Y'_n = \frac{Y_n}{\prod_{s=1}^{n}(1+\beta_s)} \). Define the stopping time:

\[
\tau_a = \min(n : \sum_{m=1}^{n-1} Y'_m > a).
\]
Show first that $a + M_{\min(\tau_n,n)}$, $n \in \mathbb{N}$, is a positive supermartingale with respect to the natural filtration generated by {X_k, Y_k}. Then, show that $\tau_n = \infty$ for sufficiently large a for a given sample path, almost surely. Then invoke the supermartingale convergence theorem 4.1.8. Finally, using the fact that $\sum_{k \in \mathbb{N}} Y_k < \infty$ and that $\prod_{n}(1 + \beta_n) < \infty$ under the stated conditions, complete the proof.

This theorem is important for a large class of optimization problems (such as the convergence of stochastic gradient descent algorithms) as well as to stochastic approximation algorithms. For further reading on stochastic approximation methods, see [119] and [23]. We will use this result to establish the convergence of the celebrated Q-learning algorithm in Theorem 8.2.1.

Exercise 4.5.15 [Another convergence theorem useful in stochastic approximation] Let X_k, Y_k, Z_k be three sequences of non-negative random variables defined on a common probability space and F_k be a filtration so that all three random sequences are adapted to it. Suppose that

$$E[Y_{k+1}|F_k] \leq Y_k - X_k + Z_k$$

and $\sum_k Z_k < \infty$. Show that then $\sum_k X_k < \infty$ and Y_k converges to some random variable Y almost surely.

Hint [210]: One proof of this result follows from the previous exercise by noting first that $E[Y_{k+1}|F_k] \leq Y_k + Z_k$ with $\beta_k = 0$. This implies that Y_k converges. Now, the comparison theorem implies that $E[\sum_k X_k]$ is finite. Now write $M_t = Y_t + \sum_{m=1}^{t-1} X_m$ leading to $E[M_{t+1}|F_t] \leq M_t + Z_t$. Applying the previous exercise again, it follows that M_t converges and since Y_t converges, so does $\sum_k X_k$.

Exercise 4.5.16 (Application in stochastic optimization) [This is from Prof. Jerome Le Ny (of Polytechnique Montreal)’s Blog.] Consider a convex function $f : \mathbb{R}^n \to \mathbb{R}$ and denote the set of minima of f by X^\ast. We know from convex analysis that X^\ast contains, if non-empty, either a single point, or is a convex set. Denote the subdifferential [46] of f at x, that is the set of subgradients of f at x, by $\partial f(x)$ and let d_k be a random variable which is a noisy version of a sub gradient of f at x_k at time t. A stochastic subgradient algorithm is one with the form:

$$x_{k+1} = x_k - \gamma_k d_{k+1}, \quad x_0 \in \mathbb{R}^n,$$ \hspace{1cm} (4.34)

where γ_k is a sequence of non-negative step sizes. We have the following theorem:

Theorem 4.5.1 Suppose that the set of minima X^\ast is non-empty and that the stochastic subgradients satisfy that

$$\sup_k E[|d_{k+1}|^2|\mathcal{F}_k] < K < \infty.$$

where $\mathcal{F}_k = \sigma(x_0, d_s, s \leq k)$ with the condition that

$$g_{k+1} = E[d_{k+1}|\mathcal{F}_k] \in \partial f(x).$$

Moreover, $\sum_k \gamma_k = \infty$ and $\sum_k \gamma_k^2 < \infty$. Then the sequence of iterates (4.34) converges almost surely to some element $x^\ast \in X^\ast$.

Proof. $y \in \mathbb{R}^n$, we have that due to the definition of a subgradient,

$$f(y) \geq f(x) + g_{k+1}^T(y - x_k).$$\hspace{1cm} (4.35)

Thus,

$$E[|x_{k+1} - y|^2|\mathcal{F}_k] = E[|x_k - \gamma_k d_{k+1} - y|^2|\mathcal{F}_k]$$

$$= E[|x_k - y|^2 - 2\gamma_k (x_k - y)^T d_{k+1} + \gamma_k^2 |d_{k+1}|^2|\mathcal{F}_k]$$

$$= E[|x_k - y|^2|\mathcal{F}_k] - 2\gamma_k (x_k - y)^T E[d_{k+1}|\mathcal{F}_k] + E\gamma_k^2 |d_{k+1}|^2|\mathcal{F}_k]$$

$$\leq E[|x_k - y|^2|\mathcal{F}_k] - 2\gamma_k (f(x_k) - f(y)) + \gamma_k^2 K$$

Therefore, the sequence $\{x_k\}$ is a positive supermartingale with respect to the natural filtration generated by $\{X_k, Y_k\}$, and by the supermartingale convergence theorem, it converges almost surely to some $x^\ast \in X^\ast$. This completes the proof.
where in the inequality we use (4.34). Now, let in the above $y = \bar{x}^* \in X^*$ for some element in X^*. Then one obtains through the comparison theorem (Theorem 4.2.3) that

$$E[\sum_k \gamma_k (f(x_k) - f(y))] \leq ||x_0 - y||^2 + \sum_k \gamma_k^2 K.$$

In particular, since $f(x_k) - f(y) \geq 0$, through the convergence theorem from the preceding exercises we have that almost surely

$$\sum_k \gamma_k (f(x_k) - f(y)) < \infty.$$

Thus, $f(x_k) \rightarrow f(y)$. We now show that indeed $x_k \rightarrow$ some particular element in X^* (and does not wander in the set). By the convergence result in (4.33) we know that for any $x^* \in X^*$, $||x_k - x^*||$ converges almost surely. This implies that x_k is bounded almost surely. Now, consider a countable dense subset $\{x_1^*, \ldots, x_n^*, \ldots\}$ of X^*. It must be that $||x_k - x_i^*||$ converges for all i through the convergence theorem. On the other hand, since $||x_k||$ is bounded, there exists a converging subsequence for x_{k_n}. But the limit of each such subsequence must be identical for otherwise $||x_{k_n} - x_i^*||$ would have different limits. Thus, x_{k_n} must converge to one element in X^*.

Exercise 4.5.17 To appreciate that the condition of measurability on control or estimation policies is not a superfluous one, read the paper [196]: G. L. Wise. A note on a common misconception in estimation. Systems & Control letters, 1985: 355-356.
In this chapter, we introduce the method of dynamic programming for controlled stochastic systems, and consider optimal stochastic control problems under finite horizon and discounted infinite horizon expected cost criteria.

Recall that a Markov control model is a five-tuple $(X, U, \{U(x), x \in X\}, T, c_t)$ such that X is the (standard Borel) state space, U is the action space, $U_t(x) \subset U$ is the control action set when the state at time t is x, so that $K_t = \{(x, u) : x \in X, u \in U_t(x)\} \subset X \times U$, is the set of feasible state-action pairs. T is a stochastic kernel on X given K_t. Finally $c_t : K_t \to \mathbb{R}$ is the cost function at time t.

Often $c_t \equiv c$, that is c does not depend on time. In case $U_t(x)$ and c_t do not depend on t, we drop the time index. Often, however, there is also a terminal cost different from c, to be considered in addition. In all these cases, the controlled Markov model is often called a stationary model.

Let, as in Chapter 2, Γ_A denote the set of all admissible policies. Let $\gamma = \{\gamma_t, 0 \leq t \leq N-1\} \in \Gamma_A$ be a policy. Consider the following expected cost:

$$J(x, \gamma) = E^\gamma \left[\sum_{t=0}^{N-1} c(x_t, u_t) + c_N(x_N) \right],$$

where $c_N(.)$ is the terminal cost function. Define

$$J^*(x) := \inf_{\gamma \in \Gamma_A} J(x, \gamma)$$

As earlier, let $h_t = \{x_{[0,t]}, u_{[0,t-1]}\}$ denote the history or the information process.

The goal is to find, if there exists one, an admissible policy such that $J^*(x)$ is attained; this will be an optimal policy. We note that the infimum value may not be attained by some policy. In the following, we will present conditions which will ensure the existence of optimal policies.

Before we proceed further, by Theorem 4.1.3 provided that the cost is integrable under the induced probability measure given a policy, we note that we could express the cost as:

$$J(x, \gamma) = E^\gamma \left[c(x_0, u_0) \right]
+ E^\gamma \left[c(x_1, u_1) \right]$$
\[\inf_{\gamma \in \Gamma_A} J(x, \gamma) \geq \inf_{\gamma_0} \mathbb{E}_x^0 \left[c(x_0, u_0) \right. \]
\[+ \inf_{\gamma_1} \mathbb{E}_x^\gamma \left[c(x_1, u_1) \right. \]
\[+ \inf_{\gamma_2} \mathbb{E}_x^\gamma \left[c(x_2, u_2) \right. \]
\[+ \ldots \]
\[+ \mathbb{E}_x^{\gamma_{N-1}} [c(x_{N-1}, u_{N-1}) + c_N(x_N)|h_{N-1}]h_{N-2} \ldots h_1 | h_0], \]

Thus, one can inductively obtain:

\[\inf_{\gamma \in \Gamma_A} J(x, \gamma) \geq \inf_{\gamma_0} \mathbb{E}_x^0 \left[c(x_0, u_0) \right. \]
\[+ \inf_{\gamma_1} \mathbb{E}_x^\gamma \left[c(x_1, u_1) \right. \]
\[+ \inf_{\gamma_2} \mathbb{E}_x^\gamma \left[c(x_2, u_2) \right. \]
\[+ \ldots \]
\[+ \inf_{\gamma_{N-1}} \mathbb{E}_x^{\gamma_{N-1}} [c(x_{N-1}, u_{N-1}) + c_N(x_N)|h_{N-1}]h_{N-2} \ldots h_1 | h_0], \quad (5.1) \]

The discussion above reveals that we can start with the final time stage, obtain a solution for \(\gamma_{N-1} \) and move backwards for \(t \leq N - 2 \). By a theorem below which will allow us to search over Markov policies for \(\gamma_{N-1} \) and together with the fact that for all \(t \), and measurable functions \(g_t \)

\[\mathbb{E}[g_t(x_{t+1})|h_t, u_t] = \mathbb{E}[g_t(x_{t+1})|x_t, u_t], \]

(this follows from the controlled Markov property), we will see that one can restrict the search for optimal control policies to be among those that are Markov. This last step is crucial in identifying a dependence only on the most recent state for an optimal control policy, as we see in the next section. This will allow us to show that, through an inductive argument, policies can be restricted to be Markov without any loss.
5.1 Dynamic Programming, Optimality of Markov Policies and Bellman's Principle of Optimality

5.1.1 Optimality of Deterministic Markov Policies

We will observe that when there is an optimal solution, the optimal solution can be taken to be Markov. Even when an optimal policy may not exist, any measurable policy can be replaced with one which is Markov, under fairly general conditions, as we discuss below. In the following, first, we will follow David Blackwell’s \cite{31} and Hans Witsenhausen’s \cite{202} ideas to obtain a very interesting result.

Theorem 5.1.1 (Blackwell’s Irrelevant Information Theorem) Let $\mathbb{X}, \mathbb{Y}, \mathbb{U}$ be complete, separable, metric spaces, and let P be a probability measure on $\mathcal{B}(\mathbb{X} \times \mathbb{Y})$, and let $c : \mathbb{X} \times \mathbb{U} \to \mathbb{R}$ be a Borel measurable and bounded cost function. Then, for any Borel measurable function $\gamma : \mathbb{X} \times \mathbb{Y} \to \mathbb{U}$, there exists another Borel measurable function $\gamma^* : \mathbb{X} \to \mathbb{U}$ such that

$$\int_{\mathbb{X}} c(x, \gamma^*(x)) P(dx) \leq \int_{\mathbb{X} \times \mathbb{Y}} c(x, \gamma(x,y)) P(dx, dy)$$

where $P_{\mathbb{X}}$ is the marginal of P on \mathbb{X}. Thus, policies based only on x almost surely, are optimal.

Proof. We will construct a γ^* given γ. Let $u = \gamma(x,y)$. To emphasize the random nature of the variables considered, let us again denote with capital letters X, Y, U the random variables whose realizations are x, y and u, respectively. Given γ, we write for any Borel $D \subset \mathbb{U}$ and $x \in \mathbb{X}$,

$$P^\gamma(U \in D|x) = P(\gamma(X,Y) \in D|X = x) = \int_{\mathbb{Y}} 1_{\{\gamma(x,y) \in D\}} P(Y \in dy|X = x).$$

We then have

$$\int_{\mathbb{X} \times \mathbb{Y}} c(x, \gamma(x,y)) P(dx, dy) = \int_{\mathbb{X}} \left(\int_{\mathbb{U}} c(x,u) P^\gamma(du|x) \right) P(dx),$$

Consider

$$h^\gamma(x) := \int_{\mathbb{U}} c(x,u) P^\gamma(du|x) \quad (5.2)$$

- Suppose the space \mathbb{U} is countable. In this case, let us enumerate the elements in \mathbb{U} as $\{u^i, i = 1, 2, \ldots \}$. In this case, we could define:

$$D_i = \{x \in \mathbb{X} : c(x, u^i) \leq h^\gamma(x)\}, i = 1, 2, \ldots .$$

We note that $\mathbb{X} = \bigcup_i D_i$: Suppose not, then $\exists x \in \mathbb{X}$ with $c(x, u^i) > h^\gamma(x)$ for all $i \in \mathbb{N}$, and thus:

$$h^\gamma(x) = \left(\int_{\mathbb{U}} c(x,u) P^\gamma(du|x) \right) > h^\gamma(x),$$

leading to a contradiction. Now define,

$$\gamma^*(x) = u^k \quad \text{if} \quad x \in D_k \setminus (\cup_{i=1}^{k-1} D_i), k = 1, 2, \ldots ,$$

Such a function is measurable, by construction and performs at least as good as γ.

- We now provide a proof for the actual statement. Let $D = \{(x, u) \in \mathbb{X} \times \mathbb{U} : c(x, u) \leq h^\gamma(x)\}$. D is a Borel set since $c(x, u) - h^\gamma(x)$ is Borel. Define $D_x = \{u \in \mathbb{U} : (x, u) \in D\}$ for all $x \in \mathbb{X}$. Now, for every element x we can pick a member u which is in D. The question now is whether the constructed map is Borel measurable. Now, for every x, $\int 1_{\{\gamma(x,y) \in D\}} P(dy|x) > 0$ by the relation \cite{52}, since otherwise we would arrive at a contradiction (see e.g. page 41 in \cite{69}). Then, by a measurable selection theorem of Blackwell and Ryll-Nardzewski \cite{33} (see also p. 255 of \cite{69}), there exists a Borel-measurable function $\gamma^* : \mathbb{X} \to \mathbb{U}$ such that its graph is contained in D, that is, $\{(x, \gamma^*(x)) \in D\}$.
Theorem 5.1.2 Let \(\{(x_t, u_t)\} \) be a controlled Markov Chain. Consider the minimization of \(E[\sum_{t=0}^{N-1} c(x_t, u_t) + c_N(x_N)] \), over all control policies which are sequences of causally measurable functions of \(\{x_s, s \leq t\} \), for all \(t \geq 0 \). Any measurable policy can be replaced with one which is (deterministic) Markov and which is at least as good as the original policy. In particular, if an optimal control policy exists, there is no loss in restricting policies to be Markov (that is, a policy which only uses the current state \(x_t \) and the time information \(t \)).

Proof. In view of \(5.1 \), the proof follows from a sequential application of Theorem \(5.1 \) starting with the final time stage. For any admissible policy, the cost

\[
E[c(x_{N-1}, \gamma_{N-1}(h_{N-1})) + \int_X c_N(z)T(dz|x_{N-1}, \gamma_{N-1}(h_{N-1}))],
\]

can be replaced with a measurable policy \(\gamma_{N-1}^* \)

\[
E[c(x_{N-1}, \gamma_{N-1}^*(x_{N-1})) + \int_X c_N(z)T(dz|x_{N-1}, \gamma_{N-1}^*(x_{N-1}))],
\]

which leads to a cost that is at least as good as one obtained with \(\gamma_{N-1} \). Define

\[
J_{N-1}(x_{N-1}) := E\left[c(x_{N-1}, \gamma_{N-1}^*(x_{N-1})) + \int_X c_N(z)T(dz|x_{N-1}, \gamma_{N-1}^*(x_{N-1})) \right],
\]

and consider then

\[
E\left[c(x_{N-2}, \gamma_{N-2}(h_{N-2})) + \int_X J_{N-1}(z)T(dz|x_{N-2}, \gamma_{N-2}(h_{N-2})) \right].
\]

This expression can also be lower bounded by a measurable Markov policy \(\gamma_{N-2}^* \) so that the expected cost

\[
J_{N-2}(x_{N-2}) := E\left[c(x_{N-2}, \gamma_{N-2}^*(x_{N-2})) + \int_X J_{N-1}(z)T(dz|x_{N-2}, \gamma_{N-2}^*(x_{N-2})) \right].
\]

is lower than that achieved by the admissible policy. By induction, for all time stages, one can replace the policies with a deterministic Markov policy which leads to a cost which is at least as desirable as the cost achieved by the admissible policy.

Given this result, we have the following important optimality principle.

5.1.2 Bellman’s principle of optimality

Let \(\{J_t(x_t)\} \) be a sequence of functions on \(X \) defined by

\[
J_N(x) = c_N(x)
\]

and for \(0 \leq t \leq N - 1 \)

\[
J_t(x) = \min_{u \in U_t(x)} \{c(x, u) + \int_X J_{t+1}(z)T(dz|x, u)\}.
\]

Let there be minimizing measurable functions which are deterministic, denoted by \(\{f_t(x)\} \), so that

\[
J_t(x) = c(x, f_t(x)) + \int_X J_{t+1}(z)T(dz|x, f_t(x))
\]

Then we have the following:
Theorem 5.1.3 The policy \(\gamma^* = \{f_0, f_1, \ldots, f_{N-1}\} \) is optimal and the optimal expected cost function (also called the value function) is equal to
\[
J^*(x) = J_0(x)
\]

Proof. We compare the cost generated by the above policy, with respect to the cost obtained by any other policy, which can be taken to be deterministic Markov in view of Theorem 5.1.2.

We provide the proof by a backwards induction method in view of (5.1). Consider the time stage \(t = N - 1 \). For this stage, the cost is equal to
\[
J_{N-1}(x) = \min \{ c(x_{N-1}, u_{N-1}) + \int c_N(z) T(dz|x_{N-1}, u_{N-1}) \}
\]
Suppose there is a cost \(C^*_{N-1}(x_{N-1}) \), achieved by some policy \(\eta = \{\eta_k, k \in \{0, 1, \ldots, N-1\}\} \), which we take to be deterministic Markov. Since,
\[
C^*_{N-1}(x_{N-1}) = c(x_{N-1}, \eta_{N-1}(x_{N-1})) + \int c_N(z) T(dz|x_{N-1}, \eta_{N-1}(x_{N-1})) \\
\geq J_{N-1}(x_{N-1}) \\
= \min_{u_{N-1}} \{ c(x_{N-1}, u_{N-1}) + \int c_N(z) T(dz|x_{N-1}, u_{N-1}) \},
\]
it must be that \(C^*_{N-1}(x_{N-1}) \geq J_{N-1}(x_{N-1}) \). Now, we move to time stage \(N - 2 \). In this case, the cost to be minimized is given by
\[
C^*_{N-2}(x_{N-2}) = c(x_{N-2}, \eta(x_{N-2})) + \int c^*_{N-1}(z) T(dz|x_{N-2}, \eta(x_{N-2})) \\
\geq \min_{u_{N-2}} \{ c(x_{N-2}, u_{N-2}) + \int J_{N-1}(z) T(dz|x_{N-2}, u_{N-2}) \} \\
=: J_{N-2}(x_{N-2})
\]
where the inequality is due to the fact that \(J_{N-1}(x_{N-1}) \leq C^*_{N-1}(x_{N-1}) \) and the minimization. We can, by induction show that the recursion holds for all \(0 \leq t \leq N - 2 \).

\[\diamondsuit\]

5.1.3 Examples

Example 5.1 (Dynamic Programming and Investment). A investor’s wealth dynamics is given by the following:
\[
x_{t+1} = u_t w_t,
\]
where \(\{w_t\} \) is an i.i.d. \(\mathbb{R}_+ \)-valued stochastic process with \(E[w_t] = \bar{w} \). The investor has access to the past and current wealth information and his actions. The goal is to maximize, for some \(b > 0 \),
\[
J(x_0, \gamma) = E^\gamma_{x_0} \left[\sum_{t=0}^{T-1} b(x_t - u_t) \right].
\]
The investor’s action set for any given \(x \) is: \(U(x) = [0, x] \).

For this problem, the state space is \(\mathbb{R}_+ \), the control action space at state \(x \) is \([0, x] \), the information at the controller is \(I_t = \{x_{[0,t]}, u_{[0,t-1]}\} \). The kernel is described by the relation \(x_{t+1} = u_t w_t \). Using Dynamic Programming
\[
J_{T-1}(x_{T-1}) = \max_{u_{T-1} \in [0, x_{T-1}]} E[b(x_{T-1} - u_{T-1})|I_{T-1}]
\]
Since there is no more future, the investor needs to collect the wealth at time $T - 1$, that is $w_{T-1} = 0$. For $t = T - 2$

\[
J_{T-2}(x_{T-2}) = \max_{u_{T-2} \in [0, x_{T-2}]} b(x_{T-2} - u_{T-2}) + J_{T-1}(x_{T-1})[I_{T-2}]
\]

\[
= \max_{u_{T-2} \in [0, x_{T-2}]} b(x_{T-2} - u_{T-2}) + bx_{T-1}|x_{T-2}, w_{T-2}]
\]

\[
= \max_{u_{T-2} \in [0, x_{T-2}]} \left(b(x_{T-2} - u_{T-2}) + bE[w_{T-2}]u_{T-2} \right)
\]

\[
= \max_{u_{T-2} \in [0, x_{T-2}]} (bx_{T-2} + b(w - 1)u_{T-2})
\]

It follows then that if $w > 1$, $u_{T-2} = x_{T-2}$ (that is, investment is favourable), otherwise $u_{T-2} = 0$. Recursively, one concludes that if $w > 1$, $u_t = x_t$ is optimal until $t = T - 1$, at $t = T - 1$, $u_{T-1} = 0$, leading to $J_0(x_0) = bw^2 x_0$.

If $w < 1$, it is optimal to collect at time 0, that is $u_0 = 0$, leading to $J_0(x_0) = bx_0$. If $w = 1$, both of these policies lead to the same reward.

Example 5.2 (Linear Quadratic Systems). Consider the following Linear Quadratic (LQ) problem with $q > 0, r > 0, p_T > 0$:

\[
\inf_{\gamma} E_2^T \left[\sum_{t=0}^{T-1} qx_t^2 + r_t^2 + p_T x_T^2 \right]
\]

for a linear system:

\[
x_{t+1} = ax_t + u_t + w_t,
\]

where w_t is a zero-mean random variable with variance $\sigma_w^2 < \infty$. We can show, by the method of completing the squares, that:

\[
J_t(x_t) = P_t x_t^2 + \sum_{k=t}^{T-1} P_{t+1} \sigma_w^2
\]

where

\[
P_t = q + P_{t+1} a^2 - \frac{P_{t+1} a^2}{P_{t+1} + r}
\]

and the optimal control policy is

\[
u_t = \frac{-P_{t+1} a}{P_{t+1} + r} x_t.
\]

Note that, the optimal control policy is Markov (as it uses only the current state). For a more general treatment for such LQ problems, see Section 5.2. A typical setup is the case where w_t is Gaussian; in this case the problem above is often referred to as the Linear Quadratic Gaussian (LQG) optimal control problem.

5.1.4 Existence of Minimizing Selectors and Measurability

The above dynamic programming arguments hold when there exist minimizing control policies (selectors measurable with respect to the Borel field on \mathbb{X}).

Measurable Selection Hypothesis: Given a sequence of functions $J_t : \mathbb{X} \to \mathbb{R}$, there exists

\[
J_t(x) = \min_{u_t \in U_t(x)} (c(x_t, u_t) + \int_{\mathbb{X}} J_{t+1}(y) T(dy|x, u)),
\]

for all $x \in \mathbb{X}$, for $t \in \{0, 1, 2, \ldots, N - 1\}$ with

\[
J_N(x_N) = c_N(x_N).
\]
Furthermore, there exist measurable functions f_t such that

$$ J_t(x) = c(x_t, f(x_t)) + \int_X J_{t+1}(y)\,\mathcal{T}(dy|x, f(x_t)) , $$

\[\diamond \]

Recall that a set in a normed linear space is (sequentially) compact if every sequence in the set has a converging subsequence.

Assumption 5.1.1 (Condition 1) The cost function to be minimized $c(x, u)$ is bounded and continuous on both U and X, c_N is continuous and bounded; $\mathcal{U}_i(x) = \mathcal{U}$ is compact; and $\int_X \mathcal{T}(dy|x, u)v(y)$ is a continuous function on $X \times \mathcal{U}$ for every continuous and bounded v on X (in this case, we call \mathcal{T} a weakly continuous transition kernel).

Assumption 5.1.2 (Condition 2) For every $x \in X$ the bounded measurable cost function $c(x, u)$ is continuous on \mathcal{U}, c_N is bounded measurable; $\mathcal{U}_i(x) = \mathcal{U}$ is compact; and $\int_X \mathcal{T}(dy|x, u)v(y)$ is a continuous function on \mathcal{U} for every bounded, measurable function v on X for every fixed x (in this case, we call \mathcal{T} a strongly continuous transition kernel in u for every fixed x).

Theorem 5.1.4 Under Assumption 5.1.1 or Assumption 5.1.2, there exists an optimal solution and the measurable selection hypothesis applies, and there exists a minimizing control policy $f_t : X \rightarrow \mathcal{U}$. Furthermore, under Assumption 5.1.1, J_t is continuous for any $t \geq 0$.

The result follows from the following three lemmas below:

Lemma 5.1.1 A continuous function $f : X \rightarrow \mathbb{R}$ over a compact set $A \subset X$ admits a minimum.

Proof. Let $\delta = \inf_{x \in A} f(x)$. Let $\{x_i\}$ be a sequence such that $f(x_i)$ converges to δ. Since A is compact, $\{x_i\}$ must have a converging subsequence $\{x_{i(n)}\}$. Let the limit of this subsequence be \bar{x}. Then, it follows that, $\{x_{i(n)}\} \rightarrow \bar{x}$ and thus, by continuity $f(\bar{x}) = \delta$. \[\diamond \]

To see why compactness is important, consider $\inf_{x \in A} \frac{1}{x}$ for $A = [1, 2)$ or $A = \mathbb{R}$? In both cases there does not exist an x value in the specified set which attains the infimum.

Lemma 5.1.2 Let \mathcal{U} be compact, and $c(x, u)$ be continuous on $X \times \mathcal{U}$. Then, $\min_{u \in \mathcal{U}} c(x, u)$ is continuous on X.

Proof. Let $x_n \rightarrow x$, u_n optimal for x_n and u optimal for x. Such optimal action values exist as a result of compactness of \mathcal{U} and continuity. Now,

$$ | \min_u c(x_n, u) - \min_u c(x, u) | \\ \leq \max \left(c(x_n, u) - c(x, u), c(x, u_n) - c(x_n, u_n) \right) $$

(5.5)

The first term above converges since c is continuous in x, u. The second converges also. Suppose otherwise. Then, for some $\epsilon > 0$, there exists a subsequence such that

$$ | c(x, u_{k_n}) - c(x_{k_n}, u_{k_n}) | \geq \epsilon $$

Consider the sequence (x_{k_n}, u_{k_n}). There exists a subsequence such that $(x_{k_n'}, u_{k_n'})$ which converges to x, u' for some u' since \mathcal{U} is compact. Hence, for this subsequence, we have convergence of $c(x_{k_n'}, u_{k_n'})$ as well as $c(x, u_{k_n'})$, leading to a contradiction. \[\diamond \]

Lemma 5.1.3 Let $c(x, u)$ be a continuous function on \mathcal{U} for every x, where \mathcal{U} is a compact set. Then, there exists a Borel measurable function $f : X \rightarrow \mathcal{U}$ such that

$$ c(x, f(x)) = \min_{u \in \mathcal{U}} c(x, u) $$
Lemma 5.3. The result follows from [100, Theorem 2], [169], [168] and [114], among others. A sketch is as follows: Let $\tilde{c}(x) := \min_{u \in U} c(x, u)$. The function

$$\tilde{c}(x) := \min_{u \in U} c(x, u),$$

is Borel measurable. This follows from the observation that it is sufficient to prove that $\{x : \tilde{c}(x) > \alpha\}$ is Borel for every $\alpha \in \mathbb{R}$. By continuity of c and compactness of \mathbb{U}, with a successively refining quantization of the space of control actions U (such a sequence of quantizers map \mathbb{U} to a sequence of finite sets (expanding as n increases), so that $\lim_{n \to \infty} \sup_{u} |Q_{n}(u) - u| = 0$ and the cardinality $|Q_{n}(U)| < \infty$ for every n)

$$\{x : \tilde{c}(x) > \alpha\} = \bigcap_{n} \bigcap_{Q_{n}(u), u \in U} \{x : c(x, Q_{n}(u)) > \alpha\}$$

the result follows since each of $\{x : c(x, Q_{n}(u)) > \alpha\}$ is Borel. Define $F := \{(x, u) : c(x, u) = \tilde{c}(x), x \in \mathbb{X}\}$. This set is a Borel set and for every x, $\{(x, u) \in F\}$ is a closed set. The question is now whether one can construct a measurable (selection) function γ in F so that $\{(x, \gamma(x))\} \subset F$. One can construct a measurable function which lives in this set, using the property that \mathbb{U} is a separable metric space: This builds on measurable selection results due to Schäl [169] and [114] (see Appendix C).

We also note that one can replace the compactness condition with an inf-compactness condition, and modify Condition 1 in Assumption 5.1.1 as below:

Assumption 5.1.3 (Condition 3) For every $x \in \mathbb{X}$ the cost function to be minimized $c(x, u)$ is continuous on $\mathbb{X} \times U$; is non-negative; $\{u : c(x, u) \leq \alpha\}$ is compact for all $\alpha > 0$ and all $x \in \mathbb{X}$; $\int_{\mathbb{X}} T(dy|x, u)v(y)$ is a continuous function on $\mathbb{X} \times U$ for every continuous and bounded v.

Theorem 5.1.5 Under Assumption 5.1.3, the Measurable Selection Hypothesis applies.

The results of Lemma 5.3 also apply when $U(x)$ depends on x so that it is compact for each x and $\{(x, u) : u \in U(x), x \in \mathbb{X}\}$ is a Borel subset of $\mathbb{X} \times U$.

Lemma 5.3. [100, Theorem 2], [169], [114] Let \mathbb{X}, \mathbb{U} Polish spaces and $\Gamma = (x, \psi(x))$ where $\psi(x) \subset \mathbb{U}$ be such that $\psi(x)$ is compact for each $x \in \mathbb{X}$ and Γ is a Borel measurable set in $\mathbb{X} \times U$. Let $c(x, u)$ be a continuous function on $\psi(x)$ for every x.

(i) Then, there exists a Borel measurable function $f : \mathbb{X} \to \mathbb{U}$ such that

$$c(x, f(x)) = \min_{u \in \psi(x)} c(x, u).$$

(ii) If continuity is also to be attained for the value function $c(x, f(x))$ (a close look at the proof of Lemma 5.1.2 reveals that) it suffices if $U(x)$ is compact and $U(x)$ is an upper semi-continuous set-valued function (the implication being that: for any $x^{n} \to x$ and $u^{m} \in U(x^{n})$, there exists a subsequence $u^{m_{n}}$ which converges to some u^{t} with the property that $u^{t} \subset U(x)$) and c is continuous.

We could relax the continuity condition and change it with lower semi-continuity. A function is lower semi-continuous at x_{0} if $\lim \inf_{x \to x_{0}} f(x) \geq f(x_{0})$. We state the following, see [96, Theorem 3.3.5].

Theorem 5.1.6 (a) Suppose that (i) $U(x)$ is compact for every x and $\{(x, u) : u \in U(x)\}$ is a Borel subset of $\mathbb{X} \times U$, (ii) c is lower semi-continuous on $U(x)$ for every $x \in \mathbb{X}$ and (iii) $\int v(x_{t+1}) P(dx_{t+1}|x_{t} = x, u_{t} = u)$ is lower semi-continuous on $U(x)$ for every $x \in \mathbb{X}$ and every measurable and bounded v on \mathbb{X}. Then, the measurable selection hypothesis applies.

(b) If (i) c is lower semi-continuous on $\{(x, u) : u \in U(x), x \in \mathbb{X}\}$, (ii) $\int v(x_{t+1}) P(dx_{t+1}|x_{t} = x, u_{t} = u)$ is lower semi-continuous on $\{(x, u) : u \in U(x), x \in \mathbb{X}\}$ and every lower semi-continuous function v on \mathbb{X}, and (iii) $U(x)$ is
compact for every $x \in X$ and $U(x)$ is an upper semi-continuous set-valued function, then the value function v is lower semi-continuous.

For further related relaxations, see [96, Appendix D]).

For many problems, one can compute an optimal solution directly, without explicitly studying existence.

5.2 The Linear Quadratic Regulator (LQR) Problem

Consider the following linear system

$$x_{t+1} = Ax_t + Bu_t + w_t, \quad (5.6)$$

where $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$ and $w \in \mathbb{R}^n$. Suppose $\{w_t\}$ is i.i.d. zero-mean with a given covariance matrix $E[w_tw_t^T] = W$ for all $t \geq 0$ (not necessarily Gaussian).

The goal is to obtain

$$\inf_{\gamma \in \Gamma^A} J(x, \gamma),$$

where

$$J(x, \gamma) = E_x[\sum_{t=0}^{N-1} x_t^T Q x_t + u_t^T R u_t + x_N^T Q_N x_N], \quad (5.7)$$

with $R > 0, Q \geq 0, Q_N \geq 0$.

Theorem 5.2.1 Consider (5.7). The optimal control is linear and has the form:

$$u_t = -(B^T P_{t+1} B + R)^{-1} B^T P_{t+1} Ax_t$$

where P_t solves the Discrete-Time Riccati Equation:

$$P_t = Q + A^T P_{t+1} A - A^T P_{t+1} B (B^T P_{t+1} B + R)^{-1} B^T P_{t+1} A, \quad (5.8)$$

with final condition $P_N = Q_N$. The optimal cost is given by

$$J(x_0) = x_0^T P_0 x_0 + \sum_{t=0}^{N-1} E[w_t^T P_{t+1} w_t]$$

In the following, we study the Riccati equation (5.8). Consider the linear system

$$x_{t+1} = Ax_t + Bu_t, \quad y_t = Cx_t \quad (5.9)$$

Here, y_t is a measurement variable and x_t is an \mathbb{R}^n-valued state variable. Such a system is said to be controllable [53], if for any initial x_i and a final x_f, there exists $T \in \mathbb{N}$ and a sequence of control actions u_0, u_1, \cdots, u_T such that with $x_0 = x_i$, $x_T = x_f$. If x_f is restricted to be $0 \in \mathbb{R}^n$, and the above holds (but possibly with $T \rightarrow \infty$), the system is said to be stabilizable. Thus, the only modes in a stabilizable system that are not controllable are the stable ones.

Now let $B = 0$ in (5.9). Such a system is said to be observable if by measuring y_0, y_1, \cdots, y_T, for some $T \in \mathbb{N}$, x_0 can be uniquely recovered. Such a system is called detectable if all unstable modes of A are observable, in the sense that if $\{y_t\} \rightarrow 0$, it must be that $\{x_t\} \rightarrow 0$.

There are well-known algebraic tests to verify controllability and observability. A very useful result building on the Cayley-Hamilton theorem is that if a system cannot be moved from any initial state to any final state in n (that is, the
dimension of \(\mathbb{R}^n \) time stages, the system is not controllable; and if a system’s initial state cannot be recovered by having \(\{y_0, y_1, \ldots, y_{n-1}\} \), the system is not observable. In particular, the linear system above with matrices \((A, B)\) is controllable if and only if
\[
\begin{bmatrix}
B & AB & \cdots & A^{n-1}B
\end{bmatrix}
\]
is full-rank. The system is observable if and only if \((A^T, C^T)\) is controllable.

For a review of linear systems theory, the reader is referred to, e.g. [53].

Theorem 5.2.2 (i) If \((A, B)\) is controllable there exists a solution to the Riccati equation
\[
P = Q + A^T PA - A^T PB (B^T PB + R)^{-1} B^T PA.
\]

(ii) If \((A, B)\) is controllable and, with \(Q = C^T C \), \((A, C)\) is observable; as \(t \to -\infty \) (or as \(N \to \infty \) with \(Q_N = \bar{P} \) fixed for an arbitrary positive semi-definite matrix \(P \)) in the optimization problem above, the sequence of Riccati recursions,
\[
P_t = Q + A^T P_{t+1} A - A^T P_{t+1} B (B^T P_{t+1} B + R)^{-1} B^T P_{t+1} A,
\]
converges to some limit \(P \) that satisfies
\[
P = Q + A^T PA - A^T PB ((B^T PB + R))^{-1} B^T PA.
\]
That is, convergence takes place for any initial condition \(\bar{P} \). Furthermore, such a \(P \) is unique, and is positive definite. Finally, under the optimal stationary control policy
\[
u_t = -(B^T PB + R)^{-1} B^T P A x_t,
\]
\(\{x_t\} \) is stable.

(iii) Under the conditions of part (ii), the stationary policy above minimizes, for every \(x \in \mathbb{R}^n \),
\[
\limsup_{N \to \infty} \frac{1}{N} E^x_t \left[\sum_{t=0}^{N-1} x_t^T Q x_t + u_t^T R u_t \right].
\]
(5.10)

Remark 5.4. Part (i) can be relaxed to \((A, B)\) being stabilizable; and part (ii) to \((A, C)\) being detectable for the existence of a unique \(P \) and a stable system under the optimal policy. In this case, however, \(P \) may only be positive semi-definite.

Proof Sketch.

(i) Assume that \(w_t = 0 \) for all \(t \); the noise does not affect the recursions in the Riccati equation. Now, since the system is controllable there exists a control sequence such that \(x_t = 0 \) for \(t \geq n \) which also satisfies \(u_t = 0 \) for \(t \geq n \). The cost \(\sum_{t=0}^{\infty} x_t^T Q x_t + u_t^T R u_t \) induced by this control sequence is finite. Now, define \(P^{(N)}_0 \) through
\[
x_0^T P^{(N)}_0 x_0 = \inf_{\gamma \in F_A} E^x_t \left[\sum_{t=0}^{N-1} x_t^T Q x_t + u_t^T R u_t \right]
\]
and observe that
\[
x_0^T P^{(N)}_0 x_0 \leq x_0^T P^{(N+1)}_0 x_0.
\]
As a result, for a fixed \(x_0 \), we can conclude that the sequence \(\{x_0^T P^{(N)}_0 x_0, T \geq 0\} \) is monotone and bounded from above. Thus, the sequence has a limit. By selecting different values of \(x_0 \) (e.g., with \(x_0 = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \end{bmatrix}^T \), \(x_0 = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \end{bmatrix}^T \), \(x_0 = \begin{bmatrix} 1 & 1 & 0 & \cdots & 0 \end{bmatrix}^T \) and so on), we conclude that there is a fixed point \(P \) such that \(x_0^T P^{(N)}_0 x_0 \to x_0^T P x_0 \) for any \(x_0 \in \mathbb{R}^n \).

(ii) As above, assume again that \(w_t = 0 \) for all \(t \geq 0 \). We use the property that, through a change of limit supremum and infimum argument (as in Lemma 5.4.1 further below),
We use the property that, through a change of limit supremum and infimum argument (as in Lemma 5.4.1 further \(\gamma\)), the above holds for \(x\) or \(\bar{x}\) be the solution of the optimization problem where \(P\) and \(\bar{P}\) are the positive semi-definite matrices.

Since the induced cost is finite and \(R > 0\), under this optimal control policy, \(u_t \to 0\). Therefore, the policy \(\gamma^*\)

\[
u_t = -(B^T PB + R)^{-1}B^T PAx_t = \gamma^*(x_t),
\]
is stabilizing. This follows because since \(x^T Q x_t \to 0\) (and \(u_t \to 0\)), by observability of \((C, A)\) it must be that \(x_t \to 0\) as well. Let

\[
x_0^T P_{0, N} x_0 := \inf_{\gamma \in \Gamma_A} \frac{1}{N} E_\gamma^T \left[\sum_{t=0}^{N-1} x_t^T Q x_t + u_t^T R u_t + x_N^T \bar{P} x_N \right]
\]

be the solution of the optimization problem where \(P_N = \bar{P}\). We will show that \(P_{0, N} \to P\) regardless of the value of the positive semi-definite matrix \(P\), leading to the uniqueness of the limit. By writing \(E_\gamma^T \left[x_N^T \bar{P} x_N \right] = E_\gamma^T \left[x_N^T P x_N \right] + E_\gamma^T \left[x_N^T (\bar{P} - P) x_N \right]\), noting that

\[
E_\gamma^T \left[\sum_{t=0}^{N-1} x_t^T Q x_t + u_t^T R u_t + x_N^T P x_N \right] = x_0^T P x_0,
\]

we have that

\[
x_0^T P^{(N)} x_0 \leq x_0^T P_{0, N} x_0 \leq E_\gamma^T \left[\sum_{t=0}^{N-1} x_t^T Q x_t + u_t^T R u_t + x_N^T P x_N \right] + E_\gamma^T \left[x_N^T (\bar{P} - P) x_N \right].
\]
or

\[
x_0^T P^{(N)} x_0 \leq x_0^T P_{0, N} x_0 \leq x_0^T P x_0 + E_\gamma^T \left[x_N^T (\bar{P} - P) x_N \right].
\]
The above holds for \(\gamma^*\) is not necessarily optimal, and provides an upper bound, for (5.12). However, through the property that \(x_N \to 0\) as \(N \to \infty\) under \(u_t = \gamma^*(x_t)\), we conclude that \(P_{0, N} \to P\).

(iii) We use the property that, through a change of limit supremum and infimum argument (as in Lemma 5.4.1 further below),

\[
\inf_{\gamma \in \Gamma_A} \limsup_{N \to \infty} \frac{1}{N} E_\gamma^T \left[\sum_{t=0}^{N-1} x_t^T Q x_t + u_t^T R u_t \right] \geq \limsup_{N \to \infty} \frac{1}{N} \inf_{\gamma \in \Gamma_A} E_\gamma^T \left[\sum_{t=0}^{N-1} x_t^T Q x_t + u_t^T R u_t \right]
\]

Since, \(\inf_{\gamma \in \Gamma_A} E_\gamma^T \left[\sum_{t=0}^{N-1} x_t^T Q x_t + u_t^T R u_t \right]\) is determined by \(P^{(N)}\) that converges to \(P\), leading to the optimality of \(\gamma^*\), and the policy \(u_t = -(B^T PB + R)^{-1}B^T PAx_t\) is stabilizing, this implies that the policy \(\gamma^*\) is optimal for (5.10) as well.

We will discuss average cost optimization problems in further detail in Chapter 7.
5.3 Optional: A Strategic Measures Approach

For stochastic control problems, *strategic measures* are defined (see [169], [69] and [73]) as the set of probability measures induced on the product spaces of the state and action pairs by measurable control policies: Given an initial distribution on the state, and a policy, one can uniquely define a probability measure on the product space. Topological properties, such as measurability and compactness, of sets of strategic measures are studied in [169], [69], [73] and [32].

We assume, as before, that the spaces considered are standard Borel. In the following, we consider a finite horizon problem, with time horizon \(N - 1 \).

Theorem 5.3.1 Let \(L_R(\mu) \) be the set of strategic measures induced by (possibly randomized) \(\Gamma_A \) with \(x_0 \sim \mu \). Then, for any \(P \in L_R(\mu) \), there exists an augmented space \(\Omega \) and a probability measure \(\eta \) such that

\[
P(B) = \int_{\Omega} \eta(d\omega) P^{\gamma(\omega)}(B), \quad B \in \mathcal{B}((\mathbb{X} \times \mathbb{U})^N),
\]

where each \(\gamma(\omega) \in \Gamma_A \) is deterministic admissible.

Proof. Here, we build on Lemma 1.2 in Gikhman and Shorodh [84] and Theorem 1 in [72]. Any stochastic kernel \(P(dx|y) \) can be realized by some measurable function \(x = f(y, v) \) where \(v \) is a uniformly distributed random variable on \([0, 1] \) and \(f \) is measurable (see also [36] for a related argument). One can define a new random variable \((\omega = (v_0, v_1, \cdots, v_{T-1})) \). In particular, \(\eta \) can be taken to be the probability measure constructed on the product space \([0, 1]^N \) by the independent variables \(v_k, k \in \{0, 1, \cdots, N - 1\} \).

One implication of this theorem is that if one relaxes the measure \(\eta \) to be arbitrary, a convex representation would be possible. That is, the set

\[
P(B) = \int_{\Omega} \eta(d\omega) P^{\gamma(\omega)}(B), \quad B \in \mathcal{B}((\mathbb{X} \times \mathbb{U})^N), \eta \in \mathcal{P}(\Omega)
\]

is convex, when one does not restrict \(\gamma \) to be a fixed measure. Furthermore, the extreme points of these convex sets consist of policies which are deterministic. A further implication then is that, since the expected cost function is linear in the strategic measures, one can without any loss consider the extreme points while searching for optimal policies. In particular,

\[
\inf_{\gamma \in \Gamma_M} J(x, \gamma) = \inf_{\gamma \in \Gamma_M} J(x, \gamma)
\]

and

\[
\inf_{\gamma \in \Gamma_{AR}} J(x, \gamma) = \inf_{\gamma \in \Gamma_{AR}} J(x, \gamma).
\]

Thus, deterministic policies are as good as any other. This is certainly not surprising in view of Theorem 5.1.1.

We present the following characterization for strategic measures. Let for all \(n \in \mathbb{N} \), \(h_n = \{x_0, u_0, \cdots, x_{n-1}, u_{n-1}, x_n, u_n\} \), and \(P(dx_n|h_{n-1}) = T(dx_n|x_{n-1}, u_{n-1}) \) be the transition kernel.

Let \(L_A(\mu) \) be the set of strategic measures induced by deterministic policies and let \(L_R(\mu) \) be the set of strategic measures induced by independently provided randomized policies. Such an individual randomized policy can be represented in a functional form, as noted earlier: for any stochastic kernel \(\Pi^k \) from \(\mathbb{Y}^k \) to \(\mathbb{U}^k \), there exists a measurable function \(\gamma^k : [0, 1] \times \mathbb{Y}^k \rightarrow \mathbb{U}^k \) such that

\[
m\{r : \gamma^k(r, y^k) \in A\} = \gamma^k(u^k \in A|y^k),
\]

and \(m \) is the uniform distribution (Lebesgue measure) on \([0, 1] \).

Theorem 5.3.2 A probability measure \(P \in \mathcal{P}\left(\prod_{k=1}^{N}(\mathbb{X} \times \mathbb{U}) \right) \) is a strategic measure induced by a randomized policy (that is in \(L_R(\mu) \)) if and only if for every \(n \in \mathbb{N} \):
where we note that $T(B|h_{n-1}) = \int_B T(dx_n|x_{n-1}, u_{n-1})$, and
\[
\int P(dh_n) g(h_{n-1}, x_n, u_n) = \int P(dh_{n-1}) \left(\int \int \int g(h_{n-1}, z) T(dz|h_{n-1}) \right),
\]
for some stochastic kernel γ^n on \mathbb{U}^n given h_n, x_n, for all continuous and bounded g, with $P(d\omega_0) = \mu(d\omega_0)$.

Proof. The proof follows from the fact that testing the equalities such as (5.15)-(5.16) on continuous and bounded functions implies this property for any measurable and bounded function (that is, continuous and bounded functions form a separating class, see e.g. [28, p. 13] or [70, Theorem 3.4.5])

An implication is the following.

Theorem 5.3.3 [169] The set of strategic measures induced by admissible randomized policies is compact under the weak convergence topology if $T(dx_{t+1}|x_t = x, u_t = u)$ is weakly continuous in x, u and X, U are compact.

An implication of this result is that optimal policies exist, and are deterministic when the cost function is continuous in x, u.

We note also that Schäl [169] introduces a more general topology, $w-s$ topology, which requires setwise continuity in the control actions. In this case, one can generalize Theorem 5.3.3 to the setups where Condition 2 applies and existence of optimal policies follows.

Definition 5.3.1 The $w-s$ topology on the set of probability measures $\mathcal{P}(X \times U)$ is the coarsest topology under which $\int f(x, u)\nu(dx, du) : \mathcal{P}(X \times U) \to \mathbb{R}$ is continuous for every measurable and bounded f which is continuous in u for every x (but unlike weak topology, f does not need to be continuous in x).

Theorem 5.3.4 [169] The set of strategic measures induced by admissible randomized policies is compact under the $w-s$ topology if $T(dx_{t+1}|x_t = x, u_t = u)$ is strongly continuous in u for every x and X, U are compact.

The proofs of Theorems 5.3.3 and 5.3.4 follow from the property that to check whether a conditional independence property, as in (5.15)-(5.16), holds testing these on continuous and bounded functions implies this property for any measurable and bounded function. Note that (5.16) holds since there is no conditional independence property condition, and the main issue is to establish that (5.15) holds for any converging sequence of strategic measures. Applying the hypotheses for each of the theorems leads to the desired results.

An implication of Theorem 5.3.4 is that an optimal strategic measure exists under the conditions of the theorem, provided that the \mathbb{R}_+-valued cost function c is lower semi-continuous in u for every x. In particular, for any $w-s$ converging sequence of strategic measures satisfying (5.15)-(5.16) so does the limit. By [169, Theorem 3.7], and the generalization of Portmanteau theorem for the $w-s$ topology, the lower semi-continuity of the integral cost over the set of strategic measures leads to the existence of an optimal strategic measure.

Now, we know that an optimal policy will be deterministic as a consequence of Theorem 5.3.1. Thus, an optimal policy (which is deterministic) exists.

5.4 Infinite Horizon Optimal Discounted Cost Control Problems

When the time horizon becomes unbounded, we cannot directly invoke dynamic programming in the form considered earlier. Infinite horizon problems that we will consider will belong to two classes: Discounted cost and average cost...
problems. In the following, we first discuss the discounted cost problem. The average cost problem is discussed in Chapter 7.

Under the discounted cost criterion, future cost realizations are discounted: the future is perceived to be less important than the current time with different justifications depending on the applications, e.g. due to the uncertainty in the future leading one become more cautious about optimizing for the distant time stages, or perhaps due to an economic understanding that the current value of a good is more important than its value in the future.

For a given $T \in \mathbb{Z}^+$, the expected discounted cost criterion is given as:

$$J^T_\beta(x_0, \gamma) = E^\gamma_{x_0} \left[\sum_{t=0}^{T-1} \beta^t c(x_t, u_t) \right], \quad (5.17)$$

for some $\beta \in (0, 1)$. If there exists a policy γ^* which minimizes this cost, the policy is said to be optimal. We often consider an infinite horizon problem by taking the limit (when c is non-negative)

$$J_\beta(x_0, \gamma) = \lim_{T \to \infty} E^\gamma_{x_0} \left[\sum_{t=0}^{\infty} \beta^t c(x_t, u_t) \right],$$

and invoking the monotone convergence theorem:

$$J_\beta(x_0, \gamma) = E^\gamma_{x_0} \left[\sum_{t=0}^{\infty} \beta^t c(x_t, u_t) \right].$$

We seek to find

$$J_\beta(x_0) = \inf_{\gamma \in \Gamma_A} J_\beta(x_0, \gamma).$$

Define

$$\inf_{\gamma \in \Gamma_A} J^T_\beta(x_0, \gamma) = J^T_\beta(x_0).$$

Lemma 5.4.1 Let \mathbb{A} be a set and $\{f_n\}$ be a sequence of maps from $f_n : \mathbb{A} \to \mathbb{R}$ for all $n \in \mathbb{N}$. Then,

$$\limsup_{n \to \infty} \inf_{x \in \mathbb{A}} f_n(x) \leq \inf_{x \in \mathbb{A}} \limsup_{n \to \infty} f_n(x).$$

Proof. For any $n \in \mathbb{N}$ and $y \in \mathbb{A}$ we have

$$\inf_{x \in \mathbb{A}} f_n(x) \leq f_n(y).$$

This holds for all n we can take the limit superior of both sides, which yields

$$\limsup_{n \to \infty} \inf_{x \in \mathbb{A}} f_n(x) \leq \limsup_{n \to \infty} f_n(y).$$

This inequality holds for all $y \in \mathbb{A}$ and thus

$$\limsup_{n \to \infty} \inf_{x \in \mathbb{A}} f_n(x) \leq \inf_{x \in \mathbb{A}} \limsup_{n \to \infty} f_n(x).$$

By Lemma 5.4.1 we change the order of limit and infimum so that

$$J_\beta(x_0) \geq \limsup_{T \to \infty} J^T_\beta(x_0) \quad (5.18)$$

but since \lim exists for the right-hand side as the expression is monotonically increasing the limit superior becomes an actual limit and thus

$$J_\beta(x_0) \geq \lim_{T \to \infty} J^T_\beta(x_0).$$
We will make use of this relation explicitly in Lemma 5.4.4 below. Now, observe that (from (5.17))

\[
J^T_\beta(x_0, \gamma) = E_{x_0}^\gamma \left[c(x_0, u_0) + \sum_{t=1}^{T-1} \beta^t c(x_t, u_t) \right],
\]

writes as

\[
J^T_\beta(x_0, \gamma) = E_{x_0}^\gamma \left[c(x_0, u_0) + \beta E^\gamma \left[\sum_{t=1}^{T-1} \beta^{t-1} c(x_t, u_t) \right] \right].
\]

Through the controlled Markov property and the fact that without any loss Markov policies are as good as any other for finite horizon problems, it follows that

\[
J^T_\beta(x_0) \geq \inf_{u_0} E_{x_0}^\gamma \left[c(x_0, u_0) + \beta E^\gamma \left[J^{T-1}_\beta(x_1) \right] \right].
\]

We also saw in fact, under measurable selection conditions, via Bellman’s Theorem 5.1.3, the above is in fact an equality. The goal is now to take \(T \to \infty\) and obtain desirable structural properties. The limit

\[
\lim_{T \to \infty} J^T_\beta(x_0)
\]

will be a lower bound to \(J_\beta(x_0)\) by (5.18). But the inequality will turn out to be an equality under mild conditions to be studied in the following. The next result is on the exchange of the order of the minimum and limits, which will later show that the inequality above is indeed an equality.

Lemma 5.4.2 [96] Let \(V_n(x, u) \uparrow V(x, u)\) pointwise. Suppose that \(V_n\) and \(V\) are continuous in \(u\) and \(u \in U(x) = U\) is compact. Then,

\[
\lim_{n \to \infty} \min_{u \in U(x)} V_n(x, u) = \min_{u \in U(x)} V(x, u).
\]

Proof. The proof follows from essentially the same arguments as in the proof of Lemma 5.1.2. Let \(u^*_n\) solve \(\min_{u \in U(x)} V_n(x, u)\). Note that

\[
| \min_{u \in U(x)} V_n(x, u) - \min_{u \in U(x)} V(x, u) | \leq V(x, u^*_n) - V_n(x, u^*_n),
\]

since \(V_n(x, u) \uparrow V(x, u)\). Now, suppose that for some \(\epsilon > 0\)

\[
V(x, u^*_n) - V_n(x, u^*_n) \geq \epsilon,
\]

along a subsequence \(n_k\). There exists a further subsequence \(n'_k\) such that \(u^*_n \to \bar{u}\) for some \(\bar{u}\). By assumption, for this \(x\) and \(\bar{u}\), and every \(\epsilon > 0\), we can find a sufficiently large \(N\) such that \(V(x, \bar{u}) - V_N(x, \bar{u}) \leq \epsilon/2\). Fix such an \(N\). Now, for every \(n'_k \geq N\), since \(V_n\) is monotonically increasing:

\[
V(x, u^*_n) - V_n(x, u^*_n) \leq V(x, u^*_{n'_k}) - V_N(x, u^*_{n'_k})
\]

However, \(V(x, u^*_{n'_k})\) and for the fixed \(N\), \(V_N(x, u^*_{n'_k})\), are continuous hence these two terms converge to: \(V(x, \bar{u}) - V_N(x, \bar{u})\). Hence (5.20) cannot hold. \(\diamondsuit\)

Recall from dynamic programming equations that with

\[
\inf_{\gamma \in T_A} J^T_\beta(x_0, \gamma) = J^T_\beta(x_0)
\]

\[
J^T_\beta(x_0) = \min_{u_0} \left(c(x_0, u_0) + \beta \inf_{\gamma \in T_A} E^\gamma \left[\sum_{t=1}^{T-1} \beta^{t-1} c(x_t, u_t) \right] \right),
\]
and thus
\[J^T_\beta(x_0) = \min_{u_0} \left(c(x_0, u_0) + \beta E^\gamma[J^{T-1}_\beta(x_1)|x_0, u_0] \right). \]

since after utilizing iterated expectations we obtain
\[\inf_{\gamma} E^\gamma[\sum_{t=1}^{T-1} \beta^{t-1}c(x_t, u_t)|x_0, u_0] = E^\gamma[J^{T-1}_\beta(x_1)|x_0, u_0]. \]

It follows then that
\[J^\infty_\beta(x_0) := \lim_{T \to \infty} J^T_\beta(x_0) = \lim_{T \to \infty} \min_{u_0} \left(c(x_0, u_0) + \beta E[J^{T-1}_\beta(x_1)|x_0, u_0] \right), \]

where the limit exists due to the monotone convergence theorem since the cost is increasing with \(T \): \(J^T_\beta(x_1) \uparrow J^\infty_\beta \) as \(T \to \infty \). If Lemma 5.4.2 applies (i.e., the continuity condition), we obtain that
\[J^\infty_\beta(x_0) = \min_{u_0} \left(c(x_0, u_0) + \beta E[J^{\infty}_\beta(x_1)|x_0, u_0] \right). \]

This last equation will turn out to be a crucial equation as the next lemma reveals.

The following result shows that the fixed point equation (10.8) is closely related to optimality.

Define \(\mathbb{T} \) as follows:
\[(\mathbb{T}(v))(x) := \min_{u} \left(c(x, u) + \beta \int_{\mathbb{X}} v(y)\mathbb{T}(dy|x, u) \right). \]

and define the Discounted Cost Optimality Equation (DCOE) as follows
\[v(x) = (\mathbb{T}(v))(x), \quad x \in \mathbb{X} \]

Lemma 5.4.3 [Verification Theorem] [96]

(i) If \(v \) is a measurable \(\mathbb{R}_+ \)-valued function under Assumption 5.1.2 (or continuous and bounded function under Assumption 5.1.1) with \(v \geq \mathbb{T}v \), then \(v(x) \geq J_\beta(x) \).

(ii) If \(v \leq \mathbb{T}v \) and
\[\lim_{n \to \infty} \beta^n E^\gamma_x[v(x_n)] = 0, \]

for every policy and initial condition, then \(v(x) \leq J_\beta(x) \). As a result, a fixed point to (10.8) leads to an optimal policy under 5.24.

Proof.

(i) For some stationary policy \(f \) that achieves \(\min(c(x, u) + \beta E[v(x_1)|x_0 = x, u_0 = u]) = c(x, f(x)) + \beta E[v(x_1)|x_0 = x, u_0 = f(x)] \), apply repeatedly
\[v(x) \geq c(x, f(x)) + \beta \int v(y)\mathbb{T}(dy|x, f(x)) \geq \cdots \geq E^\gamma_x[\sum_{k=0}^{n-1} \beta^k c(x_k, f(x_k))] + \beta^n E^\gamma_x[v(x_n)] \]

Since this is correct for every \(n \), it also is correct for the limit. Thus
If $T v(x) \geq v(x)$, then

$$E_x^\gamma [\beta^{n+1} v(x_{n+1}) | h_n] = E_x^\gamma [\beta^{n+1} v(x_{n+1}) | x_n, u_n]$$

$$= \beta^n \left(c(x_n, u_n) + \beta \int v(z) T(dz | x_n, u_n) - c(x_n, u_n) \right)$$

$$\geq \beta^n (v(x_n) - c(x_n, u_n))$$

(5.25)

Thus, using the iterated expectations

$$E_x^\gamma \left[\sum_{k=0}^{n-1} \beta^n c(x_n, u_n) \right] \geq E \left[\sum_{k=0}^{n-1} E [\beta^n v(x_k) - \beta^{n+1} v(x_{k+1}) | h_k] \right]$$

leading to

$$E_x^\gamma \left[\sum_{k=0}^{n-1} \beta^n c(x_n, u_n) \right] \geq v(x) - \beta^n E_x^\gamma [v(x_n)]$$

If the last term on the right hand size converges to zero, then the result is obtained so that for any fixed policy, v provides a lower bound on the value function. Taking the infimum over all admissible policies, the desired result $v(x) \leq J_\beta(x)$ is obtained.

\[\Box \]

We have the following refinement, where we do not need to check (5.24) for every policy.

Lemma 5.4.4 If

$$v(x) = \lim_{T \to \infty} J_\beta^T (x)$$

is so that $v = T(v)$ where

$$T(v)(x) = c(x, f(x)) + \beta E[v(x_1) | x_0 = x, u_0 = f(x)]$$

is such that with $\gamma = \{f, f, \cdots \}$,

$$\lim_{n \to \infty} \beta^n E_x^\gamma [v(x_n)] = 0,$$

(5.26)

then γ is optimal.

Proof. Equation (5.18) implies that $J_\beta(x) \geq v(x)$ since v is the pointwise limit of the discounted cost functions. Now, since the stationary policy f achieves

$$v(x) = \min_{u \in \mathcal{U}} \left(c(x, u) + \beta E[v(x_1) | x_0 = x, u_0 = u] \right) = c(x, f(x)) + \beta E[v(x_1) | x_0 = x, u_0 = f(x)],$$

applying this repeatedly to $v(x_0), v(x_1)$ and then up to $v(x_{n-1})$ leads to

$$v(x) = c(x, f(x)) + \beta \int v(x_1) T(dx_1 | x, f(x)) = \cdots = E_x^\gamma \left[\sum_{k=0}^{n-1} \beta^k c(x_k, f(x_k)) \right] + \beta^n E_x^\gamma [v(x_n)].$$

Taking the limit, we have

$$v(x) = E_x^\gamma \left[\sum_{k=0}^{\infty} \beta^k c(x_k, f(x_k)) \right]$$
implying that $\gamma = \{f, f, \cdots\}$ is optimal.

A sufficient condition for (5.26) is that the cost function c is bounded, though this is certainly not necessary.

By dynamic programming, the Bellman optimality recursion for every finite horizon $T \in \mathbb{N}$ be written as

$$J^T_t(x) = T(J^T_{t+1})(x) = \min_u \left(c(x, u) + \beta \int_X J^T_{t+1}(y)T(dy|x, u) \right), \quad t = T - 1, T - 2, \cdots, 0, \quad (5.27)$$

with

$$J^T_T(x) = 0.$$

This sequence will lead to a solution for a T-stage discounted optimal cost problem. In particular, if we define $v_0 := J^T_T$, and $v_t := J^T_{T-t}$, we obtain the recursions

$$v_{n+1} = T(v_n)(x),$$

which will form the basis of a very important algorithm, known as the value iteration algorithm, to be presented below. The following builds on Lemma 5.4.4.

Theorem 5.4.1 [Value Iteration Algorithm: General Cost Setup] Suppose the cost function is non-negative. Consider the successive iteration

$$v_n(x) = \min_u \{c(x, u) + \beta \int_X v_{n-1}(y)T(dy|x, u)\}, \forall x, n \geq 1 \quad (5.28)$$

with $v_0(x) = 0$ for all $x \in X$. Then, v_n is a monotonically non-decreasing sequence. If this sequence converges pointwise to a function v where

$$v(x) = c(x, f(x)) + \beta \int_X v(y)T(dy|x, f(x))$$

is such that with $\gamma = \{f, f, \cdots\}$, (5.26) holds, then γ is optimal and v is the value function.

A sufficient condition for the iterations (5.4.4) to converge is the following. Suppose that measurable selection conditions apply so that the iterations are well defined for every $n \in \mathbb{Z}_+$. Let there exist a policy which leads to a finite cost for every initial state and that by dynamic programming the recursion for every T given in (5.27) hold. This sequence will lead to a solution for a T-stage discounted cost problem. Since $J^T_t(x) \leq J^T_{t+1}(x)$, if there exists some J^∞_t such that $J^T_t(x) \uparrow J^\infty_t(x)$, we could invoke Lemma 5.4.2 to argue that

$$J^\infty_t(x) = T(J^\infty_{t+1})(x) = \min_u \{c(x, u) + \beta \int_X J^\infty_{t+1}(y)T(dy|x, u)\}.$$

Such a limit exists, by the monotone convergence theorem since $J^\infty_t(x) < \infty$ due to the assumption that there exists a policy leading to a finite cost for every initial state. Hence, a limit satisfying (5.23) indeed exists. If

$$\min_u \{c(x, u) + \beta \int_X J^\infty_{t+1}(y)T(dy|x, u)\}$$

and

$$\min_u \{c(x, u) + \beta \int_X J^T_{t+1}(y)T(dy|x, u)\}$$

are continuous in u for every x and every T and t, by (5.18), a lower bound to an optimal solution will have to satisfy a fixed point equation (5.23). The result then would follow from Lemma 5.4.4.

In the bounded cost case, we can obtain a very strong result with a direct argument.

Lemma 5.4.5 (i) The space of measurable functions $X \to \mathbb{R}$ endowed with the $||.||_\infty$ norm (also called the supremum norm) is a Banach space, that is
\[L_\infty(\mathbb{X}) = \{ f : \|f\|_\infty = \sup_x |f(x)| < \infty \} \]

is a Banach space.

(ii) The space of continuous and bounded functions from \(\mathbb{X} \to \mathbb{R} \), \(C_b(\mathbb{X}) \), endowed with the \(\| \cdot \|_\infty \) norm is a Banach space.

Theorem 5.4.2 [Value Iteration Algorithm - Bounded Cost Setup] Suppose the cost function is bounded, non-negative, and one of the measurable selection conditions (Condition 1 or Condition 2) applies. Then, there exists a unique solution to the discounted cost problem which solves the fixed point equation.

\[v(x) = \min_u \{ c(x, u) + \beta \int_{\mathbb{X}} v(y) T(dy|x, u) \}, \quad x \in \mathbb{X} \]

Furthermore, the optimal cost (value function) is obtained by a successive iteration of policies (known as the Value Iteration Algorithm):

\[v_n(x) = \min_u \{ c(x, u) + \beta \int_{\mathbb{X}} v_{n-1}(y) T(dy|x, u) \}, \quad \forall x, n \in \mathbb{N} \tag{5.29} \]

For any \(v_0 \in L_\infty(\mathbb{X}) \), the sequence converges to a unique fixed point. If \(v_0(x) = 0, x \in \mathbb{X} \), then \(v_n(x) \uparrow v(x) \) for all \(x \in \mathbb{X} \) (that is, \(v_n \) monotonically converges to \(v \)). If Condition 1 applies, then \(v \) is also continuous.

Proof of Theorem 5.4.2 Depending on the measurable selection conditions, we can take the value functions to be either measurable and bounded, or continuous and bounded. (i) Suppose that we consider the measurable and bounded case. We observe that the vector \(J^\infty \) lives in \(L_\infty(\mathbb{X}) \) (since the cost is bounded, there is a uniform bound for every \(x \)). We will show that the iteration given by

\[\mathbb{T}(v)(x) = \min_u \{ c(x, u) + \beta \int_{\mathbb{X}} v(y) T(dy|x, u) \} \]

is a contraction in \(L_\infty(\mathbb{X}) \). Let

\[
\begin{align*}
\|\mathbb{T}(v) - \mathbb{T}(v')\|_\infty & = \sup_{x \in \mathbb{X}} |\mathbb{T}(v)(x) - \mathbb{T}(v')(x)| \\
& = \sup_{x \in \mathbb{X}} \left| \min_u \{ c(x, u) + \beta \int_{\mathbb{X}} v(y) T(dy|x, u) \} - \min_u \{ c(x, u) + \beta \int_{\mathbb{X}} v'(y) T(dy|x, u) \} \right| \\
& \leq \sup_{x \in \mathbb{X}} \left(1_{\{x \in A_1\}} \left\{ c(x, u^*) + \beta \int_{\mathbb{X}} v(y) T(dy|x, u^*) - c(x, u^*) - \beta \int_{\mathbb{X}} v'(y) T(dy|x, u^*) \right\} \\
& \quad + 1_{\{x \in A_2\}} \left\{ -c(x, u^{**}) - \beta \int_{\mathbb{X}} v(y) T(dy|x, u^{**}) + c(x, u^{**}) + \beta \int_{\mathbb{X}} v'(y) T(dy|x, u^{**}) \right\} \right) \\
& = \sup_{x \in \mathbb{X}} \left(1_{\{x \in A_1\}} \left\{ \beta \int_{\mathbb{X}} (v(y) - v'(y)) T(dy|x, u^*) \right\} + \sup_{x \in \mathbb{X}} \left(1_{\{x \in A_2\}} \left\{ \beta \int_{\mathbb{X}} (v'(y) - v(y)) T(dy|x, u^{**}) \right\} \right) \right) \\
& \leq \beta \|v - v'\|_\infty 1_{\{x \in A_1\}} \int_{\mathbb{X}} T(dy|x, u^*) + 1_{\{x \in A_2\}} \int_{\mathbb{X}} T(dy|x, u^{**}) \\
& = \beta \|v - v'\|_\infty \tag{5.30}
\end{align*}
\]

Here

\[A_1 = \left\{ x : \min_u \{ c(x, u) + \beta \int_{\mathbb{X}} v(y) T(dy|x, u) \} \geq \min_u \{ c(x, u) + \beta \int_{\mathbb{X}} v'(y) T(dy|x, u) \} \right\}, \]

and \(A_2 \) denotes the complementary event. \(u^{**} \) is the minimizing control for \(\{ c(x, u) + \beta \int_{\mathbb{X}} v(y) T(dy|x, u) \} \) and \(u^* \) is the minimizer for \(\{ c(x, u) + \beta \int_{\mathbb{X}} v'(y) T(dy|x, u) \} \).

As a result \(\mathbb{T} \) defines a contraction on the Banach space \(L_\infty(\mathbb{X}) \), and there exists a unique fixed point. Thus, the sequence of iterations in (5.27).
\[J_t^T(x) = \mathbb{T}(J_{t+1}^T)(x) = \min_u \{c(x, u) + \beta \int_{\mathcal{X}} J_{t+1}^T(y) \mathbb{T}(dy|x, u)\}, \]

converges to \(J_\infty^T(x) = J_0^\infty(x) \).

In particular, if one lets \(v_0(x) = 0 \) for all \(x \in \mathcal{X} \), the iterations increase monotonically and converges to the value function. If one is only interested in convergence (and not the monotone behaviour), any initial function \(v_0 \in L_\infty(\mathcal{X}) \) is sufficient.

(ii) The above discussion also applies by considering a contraction on the space \(C_b(\mathcal{X}) \), if Condition 1 holds; in this case, the value function sequence \(v_n \) is continuous for every \(n \in \mathbb{Z}_+ \), and by the completeness of \(C_b(\mathcal{X}) \) under the supremum norm, so is the limit.

We note also that, through Lemma 5.4.4, the value iteration algorithm is also applicable when the cost function \(c \) is not bounded.

Remark 5.5. We finally note that similar contraction arguments can also be applied to functions that are not necessarily continuous, but only lower semi-continuous bounded functions, which also form a Banach space under the supremum norm.

5.4.1 A contraction argument for unbounded costs

As discussed earlier, one could follow the iteration method for the unbounded case (as in the proof of Theorem 5.4.1), whereas the contraction method in the proof of Theorem 5.4.2 holds for the bounded cost case. The contraction method can also be adjusted for the unbounded case under further conditions: If the cost is not bounded, one can define a weighted sup-norm: \(\|v\|_f = \sup_x |c(x) f(x)| \), where \(f \) is a positive function uniformly bounded from below by a positive number. The contraction discussion above will apply to this context with such a consideration, provided that the value function \(v \) used in the contraction analysis can be shown to satisfy \(\|v\|_f < \infty \). Let \(B_w(\mathcal{X}) \) denote the Banach space of measurable functions with a bounded \(w \)-norm. We state the corresponding results formally in the following. We state two sets of conditions, one corresponds an unbounded function generalization of strong continuity and the other of weak continuity conditions.

Assumption 5.4.1 (i) The one stage cost function \(c(x, u) \) is nonnegative and continuous in \(u \) for every \(x \).

(ii) The stochastic kernel \(\mathbb{T}(\cdot|x, u) \) is strongly continuous in \(u \) for every \(x \), i.e., if \(u_k \to u \), then \(\int u(y)\mathbb{T}(dy|x, u_k) \to \int u(y)\mathbb{T}(dy|x, u) \) for every measurable and bounded function \(u \).

(iii) \(\mathbb{U} \) is compact.

(iv) There exist nonnegative real numbers \(M \) and \(\alpha \in [1, \frac{1}{b}] \), and a weight function \(w : \mathcal{X} \to [1, \infty) \) such that for each \(z \in \mathcal{X} \), we have

\[
\sup_{a \in \mathcal{U}} |c(x, u)| \leq M w(x),
\]

\[
\sup_{a \in \mathcal{U}} \int_{\mathcal{X}} w(y)\mathbb{T}(dy|x, u) \leq \alpha w(x),
\]

and \(\int_{\mathcal{X}} w(y)\mathbb{T}(dy|x, u) \) is continuous in \(u \) for every \(x \).

Assumption 5.4.2 (i) The one stage cost function \(c(x, u) \) is nonnegative and continuous in \((x, u) \).

(ii) The stochastic kernel \(\mathbb{T}(\cdot|x, u) \) is weakly continuous in \((x, u) \in \mathcal{X} \times \mathbb{U} \), i.e., if \((x_k, u_k) \to (x, u) \), then \(\mathbb{T}(\cdot|x_k, u_k) \to \mathbb{T}(\cdot|x, u) \) weakly.

(iii) \(\mathbb{U} \) is compact.
(iv) There exist nonnegative real numbers \(M \) and \(\alpha \in [1, \frac{1}{\beta}) \), and a continuous weight function \(w : \mathbb{X} \to [1, \infty) \) such that for each \(z \in \mathbb{X} \), we have
\[
\sup_{a \in U} |c(x, u)| \leq M w(x),
\]
\[
\sup_{a \in U} \int_{\mathbb{X}} w(y) T(dy|x, u) \leq \alpha w(x),
\]
and \(\int_{\mathbb{X}} w(y) T(dy|x, u) \) is continuous in \((x, u)\).

Define the operator \(T \) on the set of real-valued measurable functions on \(\mathbb{X} \) as
\[
T u(z) = \min_{a \in U} \left\{ c(z, a) + \beta \int_{\mathbb{X}} u(y) T(dy|z, a) \right\}.
\]

It can be proved that \(T \) is a contraction operator mapping \(B_w(\mathbb{X}) \) into itself with modulus \(\sigma = \beta \alpha \) (see [97, Lemma 8.5.5]); that is,
\[
\| T u - T v \|_w \leq \beta \| u - v \|_w \text{ for all } u, v \in B_w(\mathbb{X}).
\]

Theorem 5.4.3 [97 Theorem 8.3.6], [97 Lemma 8.5.5]

(i) Suppose Assumption 5.4.1 (or 5.4.2) holds. Then, the value function \(J^* \) is the unique fixed point in \(B_w(\mathbb{X}) \) (or \(B_w(\mathbb{X}) \cap C(\mathbb{X}) \)) of the contraction operator \(T \), i.e.,
\[
J^* = T J^*.
\]

Furthermore, a deterministic stationary policy \(f^* \) is optimal if and only if
\[
J^*(z) = c(z, f^*(z)) + \beta \int_{\mathbb{X}} J^*(y) T(dy|z, f^*(z)).
\]

Finally, there exists a deterministic stationary policy \(f^* \) which is optimal, so it satisfies (5.37).

(ii) If instead of Assumption 5.4.1 Assumption 5.4.2 holds, the value function \(J^* \) will be the unique fixed point in \(B_w(\mathbb{X}) \cap C(\mathbb{X}) \) of the contraction operator \(T \).

The proof of (i) follows from [97] Theorem 8.3.6]. The proof of item (ii) follows from a minor modification of [97] Lemma 8.5.5.

5.5 Concluding Remarks and Notes

We are grateful to Prof. Maxim Raginsky for pointing out the references for Blackwell’s theorem (Theorem 5.1.1).

5.6 Exercises

Exercise 5.6.1 An investor’s wealth dynamics is given by the following:
\[
x_{t+1} = u_t w_t,
\]
where \(\{w_t\} \) is an i.i.d. \(\mathbb{R}_+ \)-valued stochastic process with \(E[\sqrt{w}] = 1 \) and \(u_t \) is the investment of the investor at time \(t \). The investor has access to the past and current wealth information and his previous actions. The goal is to maximize:
The investor’s action set for any given x is: $\mathcal{U}(x) = [0, x]$. His initial wealth is given by x_0.

Formulate the problem as an optimal stochastic control problem by clearly identifying the state space, the control action space, the information available at the controller at any time, the transition kernel and a cost functional mapping the actions and states to \mathbb{R}.

Find an optimal policy.

Hint: For $\alpha \geq 0$, $\sqrt{x - u} + \alpha \sqrt{u}$ is a concave function of u for $0 \leq u \leq x$ and its maximum is computed when the derivative of $\sqrt{x - u} + \alpha \sqrt{u}$ is set to zero.

Exercise 5.6.2 Consider the following linear system:

$$x_{t+1} = Ax_t + Bu_t + w_t,$$

where $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$ and $w \in \mathbb{R}^n$. Suppose $\{w_t\}$ is i.i.d. zero-mean Gaussian with a given covariance matrix $E[w_t w_t^T] = W$ for all $t \geq 0$.

The goal is to obtain

$$\inf_{\gamma} J(x, \gamma),$$

where

$$J(x, \gamma) = E_2^x \left[\sum_{t=0}^{T-1} x_t^T Q x_t + u_t^T R u_t + x_T^T Q_T x_T \right],$$

with $R, Q, Q_T > 0$ (that is, these matrices are positive definite).

a) Show that there exists an optimal policy.

b) Obtain the Dynamic Programming recursion for the optimal control problem. Is the optimal control policy Markov? Is it stationary?

c) For $T \to \infty$, if (A, B) is controllable and with $Q = C^T C$ and (A, C) is observable, prove that the optimal policy is stationary.

Exercise 5.6.3 (Optimality of threshold type policies) Consider an inventory-production system given by

$$x_{t+1} = x_t + u_t - w_t,$$

where x_t is \mathbb{R}-valued, with the one-stage cost

$$c(x_t, u_t, w_t) = bu_t + h \max(0, x_t + u_t - w_t) + p \max(0, w_t - x_t - u_t)$$

Here, b is the unit production cost, h is the unit holding (storage) cost and p is the unit shortage cost; here we take $p > b$. At any given time, the decision maker can take $u_t \in \mathbb{R}_+$. The demand variable $w_t \sim \mu$ is a \mathbb{R}_+-valued i.i.d. process, independent of x_0, with a finite mean where μ is assumed to admit a probability density function. The goal is to minimize

$$J(x, \gamma) = E_2^x \left[\sum_{t=0}^{T-1} c(x_t, u_t, w_t) \right]$$

The controller at time t has access to $I_t = \{x_s, u_s, s \leq t-1\} \cup \{x_t\}$.
Obtain a recursive form for the optimal solution. In particular, show that the solution is of threshold type: There exists a sequence of real-numbers s_t so that the optimal solution is of the form: $u_t = 0 \times 1_{\{x_t \geq s_t\}} + (s_t - x_t) \times 1_{\{x_t < s_t\}}$. See [24] for a detailed analysis of this problem.

Exercise 5.6.4 ([25]) Consider a burglar who is considering retirement. His goal is to maximize his earnings up to time T. At any time, he can either continue his profession to steal an amount of w_t which is an i.i.d. \mathbb{R}_+-valued random process (he adds this amount to his wealth), or retire. However, each time he attempts burglary, there is a chance that he gets caught and he loses all of his savings (and cannot work any further); this happens according to an i.i.d. Bernoulli process so that he gets caught with probability p at each time stage when he is attempting to steal.

Assume that his initial wealth is $x_0 = 0$. His goal is to maximize $E[x_T]$. Find his optimal policy for $0 \leq t \leq T - 1$.

Note: Such problems where a decision maker can quit or stop a process are known as optimal stopping problems.

Exercise 5.6.5 A fishery manager annually has x_t units of fish and sells $u_t x_t$ of these where $u_t \in [0, 1]$. With the remaining ones, the next year’s production is given by the following model:

$$x_{t+1} = w_t x_t (1 - u_t) + v_t,$$

with x_0 is given and $\{w_t, v_t\}$ is a sequence of mutually independent, identically distributed sequence of random variables with $w_t \geq 0, v_t \geq 0$ for all t and therefore $E[w_t] = \bar{w} \geq 0$ and $E[v_t] = \bar{v} > 0$.

At time T, he sells all of the fish. The goal is to maximize the profit over the time horizon $0 \leq t \leq T - 1$.

a) Formulate the problem as an optimal stochastic control problem by clearly identifying the state, the control action, the information available at the controller, the transition kernel, and a cost functional mapping the actions and states to \mathbb{R}.

b) Does there exist an optimal policy? If it does, compute the optimal control policy as a dynamic programming recursion.

Exercise 5.6.6 A common example in mathematical finance applications is the portfolio selection problem where a controller (investor) would like to optimally allocate his wealth between a stochastic stock market and a market with a guaranteed income: Consider a stock with an i.i.d. random return σ_t and a bank account with fixed interest rate $r > 0$. These are modeled by:

$$X_{t+1} = X_t u_t (1 + \sigma_t) + X_t (1 - u_t) (1 + r), \quad X_0 = 1$$

and

$$X_{t+1} = X_t (1 + r + u_t (\sigma_t - r))$$

Here, $u_t \in [0, 1]$ denotes the proportion of the money that the investor invests in the stock market. Suppose that the goal is to maximize $E[\log(X_T)]$. Then, we can write:

$$\log(X_T) = \log \left(\prod_{k=0}^{T-1} \frac{X_{k+1}}{X_k} \right) = \sum_{k=0}^{T-1} \log \left((1 + r + u_t (\sigma_t - r)) \right)$$

Formulate the problem as an optimal stochastic control problem by clearly identifying the state and the control action spaces, the information available at the controller, the transition kernel, and a cost functional mapping the actions and states to \mathbb{R}. Find the optimal policy.

Exercise 5.6.7 We will illustrate dynamic programming by considering a simplified version of a paper by B. Hajek (Optimal Control of Two interacting Service Stations; IEEE Trans. Automatic Control, vol. 29. June 1984).

Consider a two server-station network; where a router routes the incoming traffic, as is depicted in Figure 5.1.
Customers arrive according to a (continuous-time) Poisson process of rate \(\lambda \). The router routes to station 1 with probability \(u \) and second station with probability \(1 - u \). The router has access to the number of customers at both of the queues, while implementing her policy.

Station 1 has a service time distribution which is exponential with rate \(\mu_1 \), and Station 2 with \(\mu_2 = \mu_1 \), as well. After some computation, we find out that the controlled transition kernel is given by the following:

\[
P(q_{t+1}^1 = q_t^1 + 1, q_{t+1}^2 = q_t^2 | q_t^1, q_t^2) = \lambda \frac{u}{\lambda + 2\mu_1}
\]
\[
P(q_{t+1}^1 = q_t^1, q_{t+1}^2 = q_t^2 + 1, q_t^1, q_t^2) = \lambda \frac{(1 - u)}{\lambda + 2\mu_1}
\]
\[
P(q_{t+1}^1 = \max(q_t^1 - 1, 0), q_{t+1}^2 = q_t^2 | q_t^1, q_t^2) = \frac{\mu_1}{\lambda + 2\mu_1}
\]
\[
P(q_{t+1}^1 = q_t^1, q_{t+1}^2 = \max(0, q_t^2 - 1) | q_t^1, q_t^2) = \frac{\mu_1}{\lambda + 2\mu_1}
\]

There is also a holding cost per unit time. The holding cost at Station 1 is \(c_1 > 0 \) and the cost at Station 2 is \(c_2 > 0 \). That is if there are \(q_t^1 \) customers, the cost is \(c_1 q_t^1 \) at Station 1 at time \(t \) and likewise for Station 2.

The goal of the router is to minimize the expected total holding cost from time 0 to some time \(T \in \mathbb{N} \), where the total cost is

\[
\sum_{t=0}^{T} c_1 q_t^1 + c_2 q_t^2.
\]

a) Express the problem as a dynamic programming problem, up until time \(T \). That is; where does the control action live? What is the state space? What is the transition kernel for the controlled Markov Chain?

Write down the dynamic programming recursion, starting from time \(T \) and going backwards.

b) Suppose that \(c_1 = c_2 \). Let \(J_t(q_t^1, q_t^2) \) be the value function at time \(t \) (that is the current cost and the cost to go).

Via dynamic programming, prove the following:

For a given \(t \), if, whenever \(0 \leq q_t^1 \leq q_t^2 \) we have that

\[
J_t(q_t^1, q_t^2) \leq J_t(q_t^1 - 1, q_t^2 + 1),
\]

then the same applies for \(J_{t-1}(\ldots) \), for \(t \geq 1 \). With the above, prove that an optimal control policy is given by:

\[
u_t = 1\{q_t^1 \leq q_t^2\}.
\]

for all \(t \) values.

Exercise 5.6.8 Consider a scalar linear system with the following dynamics:
where \(\{w_t\} \) is i.i.d Gaussian with zero-mean and unit variance. Suppose that the controller has access to \(I_t = \{x_{[0,t]}, u_{[0,t-1]}\} \) at time \(t \). Suppose that the initial state is \(x_0 = x \) for some \(x \in \mathbb{R} \). We wish to find for some \(\beta \in (0,1) \):

\[
\inf_{\gamma} J(x_0, \gamma) = E_x \gamma \left[\sum_{t=0}^{\infty} \beta^t (qx_t^2 + ru_t^2) \right],
\]

for \(q \geq 0 \) and \(r > 0 \).

Compute the optimal control policy and the optimal cost.

Hint: Use Lemma 5.4.3. Start with a finite horizon version, and apply dynamic programming, obtain the solution and take the finite horizon to infinity. This is also equivalent to applying value iteration with \(v_0(x) = 0 \) for all \(x \in \mathbb{R} \). You will see that a recursion with \(v_t(x) = C_t x_t^2 + D_t \) will be obtained and \(C_t \) and \(D_t \) will have limits as \(t \to \infty \), \(C \) and \(D \), respectively. The optimal control will be stationary and deterministic:

\[
u_t = \gamma(x_t) = -(r + \beta Cb^2)^{-1} \beta ab C x_t, \quad t \geq 0.
\]

Thus, you need to find \(C \) and \(D \).

Exercise 5.6.9 Consider a controlled Markov chain with state space \(X = \{0, 1\} \), action space \(U = \{0, 1\} \), and transition kernel for \(t \in \mathbb{Z}_+ \):

\[
P(x_{t+1} = 1|x_t = 0, u_t = 1) = P(x_{t+1} = 1|x_t = 0, u_t = 0) = \alpha
\]

where \(\alpha \in (0,1) \). Furthermore,

\[
P(x_{t+1} = 1|x_t = 1, u_t = 0) = P(x_{t+1} = 1|x_t = 1, u_t = 1) = \frac{1}{2}.
\]

Let a cost function \(c : X \times U \to \mathbb{R}_+ \) be given by

\[
c(0,1) = \kappa \in \mathbb{R}_+, \quad c(0,0) = 1
\]

\[
c(1,0) = \frac{1}{2}, \quad c(1,1) = 1.
\]

Suppose that the goal is to minimize the quantity

\[
E_0^H \sum_{t=0}^{\infty} \beta^t c(x_t, u_t)),
\]

for a fixed \(\beta \in (0,1) \), over all admissible policies \(\Pi \in \Pi_A \).

Find an optimal policy and the optimal expected cost explicitly, as a function of \(\alpha, \beta, \kappa \) (note that the initial condition is \(x_0 = 0 \)).
As discussed earlier in Chapter 2, we consider a system of the form:
\[x_{t+1} = f(x_t, u_t, w_t), \quad y_t = g(x_t, v_t). \]
Here, \(x_t \) is the state, \(u_t \in \mathbb{U} \) is the control, \((w_t, v_t) \) are \((\mathbb{W} \times \mathbb{V})\)-valued i.i.d noise processes where \(w_t \) is independent of \(v_t \). The controller only has causal access to the second component \(\{y_t\} \) of the process, together with the past applied control actions. An admissible policy \(\gamma = \{\gamma_t, t \in \mathbb{Z}_+\} \) is a collection of measurable functions so that \(\gamma_t \) is measurable with respect to \(\sigma(I_t) \) with \(I_t = \{y_{[0,t]}, u_{[0,t-1]}\} \) at time \(t \). We denote the observed history space as: \(H_0 := \mathbb{Y}, \quad H_t = H_{t-1} \times \mathbb{Y} \times \mathbb{U} \).

In the following \(\mathcal{P}(\mathbb{X}) \) denotes the space of probability measures on \(\mathbb{X} \), which we assume to be a Polish space. Under the topology of weak convergence, \(\mathcal{P}(\mathbb{X}) \) is also a Polish space (see Appendix D).

6.1 Enlargement of the State-Space and the Construction of a Controlled Markov Chain

One could transform a partially observable Markov Decision Problem to a Fully Observed Markov Decision Problem via an enlargement of the state space. In particular, when \(\mathbb{X} \) is countable, we obtain via the properties of total probability the following recursion
\[
\pi_t(x) := P(x_t = x | y_{[0,t]}, u_{[0,t-1]}) = \frac{P(x_t = x, y_t, u_{t-1} | y_{[0,t-1]}, u_{[0,t-2]})}{\sum_{x \in \mathbb{X}} P(x_t = x, y_t, u_{t-1} | y_{[0,t-1]}, u_{[0,t-2]})} = \frac{\sum_{x_{t-1} \in \mathbb{X}} P(y_t | x_{t-1}) P(x_t | x_{t-1}, u_{t-1}) P(u_{t-1} | y_{[0,t-1]}, u_{[0,t-2]}) \pi_{t-1}(x_{t-1})}{\sum_{x_{t-1} \in \mathbb{X}} \sum_{x \in \mathbb{X}} P(y_t | x_{t-1}) P(x_t | x_{t-1}, u_{t-1}) \pi_{t-1}(x_{t-1})} = F(\pi_{t-1}, y_t, u_{t-1})(x) \tag{6.1}
\]

We will see shortly that the conditional measure process forms a controlled Markov chain in \(\mathcal{P}(\mathbb{X}) \). Note that in the above analysis \(P(u_{t-1} | y_{[0,t-1]}, u_{[0,t-2]}) \) is determined by the control policy, and \(P(x_t | x_{t-1}, u_{t-1}) \) is determined by the transition kernel \(\mathcal{T} \) of the controlled Markov chain.

The result above leads to the following.

Theorem 6.1.1 The process \(\{\pi_t, u_t\} \) is a controlled Markov chain. That is, under any admissible control policy, given the action at time \(t \geq 0 \) and \(\pi_t \), \(\pi_{t+1} \) is conditionally independent from \(\{\pi_s, u_s, s \leq t-1\} \).

We will prove the result for the case where \(\mathbb{X} \) is countable. For the more general case, see Section [6.3](#).
Proof. Let $D \in B(\mathcal{P}(X))$. From (6.1)

\[
P(\pi_{t+1} \in D|\pi_s, u_s, s \leq t) = P(F(\pi_t, y_{t+1}, u_t) \in D|\pi_s, u_s, s \leq t)
\]
\[
= \sum_{y \in Y} P(F(\pi_t, y_{t+1}, u_t) \in D, y_{t+1} = y|\pi_s, u_s, s \leq t)
\]
\[
= \sum_{y \in Y} P(F(\pi_t, y_{t+1}, u_t) \in D|y_{t+1} = y, \pi_s, u_s, s \leq t)P(y_{t+1} = y|\pi_s, u_s, s \leq t)
\]
\[
= \sum_{y \in Y} \left\{F(\pi_t, y, u_t) \in D\right\} P(y_{t+1} = y|\pi_t, u_t)
\]
\[
= \sum_{y \in Y} \left\{F(\pi_t, y, u_t) \in D\right\} \left(\sum_{x \in X} P(y_{t+1} = y|x_{t+1})P(x_{t+1}|x_t, u_t)\pi_t(x_t)\right)
\]
\[
= P(\pi_{t+1} \in D|\pi_t, u_t)
\]

(6.2)

We need to show that the expression $P(d\pi_{t+1} \in D|\pi_t, u_t)$ is a regular conditional probability measure; that is, for every fixed D, this is a measurable function on $\mathcal{P}(X) \times \mathcal{U}$ and for every π_t, u_t, it is a conditional probability measure on $\mathcal{P}(X)$. The rest of the proof follows in Section 6.3.

Let the cost function to be minimized be

\[
E_{x_0}^\gamma \left[\sum_{t=0}^{T-1} c(x_t, u_t)\right],
\]

where $E_{x_0}^\gamma[\cdot]$ denotes the expectation over all sample paths with initial state given by x_0 under policy $\gamma = \{\gamma_0, \gamma_1, \ldots\}$.

We can transform the system into a fully observed Markov model as follows. Using the law of the iterated expectation, write the total cost as

\[
E_{x_0}^\gamma \left[\sum_{t=0}^{T-1} c(x_t, u_t)\right] = E_{x_0}^\gamma \left[\sum_{t=0}^{T-1} E_\gamma^\gamma \left[c(x_t, u_t)|I_t\right]\right].
\]

Given a policy γ with $u_t = \gamma_t(I_t)$, we have that

\[
E_{x_0}^\gamma \left[\sum_{t=0}^{T-1} c(x_t, u_t)\right] = E_{x_0}^\gamma \left[\sum_{t=0}^{T-1} E_\gamma^\gamma \left[c(x_t, \gamma_t(I_t))|I_t\right]\right] = E_{x_0}^\gamma \left[\sum_{t=0}^{T-1} \left(\sum_{x \in X} P_\gamma^\gamma(x_t = x|I_t)c(x, \gamma_t(I_t))\right)\right]
\]

(6.3)

At this point, we should pause and reflect on Theorem 6.1.1 and (Blackwell’s) Theorem 5.1.1 to conclude that without any loss a policy, for finite horizons, could use π_t and t: define a stage-wise cost function $\tilde{c}: \mathcal{P}(X) \times \mathcal{U} \to \mathbb{R}_+$ as

\[
\tilde{c}(\pi, u) = \sum_{x} c(x, u)\pi(x), \quad \pi \in \mathcal{P}(X),
\]

(6.4)

Observe that an admissible control policy will select u_t as a function of I_t. However, we know that for a finite horizon problem, by Blackwell’s theorem Theorem 5.1.1 any admissible policy can be replaced with one which only uses π_t without any loss (since π_t, u_t forms a controlled Markov chain), and therefore without any loss, we can restrict our search space to policies which are Markov (that is which only use π_t and t).

In view of the preceding discussion, it follows then that an optimal solution to the following minimization for the problem

\[
E_{\mu_0}^\gamma \left[\sum_{t=0}^{T-1} \tilde{c}(\pi_t, u_t)\right],
\]
is also optimal for (6.3), where the initial state distribution \(\mu_0 \) for the belief-MDP is the probability measure on \(\pi_0(\cdot) = P(x_0 \in \cdot | y_0) \) induced by the initial probability measure on \(x_0 \) and the measurement variable \(y_0 \).

Let \(K \) be the transition kernel defined with (6.2). It follows then that \((P, U, K, \bar{c}) \) defines a completely observable controlled Markov process.

Thus, one can obtain the optimal solution by using the filtering equation as a sufficient statistic in a centralized setting, as Markov policies (policies that use the Markov state as their sufficient statistics) are optimal for control of Markov chains, under well-studied sufficiency conditions for the existence of optimal selectors.

We call the control policies which use \(\pi \) as their information to generate control as separated control policies.

We note here that some of the first separation results for partially observed Markov Decision Processes were reported in [218], [177], and [155], among others.

Separation will be particularly consequential in the context of linear Gaussian systems: A Gaussian probability measure can be uniquely identified by knowing the mean and the covariance of the Gaussian random variable. This makes the analysis for estimating a Gaussian random variable particularly simple to perform, since the conditional estimate of a partially observed (through an additive Gaussian noise) Gaussian random variable is a linear function of the observed variable and the non-linear filtering equation (6.1) becomes significantly simpler. Recall that a Gaussian measure with mean \(\mu \) and covariance matrix \(K_{XX} \) has the following density:

\[
p(x) = \frac{1}{(2\pi)^{d/2}|K_{XX}|^{1/2}} e^{-1/2(x-\mu)^T K_{XX}^{-1}(x-\mu)},
\]

and thus it suffices to compute the mean and the covariance matrix to define the Gaussian probability measure.

6.2 The Linear Quadratic Gaussian (LQG) Problem and Kalman Filtering

6.2.1 A supporting result on estimation

Lemma 6.2.1 Let \(X \) be a random variable (defined on a probability space \((\Omega, F, P) \)) with a finite second moment and \(R > 0 \) (that is, a positive definite matrix). The following holds

\[
\inf_{g \in \mathbb{M}(Y)} E[(X - g(Y))^T R(X - g(Y))] = E[(X - G(Y))^T R(X - G(Y))],
\]

where \(\mathbb{M}(Y) \) denotes the set of measurable functions from \(Y \) to \(\mathbb{R} \) and where \(G(y) = E[X | Y = y] \) almost surely.

Before we state the proof, it is useful to emphasize that there are setups where the measurability assumption is not superfluous. See Exercise 4.5.17

Proof. Let \(G(y) = E[X | Y = y] + h(y) \), for some measurable \(h \); we then have the following through the law of the iterated expectations:

\[
E[(X - E[X|Y] - h(Y))^T R(X - E[X|Y] - h(Y))] \\
= E[E[(X - E[X|Y] - h(Y))^T R(X - E[X|Y] - h(Y)) | Y]] \\
= E[E[(X - E[X|Y])^T R(X - E[X|Y]) | Y] + E[h^T(Y) Rh(Y) | Y] + 2E[(X - E[X|Y])^T Rh(Y) | Y]] \\
= E[(X - E[X|Y])^T R(X - E[X|Y]) | Y] + E[h^T(Y) Rh(Y) | Y] + 2E\left[E[(X - E[X|Y])^T | Y] Rh(Y) \right] \\
= E[(X - E[X|Y])^T R(X - E[X|Y]) | Y] + E[h^T(Y) Rh(Y) | Y] \\
\geq E[(X - E[X|Y])^T R(X - E[X|Y]) | Y] \\
\geq E[(X - E[X|Y])^T R(X - E[X|Y]),
\]

by the law of iterated expectations.
where in (6.5) we use Theorem 4.1.3 and in (6.6) we use Theorem 4.1.4.

Remark 6.1. We note that the above admits a Hilbert space interpretation or formulation: Let H denote the space random variables (defined on a probability space) on which an inner product $\langle X, Z \rangle = E[X^T R Z]$ is defined; this defines a Hilbert space. Let M_H be a subspace of H, the closed subspace of random variables that are measurable on $\sigma(Y)$ (which have finite second moments). Then, the projection theorem [127] leads to the observation that an optimal estimate $g(Y)$ minimizing $\|X - g(Y)\|_2^2$, denoted here by $G(Y)$, is one which satisfies:

$$\langle X - G(Y), h(Y) \rangle = E[(X - G(Y))^T R h(Y)] = 0, \forall h \in M_H$$

The conditional expectation satisfies this since:

$$E[(X - E[X|Y])^T R h(Y)] = E[E[(X - E[X|Y])^T R h(Y)|Y]] = E[E[(X - E[X|Y])^T |Y] R h(Y)] = 0,$$

since P a.s., $E[(X - E[X|Y])^T |Y] = 0$.

6.2.2 The Linear Quadratic Gaussian Problem

Consider the following linear system:

$$x_{t+1} = Ax_t + Bu_t + w_t,$$

$$y_t = Cx_t + v_t,$$

(6.7)

where $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, and $w \in \mathbb{R}^p$, $y \in \mathbb{R}^r$, $v \in \mathbb{R}^q$. Suppose $\{w_t, v_t\}$ are zero-mean i.i.d. random Gaussian vectors with given covariance matrices $E[w_tw_t^T] = W$ and $E[v_tv_t^T] = V$ for all $t \geq 0$.

The goal is to obtain

$$\inf_\gamma J(\gamma, \mu_0),$$

where

$$J(\mu_0, \gamma) = E_{\mu_0}^\gamma \left[\sum_{t=0}^{T-1} x_t^T Q x_t + u_t^T R u_t + x_t^T Q_T x_T \right],$$

(6.8)

with $R > 0$ and $Q, Q_T \geq 0$ (that is, these matrices are positive definite and positive semi-definite) and μ_0 is an initial prior probability measure (on x_0) assumed to be zero-mean Gaussian.

Building on Lemma 6.2.1 we will show in the following that the optimal control is linear in its expectation and has the form

$$u_t = -(B^T K_{t+1} B + R)^{-1} B^T K_{t+1} A E[x_t|I_t]$$

where K_t solves the Discrete-Time Riccati Equation:

$$K_t = Q + A^T K_{t+1} A - A^T K_{t+1} B (B^T K_{t+1} B + R)^{-1} B^T K_{t+1} A,$$

with final condition $K_T = Q_T$.

6.2.3 Estimation and Kalman Filtering

In this section, we discuss the control-free setup and derive the celebrated Kalman Filter. In the following to make certain computations more explicit and easier to follow, we will use capital letters to denote the random variables and small letters for the realizations of these variables.

For a linear Gaussian system, the state process has a Gaussian probability measure. A Gaussian probability measure can be uniquely identified by knowing the mean and the covariance of the Gaussian random variable. This makes the
In particular, since the processes admit densities:

$$p(x) = \frac{1}{(2\pi)^{n/2} |\Sigma_{XX}|^{1/2}} e^{-1/2((x-\mu)^T \Sigma_{XX}^{-1} (x-\mu))}$$

Lemma 6.2.2 Let X, Y be zero-mean Gaussian vectors. Then $E[X|Y = y]$ is linear in y: With $\Sigma_{XY} = E[XY^T]$ and $\Sigma_{YY} = E[YY^T]$, $E[X|Y = y] = \Sigma_{XY} \Sigma_{YY}^{-1} y$.

In particular,$$E[(X - E[X|Y])(X - E[X|Y])^T] = \Sigma_{XX} - \Sigma_{XY} \Sigma_{YY}^{-1} \Sigma_{XY}^T =: D.$$does not depend on the realization y of Y and is equal to D.

Recall that a Gaussian measure with mean μ and covariance matrix Σ_{XX} has the following density:

$$p(x) = \frac{1}{(2\pi)^{n/2} |\Sigma_{XX}|^{1/2}} e^{-1/2((x-\mu)^T \Sigma_{XX}^{-1} (x-\mu))}$$

We note that if the random variables are not-zero mean, one needs to add a constant correction term making the estimate y does not depend on the realization y of Y. By Bayes’ rule and the facts that the processes admit densities:

$$p(x) = \frac{1}{(2\pi)^{n/2} |\Sigma_{XX}|^{1/2}} e^{-1/2((x-\mu)^T \Sigma_{XX}^{-1} (x-\mu))}$$

and:

$$E[(X - E[X|Y])(X - E[X|Y])^T] = \Sigma_{XX} - \Sigma_{XY} \Sigma_{YY}^{-1} \Sigma_{XY}^T =: D.$$ does not depend on the realization y of Y and is equal to D.

Proof. By Bayes’ rule and the fact that the processes admit densities: $p(x|y) = \frac{p(x,y)}{p(y)}$. With $K_{XY} := E[XY^T]$, we have that

$$K_{XY} = \begin{bmatrix} \Sigma_{XX} & \Sigma_{XY} \\ \Sigma_{XY}^T & \Sigma_{YY} \end{bmatrix}$$

It follows that K_{XY}^{-1} is also symmetric (since the eigenvectors are the same and the eigenvalues are inverted) and given by:

$$K_{XY}^{-1} = \begin{bmatrix} \Psi_{XX} & \Psi_{XY} \\ \Psi_{XY}^T & \Psi_{YY} \end{bmatrix}$$

Thus, for some normalization constant C,

$$\frac{p(x,y)}{p(y)} = C e^{-1/2(x^T \Psi_{XX} x + 2x^T \Psi_{XY} y + y^T \Psi_{YY} y - y^T K_{YY}^{-1} y)} e^{-1/2(y^T K_{YY}^{-1} y)}$$

By the completion of the squares method for the expression in the exponent, for some matrix D we obtain

$$(x^T \Psi_{XX} x + 2x^T \Psi_{XY} y + y^T \Psi_{YY} y - y^T K_{YY}^{-1} y) = (x - Hy)^T D^{-1} (x - Hy) + Q(y),$$

it follows that $H = -\Psi_{XX}^{-1} \Psi_{XY}$ and $D = \Psi_{YY}^{-1}$. Since $K_{XY}^{-1} K_{XY} = I$ (and thus $\Psi_{XX} \Sigma_{XY} + \Psi_{XY} \Sigma_{YY} = 0$), H is also equal to $\Sigma_{XX} \Sigma_{YY}^{-1}$. Here $Q(y)$ is a quadratic expression in y (where we also embed the normalization constant C in $Q(y)$). As a result, one obtains

$$p(x|y) = e^{Q(y)} e^{-1/2(x-Hy)^T D^{-1} (x-Hy)},$$

Since $\int p(x|y) dx = 1$ (as it is a conditional probability density function), it follows that $e^{Q(y)} = \frac{1}{(2\pi)^{n/2} |D|^{1/2}}$ and is in fact independent of y. Note also that

$$E[(X - E[X|Y])(X - E[X|Y])^T] = E[XX^T] - E[(E[X|Y])(E[X|Y])^T] = \Sigma_{XX} - \Sigma_{XY} \Sigma_{YY}^{-1} \Sigma_{XY}^T \quad (6.9)$$

⋄
Remark 6.2. The fact that $Q(y)$ above does not depend on y reveals an interesting result that the conditional covariance of $X - E[X|Y]$ viewed as a Gaussian random variable is equal for all y values. This is a crucial fact that will be utilized in the derivation of the Kalman Filter.

Remark 6.3. Even if the random variables X, Y are not Gaussian (but zero-mean), through another Hilbert space formulation and an application of the Projection Theorem, it can be shown that the expression $\Sigma_{XY} \Sigma_{YY}^{-1} y$ is the best linear estimate, that is the solution to $\inf_{K} E[(X - KY)^T (X - KY)]$. One can naturally generalize this for random variables with non-zero mean.

We will derive the Kalman filter in the following. The following two lemma are instrumental.

Lemma 6.2.3 If $E[X] = 0$ and Z_1, Z_2 are orthogonal zero-mean Gaussian processes (with $E[Z_1^T Z_2] = 0$), then $E[X|Z_1 = z_1, Z_2 = z_2] = E[X|Z = z_1] + E[X|Z_2 = z_2]$.

Proof. The proof follows by writing $z = [z_1, z_2]^T$, noting that Σ_{ZZ} is diagonal and $E[X|z] = \Sigma_{XZ} \Sigma_{ZZ}^{-1} z$. ♦

Lemma 6.2.4 $E[(X - E[X|Y])(X - E[X|Y])^T]$ is given by $D = \Sigma_{XX} - \Sigma_{XY} \Sigma_{YY}^{-1} \Sigma_{XY}^T$ above.

Proof. Proof follows from direct computation (as in (6.9)). Note that

$$E[X(E[X|Y])^T] = E[(X - E[X|Y]) (E[X|Y])^T] = E[X|Y](E[X|Y])^T$$

since $X - E[X|Y]$ is orthogonal to $E[X|Y]$. As a result,

$$E[(X - E[X|Y])(X - E[X|Y])^T] = EE[X]X^T - 2E[X(E[X|Y])^T] = E[X|Y](E[X|Y])^T,$$

and the result follows from Lemma 6.2.2. ♦

Now, we can move on to the derivation of the Kalman Filter.

Consider

$$x_{t+1} = Ax_t + w_t, \quad y_t = Cx_t + v_t,$$

with $E[w_t w_t^T] = W$ and $E[v_t v_t^T] = V$ where $\{w_t\}$ and $\{v_t\}$ are mutually independent i.i.d. zero-mean Gaussian processes.

Define

$$m_t = E[x_t|y_{0:t-1}]$$

$$\Sigma_{t|t-1} = E[(x_t - E[x_t|y_{0:t-1}])(x_t - E[x_t|y_{0:t-1}])^T|y_{0:t-1}]$$

and note that since the estimation error covariance does not depend on the realization $y_{0:t-1}$ (see Remark 6.2), we write also

$$\Sigma_{t+1|t} = E[(x_{t+1} - E[x_{t+1}|y_{0:t-1}])(x_{t+1} - E[x_{t+1}|y_{0:t-1}])^T]$$

Theorem 6.2.1 The following holds:

$$m_{t+1} = Am_t + A \Sigma_{t|t-1} C^T (C \Sigma_{t|t-1} C^T + V)^{-1} (y_t - C m_t)$$ \hspace{1cm} (6.10)

$$\Sigma_{t+1|t} = A \Sigma_{t|t-1} A^T + W - (A \Sigma_{t|t-1} C^T (C \Sigma_{t|t-1} C^T + V)^{-1} (C \Sigma_{t|t-1} A^T))$$ \hspace{1cm} (6.11)

with

$$m_0 = E[x_0]$$

and

$$\Sigma_{0|t-1} = E[x_0 x_0^T]$$
Proof. With \(x_{t+1} = Ax_t + w_t \), the following hold:

\[
m_{t+1} = E[Ax_t + w_t | y[0,t]] = E[Ax_t | y[0,t]] = E[A x_t + A(x_t - m_t) | y[0,t]]
\]

\[
= Am_t + E[A(x_t - m_t) | y[0,t-1], y_t - E[y_t | y[0,t-1]]]
\]

\[
= Am_t + E[A(x_t - m_t) | y[0,t-1]] + E[A(x_t - m_t) | y_t - E[y_t | y[0,t-1]]]
\]

\[
= Am_t + E[A(x_t - m_t) | y_t - E[y_t | y[0,t-1]]]
\]

\[
= Am_t + E[A(x_t - m_t) | Cx_t + v_t - E[Cx_t + v_t | y[0,t-1]]]
\]

\[
= Am_t + E[A(x_t - m_t) | C(x_t - m_t) + v_t]
\]

(6.12)

In the above, (6.12) follows from Lemma 6.2.3. In the above, we also use the fact that \(w_t \) is orthogonal to \(y[0,t] \).

Let \(X = A(x_t - m_t) \) and \(Y = y_t - E[y_t | y[0,t-1]] = y_t - Cm_t = C(x_t - m_t) + v_t \). Then, by Lemma 6.2.2, \(E[X|Y] = \Sigma_X \Sigma_Y^{-1} Y \) and thus,

\[
m_{t+1} = Am_t + A \Sigma_{t|t-1} C^T (C \Sigma_{t|t-1} C^T + V)^{-1} (y_t - Cm_t)
\]

Likewise,

\[
x_{t+1} - m_{t+1} = A(x_t - m_t) + w_t - A \Sigma_{t|t-1} C^T (C \Sigma_{t|t-1} C^T + V)^{-1} (y_t - Cm_t),
\]

leads to, after a few lines of calculations:

\[
\Sigma_{t+1|t} = A \Sigma_{t|t-1} A^T + W - (A \Sigma_{t|t-1} C^T) (C \Sigma_{t|t-1} C^T + V)^{-1} (C \Sigma_{t|t-1} A^T)
\]

\(\diamond \)

The above is the celebrated Kalman filter.

Define now

\[
\tilde{m}_t := E[x_t | y[0,t]] = m_t + E[x_t - m_t | y[0,t]]
\]

Following the analysis above, we obtain

\[
\tilde{m}_t = m_t + E[x_t - m_t | y[0,t-1]] + E[x_t - m_t | y_t - E[y_t | y[0,t-1]]].
\]

Note that we also have \(m_t = A \tilde{m}_{t-1} \). It follows then that

\[
\tilde{m}_t = A \tilde{m}_{t-1} + \Sigma_{t|t-1} C^T (C \Sigma_{t|t-1} C^T + V)^{-1} (y_t - C A \tilde{m}_{t-1})
\]

We observe that the zero-mean variable \(x_t - \tilde{m}_t \) is orthogonal to \(y[0,t] \), in the sense that the error is independent of the information available at the controller, and since the information available is Gaussian, independence and orthogonality are equivalent.

We observe that the recursion (6.11) in Theorem 6.2.1 is essentially identical to the recursions in Theorem 5.2.2 with writing \(A = A^T, W = Q, V = R, C^T = B \). This leads to the following result.

Theorem 6.2.2 Suppose \((A^T, C^T) \) is controllable (this is equivalent to saying that \((A, C) \) is observable) and \(V > 0 \). Then, the recursions for the covariance matrices \(\Sigma_t \) in Theorem 6.2.7 admit a fixed point. If, in addition, with \(W = BB^T \) and that \((A^T, B^T) \) is observable (that is \((A, B) \) is controllable), the fixed point solution is unique, and is positive definite. As noted earlier, these can be relaxed to stabilizability and detectability.

Remark 6.4. The above suggest that if the observations are sufficiently informative, then the Kalman filter converges to a solution, even in the absence of an irreducibility condition (i.e., the controllability condition for \((A, B) \) above) on the original state process \(x_t \); under irreducibility, the solution is unique. This intuition has been shown to find a precise generalization in the non-linear filtering context [54, 131, 187].
6.2.4 Optimal Control of Partially Observed LQG Systems

Let us revisit (6.8). With the analysis of optimal linear estimation above, we will now reformulate the quadratic optimization problem (6.8) in terms of \(\tilde{m}_t, u_t \) and \(x_t - \tilde{m}_t \) as follows. First, let us note the following:

Theorem 6.2.3 Consider the controlled linear system (6.7). Then, with

\[
 m_t = E[x_t|y_{[0,t-1]}, u_{[0,t-1]}]
\]

and

\[
 \Sigma_t[t-1] = E[(x_t - E[x_t|y_{[0,t-1]}, u_{[0,t-1]}])(x_t - E[x_t|y_{[0,t-1]}, u_{[0,t-1]}])^T],
\]

the following hold:

\[
 m_{t+1} = Am_t + Bu_t + A\Sigma_{t[t-1]}C^T(C\Sigma_{t[t-1]}C^T + V)^{-1}(y_t - Cm_t)
\]

\[
 \Sigma_{t+1}[t] = A\Sigma_{t[t-1]}A^T + W - (A\Sigma_{t[t-1]}C^T)(C\Sigma_{t[t-1]}C^T + V)^{-1}(C\Sigma_{t[t-1]}A^T)
\]

with

\[
 m_0 = E[x_0]
\]

and

\[
 \Sigma_{0-1} = E[x_0x_0^T]
\]

The proof follows that of Theorem 6.2.1, the only difference is the presence of control. Observe that, the estimation can be viewed to be that of estimating:

\[
x_n = \left(A^n x_0 + \sum_{k=0}^{n-1} A^{n-k-1} u_k\right) + \sum_{k=0}^{n-1} A^{n-k-1} B u_k =: \tilde{x}_n + \sum_{k=0}^{n-1} A^{n-k-1} B u_k
\]

where

\[
 \tilde{x}_{n+1} = A\tilde{x}_n + u_n
\]

is the control-free system. But since \(\sum_{k=0}^{n-1} A^{n-k-1} B u_k \) is known at time \(n \) (by the controller), the estimation problem is essentially that of estimating the control-free system \(\tilde{x}_n \). Furthermore, the control adds no additional information with regard to estimating \(\tilde{x}_n \), that is, the information generated by

\[
 \tilde{y}_n = C\tilde{x}_n + v_n
\]

up to time \(n \) contain the same information with regard to \(\tilde{x}_n \) as that contained by \(\{y_k, u_k\} \) up to time \(n \), because (i) \(\tilde{x}_n \) is not affected by the control, and (ii) the information control actions contain are already available in the information content of the current and past \(\tilde{y}_n \) variables under any policy (to see this, note that \(u_0 \) is a function of \(\tilde{y}_0 \), and \(u_1 \) is a function of \(u_0 \) and \(\tilde{y}_{[0,1]} \), and thus really only that of \(\tilde{y}_{[0,1]} \), and so on). That is, under any policy \(\gamma \), for any Borel \(B \) and any \(t \):

\[
P^\gamma(\tilde{x}_n \in B|\tilde{y}_{[0,n]}) = P^\gamma(\tilde{x}_n \in B|\tilde{y}_{[0,n]}, u_{[0,n-1]})
\]

What the above implies is that, under any policy \(\gamma \)

\[
 E^\gamma[x_n|y_{[0,n]}, u_{[0,n-1]}] = \sum_{k=0}^{n-1} A^{n-k-1} B u_k + E[\tilde{x}_n|\tilde{y}_{[0,n]}].
\]

Furthermore, \(x_n - E[x_n|y_{[0,n-1]}, u_{[0,n-1]}] \) is sample path equivalent to \(\tilde{x}_n - E[\tilde{x}_n|\tilde{y}_{[0,n-1]}] \), and these are determined solely by \(x_0, w_{[0,n-1]}, v_{[0,n-1]} \).

Now, for the controlled case, let us define
and observe that the Kalman filtering recursions apply almost verbatim with the control actions added in an additive fashion:

\[
\hat{m}_t = A\hat{m}_{t-1} + Bu_{t-1} + \Sigma_{\ell|t-1}\Sigma^{T}(C\Sigma_{\ell|t-1}\Sigma^{T} + V)^{-1}(y_t - C(A\hat{m}_{t-1} + Bu_{t-1}))
\]

Let \(I_t = \{y_{[0,t]}, u_{[0,t-1]}\} \). Observe now that

\[
E[x_t^T Q x_t] = E[(x_t - \hat{m}_t + \hat{m}_t)^T Q(x_t - \hat{m}_t + \hat{m}_t)]
\]

\[
= E[(x_t - \hat{m}_t)^T Q(x_t - \hat{m}_t)] + E[\hat{m}_t^T Q\hat{m}_t] + 2E[(x_t - \hat{m}_t)^T Q\hat{m}_t]
\]

\[
= E[(x_t - \hat{m}_t)^T Q(x_t - \hat{m}_t)] + E[\hat{m}_t^T Q\hat{m}_t] + 2E[E[(x_t - \hat{m}_t)^T Q\hat{m}_t|I_t]]
\]

\[
= E[(x_t - \hat{m}_t)^T Q(x_t - \hat{m}_t)] + E[\hat{m}_t^T Q\hat{m}_t]
\]

since \(E[(x_t - \hat{m}_t)^T Q\hat{m}_t|I_t] = 0 \) by the orthogonality property of the conditional estimation error (recall that \(\hat{m}_t \) is a function of \(I_t \)). In particular, the cost:

\[
J(\gamma, \mu_0) = E_{\mu_0}^\gamma \sum_{t=0}^{N-1} x_t^T Q x_t + u_t^T R u_t + x_N^T Q_N x_N,
\]

writes as:

\[
E_{\mu_0}^\gamma \sum_{t=0}^{N-1} \hat{m}_t^T Q \hat{m}_t + u_t^T R u_t + \hat{m}_N^T Q_N \hat{m}_N + E_{\mu_0}^\gamma \sum_{t=0}^{N-1} (x_t - \hat{m}_t)^T Q(x_t - \hat{m}_t)
\]

\[
+ E_{\mu_0}^\gamma [(x_N - \hat{m}_N)^T Q_N(x_N - \hat{m}_N)]
\]

for the fully observed system:

\[
\hat{m}_t = A\hat{m}_{t-1} + Bu_{t-1} + \hat{w}_{t-1},
\]

with

\[
\hat{w}_{t-1} = \Sigma_{\ell|t-1}\Sigma^{T}(C\Sigma_{\ell|t-1}\Sigma^{T} + V)^{-1}(y_t - C(A\hat{m}_{t-1} + Bu_{t-1}))
\]

Furthermore, the estimation errors in (6.15) (the second and the third terms) do not depend on the control policy \(\gamma \) so that the expected cost writes as

\[
E_{\mu_0}^\gamma \sum_{t=0}^{N-1} \hat{m}_t^T Q \hat{m}_t + u_t^T R u_t + \hat{m}_N^T Q_N \hat{m}_N + E_{\mu_0}^\gamma \sum_{t=0}^{N-1} (x_t - \hat{m}_t)^T Q(x_t - \hat{m}_t)
\]

\[
+ E_{\mu_0}^\gamma [(x_N - \hat{m}_N)^T Q_N(x_N - \hat{m}_N)]
\]

Thus, the optimal control problem is equivalent to the control of the fully observed state \(\hat{m}_t \), with additive time-varying independent Gaussian noise process \(\{\hat{w}_t\} \).

Here, that the error term \((x_t - \hat{m}_t) \) does not depend on the control policy is a consequence of what is known as the lack of dual effect of control: the control actions up to any time \(t \) do not affect the state estimation error process for the future time stages. Using our earlier analysis, it follows then that the optimal control has the following form for all time stages:

\[
u_t = -(B^T P_{t+1} B + R)^{-1} B^T P_{t+1} A y_t I_t,
\]

with \(P_t \) generated as in Theorem 5.2.1 and \(P_N = Q_N \).

Here we observe that the optimal control policy is the same as that in the fully observed setup in Theorem 5.2.1 except that the state is replaced with its estimate. The sufficiency of conditional expectation in optimal control is generally known as the separation of estimation and control [81] [117] [205] [126]—that is, the separation principle is said to hold when an optimal control exists in a subset of admissible policies where the control depends on the information only through the conditional expectation of the state given the information available—, and for this particular case, a more
special version of it, known as the certainty equivalence principle, applies: As expressed in [19, eqs. (2.20)–(2.22)], a control problem possesses the certainty equivalence (CE) property if the closed-loop optimal control policy has the same form as the deterministic optimal control policy under perfect state observation and in the absence of process noise. More precisely, if in the absence of noise the optimal control policy for the deterministic system is

\[u_k = \phi_k(x_k), \]

(6.17)

and CE holds, then the optimal closed-loop control policy for the noisy and not necessarily fully observed system is

\[u^\text{CE}_k = \phi_k(E[x_k|y_{[0,k]}, u_{[0,k-1]}]), \forall k. \]

(6.18)

As observed above, the absence of dual effect plays a key part in this analysis leading the separation of estimation and control principle, in taking \(E[(x_t - \tilde{m}_t)^T Q(x_t - \tilde{m}_t)] \) out of the optimization over control policies, since it does not depend on the policy.

Remark 6.5. In [20], dual effect is introduced as the property that the moments of \((x_t - \tilde{m}_t)\) does not depend on the past applied control actions. A more general statement would be that \((x_t - \tilde{m}_t)\) does not depend on the past control policies in that the control policies do not alter the realization of the random variable \((x_t - \tilde{m}_t)\), or the applied actions do not affect the realizations of \((x_t - \tilde{m}_t)\). This distinction can be important in certain applications in networked control systems [citation to be included]. We also note that separation also applies in this setup when the noise processes are not Gaussian, though of course the estimations will no longer be linear [24, Lemma 5.2.1]. For results involving non-linear measurement models and for a detailed literature review, the reader is referred to [citation to be included].

Thus, the optimal cost will be

\[
E[\tilde{m}_0^TP_0\tilde{m}_0] + E[\sum_{k=0}^{N-1} \tilde{w}_k^TP_{k+1}\tilde{w}_k + E(x_k - \tilde{m}_k)^T Q(x_k - \tilde{m}_k)] + E[(x_N - \tilde{m}_N)^T Q_N(x_N - \tilde{m}_N)]
\]

In the above problem, we observed that the optimal control has a separation structure: The controller first estimates the state, and then applies its control action, by regarding the estimate as the state itself. Typically, when the dual effect is absent, separation principle observed above applies. In many problems, however, the dual effect of the control is present. That is, depending on the control policy, the estimation quality at the controller regarding future states will be affected. As an example, consider a linear system controlled over an erasure channel, where the controller applies a control, but does not know if the packet reaches the destination or not. In this case, the control signal which was intended to be sent, does affect the estimation error quality [105, 171].

6.3 On the Controlled Markov Construction in the Space of Probability Measures and Extension to General Spaces

In Section 6.1, we observed that we can replace the state with a probability measure valued state. It is important to provide notions of convergence and continuity on the spaces of probability measures to be able to apply the machinery of Chapter 5. In view of Theorem 6.1.1, if we can invoke the measurable selection conditions studied earlier (such as Assumption 5.1.1), we can use the machinery of optimal stochastic control (such as Bellman’s principle) for partially observed models.

The reader is referred to Appendix D for review of some concepts involving convergences of probability measures.

6.3.1 Non-linear Filter in the Standard Borel setup

Let \(X \) be a standard Borel set in which a controlled Markov process \(\{x_t, t \in \mathbb{Z}_+\} \) takes its values from. Let \(Y \) be a standard Borel space, and let an observation channel \(Q \) be defined as a stochastic kernel (regular conditional probability)
from \(X \times U \to \mathbb{Y}\) such that \(Q(\cdot \mid x, u)\) is a probability measure on the Borel \(\sigma\)-algebra \(\mathcal{B}(\mathbb{Y})\) of \(\mathbb{Y}\) for every \((x, u) \in X \times U\) and \(Q(A \mid \cdot) : X \times U \to [0, 1]\) is a Borel measurable function for every \(A \in \mathcal{B}(\mathbb{Y})\).

Let a decision maker (DM) be located at the output of an observation channel \(Q\), with inputs \(x_t\) and outputs \(y_t\). An admissible policy \(\gamma\) is a sequence of control functions \(\{\gamma_t, t \in \mathbb{N}\}\) such that \(\gamma_t\) is measurable with respect to the \(\sigma\)-algebra generated by the information variables

\[
I_t = \{y_{[0, t]}, u_{[0, t-1]}\}, \quad t \in \mathbb{N}, \quad I_0 = \{y_0\},
\]

where

\[
u_t = \gamma_t(I_t), \quad t \in \mathbb{N}
\]

are the \(U\)-valued control action variables. We define \(\Gamma_A\) to be the set of all such admissible policies.

The joint distribution of the state, control, and observation processes is determined by (6.19) and the following system dynamics:

\[
\Pr\{(x_0, y_0) \in B\} = \int_B Q(dy_0|x_0)P_0(dx_0), \quad B \in \mathcal{B}(X \times \mathbb{Y}),
\]

where \(P_0\) is the prior distribution of the initial state \(x_0\) and \(Q_0\) is the observation channel, and for \(t \in \mathbb{N}\)

\[
\begin{align*}
\Pr\{(x_t, y_t) \in B \mid (x, y, u)_{[0, t-1]} = (x, y, u)_{[0, t-1]}\} &= \int_B Q(dy_t|x_t)T(dx_t|x_{t-1}, u_{t-1}), \quad B \in \mathcal{B}(X \times \mathbb{Y}),
\end{align*}
\]

where \(T(\cdot \mid x, u)\) is a stochastic kernel from \(X \times U\) to \(X\). This completes the probabilistic setup of the partially observed model.

Suppose that we are faced with an optimal control problem. Let a one-stage cost function \(c : X \times U \to [0, \infty)\), which is a Borel measurable function from \(X \times U\) to \([0, \infty)\), be given. Then, we denote by \(J(\gamma)\) the cost function of the policy \(\gamma \in \Gamma_A\), which can be, for instance, finite horizon, discounted cost or average cost criteria. With these definitions, the goal of the control problem is to find an optimal policy \(\gamma^*\) that minimizes \(J\).

It follows that any such problem can be reduced to a completely observable Markov process\(^{218}\), \(^{155}\), whose states are the posterior state distributions or 'beliefs' of the observer; that is, the state at time \(t\) is

\[
\pi_t(\cdot) := P\{X_t \in \cdot \mid y_0, \ldots, y_t, u_0, \ldots, u_{t-1}\} \in \mathcal{P}(X).
\]

We call this equivalent process the filter process. The filter process has state space \(\mathcal{P}(X)\) and action space \(U\). Note that \(\mathcal{P}(X)\) is equipped with the Borel \(\sigma\)-algebra generated by the topology of weak convergence. Under this topology, \(\mathcal{P}(X)\) is a standard Borel space\(^{147}\). The transition probability of the filter process can be constructed as follows.

As in the countable setup case, we can have the following explicit Bayesian recursion to define \(F\) under a mild regularity condition: Let \(Q\) be dominated in the sense that there exists a dominating reference measure \(\lambda\) such that \(\forall x \in X, Q(dy|x_n = x) < \lambda\). Then, define the Radon-Nikodym derivative

\[
g(x, y) = \frac{dG(y_n \in \cdot | x_n = x)}{d\lambda}(y)
\]

as the likelihood function (serving as a conditional probability density function) and we can write the filter \(\pi_{n+1}\) recursively in terms of \(\pi_n\) and \(y_{n+1}, u_n\) explicitly as a Bayesian update:

\[
\pi_{n+1}(dx_{n+1}) = F(\pi_n, y_{n+1}, u_n)(dx_{n+1}) = \frac{\int_X g(x_{n+1}, y_{n+1})T(dx_{n+1}|x_n, u_n)\pi_n(dx_n)}{\int_X g(x_{n+1}, y_{n+1})T(dx_{n+1}|x_n, u_n)\pi_n(dx_n)}
\]

Then, the transition probability \(\eta\) of the filter process can be constructed as follows. If we define the measurable function \(F(\cdot, u, y) := F(\cdot \mid y, u, \pi) = \Pr\{x_{t+1} \in \cdot \mid \pi_t = \pi, u_t = u, y_{t+1} = y\}\) from \(\mathcal{P}(X) \times U \times \mathbb{Y}\) to \(\mathcal{P}(X)\) and use the
stochastic kernel

\[P(\cdot | \pi, u) = \Pr\{y_{t+1} \in \cdot | \pi_t = \pi, u_t = u\} \] from \(\mathcal{P}(X) \times U \) to \(Y \), we can write \(\eta \) as

\[\eta(\cdot | \pi, u) = \int_Y 1_{\{F(\pi, u, y) \in \cdot\}} P(dy | \pi, u). \tag{6.21} \]

More generally, the joint conditional probability on next state and observation variables given the current control action and the current state of the filter process is given by

\[R(B \times C | u_0, \pi_0) = \int_X \int_B Q(C|x_1)T(dx_1|x_0, u_0)\pi_0(dx_0), \tag{6.22} \]

for all \(B \in \mathcal{B}(X) \) and \(C \in \mathcal{B}(Y) \). Then, the conditional distribution of the next observation variable given the current state of the filter process and the current control action is given by

\[P(C | u_0, \pi_0) = \int_X Q(C|x_1, u_0)T(dx_1|x_0, u_0)\pi_0(dx_0), \]

for all \(C \in \mathcal{B}(Y) \). Using this, we can disintegrate \(R \) as follows:

\[R(B \times C | u_0, \pi_0) = \int_C F(B|y_1, u_0, \pi_0)P(dy_1 | u_0, \pi_0)
\]

\[= \int_C \pi_1(y_1, u_0, \pi_0)(B)P(dy_1 | u_0, \pi_0), \tag{6.23} \]

where \(F \) is, as above, the stochastic kernel from \(\mathcal{P}(X) \times Y \times U \) to \(X \) and the posterior distribution of \(x_1 \), determined by the kernel \(F \), is the state variable \(\pi_1 \) of the filter process.

As in the countable setup, the one-stage cost function \(\hat{c} : \mathcal{P}(X) \times U \to [0, \infty) \) of the filter process is given by

\[\hat{c}(\pi, u) := \int_X c(x, u)\pi(dx), \]

which is a Borel measurable function. Hence, the filter process is a completely observable Markov process with the components \((P(X), \mathcal{U}, \hat{c}, \eta) \).

For the filter process, let us define another information variable sequence as

\[I_t = \{\pi_{[0,t]}, u_{[0,t-1]}\}, \quad t \in \mathbb{N}, \quad I_0 = \{\pi_0\}. \]

Now, building all these together, as in the countable setup, in view of our results in Chapter 5 it is a standard result that an optimal control policy of the original POMP will use the belief \(\pi_t \) as a sufficient statistic for optimal policies (see [218], [155]). More precisely, the filter process is equivalent to the original POMP in the sense that for any optimal policy for the filter process, one can construct a policy for the original POMP which is optimal.

6.3.2 Measurability Issues, Proof of Theorem 6.1.1 and its Extension to Polish Spaces

In [6.1], we need to show that the expression \(P(\pi_{t+1} \in D | \pi_t, u_t) \) is a regular conditional probability measure; that is, for every fixed \(D \), this is a measurable function on \(\mathcal{P}(X) \times U \) and for every \(\pi_t, u_t \), it is a conditional probability measure on \(\mathcal{P}(X) \). The expression

\[\sum_{i} \pi_{t+1}(x_{t+1}) P(y_{t+1} | x_{t+1}) P(x_{t+1} | x_t, u_{t-1}) \]

is a measurable function of \(\pi_t, u_t \) (where we consider the weak convergence topology on the space of probability measures). The measurability builds on the following results: a proof of the first result can be found in [2] (see Theorem 15.13 in [2] or p. 215 in [34])

Theorem 6.3.1 Let \(S \) be a Polish space and \(M \) be the set of all measurable and bounded functions \(f : S \to \mathbb{R} \). Then, for any \(f \in M \), the integral

\[\int_S f(s) d\mu(s) \]

is a bounded measurable function of \(\mu \).

Theorem 6.3.2 Let \(M \) be the set of all measurable and bounded functions \(f : S \to \mathbb{R} \). Then, for any \(f \in M \), the integral

\[\int_S f(s) d\mu(s) \]

is a bounded measurable function of \(\mu \).
6.3 On the Controlled Markov Construction in the Space of Probability Measures and Extension to General Spaces

\[\int \pi(dx)f(x) \]

defines a measurable function on \(\mathcal{P}(\mathcal{S}) \) under the topology of weak convergence.

This is a useful result since it allows us to define measurable functions in integral forms on the space of probability measures when we work with the topology of weak convergence. The second useful result follows from Theorem 6.3.1 and Theorem 2.1 of Dubins and Freedman [66] and Proposition 7.25 in Bertsekas and Shreve [26].

Theorem 6.3.2 Let \(\mathcal{S} \) be a Polish space. A function \(F: \mathcal{P}(\mathcal{S}) \rightarrow \mathcal{P}(\mathcal{S}) \) is measurable on \(\mathcal{B}(\mathcal{P}(\mathcal{S})) \) (under weak convergence), if for all \(B \in \mathcal{B}(\mathcal{S}) \), \((F(\cdot))(B): \mathcal{P}(\mathcal{S}) \rightarrow \mathbb{R} \) is measurable under weak convergence on \(\mathcal{P}(\mathcal{S}) \), that is for every \(B \in \mathcal{B}(\mathcal{S}) \), \((F(\pi))(B) \) is a measurable function when viewed as a function from \(\mathcal{P}(\mathcal{S}) \) to \(\mathbb{R} \).

The discussion in Section 6.1 also applies to settings where \(\mathcal{X}, \mathcal{Y}, \mathcal{U} \) are more general Polish spaces. In particular, with \(\pi \) denoting a conditional probability measure \(\pi_t(A) = P(x_t \in A|I_t) \), we can define a new cost as \(\tilde{c}(\pi, u) = \sum_{\mathcal{X}} c(x, u)\pi(x), \quad \pi \in \mathcal{P} \).

In Chapter 5, we had assumed that the state belongs to a complete, separable, metric space; therefore, the existence of optimal policies and the dynamic programming arguments follows the analysis in Chapter 3.

This discussion is useful to establish that under weak convergence topology \((\pi_t, u_t) \) forms a standard Borel controlled Markov chain for the dynamic programming purposes.

6.3.3 Continuity Properties of Belief-MDP

Building on [108] and [74], this section establishes the weak Feller property of the filter process; that is, the weak Feller property of the kernel defined in (6.2) under two different sets of assumptions.

Assumption 6.3.1

(i) The transition probability \(\mathcal{T}(\cdot|x, u) \) is weakly continuous in \((x, u) \), i.e., for any \((x_n, u_n) \rightarrow (x, u) \), \(\mathcal{T}(\cdot|x_n, u_n) \rightarrow \mathcal{T}(\cdot|x, u) \) weakly.

(ii) The observation channel \(\mathcal{Q}(\cdot|x, u) \) is continuous in total variation, i.e., for any \((x_n, u_n) \rightarrow (x, u) \), \(\mathcal{Q}(\cdot|x_n, u_n) \rightarrow \mathcal{Q}(\cdot|x, u) \) in total variation.

Assumption 6.3.2

(i) The transition probability \(\mathcal{T}(\cdot|x, u) \) is continuous in total variation in \((x, u) \), i.e., for any \((x_n, u_n) \rightarrow (x, u) \), \(\mathcal{T}(\cdot|x_n, u_n) \rightarrow \mathcal{T}(\cdot|x, u) \) in total variation.

(ii) The observation channel \(\mathcal{Q}(\cdot|x) \) is independent of the control variable.

Theorem 6.3.3 [74] Under Assumption 6.3.1 the transition probability \(\eta(\cdot|z, u) \) of the filter process is weakly continuous in \((z, u) \).

Theorem 6.3.4 [108] Under Assumption 6.3.2 the transition probability \(\eta(\cdot|z, u) \) of the filter process is weakly continuous in \((z, u) \).

If the cost function \(c \) is continuous and bounded, an application of the dominated convergence theorem implies that \(\tilde{c}(\pi, u) \) is also continuous and bounded. If the action set is compact, then under the weak continuity condition noted above on the non-linear filter, we have that the measurable selection conditions apply, and solutions to the Bellman or discounted cost optimality equations (8) exist, and accordingly an optimal control policy exists.

We refer the reader to the result [74, Theorem 7.1] which establishes weak Feller property of the filter kernel under further sets of assumptions.

As examples, taken from [108], suppose that the system dynamics and the observation channel are represented as follows:
\[
x_{t+1} = H(x_t, u_t, w_t), \\
y_t = G(x_t, u_{t-1}, v_t),
\]

where \(w_t\) and \(v_t\) are i.i.d. noise processes.

(i) Suppose that \(H(x, u, w)\) is a continuous function in \(x\) and \(u\). Then, the corresponding transition kernel is weakly continuous. To see this, observe that, for any \(c \in C_b(\mathbb{X})\), we have

\[
\int c(x_1) T(dx_1|x_0^n, u_0^n) = \int c(H(x_0^n, u_0^n, w_0)) \mu(dw_0)
\]

\[
\rightarrow \int c(H(x_0, u_0, w_0)) \mu(dw_0) = \int c(x_1) T(dx_1|x_0, u_0),
\]

where we use \(\mu\) to denote the probability model of the noise.

(ii) Suppose that \(G(x, u, v) = g(x, u) + v\), where \(g\) is a continuous function and \(V_t\) admits a continuous density function \(\varphi\) with respect to some reference measure \(\nu\). Then, the channel is continuous in total variation. Notice that under this setup, we can write

\[
Q(dy|x, u) = \varphi(y - h(x, u)) \nu(dy).
\]

Hence, the density of \(Q(dy|x_n, u_n)\) converges to the density of \(Q(dy|x, u)\) pointwise, and so, \(Q(dy|x_n, u_n)\) converges to \(Q(dy|x, u)\) in total variation by Scheffé’s Lemma [29]. Hence, \(Q(dy|x, u)\) is continuous in total variation under these conditions.

(iii) Suppose that we have \(H(x, u, w) = h(x, u) + w\), where \(f\) is continuous and \(w_t\) admits a continuous density function \(\varphi\) with respect to some reference measure \(\nu\). Then, the transition probability is continuous in total variation: with this setup we have

\[
T(dx_1|x_0, u_0) = \varphi(x_1 - h(x_0, u_0)) \nu(dx_1).
\]

Thus, continuity of \(\varphi\) and \(h\) guarantees the pointwise convergence of the densities, so we can conclude that the transition probability is continuous in total variation by again Scheffé’s Lemma.

Remark 6.6 (Existence results without separation / belief-MDP reduction). Consider a partially observable stochastic control problem (POMDP) with the following dynamics.

\[
x_{t+1} = f(x_t, u_t, w_t), \quad y_t = g(x_t, v_t).
\]

If \(f(\cdot, \cdot, w)\) is continuous and \(g\) has the form: \(y_t = g(x_t) + v_t\), with \(g\) continuous and \(w_t\) admitting a continuous density function \(\eta\), an existence result can be established building on the measurable selection criteria under weak continuity in view of Theorem 6.3.3.

Without adopting the belief-MDP reduction method, such an existence result can also be established by a measure transformation argument and using a strategic measures approach: With \(\eta\) denoting the density of \(e_{n}\), we have

\[
P(y_n \in B|x_n) = \int_B \eta(y - g(x_n)) dy.
\]

With \(\eta\) and \(g\) continuous and bounded, taking \(y^n := y_n\), by writing

\[
x_{n+1} = f(x_n, u_n, w_n) = f(x_n-1, u_n-1, w_n-1, u_n, w_n),
\]

iterating inductively to obtain

\[
x_{n+1} = h_n(x_0, u[0, n-1], w[0, n-1]),
\]

for some \(h_n\) which is continuous in \(u[0, n-1]\) for every fixed \(x_0, w[0, n-1]\), one obtains an effective reduced cost (9.29) that is a continuous function in the control actions. [27, Section 5.4.2] then implies the existence of an optimal control policy. This reasoning is also applicable when the measurements are not additive in the noise but with \(P(y_n \in B|x_n = x) = \int_B m(y, x) \eta(dy)\) for some \(m\) continuous in \(x\) and \(\eta\) a reference measure.

It may be important to note that Bismut [30] arrived at related results for partially observed models in continuous-time, through an approach which also avoids separation / the construction of a belief-MDP.

6.3.4 A useful structural result: Concavity of the value function in the priors

The following theorem establishes concavity of the optimal cost in a single-stage stochastic control problem over the space of initial distributions and this also applies for multi-stage setups.
Theorem 6.3.5 Let $\int c(x, \gamma(y))PQ(dx, dy)$ exist for all $\gamma \in \Gamma$ and $P \in \mathcal{P}(\mathcal{X})$. Then,

$$J^*(P, Q) = \inf_{\gamma \in \Gamma} \mathbb{E}_P^Q \gamma [c(x, \gamma(y))]$$

is concave in P.

Proof. For $a \in [0, 1]$ and $P', P'' \in \mathcal{P}(\mathcal{X})$ we let $P = aP' + (1-a)P''$. Note that $PQ = aP'Q + (1-a)P''Q$. We have

$$J(aP' + (1-a)P'', Q) = J(P, Q)$$

$$= \inf_{\gamma \in \Gamma} \mathbb{E}_P^Q \gamma [c(x, \gamma(y))]$$

$$= \inf_{\gamma \in \Gamma} \int c(x, \gamma(y))PQ(dx, dy)$$

$$= \inf_{\gamma \in \Gamma} \left(a \int c(x, \gamma(y))P'Q(dx, dy) + (1-a) \int c(x, \gamma(y))P''Q(dx, dy) \right)$$

$$\geq \inf_{\gamma \in \Gamma} \left(a \int c(x, \gamma(y))P'Q(dx, dy) + \inf_{\gamma \in \Gamma} (1-a) \int c(x, \gamma(y))P''Q(dx, dy) \right)$$

$$= aJ(P', Q) + (1-a)J(P'', Q)$$

6.4 Filter Stability

The filter stability problem refers to the correction of an incorrectly initialized filter for a partially observed stochastic dynamical system (controlled or control-free) with increasing measurements.

One of the main differences between control-free and controlled partially observed Markov chains is that the filter is always Markovian under the former, whereas under a controlled model the filter process may not be Markovian since the control policy may depend on past measurements in an arbitrary (measurable) fashion. This complicates the dependency structure and therefore results from the control-free literature do not directly apply to the controlled setup. In this section, we briefly discuss the filter stability problem for controlled stochastic dynamical systems, and provide sufficient conditions for when a falsely initialized filter merges with the correctly initialized filter over time.

We made the observation earlier that under observability and a controllability assumption, any incorrectly initialized filter will converge to the correct Kalman filter. In the following, we will present a very concise discussion on how such results carry over to the stochastic non-linear setup.

Aside from the above, much of the results on filter stability involves control-free systems. Thus, results have considered partially observed Markov processes (POMP) as opposed to partially observed Markov decision processes (POMDP). Since there is no control in such systems, there is no past dependency in the system and the pair $(X_n, Y_n)_{n=0}^{\infty}$ is always a Markov chain. For such control-free models, filter stability has been studied extensively and we refer the reader to [55] for a comprehensive review and a collection of different approaches. As discussed in [55], filter stability arises via two separate mechanisms:

1. The transition kernel is in some sense sufficiently ergodic, forgetting the initial measure and therefore passing this insensitivity (to incorrect initializations) on to the filter process.

2. The measurement channel provides sufficient information about the underlying state, allowing the filter to track the true state process.
To be able to present a concise discussion, building on some prior material in the notes, for both controlled and control-free setups we review conditions in [132] based on Dobrushin’s coefficients of the measurement channel and the controlled transition kernel. Recall (3.27). We consider a slight generalization in the following.

Definition 6.4.1 [64, Equation 1.16] For a kernel operator $K : S_1 \rightarrow P(S_2)$ (that is a regular conditional probability from S_1 to S_2) for standard Borel spaces S_1, S_2, we define the Dobrushin coefficient as:

$$\delta(K) = \inf_{x, y} \sum_{i=1}^{n} \min(K(x, A_i), K(y, A_i))$$

where the infimum is over all $x, y \in S_1$ and all partitions $\{A_i\}_{i=1}^{n}$ of S_2.

Let us define

$$\tilde{\delta}(T) := \inf_{\mu \in \mathcal{M}_T} \delta(T(\cdot|\cdot, u)).$$

The following can be viewed as a generalization of Theorem 3.1.8.

Theorem 6.4.1 [132, Theorem 3.3] Assume that for $\mu, \nu \in P(X)$, we have $\mu \ll \nu$. Then we have

$$E^{\mu, \gamma}[||\pi_{n+1}^{\mu, \gamma} - \pi_{n+1}^{\nu, \gamma}||_{TV}] \leq (1 - \tilde{\delta}(T))(2 - \delta(Q))E^{\mu, \gamma}[||\pi_n^{\mu, \gamma} - \pi_n^{\nu, \gamma}||_{TV}].$$

In particular, defining $\alpha := (1 - \tilde{\delta}(T))(2 - \delta(Q))$, we have

$$E^{\mu, \gamma}[||\pi_n^{\mu, \gamma} - \pi_n^{\nu, \gamma}||_{TV}] \leq 2\alpha^n.$$

By applying the Borel-Cantelli lemma and Markov’s inequality, we have that exponential stability in expectation implies the same result in an almost sure sense as well: assume that the filter is exponentially stable with coefficient $\alpha = (1 - \delta(T))(2 - \delta(Q)) < 1$ and let ρ be a value $\rho < \frac{1}{\alpha}$. Then we have for every $\epsilon > 0$,

$$\sum_{k=0}^{\infty} P^\mu(\rho^k ||\pi_n^\mu - \pi_n^\nu||_{TV} \geq \epsilon) \leq \sum_{k=0}^{\infty} \rho^k \frac{E^{\mu}[||\pi_n^\mu - \pi_n^\nu||_{TV}]}{\epsilon} \leq \frac{||\mu - \nu||_{TV}}{\epsilon} \sum_{k=0}^{\infty} (\rho \alpha)^k = \frac{||\mu - \nu||_{TV}}{\epsilon} \frac{1}{1 - \rho \alpha} < \infty$$

thus by Borel Cantelli Lemma $\rho^k ||\pi_n^\mu - \pi_n^\nu||_{TV} \to 0$ P^μ a.s. for any $\rho < \frac{1}{\alpha}$. See [132] Remark 3.10.

This also establishes that the rate of convergence is uniform over all priors ν as long as $\mu \ll \nu$.

6.5 Bibliographic Notes

Earlier work on separation results for partially observed Markov Decision Processes include [218], [177], [155]. For linear systems, classical texts include [7, 8, 50, 113, 118]. See [55] for a comprehensive review on filter stability.

6.6 Exercises

Exercise 6.6.1 Consider a linear system with the following dynamics:
\[x_{t+1} = ax_t + u_t + w_t, \]

and let the controller have access to the observations given by:

\[y_t = p_t(x_t + v_t). \]

Here \(\{w_t, v_t, t \in \mathbb{Z}\} \) are independent, zero-mean, Gaussian random variables, with variances \(E[w^2] \) and \(E[v^2] \). The controller at time \(t \in \mathbb{Z} \) has access to \(I_t = \{y_s, u_s, p_t \mid s \leq t - 1\} \cup \{y_t\} \). Here \(p_t \) is an i.i.d. Bernoulli process such that \(p_t = 1 \) with probability \(p \).

The initial state has a Gaussian distribution, with zero mean and variance \(E[x_0^2] \), which we denote by \(\nu_0 \). We wish to find for some \(r > 0 \):

\[\inf_{\gamma} J(x_0, \gamma) = E_{\nu_0}^{\gamma} \left[\sum_{t=0}^{M} x_t^2 + ru_t^2 \right], \]

Compute the optimal control policy and the optimal cost. It suffices to provide a recursive form.

Hint: Show that the optimal control has a separation structure. Compute the conditional estimate through a revised Kalman Filter due to the presence of \(p_t \).

Exercise 6.6.2 Let \(X, Y \) be \(\mathbb{R}^n \) and \(\mathbb{R}^m \) valued zero-mean random vectors defined on a common probability space, which have finite covariance matrices. Suppose that their probability measures are given by \(P_X \) and \(P_Y \) respectively.

Find

\[\inf_{\mathcal{R}} E[(X - KY)^T(X - KY)], \]

that is find the best linear estimator of \(X \) given \(Y \) and the resulting estimation error.

Hint: You may pose the problem as a Projection Theorem problem.

Exercise 6.6.3 (Optimal Machine Repair) Consider a Markov Decision Problem set up as follows. Let there be two possible states that a machine can take: \(X = \{0, 1\} \), where 0 is the good state and 1 is the bad (‘system is down’) state. Let \(U = \{0, 1\} \), where 0 is the ‘do nothing’ control and 1 is the ‘repair’ control. Suppose that the transition probabilities are given by:

\[
\begin{align*}
P(X_{t+1} = 1|X_t = 1, U_t = 0) &= 1 - \eta, & P(X_{t+1} = 0|X_t = 1, U_t = 0) &= \eta > 0 \\
P(X_{t+1} = 1|X_t = 1, U_t = 1) &= 1, & P(X_{t+1} = 0|X_t = 1, U_t = 0) &= 0 \\
P(X_{t+1} = 1|X_t = 0, U_t = 0) &= 0, & P(X_{t+1} = 0|X_t = 1, U_t = 0) &= 1 \\
P(X_{t+1} = 1|X_t = 0, U_t = 1) &= \alpha > 0, & P(X_{t+1} = 0|X_t = 1, U_t = 0) &= 1 - \alpha
\end{align*}
\]

Thus, \(\eta \) is the failure probability and \(\alpha \) is the success probability in the event of a repair.

The controller has access only to measurement variables \(Y_0, \ldots, Y_t \) and \(U_0, \ldots, U_{t-1} \), at time \(t \), where the measurements are generated by a binary symmetric channel: \(P(Y = X) = 1 - \epsilon \) and \(P(Y \neq X) = \epsilon \) for all \(X, Y \) realizations. The per-stage cost function \(c(x, u) \) is given by \(c(0, 0) = 0, c(1, 0) = C, c(0, 1) = c(1, 1) = R \) with \(0 < R < C \). Show that there exists an optimal control policy for both finite-horizon as well as infinite horizon discounted cost problems. Is the optimal policy of threshold type?

Exercise 6.6.4 (Zero-Delay Source Coding) Let \(\{x_t\}_{t \geq 0} \) be an \(\mathbb{X} \)-valued discrete-time Markov process where \(\mathbb{X} \) can be a finite set or \(\mathbb{R}^n \). Let there be an encoder which encodes (quantizes) the source samples and transmits the encoded versions to a receiver over a discrete noiseless channel with input and output alphabet \(\mathcal{M} = \{1, 2, \ldots, M\} \), where \(M \) is a positive integer. The encoder policy \(\gamma \) is a sequence of functions \(\{\eta_t\}_{t \geq 0} \) with \(\eta_t : \mathcal{M}^t \times (\mathbb{X})^t+1 \rightarrow \mathcal{M} \). At time \(t \), the encoder transmits the \(\mathcal{M} \)-valued message

\[q_t = \eta_t(I_t) \]

with \(I_0 = x_0, I_t = (q_{0:t-1}, x_{[0:t]}') \) for \(t \geq 1 \), where. The collection of all such zero-delay encoders is called the set of admissible quantization policies and is denoted by \(\Gamma_{\mathcal{M}} \). A zero-delay receiver policy is a sequence of functions
\[\gamma^d = \{ \gamma^d_t \}_{t \geq 0} \] of type \(\gamma_t^d : \mathcal{M}^{t+1} \to \mathbb{U} \), where \(\mathbb{U} \) denotes the finite reconstruction alphabet. Thus

\[u_t = \gamma_t^d(q_{[0,t]}), \quad t \geq 0. \]

For the finite horizon setting the goal is to minimize the average cumulative cost (distortion)

\[J_{\pi_0}(\gamma, \gamma^d, T) = E_{\pi_0}^{\gamma, \gamma^d} \left[\frac{1}{T} \sum_{t=0}^{T-1} c_0(x_t, u_t) \right], \quad (6.26) \]

for some \(T \geq 1 \), where \(c_0 : \mathbb{X} \times \mathbb{U} \to \mathbb{R} \) is a nonnegative cost (distortion) function, and \(E_{\pi_0}^{\gamma, \gamma^d} \) denotes expectation with initial distribution \(\pi_0 \) for \(x_0 \) and under the quantization policy \(\gamma \) and receiver policy \(\gamma^d \).

a) Show that an optimal encoder uses a sufficient statistic, in particular, it uses \(P(dx_t | q_{[0,t-1]}^d) \) and the time information, for optimal performance.

b) Show that, when \(\{ x_t \} \) is i.i.d., any encoder and decoder pair can be replaced with one which only uses \(x_t \), that is:

\[q_t = \eta_t(x_t) \]

and the decoder only uses

\[u_t = \gamma_t^d(q_t), \quad t \geq 0. \]

See [202], [193], [181] for finite sources and [212] for real sources and further relevant discussions, among many other recent references.
The Average Cost Problem

Consider the following average cost problem of finding

\[J^*(x) := \inf_{\gamma} J(x, \gamma) = \inf_{\gamma \in \Gamma} \lim_{T \to \infty} \frac{1}{T} E_x^\gamma \left[\sum_{t=0}^{T-1} c(x_t, u_t) \right] \quad (7.1) \]

This is an important problem in applications where one is concerned about the long-term behaviour, unlike the discounted cost setup where the primary interest is in the short-term time stages.

For the study of the average cost problem, we will follow three distinct approaches; the first two will be based on the arrival at what we will call as the average cost optimality equation. The third approach will be based on the properties of expected (or sample path) occupation measures and their limit behaviours, leading to a linear program involving the space of probability measures. These approaches are related through a duality analysis, as noted in [96, Chapter 6], however the conditions leading to solutions under these approaches are not identical, therefore, the corresponding conditions of existence and structural results for optimal policies are different. As such, it will be instructive to study both approaches separately, as we do in the following.

7.1 Average Cost and the Average Cost Optimality Equation (ACOE) or Inequality (ACOI)

To study the average cost problem, one approach is to establish the existence of an Average Cost Optimality Equation (ACOE).

Definition 7.1.1 The collection of functions \(g : \mathbb{X} \to \mathbb{R}, h : \mathbb{X} \to \mathbb{R}, f : \mathbb{X} \to \mathbb{U} \) is a canonical triplet if for all \(x \in \mathbb{X} \),

\[
 g(x) = \inf_{u \in \mathbb{U}} \int g(x') \mathcal{T}(dx'|x, u)
\]

\[g(x) + h(x) = \inf_{u \in \mathbb{U}} \left(c(x, u) + \int h(x') \mathcal{T}(dx'|x, u) \right) \]

with

\[
 g(x) = \int g(x') \mathcal{T}(dx'|x, f(x))
\]

\[g(x) + h(x) = \left(c(x, f(x)) + \int h(x') \mathcal{T}(dx'|x, f(x)) \right) \]

We will refer to these relations as the Average Cost Optimality Equation (ACOE).

Theorem 7.1.1 [Verification Theorem] Let \(g, h, f \) be a canonical triplet. a) If \(g \) is a constant and
\[
\limsup_{n \to \infty} \frac{1}{n} E^\gamma_x[h(x_n)] = 0, \tag{7.2}
\]

for all \(x \) and under every policy \(\gamma \), then the stationary deterministic policy \(\gamma^* = \{ f, f, f, \cdots \} \) is optimal so that
\[
g = J(x, \gamma^*) = \inf_{\gamma \in \Gamma} J(x, \gamma)
\]

where
\[
J(x, \gamma) = \limsup_{T \to \infty} \frac{1}{T} E^\gamma_x[\sum_{k=0}^{T-1} c(x_t, u_t)].
\]

Furthermore,
\[
\left| \frac{1}{n} E^\gamma_x \sum_{t=1}^{n} [c(x_{t-1}, u_{t-1}) - g] \right| \leq \frac{1}{n} \left(|E^\gamma_x[h(x_n)] - h(x)| \right) \to 0 \tag{7.3}
\]

b) If \(g \), considered above, is not a constant and depends on \(x \), then under any policy \(\gamma \)
\[
\limsup_{N \to \infty} \frac{1}{N} E^\gamma_x^N \left[\sum_{t=0}^{N-1} g(x_t) \right] \leq \inf \limsup_{N \to \infty} \frac{1}{N} E^\gamma_x^N \left[\sum_{t=0}^{T-1} c(x_t, u_t) \right],
\]

provided that (7.10) holds. Furthermore, \(\gamma^* = \{ f \} \) is optimal.

Proof: We prove (a); (b) follows from a similar reasoning. For any policy \(\gamma \), by the iterated expectations Theorem 4.1.3
\[
E^\gamma_x \left[\sum_{t=1}^{n} h(x_t) - E^\gamma_x[h(x_t)|x_{[0,t-1]}, u_{[0,t-1]}] \right] = 0
\]

Now,
\[
E^\gamma_x[h(x_t)|x_{[0,t-1]}, u_{[0,t-1]}] = \int_y h(y) P(x_t \in dy|x_{t-1}, u_{t-1})
\]
\[
= c(x_{t-1}, u_{t-1}) + \int_y h(y) P(dy|x_{t-1}, u_{t-1}) - c(x_{t-1}, u_{t-1}) \tag{7.4}
\]
\[
\geq \min_{u_{t-1} \in U} \left(c(x_{t-1}, u_{t-1}) + \int_y h(y) P(dy|x_{t-1}, u_{t-1}) \right) - c(x_{t-1}, u_{t-1}) \tag{7.5}
\]
\[
= g + h(x_{t-1}) - c(x_{t-1}, u_{t-1}) \tag{7.6}
\]

Hence, for any policy \(\gamma \)
\[
0 \leq \frac{1}{n} E^\gamma_x \sum_{t=1}^{n} [h(x_t) - g - h(x_{t-1}) + c(x_{t-1}, u_{t-1})]
\]

and
\[
g \leq \frac{1}{n} E^\gamma_x[h(x_n)] - \frac{1}{n} E^\gamma_x[h(x_0)] + \frac{1}{n} E^\gamma_x \left[\sum_{t=1}^{n} c(x_{t-1}, u_{t-1}) \right] .
\]

Taking the limit, we observe that \(g \) is a lower bound on the cost under any policy.

The above hold with equality if \(\gamma^* = \{ f \} \) is adopted since \(\gamma^* \) provides the pointwise minimum. Thus, equality holds under \(\gamma^* \) so that
\[
g = E^{\gamma^*} [h(x_n)] / n - E^{\gamma^*} [h(x_0)] / n + \frac{1}{n} E^{\gamma^*} \sum_{t=1}^{n} c(x_{t-1}, u_{t-1}) .
\]

Here,
\[g = \lim_{n \to \infty} \frac{1}{n} E_x^\gamma \left[\sum_{t=1}^{n} c(x_{t-1}, u_{t-1}) \right]. \]

and

\[\left| \frac{1}{n} E_x^\gamma \left[\sum_{t=1}^{n} c(x_{t-1}, u_{t-1}) \right] - g \right| \leq \frac{1}{n} \left(|E_x^\gamma [h(x_n)]| + |h(x)| \right) \to 0, \]
as \(n \to \infty \).

Theorem 7.1.2 [Optimality Through Finite Horizon Limits] If \(\gamma^* = \{f, f, f, \cdots\} \) is to that

\[J(x, \gamma^*) = \limsup_{T \to \infty} \inf_{\gamma \in \Gamma_A} J_T^*(x, \gamma) \]

with

\[J_T^*(x, \gamma) = \frac{1}{T} E_x^\gamma \left[\sum_{t=0}^{T-1} c(x_t, u_t) \right], \]

then \(\gamma^* \) is optimal.

Proof. The proof follows from the observation (by Lemma 5.4.1)

\[J^*(x) \geq \limsup_{T \to \infty} J_T^*(x, \gamma). \]

\[\square \]

Definition 7.1.2 Let \(g \) be a constant and \(h : \mathbb{X} \to \mathbb{R} \), \(f : \mathbb{X} \to \mathbb{U} \) be so that for all \(x \in \mathbb{X} \),

\[g + h(x) \geq \inf_{u \in \mathbb{U}} \left(c(x, u) + \int h(x'|x, u) \right) \]

(7.8)

Alternatively, let

\[g + h(x) \leq \inf_{u \in \mathbb{U}} \left(c(x, u) + \int h(x'|x, u) \right) \]

(7.9)

with, in either case

\[\inf_{u \in \mathbb{U}} \left(c(x, u) + \int h(x'|x, u) \right) = \left(c(x, f(x)) + \int h(x'|x, f(x)) \right) \]

We will refer to this relation as the Average Cost Optimality Inequality (ACOI).

Theorem 7.1.3 [Verification Theorem]

(i) Let (7.9) hold. If

\[\limsup_{n \to \infty} \frac{1}{n} E_x^\gamma [h(x_n)] = 0, \]

(7.10)

for all \(x \) and under every policy \(\gamma \). Then \(g \) is a lower bound under any policy.

(ii) On the other hand, let (7.8) hold with (7.10) holding for \(\gamma^* = \{f, f, f, \cdots\} \). Then the stationary deterministic policy \(\gamma^* = \{f, f, f, \cdots\} \) satisfies

\[g \geq J(x, \gamma^*) \]

Proof: For (i): for any policy \(\gamma \), by the iterated expectations
Taking the limit, we establish the desired bound.

Now, considering the space of measurable and bounded functions h with the restriction that $h(z) = 0$. Let (g, h, f) be a canonical triplet with $g \equiv \rho$ so that

$$\rho + h(x) = \min_{u \in U} \left(c(x, u) + \int h(x') T(dx'|x, u) \right)$$

where the last inequality is due to (7.9).

Hence, for any policy γ

$$0 \leq \frac{1}{n} E_\gamma^n \left[\sum_{t=1}^n h(x_t) - g - h(x_{t-1}) + c(x_{t-1}, u_{t-1}) \right]$$

and

$$g \leq \frac{1}{n} E_\gamma^n [h(x_n)] - \frac{1}{n} E_\gamma^n [h(x_0)] + \frac{1}{n} E_\gamma^n \left[\sum_{t=1}^n c(x_{t-1}, u_{t-1}) \right].$$

Taking the limit, we observe that g is a lower bound on the cost under any policy.

For (ii): if we start the analysis leading to (7.14) with γ^*, we have

$$E_{\gamma^*} \left[\sum_{t=1}^n h(x_t) - E_{\gamma^*} [h(x_t)|x[0,t-1], u[0,t-1]] \right] = 0$$

and

$$E_{\gamma^*} [h(x_t)|x[0,t-1], u[0,t-1]] = \int_y h(y) P(x_t \in dy|x_{t-1}, u_{t-1})$$

$$= c(x_{t-1}, f(x_{t-1})) + \int_y h(y) P(dy|x_{t-1}, f(x_{t-1})) - c(x_{t-1}, f(x_{t-1}))$$

$$\leq g + h(x_{t-1}) - c(x_{t-1}, f(x_{t-1}))$$

Iterating the above, we arrive at

$$g + \frac{1}{n} E_{\gamma^*} [h(x_n)] - \frac{1}{n} E_{\gamma^*} [h(x_0)] \geq \frac{1}{n} E_{\gamma^*} \left[\sum_{t=1}^n c(x_{t-1}, u_{t-1}) \right].$$

Taking the limit, we establish the desired bound.

\[\diamond \]

7.2 The Value Iteration Approach to the Average Cost Problem

Fix $z \in \mathbb{X}$ and consider the space of measurable and bounded functions h with the restriction that $h(z) = 0$. Let (g, h, f) be a canonical triplet with $g \equiv \rho$ so that

$$\rho + h(x) = \min_{u \in U} \left(c(x, u) + \int h(x') T(dx'|x, u) \right)$$
Consider the following assumption (see Appendix D for a review of the total variation norm on probability measures)

Assumption 7.2.1 For some $\alpha \in [0, 1)$, and for all $x, x' \in \mathbb{X}$ and $u, u' \in \mathbb{U}$

$$\|P(\cdot | x, u) - P(\cdot | x', u')\|_{TV} \leq 2\alpha$$

Consider the following span semi-norm:

$$\|u\|_{sp} = \sup_x u(x) - \inf_x u(x)$$

The space of measurable bounded functions that satisfy $h(z) = 0$ under the semi-norm $\|u\|_{sp}$ is a Banach space (and hence the semi-norm becomes a norm in this space since $\|u\|_{sp} = 0$ implies $u \equiv 0$).

Define $T(h)(x) = \inf_{u \in U} \left(c(x, u) + \int h(x') T(dx'|x, u) \right)$. Let

$$\langle T_z(h)(x) \rangle = (T(h))(x) - (T(h))(z)$$

Note that T_z maps the aforementioned Banach space to itself under the measurable selection conditions reviewed in Chapter 5. Under Assumption 7.2.1 and the measurable selection conditions reviewed in Chapter 5, we will show (through similar steps as those in Chapter 5) that the map is a contraction:

First note that for pairs (x, u) and (x', u'), with $\mu(dx_1) := P(dx_1 | x, u) - P(dx_1 | x', u')$ defining a signed measure, by the Jordan-Hahn decomposition theorem [107] Theorem 2.8] there exists μ with $\mu(A) = -\mu(A^c) \geq 0$ so that the restriction of μ to A (i.e., $\mu_A(B) := \mu(B \cap A)$ for every Borel B) defines a non-negative measure and the restriction of $-\mu$ to A^c defines a non-negative measure with $\mu(A) - \mu(A^c) \leq \|\mu\|_{TV} \leq 2\alpha$ and thus $\mu(A) \leq \alpha$. Thus,

$$\int h(x_1) P(dx_1 | x, u) - h(x_1) P(dx_1 | x', u')$$

$$= \int_A h(x_1) (P(dx_1 | x, u) - P(dx_1 | x', u')) + \int_{A^c} h(x_1) (P(dx_1 | x, u) - P(dx_1 | x', u'))$$

$$= \int_A h(x_1) (P(dx_1 | x, u) - P(dx_1 | x', u')) - \int_{A^c} h(x_1) (P(dx_1 | x', u') - P(dx_1 | x, u))$$

$$\leq \int_A \left(\sup_{x_1} h(x_1) \right) (P(dx_1 | x, u) - P(dx_1 | x', u')) - \int_{A^c} \left(\inf_{x_1} h(x_1) \right) (P(dx_1 | x, u) - P(dx_1 | x', u'))$$

$$\leq \left(\sup_{x_1} h(x_1) \right) \mu(A) - \left(\inf_{x_1} h(x_1) \right) \mu(A^c)$$

$$\leq \alpha \|h\|_{sp}$$

Then, note that for v_1 and v_2 bounded and with $T(v_1)(x)$ achieved with control u^*_1 at x, we have that for any x, x'

$$\left(T(v_1))(x) - T(v_2))(x) \right) - \left(T(v_1))(x') - T(v_2))(x') \right) \leq \int \left(v_1(x_1) - v_2(x_1) \right) \left(P(dx_1 | x, u^*_1) - P(dx_1 | x', u^*_1) \right) \leq \alpha \|v_1 - v_2\|_{sp},$$

and thus, since x, x' are arbitrary, we have

$$\|T(v_1) - T(v_2)\|_{sp} \leq \alpha \|v_1 - v_2\|_{sp}.$$}

Furthermore, since $(T(v_1))(z)$ is a constant, we have that

$$\|T_z(v_1) - T_z(v_2)\|_{sp} = \|T(v_1) - T(v_2)\|_{sp} \leq \alpha \|v_1 - v_2\|_{sp}.$$

We can then state the following.

Theorem 7.2.1 [93] Lemma 3.5] The iterations
7.3 The Vanishing Discounted Cost Approach to the Average Cost Problem

Average cost emphasizes the asymptotic values of the cost function whereas the discounted cost emphasizes the short-term cost functions. However, under technical restrictions, one can show that the limit as the discounted factor converges to 1, one can obtain a solution for the average cost optimization. We now state one such condition below.

Theorem 7.3.1 Consider a controlled Markov chain where the state and action spaces are finite, and suppose that under any stationary and deterministic policy the entire state space is a recurrent set. Let

\[J_\beta(x) = \inf_{\gamma \in \Gamma_A} J_\beta(x, \gamma) = \inf_{\gamma \in \Gamma_A} \mathbb{E}_x^\gamma \left[\sum_{t=0}^{\infty} \beta^t c(x_t, u_t) \right] \]

and suppose that \(\gamma_0^* \) is an optimal deterministic policy for \(J_\beta(x) \). Then, there exists some \(\gamma^* \in \Gamma_{SD} \) which is optimal for every \(\beta \) sufficiently close to 1, and is also optimal for the average cost

\[J(x) = \inf_{\gamma \in \Gamma_A} \limsup_{T \to \infty} \frac{1}{T} \mathbb{E}_x^\gamma \left[\sum_{t=0}^{T-1} c(x_t, u_t) \right] \]

Proof. First note that for every stationary and deterministic policy \(f \), by a slight change in notation from what was considered earlier in the notes, \(J_\beta(x, f) := (1 - \beta) \mathbb{E}_x^f \left[\sum_{k=0}^{\infty} \beta^k c(x, f(x_k)) \right] \) is a continuous function on \([0, 1]\) (in \(\beta \)). Let \(\beta_n \uparrow 1 \). For each \(\beta_n \), \(J_{\beta_n} \) is achieved by a stationary and deterministic policy. Since there are only finitely many such policies, there exists at least one policy \(f^* \) which is optimal for infinitely many \(\beta_n \); call such a sequence \(\beta_{n_k} \). We will show that this policy is optimal for the average cost problem also.

It follows that \(J_{\beta_{n_k}}(x, f^*) \leq J_{\beta_{n_k}}(x, \gamma) \) for all \(\gamma \). Then, infinitely often for every deterministic stationary policy \(f \):

\[J_{\beta_{n_k}}(x, f^*) - J_{\beta_{n_k}}(x, f) \leq 0 \]

We now claim that for some \(\beta^* < 1 \), \(J_{\beta}(x, f^*) \leq J_{\beta}(x, \gamma) \) for all \(\beta \in (\beta^*, 1) \). The function \(J_{\beta_{n_k}}(x, f^*) - J_{\beta_{n_k}}(x, f) \) is continuous in \(\beta \), therefore if the claim were not correct, the function must have infinitely many zeros. On the other hand, one can write the equation

\[J_{\beta}(x, f) = c(x, f) + \beta \sum_{x'} P(x'|x, f(x)) J_{\beta}(x', f) \]

in matrix form to obtain \(J_{\beta}(x, f) = (I - \beta P(\cdot|x, f(x)))^{-1} c(x, f(x)) \). It follows that, \(J_{\beta}(x, f^*) - J_{\beta}(x, f) \) is a rational function (that is, ratio of two polynomials with finite order) on the complex region \(|z| < 1\) (this follows by studying the inverse matrix \((I - zP)^{-1}\); such a function can only have finitely many zeros (unless it is identically zero). Therefore, it must be that for some \(\beta^* < 1 \), \(J_{\beta}(x, f^*) \leq J_{\beta}(x, \gamma) \) for all \(\beta \in (\beta^*, 1) \). We note here that such a policy is called a **Blackwell-Optimal Policy**. Now,

\[(1 - \beta_{n_k}) J_{\beta_{n_k}}(x, f^*) \leq (1 - \beta_{n_k}) J_{\beta_{n_k}}(x, \gamma) \]

for any \(\gamma \) and thus,

\[J(x, f^*) = \lim_{T \to \infty} \frac{1}{T} \mathbb{E}_x^f \left[\sum_{k=0}^{T-1} c(x_k, u_k) \right] \leq \lim_{n_k \to \infty} \liminf_{n_k \to \infty} (1 - \beta_{n_k}) J_{\beta_{n_k}}(x, f^*) = \limsup_{n_k \to \infty} (1 - \beta_{n_k}) J_{\beta_{n_k}}(x, f^*) \]
7.3 The Vanishing Discounted Cost Approach to the Average Cost Problem

\[
\leq \limsup_{n_k \to \infty} (1 - \beta_{n_k}) J_{\beta_{n_k}} (x, \gamma) \leq \limsup_{T \to \infty} \frac{1}{T} E_\beta \left[\sum_{k=0}^{T-1} c(x_k, u_k) \right]
\]

(7.20)

In the first equality, we use the fact that the limit exists. In the above, the sequence of inequalities follow from the following Abelian inequalities (see Lemma 5.3.1 in \[96\]): Let \(a_n\) be a sequence of non-negative numbers and \(\beta \in (0, 1)\). Then,

\[
\liminf_{N \to \infty} \frac{1}{N} \sum_{m=0}^{N-1} a_m \leq \liminf_{\beta \uparrow 1} (1 - \beta) \sum_{m=0}^{\infty} \beta^m a_m \leq \limsup_{\beta \uparrow 1} (1 - \beta) \sum_{m=0}^{\infty} \beta^m a_m
\]

(7.21)

As a result, \(f^*\) is optimal. The optimal cost does not depend on the initial state by the recurrence condition and irreducibility of the chain under the optimal policy.

In the following, we consider more general state spaces.

7.3.1 Standard Borel State and Action Spaces, ACOE and ACOI

Consider the value function for a discounted cost problem as discussed in Section 5.4:

\[
J_\beta(x) = \min_{u \in U} \left\{ c(x, u) + \beta \int_X J_\beta(y) T(dy|x, u) \right\}, \quad x \in X.
\]

Let \(x_0\) be an arbitrary state and for all \(x \in X\) consider

\[
J_\beta(x) - J_\beta(x_0) = \min_{u \in \mathcal{U}} \left(c(x, u) + \beta \int T(dx'|x, u)(J_\beta(x') - J_\beta(x_0)) - (1 - \beta) J_\beta(x_0) \right)
\]

As discussed in Section 5.4, this has a solution for every \(\beta \in (0, 1)\) under measurable selection conditions.

Recall that a family of functions \(F\) mapping a metric space \(S\) to \(\mathbb{R}\) is said to be equicontinuous at a point \(x_0 \in S\) if, for every \(\epsilon > 0\), there exists a \(\delta > 0\) such that \(d(x, x_0) \leq \delta \implies |f(x) - f(x_0)| \leq \epsilon\) for all \(f \in F\). The family \(F\) is said to be equicontinuous if it is equicontinuous at each \(x \in S\).

Now suppose that \(h_\beta(x) := J_\beta(x) - J_\beta(x_0)\) is equi-continuous (over \(\beta\)) and \(X\) is compact. By the Arzela-Ascoli Theorem (Theorem 7.3.2), taking \(\beta \uparrow 1\) along some sequence, for some subsequence, \(J_{\beta_{n_k}}(x) = J_{\beta_{n_k}}(x_0) + \eta(x)\). If the optimal average cost is finite, then by the Abelian inequality (7.21)

\[
(1 - \beta_{n_k}) J_{\beta_{n_k}}(x_0) \to \zeta^*
\]

(7.22)

will converge along a further subsequence (since the range of these functions would be compact). If we could also exchange the order of the minimum and the limit, one obtains the Average Cost Optimality Equation (ACOE):

\[
\eta(x) = \min_{u \in \mathcal{U}} \left(c(x, u) + \int T(dx'|x, u)\eta(x') - \zeta^* \right),
\]

(7.23)

which has the form of the equations in Definition 7.1.1. We now make this observation formal (and relax the compactness assumption on the state space).

Assumption 7.3.1

(a) The one stage cost function \(c\) is \(\mathbb{R}_{+}\)-valued and continuous.
(b) The stochastic kernel $T(\cdot | x, u)$ is weakly continuous in $(x, u) \in X \times U$, i.e., if $(x_k, u_k) \to (x, u)$, then $T(\cdot | x_k, u_k) \to T(\cdot | x, u)$ weakly.

c) U is compact.

d) X is σ-compact, that is, $X = \cup_n S_n$ where $S_n \subset S_{n+1}$ and each S_n is compact.

In addition to Assumption [7.3.1] we impose the following assumption in this section.

Assumption 7.3.2

There exists $\alpha \in (0, 1)$ and $N \geq 0$, a nonnegative function b on X and a state $z_0 \in X$ such that,

(e) $-N \leq h_\beta(z) \leq b(z)$ for all $z \in X$ and $\beta \in [\alpha, 1)$, where

$$h_\beta(z) = J_\beta(z) - J_\beta(z_0),$$

for some fixed $z_0 \in X$.

(f) The sequence $\{h_\beta(k)\}$ is equicontinuous, where $\{\beta(k)\}$ is a sequence of discount factors converging to 1 which satisfies $\lim_{k \to \infty} (1 - \beta(k))J_\beta(k)(z) = \rho^*$ for all $z \in X$ for some $\rho^* \in [0, L]$.

(g) If X is not compact, then $b(z)$ is bounded.

Note that when the one stage cost function c is bounded by some $L \geq 0$, we must have

$$-(1 - \beta)J_\beta(z) \leq L \text{ for all } \beta \in (0, 1) \text{ and } z \in X.$$

Let us recall the Arzela-Ascoli theorem.

Theorem 7.3.2 [67] Let F be an equi-continuous family of functions on a compact space X and let h_n be a sequence in F such that the range of f_n is compact. Then, there exists a subsequence h_{n_k} which converges uniformly to a continuous function. If X is σ-compact, that is $X = \cup_n K_n$ with $K_n \subset K_{n+1}$ with K_n compact, the same result holds where h_{n_k} converges pointwise to a continuous function, and the convergence is uniform on compact subsets of X.

Theorem 7.3.3 Under Assumptions [7.3.1] and [7.3.2] there exist a constant $\rho^* \geq 0$, a continuous and bounded h from X to \mathbb{R} with $-N \leq h(\cdot) \leq b(\cdot)$, and $\{f^*\} \in S$ such that (ρ^*, h, f^*) satisfies the ACOE; that is,

$$\rho^* + h(z) = \min_{u \in U} \left[c(z, u) + \int_X h(y)T(dy|z, u) \right]$$

$$= c(z, f^*(z)) + \int_X h(y)T(dy|z, f^*(z)),$$

for all $z \in X$. Moreover, $\{f^*\}$ is optimal and ρ^* is the value function, i.e.,

$$\inf_{\phi} J(\phi, z) =: J^*(z) = J(\{f^*\}, z) = \rho^*,$$

for all $z \in X$.

Proof. By [7.22], we have that $(1 - \beta_{n_k})J_\beta(x_0) \to \rho^*$ for some subsequence n_k as $\beta_{n_k} \uparrow 1$. By Assumption 7.3.2 (f) and Theorem 7.3.2, there exists a further subsequence of $h_{n_k} \{h_\beta(k_l)\}$, which converges (uniformly on compact sets) to a continuous and bounded function h. Take the limit in (7.28) along this subsequence, i.e., consider

$$\rho^* + h(z) = \lim_{l} \min_{u \in U} \left[c(z, u) + \beta(k_l) \int_X h_\beta(k_l)(y)T(dy|z, u) \right]$$

$$= \min_{u \in U} \left[c(z, u) + \beta(k_l) \int_X h_\beta(k_l)(y)T(dy|z, u) \right]$$
Now consider for some arbitrary state x, thus ζ.

Here, somewhat similar to Lemma 5.1.2, the exchange of limit and minimum follows from writing (using the compactness of \mathbb{U}, the continuity of $[c(z, u) + \beta(k_l) \int_X h_{\beta(k_l)}(y) T(dy|z, u)]$ on \mathbb{U}, and the equicontinuity of $\{h_{\beta(k_l)}\}$):

$$\min_{\mathbb{U}}[c(z, u) + \beta(k_l) \int_X h_{\beta(k_l)}(y) T(dy|z, u)] = c(z, u_l) + \beta(k_l) \int_X h_{\beta(k_l)}(y) T(dy|z, u_l)$$

$$\min_{\mathbb{U}}[c(z, u) + \int_X h(y) T(dy|z, u)] = c(z, u^*) + \int_X h(y) T(dy|z, u^*)$$

and showing that

$$\max \left(\left| \beta(k_l) \int_X (h_{\beta(k_l)}(y) - h(y)) T(dy|z, u_l) \right|, \left| \beta(k_l) \int_X (h_{\beta(k_l)}(y) - h(y)) T(dy|z, u^*) \right| \right) \to 0. \quad (7.24)$$

The last item follows from a contra-positive argument to show the convergence of some subsequence, as in Lemma 5.1.2 of $u_n \to u$ for some u and the fact that since for every $\{u_n \to u\}$, the set of probability measures $T(dy|z, u_n)$ is tight, for every $\epsilon > 0$ (here, we use weak continuity condition in Assumption 7.3.1), one can find a compact set $K_n \subset X$ so that $\int_X \chi_{K_n} h_{\beta(k_l)}(y) T(dy|z, u_l) \leq \epsilon$ (Assumption 7.3.2 (g)). Since on K_n, $h_{\beta(k_l)} \to h$ uniformly and h is bounded, the result follows. If X is already compact (Assumption 7.3.2 (g)) is not needed.

Remark 7.1. One can also consider Assumptions 4.2.1 and 5.5.1 of [96]; see e.g.

In addition, if one cannot verify the equi-continuity assumption, the following holds; note that the condition of strong continuity in actions for every fixed state is required here.

Theorem 7.3.4 (Theorem 5.4.3 in [96]) Let for every measurable and bounded g, the integral $\int g(x_{t+1}) P(dx_{t+1}|x_t = x, u_t = u)$ be continuous in u for every x, and there exist $N < \infty$ and a function $b(x)$ with

$$-N \leq h_{\beta}(x) \leq b(x), \quad \beta \in (0, 1), x \in X \quad (7.25)$$

and for all $\beta \in [\alpha, 1)$ for some $\alpha < 1$ and $M \in \mathbb{R}_+$:

$$(1 - \beta) J_\beta^g(z) \leq M. \quad (7.26)$$

Under these conditions, the Average Cost Optimality Inequality (ACOI) holds:

$$\eta(x) \geq \min_{u \in \mathbb{U}} \left(c(x, u) + \int T(dx'|x_t, u_t) \eta(x') - \zeta^* \right)$$

$$= \left(c(x, f(x)) + \int T(dx'|x, f(x)) \eta(x') - \zeta^* \right) \quad (7.27)$$

In particular, the stationary and deterministic policy $\gamma = \{f, f, \cdots\}$ is optimal.

Proof. By (7.26) and (7.22), we have that $(1 - \beta_{n_k}) J_{\beta_{n_k}}(x_0) \to \zeta^*$ for some subsequence n_k and $\beta_{n_k} \uparrow 1$. On the other hand, once again by (7.22), under any policy γ, and any sequence $\beta \uparrow 1$

$$\lim_{\beta \to 1} \sup (1 - \beta) J_\beta(x) \leq \lim_{T \to \infty} \frac{1}{T} E^T \left(\sum_{k=0}^{T-1} c(x_k, u_k) \right)$$

thus ζ^* is a lower bound under any admissible policy.

Now consider for some arbitrary state x,

$$(1 - \beta_{n_k}) J_{\beta_{n_k}}(x) = (1 - \beta_{n_k})(J_{\beta_{n_k}}(x) - J_{\beta_{n_k}}(x_0)) + (1 - \beta_{n_k}) J_{\beta_{n_k}}(x_0)$$
The Average Cost Problem

By (7.25), \((1 - \beta_{n_k})(J_{\beta_{n_k}}(x) - J_{\beta_{n_k}}(x_0)) \to 0\). Thus, for any \(x\), \((1 - \beta_{n_k})J_{\beta_{n_k}}(x) \to \zeta^*\).

We now show that (7.27) holds. For this, consider again (7.28).

\[
J_{\beta}(x) - J_{\beta}(x_0) = \min_{u \in U} \left(c(x, u) + \beta \int \mathcal{T}(dx'|x, u)(J_{\beta}(x') - J_{\beta}(x_0)) - (1 - \beta)J_{\beta}(x_0) \right) \tag{7.28}
\]

Observe the following along the subsequence \(n_k\), with \(h_{\beta}(x) = J_{\beta}(x) - J_{\beta}(x_0)\), \((1 - \beta_{n_k})J_{\beta_{n_k}}(x_0) \to \zeta^*\) and

\[
\liminf_{n_k \to \infty} J_{\beta_{n_k}}(x) - J_{\beta_{n_k}}(x_0) = \liminf_{n_k \to \infty} \min_{u \in U} \left(c(x, u) + \beta_{n_k} \int \mathcal{T}(dx'|x, u)h_{\beta_{n_k}}(x') \right) - (1 - \beta_{n_k})J_{\beta_{n_k}}(x_0)
\]

\[
= \lim_{n_k \to \infty} \inf_{n_m > n_k} \min_{u \in U} \left(c(x, u) + \beta_{n_m} \int \mathcal{T}(dx'|x, u)h_{\beta_{n_m}}(x') \right) - (1 - \beta_{n_k})J_{\beta_{n_k}}(x_0)
\]

\[
\geq \lim_{n_k \to \infty} \min_{u \in U} \left(c(x, u) + \beta_{n_k} \int \mathcal{T}(dx'|x, u)H_{n_k}(x') \right) - (1 - \beta_{n_k})J_{\beta_{n_k}}(x_0)
\]

\[
= \min_{u \in U} \left(c(x, u) + \int \mathcal{T}(dx'|x, u)\eta(x') - \zeta^* \right)
\]

where \(H_{n_k}(x) := \inf_{n_m > n_k} \beta_{n_m}(x)\) and \(\eta(x) = \lim_{n_m \to \infty} H_k(x)\) (so that \(\eta(x) = \liminf_{n_k \to \infty} J_{\beta_{n_k}}(x) - J_{\beta_{n_k}}(x_0)\) which is the left hand term of the equation above). The last equality holds if \(H_k \uparrow \eta\) as shown in Lemma 5.4.2 and bounded from below and that \(\int \mathcal{T}(dx'|x, u)H_k(x)\) and \(\int \mathcal{T}(dx'|x, u)\eta(x')\) are continuous on \(U\) (this is where we use the strong continuity in actions property).

We now show that the stationary policy \(\gamma = f^\infty =: \{f, f, f, \cdots\}\) is optimal. Using (7.27) repeatedly, we have that

\[
E^x_\infty \left[\sum_{k=0}^{T-1} c(x_k, u_k) \right] \leq \mathcal{T}\zeta^* + \eta(x) - E^\infty_\infty [\eta(x_{T})] \leq \mathcal{T}\zeta^* + \eta(x) + N.
\]

Dividing by \(\mathcal{T}\) and taking the \(\limsup\), leads to the result that

\[
\limsup_{T \to \infty} \frac{1}{\mathcal{T}} E^x_\infty \left[\sum_{k=0}^{T-1} c(x_k, u_k) \right] \leq \zeta^*.
\]

This completes the proof.

We state the following further relaxation.

Assumption 7.3.3

(a) The one stage cost function \(c\) is nonnegative and continuous.

(b) The stochastic kernel \(P(\cdot|x, u)\) is weakly continuous in \((x, u) \in \mathcal{X} \times \mathcal{U}\).

(c) \(\mathcal{U}\) is compact.

(d) There exist nonnegative real numbers \(M\) and \(\alpha \in [1, \frac{1}{\beta}]\), and a continuous weight function \(w: \mathcal{X} \to [1, \infty)\) such that for each \(x \in \mathcal{X}\), we have

\[
\sup_{a \in \mathcal{U}} c(x, a) \leq Mw(x),
\]

and \(\int_\mathcal{X} w(y)\mathcal{T}(dy|x, a)\) is continuous in \((x, a)\).
For any real-valued measurable function \(u \) on \(\mathcal{X} \), let \(Tu : \mathcal{X} \to \mathbb{R} \) is given by

\[
Tu(x) := \min_{a \in U} \left[c(x, a) + \beta \int_{\mathcal{X}} u(y)T(dy|x, a) \right].
\]

Assumption 7.3.4 Suppose Assumption 7.3.3 holds. Moreover, suppose there exist a probability measure \(\nu_\ast \) on \(\mathcal{X} \times U \to [0, \infty) \) such that

\begin{enumerate}[(e)]
 \item \(\int_{\mathcal{X}} w(y)T(dy|x, a) \leq \alpha w(x) + \lambda(w)\phi(x, a) \) for all \((x, a) \in \mathcal{X} \times U \), where \(\alpha \in (0, 1) \).
 \item \(p(D|x, a) \geq \lambda(D)\phi(x, a) \) for all \((x, a) \in \mathcal{X} \times U \) and \(D \in \mathcal{B}(\mathcal{X}) \).
\end{enumerate}

The weight function \(w \) is \(\mu \)-integrable.

\(\int_{\mathcal{X}} \phi(x, f(x))\lambda(dx) > 0 \) for all \(f \in \mathcal{F} \).

By [189] Theorem 3.5, there exists a unique fixed point of the following contraction operator with modulus \(\alpha \) mapping \(B_w(\mathcal{X}) \cap C(\mathcal{X}) \) into itself

\[
Fu(x) := \min_{a \in U} \left[c(x, a) + \int_{\mathcal{X}} u(y)T(dy|x, a) - \lambda(w)\phi(x, a) \right].
\]

The following theorem is a consequence of [189] Theorems 3.3 and 3.6.

Theorem 7.3.5 [165] Under Assumption 7.3.4, the following holds. For each \(f \in \mathcal{F} \), the stochastic kernel \(Q_f(\cdot | x) \) has an unique invariant probability measure \(\nu_f \). Furthermore, \(w \) is \(\nu_f \)-integrable, and therefore, \(\rho_f := \int_{\mathcal{X}} c(x, f(x))\nu_f(dx) < \infty \). There exist \(f^\ast \in \mathcal{F} \) and \(h^\ast \in B_w(\mathcal{X}) \cap C(\mathcal{X}) \) such that the triplet \((h^\ast, f^\ast, \rho_{f^\ast}) \) satisfies the average cost optimality equality (ACOE) and therefore, for all \(x \in \mathcal{X} \)

\[
\inf_{\pi \in \gamma} V(\pi, x) := V^\ast(x) = \rho_{f^\ast}.
\]

Remark 7.2. A number of sufficient conditions exist in the literature for the ACOE or the ACOI to hold (see [97], [190]). These conditions typically have the form of Assumption 5.4.1 or 5.4.2 together with geometric ergodicity conditions with condition (5.32) replaced with conditions of the form:

\[
\sup_{a \in U} \int_{\mathcal{X}} w(y)T(dy|x, u) \leq \alpha w(x) + K \phi(x, u),
\]

where \(\alpha \in (0, 1) \), \(K < \infty \) and \(\phi \) a positive function. In some approaches, \(\phi \) and \(w \) needs to be continuous, in others it does not. For example if \(\phi(x, u) = 1_{\{x \in C\}} \) for some small set \(A \), then we recover a condition similar to (4.24) leading to geometric ergodicity.

We also note that for the above arguments to hold, there does not need to be a single invariant distribution. Here in (7.28), the pair \(x \) and \(x_0 \) should be picked as a function of the reachable set under a given sequence of policies. The analysis for such a condition is tedious in general since for every \(\beta \) a different optimal policy will typically be adopted; however, for certain applications the reachable set from a given point may be independent of the control policy applied.

7.4 The Convex Analytic Approach to Average Cost Markov Decision Problems

The convex analytic approach (typically attributed to Manne [128] and Borkar [39] (see also [96])) is a powerful approach to the optimization of infinite-horizon problems. It is particularly effective in proving results on the optimality of stationary policies, which can lead to a linear program. This approach is particularly effective for constrained optimization problems and infinite horizon average cost optimization problems. It avoids the use of dynamic programming.
We are interested in the minimization

\[
\inf_{\gamma \in \mathcal{G}} \limsup_{T \to \infty} \frac{1}{T} E^{\gamma}_{x_0} \left[\sum_{t=1}^{T} c(x_t, u_t) \right],
\]

(7.32)

where, as before, \(E^{\gamma}_{x_0} [\cdot] \) denotes the expectation over all sample paths with initial state given by \(x_0 \) under the admissible policy \(\gamma \).

7.4.1 Finite State/Action Setup

We first consider the finite space setting where both \(\mathbb{X} \) and \(\mathbb{U} \) are finite sets. We study the limit distribution of the following occupation measures, under any policy \(\gamma \) in \(\mathcal{G} \). Let for \(T \geq 1 \)

\[
v_T(D) = \frac{1}{T} \sum_{t=0}^{T-1} 1\{ (x_t, u_t) \in D \}, \quad D \in \mathcal{B}(\mathbb{X} \times \mathbb{U}).
\]

Consider any policy \(\gamma \) in \(\mathcal{G} \), \(x_0 \sim \eta \), and let for \(T \geq 1 \),

\[
\mu_T(D) = E^{\gamma}_{\eta} [v_T(D)] = E^{\eta} \frac{1}{T} \left[\sum_{t=0}^{T-1} 1\{ (x_t, u_t) \in D \} \right], \quad D \in \mathcal{B}(\mathbb{X} \times \mathbb{U}).
\]

Let for \(\eta \in \mathcal{P}(\mathbb{X} \times \mathbb{U}) \), define

\[
\eta P(A \times \mathbb{U}) := \sum_{x \in \mathbb{X}, u \in \mathbb{U}} T(A|x, u) \eta(x, u).
\]

Then, through what is often referred to as a Krylov-Bogoliubov-type argument, for every \(A \subset \mathbb{X} \)

\[
|\mu_T(A \times \mathbb{U}) - \mu_T P(A \times \mathbb{U})| \leq \frac{1}{T} \to 0,
\]

as \(T \to \infty \). Notice that the above applies for any policy \(\gamma \in \mathcal{G} \). Now, if we can ensure that for some subsequence, \(\mu_{t_k} \to \mu \) for some probability measure \(\mu \), it would follow that \(\mu_{t_k} P(A \times \mathbb{U}) \to \mu P(A \times \mathbb{U}) \).

Now define

\[
\mathcal{G}_{\mathbb{X}} = \left\{ v \in \mathcal{P}(\mathbb{X} \times \mathbb{U}) : v(B \times \mathbb{U}) = \sum_{x,u} P(x_{t+1} = B|x_0 = x, u_t = u) v(x, u), \quad B \in \mathcal{B}(\mathbb{X}) \right\}
\]

Further define

\[
\mathcal{G} = \left\{ v \in \mathcal{P}(\mathbb{X} \times \mathbb{U}) : \exists \gamma \in \mathcal{G}, v(A) = \sum_{x,u} P^{\gamma}(x_{t+1}, u_{t+1} = A|x_t = x, u_t = u) v(x, u), \quad A \in \mathcal{B}(\mathbb{X} \times \mathbb{U}) \right\}
\]

We can establish the equivalence of these sets of measures: It is evident that \(\mathcal{G} \subset \mathcal{G}_{\mathbb{X}} \) since there are (seemingly) fewer restrictions for \(\mathcal{G}_{\mathbb{X}} \). We can show that these two sets are indeed equal: For \(v \in \mathcal{G}_{\mathbb{X}} \), if we write: \(v(x, u) = \pi(x)\eta(u|x) \) for some \(\eta \), then, we can construct a consistent \(v \in \mathcal{G} \): \(v(B \times C) = \sum_{x \in B} \eta(C|x)\pi(x) \).

Thus, every converging subsequence \(\mu_{t_k} \) will converge to \(\mathcal{G}_{\mathbb{X}} \). And hence, any sequence \(\{\mu_k\} \) will have a converging subsequence whose limit will be in the set \(\mathcal{G} \). This is where finiteness is helpful: If the state space were countable,
there would be no guarantee that every sequence of occupation measures would have a converging subsequence. The following has thus been established.

Lemma 7.4.1 Under any admissible policy, any converging subsequence \{\mu_k\} will converge to the set \mathcal{G}.

Let \langle \mu, c \rangle := \sum \mu(x, u)c(x, u). Let us again write that

\[J^*(x) := \inf_{\gamma \in \Gamma_A} J(x, \gamma), \]

with

\[J(x, \gamma) := \limsup_{T \to \infty} \frac{1}{T} E^\gamma_x T-1 \sum_{t=0}^{T-1} c(x_t, u_t)], \]

or

\[J(x, \gamma) := \limsup_{T \to \infty} \langle \mu_T, c \rangle, \]

where \mu_T is the expected empirical occupation measure under \gamma. Now, we have that, for any policy \gamma,

\[\limsup_{T \to \infty} \langle \mu_T, c \rangle \geq \liminf_{T \to \infty} \langle \mu_T, c \rangle \geq \delta^* \]

where

\[\delta^* = \inf_{\nu \in \mathcal{G}} \sum \nu(x, u)c(x, u) \]

This follows since for any sequence \mu_{T_k} which converges to the liminf value, there exists a further subsequence \mu_{T'_k} (due to the compactness of the space of expected empirical occupation measures) which has a limit, and this limit is in \mathcal{G}. That is,

\[\lim_{T_k \to \infty} \langle \mu_{T_k}, c \rangle = \langle \lim_{T'_k \to \infty} \mu_{T'_k}, c \rangle \geq \delta^*. \]

Thus, we have established that

\[J^*(x) \geq \delta^* \]

If the initial state, or measure on the initial state, can be selected appropriately, or if the controlled Markov chain under an optimal policy is positive Harris recurrent the above also becomes an equality. The solution to this problem then gives us the optimal cost (under any policy). Thus, a candidate for an optimal policy can be obtained through the following linear program:

Linear Program For Finite Models.

Given a cost function \(c\) and transition kernel \(T\), find the minimum of the linear function

\[\sum_{X \times U} \nu(x, u)c(x, u). \] \hspace{1cm} (7.34)

over all probability measures \(\nu\) that satisfy

\[\nu \in \mathcal{G} = \left\{ \mu \in \mathcal{P}(X \times U) : \mu(z, U) = \sum_{X \times U} T(z|(x, u))\mu(x, u) \right\}. \]

where the constraint set can also be written as

\[\sum_{j} \mu(z, j) = \sum_{X \times U} T(z|(x, u))\mu(x, u) \]

with

\[\mu(x, u) \geq 0, \quad x \in X, u \in U \]
\[\sum_{x,u} \mu(x, u) = 1 \]

All of these are linear/affine constraints.

Let \(\mu^* \) be the optimal occupation measure (this exists since the state space is finite, and thus \(\mathcal{G} \) is compact, and \(\sum_{x \times U} \mu(x, u)c(x, u) \) is continuous in \(\mu \)). This induces an optimal policy \(\pi(u|x) \) as (defined almost surely, i.e., for \(x \) with \(\sum_U \mu^*(x, u) > 0 \):

\[\pi(u|x) = \frac{\mu^*(x, u)}{\sum_U \mu^*(x, u)}. \]

Thus, we can find the optimal policy through a linear program.

7.4.2 General State/Action Spaces under Weak Continuity

The arguments presented above apply here as well. However, for the more general case considered here, we need to ensure that the set of expected occupation measures is tight, and that the set \(\mathcal{G} \) is closed. This holds under a set of technical conditions:

Assumption 7.4.1

1. (A) The state process takes values in a compact set \(\mathcal{X} \). The control space \(\mathcal{U} \) is also compact.
2. (A') The cost function satisfies the following condition: \(\lim_{K_n \uparrow \mathcal{X}} \inf_{u \in \mathcal{U}, x \in K_n} c(x, u) = \infty \), (here, we assume that the space \(\mathcal{X} \) is \(\sigma \)-compact). The control space \(\mathcal{U} \) is compact.
3. (B) There exists a policy leading to a finite cost.
4. (C) The non-negative cost function is continuous in \(x \) and \(u \).
5. (D) The transition kernel is weakly continuous in the sense that \(\int T(dz|x, u)v(z) \) is continuous in both \(x \) and \(u \), for every continuous and bounded function \(v \).
6. (E) Under every stationary policy, the induced Markov chain is positive Harris recurrent.

Theorem 7.4.1 Under Assumptions A (or A'), B, C, D, E there exists a solution to the optimal control problem given in (7.38) for every initial condition.

Condition (E) above may be relaxed, if one has freedom on where to start the initial condition, or the initial measure on \(x_0 \).

The key step is the observation that every occupation measure sequence has a weakly converging subsequence. If this exists, then the limit of such a converging sequence will be in \(\mathcal{G} \) and the analysis presented for the finite state space case will be applicable. The issue here is that a sequence of measures on the space of invariant measures \(v_n \) may have a limiting probability measure, but this limit may not correspond to an invariant measure under a stationary policy. The weak continuity of the kernel, and the separability of the space of continuous functions on a compact set, allow for this generalization. This ensures that every sequence has a converging subsequence weakly. In particular, there exists an optimal occupation measure.

Lemma 7.4.2 There exists an optimal occupation measure in \(\mathcal{G} \) under Assumptions A (or A'), B, C, and D above.

Proof: The problem has now reduced to

\[\inf_{\mu} \int \mu(dx, du)c(x, u), \]

s.t.
The set G is closed, since if $\nu_n \to \nu$ and $\nu_n \in G$, then for continuous and bounded $f \in C_b(\mathbb{X})$, $\langle \nu_n, f \rangle \to \langle \nu, f \rangle$. By weak-continuity of the kernel $\int f(x')T(dx'|x,u)$ is also continuous and thus, $\langle \nu_n, Pf \rangle \to \langle \nu, Pf \rangle = \langle \nu P, f \rangle$. Thus, $\nu(f) = \nu Pf$ and $\nu \in G$. Therefore, G is weakly sequentially compact. Since the integral $\int \mu(dx,du)c(x,u)$ is lower semi-continuous on the set of measures under weak convergence, and the existence result follows from Weierstrass’ Theorem.

Following the above lemma, there exists an optimal expected empirical occupation measure, say v. This defines the optimal stationary control policy by the decomposition:

$$\mu(df|u) = \frac{dv(dx,du)}{d\int_u v(dx,du)},$$

v almost surely, where $\frac{d}{du}$ denotes the Radon-Nikodym derivative.

There is a final consideration of reachability; that is, whether from any initial state, or an initial occupation set, the region where the optimal policy is defined is attracted (see [9]).

If the Markov chain is ergodic, then the optimal cost is almost surely independent of where the chain starts from, since in finite time, the states on which the optimal occupation measure has support, can be reached. Furthermore, if the Markov chain is positive Harris recurrent, then for all initial states the optimal expected cost will be the same. If the Markov Chain is not irreducible, then, the stationary policy is only optimal in a restricted set of initial conditions. This is particularly useful for problems where one has control over from which state to start the system.

7.4.3 General State/Action Spaces under Strong Continuity in Actions

The conditions in Assumption 7.4.1 can be modified as follows. Recall the w-s topology introduced by Schäl [170]. The w-s topology on the set of probability measures $P(\mathbb{X} \times \mathbb{U})$ is the coarsest topology under which $\int f(x,u)\nu(dx,du) : P(\mathbb{X} \times \mathbb{U}) \to \mathbb{R}$ is continuous for every measurable and bounded f which is continuous in u for every fixed x (but unlike weak topology, f does not need to be continuous in x).

Assumption 7.4.2

(A) The non-negative cost function is continuous in u for every fixed x, $\lim_{K_n \uparrow \mathbb{X}} \inf_{x \in K_n} c(x,u) = \infty$, (here, we assume that the space \mathbb{X} is σ-compact). The control space \mathbb{U} is compact. Furthermore, there exists a policy leading to a finite cost.

(B) The transition kernel $T(dy|x,u) = P(x_1 \in \cdot|x_0 = x,u_0 = u)$ is strongly continuous in actions for every state variable, in the sense that $\int T(dz|x,u)v(z)$ is continuous in u for every fixed x, for every measurable and bounded function v.

(C) There exists a finite measure Ψ majorizing T, that is:

$$T(dy|x,u) \leq \Psi(dy), \quad x \in \mathbb{X}, u \in \mathbb{U}$$

(D) Under every stationary policy, the induced Markov chain is positive Harris recurrent.

See [11] Condition H2 for sufficient conditions for C above. As an example, consider

$$x_{n+1} = F(x_n, u_n) + w_n$$

with $F(x, \cdot)$ continuous for every x and with F bounded, and w_n admitting a probability density function which is continuous and bounded. This kernel is not weakly continuous, but it does satisfy the conditions in Assumption 7.4.2

Theorem 7.4.2 [11] Under the above Assumptions A, B and C there exists a solution to the optimal control problem given in (7.38) for every initial condition.
As earlier, Condition (D) above may be relaxed, if one has freedom on where to start the initial condition, or the initial measure with which \(x_0 \) is generated. Likewise, the cost function may be assumed to be near-monotone to relax the compactness conditions on \(X \) and \(U \). However, the essence of the arguments will not change.

Proof.

The proof follows from the same steps of Lemma 7.4.2, but instead of weak convergence, we will study the \(w-s \) convergence. Now, let \(v_n \) be a sequence in \(\mathcal{G}_X \) which \(w-s \) converges to some measure \(v \). We will show that \(v \in \mathcal{G}_X \). We note first that, one can also write

\[
\mathcal{G}_X = \left\{ v \in \mathcal{P}(X \times U) : \int f(x)v(dx) = \int \int f(x_1)P(dx_1 \in B|x_0 = x, u_0 = u)v(dx, du), \ f \in M_b(X) \right\},
\]

(7.35)

where \(M(X) \) is the set of measurable and bounded functions on \(X \). Then, for every \(f \in M_b(X) \), we have that

\[
\int f(x)v_n(dx) = \int \int f_n(x_1)P(dx_1 \in B|x_0 = x, u_0 = u)v_n(dx, du).
\]

Write

\[
\int \int f_n(x_1)P(dx_1 \in B|x_0 = x, u_0 = u)v(dx, du) = \int h(x, u)v_n(dx, du)
\]

where \(h(x, u) = E[f(x_1)|x_0 = x, u_0 = u] \), and note that the measurable function \(h \) is continuous in \(u \) by the continuity hypothesis of the transition kernel. Then,

\[
\lim_{n \to \infty} \int h(x, u)v_n(dx, du) = \int h(x, u)v(dx, du)
\]

and

\[
\lim_{n \to \infty} \int f(x)v_n(dx) = \int f(x)v(dx),
\]

which implies that \(v \in \mathcal{G}_X \) and thus in \(\mathcal{G} \).

It is a consequence of [170 Theorem 3.10] or [18 Theorem 2.5], under (C) by implying setwise sequential pre-compactness of marginal measures on the state, ensures that every weakly converging sequence of mean empirical occupation measures also converges in the \(w-s \) sense ([160 Proposition 3.2], which in turn builds on [99 Corollary 1.4.5]; see also [88 Theorem 4.17]).

Under condition (A), we have that there exists a weakly converging subsequence and under (C) that convergence is also under \(w-s \) sense.

Note that under (C), the set

\[
\mathcal{G}_X = \{ v \in \mathcal{P}(X \times U) : v(B \times U) = \int P(x_1 \in B|x_0 = x, u_0 = u)v(dx, du), \ B \in \mathcal{B}(X) \}
\]

is \(w-s \) pre-compact, that is, for every sequence \(v_n \in \mathcal{G}_X \), there exists a subsequence which converges (in the \(w-s \) sense) to a limit.

Finally, that the expression \(\int v(dx, du)c(x, u) \) is lower semi-continuous in \(v \) follows from truncating \(c \) with \(c^N(x, u) = \min(N, c(x, u)) \), and then taking the limit \(N \to \infty \) noting that for every finite \(N \), \(\int v(dx, du)c^N(x, u) \) is continuous in \(v \) under the \(w-s \) convergence. As a result, there exists an optimal measure \(v^* \in \mathcal{G} \).

\[\diamondsuit\]

Remark 7.3. The above also holds when \(\{(x, U(x)), x \in X\} \) is a closed set in \(X \times U \), a sufficient condition being that \(U(x) \) is an upper semi-continuous set-valued function and \(U(x) \) is compact for every \(x \). See [11].
7.4 The Convex Analytic Approach to Average Cost Markov Decision Problems

7.4.4 Optimality of Deterministic Stationary Policies

[11, Theorem 3.6] establishes conditions for optimal policies to be deterministic, with the following arguments. Feinberg [71, Section 4.3] establishes that the criterion, where limit superior is replaced by limit inferior

$$\liminf_{T \to \infty} \frac{1}{T} \mathbb{E}[\gamma x_0 \sum_{t=1}^{T} c(x_t, u_t)],$$

(7.36)

is a concave function on the set of strategic measures. Building on Theorem 5.3.1 (see also 9.5), the infimum

$$\inf_{\gamma} \liminf_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} c(x_t, u_t)$$

(7.37)

can be taken to be the infimum over the extreme points of the set strategic measures, which implies that the infimum can be taken over deterministic policies. If stationary policies lead to positive Harris recurrence, however, liminf and limsup criteria lead to the same induced cost.

7.4.5 ACOI through duality with the convex analytic method

7.4.6 Sample-Path Optimality

Finite State/Action Setup

The above optimality argument is in the stronger sample-path sense, rather than only in expectation. Consider the following:

$$\inf_{\gamma} \limsup_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} c(x_t, u_t),$$

(7.38)

where there is no expectation. The above is known as the sample path cost. Let \mathcal{F}_t be the σ–field generated by $\{x_s, u_s, s \leq t\}$. Define a \mathcal{F}_t measurable process with $A \in B(\mathcal{X})$:

$$F_t(A) = \left(\sum_{s=1}^{t} 1\{x_s \in A\} - t \sum_{x \in \mathcal{X}, u} P(A|x, u)v_t(x, u) \right)$$

Note that this can also be written as

$$F_t(A) = \left(\sum_{s=1}^{t} \left(1\{x_s \in A\} - \sum_{x \in \mathcal{X}, u} P(A|x, u)1\{x_s = x, u_s = u\} \right) \right)$$

Thus, for $t \geq 1$,

$$E[F_t(A)|\mathcal{F}_{t-1}]$$

$$= E \left[\sum_{s=1}^{t} 1\{x_s \in A\} - \sum_{s=0}^{t-1} \sum_{x \in \mathcal{X}, u} P(x_{s+1} \in A|x_s = x, u_s = u)1\{(x_s, u_s) = (x, u)\}|\mathcal{F}_{t-1} \right]$$

$$= E \left[\left(1\{x_t \in A\} - \sum_{x \in \mathcal{X}, u} P(x_{t+1} \in A|x_t = x, u_t = u)1\{(x_t, u_t) = (x, u)\} \right)|\mathcal{F}_{t-1} \right]$$
The Average Cost Problem

\[+ \left(\sum_{s=1}^{t-1} 1_{\{x_s \in A\}} - \sum_{s=0}^{t-2} \sum_{x \times U} P(x_{s+1} \in A | x_s = x, u_s = u) 1_{\{(x_{s+1}, u_{s+1}) = (x, u)\}} \right) \]
\[= 0 \] \hspace{1cm} (7.39)

\[+ \left(\sum_{s=1}^{t-1} 1_{\{x_s \in A\}} - \sum_{s=0}^{t-2} \sum_{x \times U} P(x_{s+1} \in A | x_s = x, u_s = u) 1_{\{(x_{s+1}, u_{s+1}) = (x, u)\}} \right) | F_{t-1} \]
\[= F_{t-1}(A), \] \hspace{1cm} (7.40)

where (7.39) follows from the fact that
\[E[1_{\{x_t \in A\}} | F_{t-1}] = P(x_t \in A | F_{t-1}). \]

We have then that
\[E[F_t(A) | F_{t-1}] = F_{t-1}(A) \forall t \geq 0, \]
and \(\{F_t(A)\} \) is a martingale sequence.

Furthermore, \(F_t(A) \) is a bounded-increment martingale since \(|F_t(A) - F_{t-1}(A)| \leq 1 \). Hence, for every \(T > 2 \), \(\{F_1(A), \ldots, F_T(A)\} \) forms a martingale sequence with uniformly bounded increments, and we could invoke the Azuma-Hoeffding inequality \([63]\) to show that for all \(x > 0 \)
\[P\left(\left| \frac{F_t(A)}{t} \right| \geq x \right) \leq 2e^{-2x^2t} \]

Finally, invoking the Borel-Cantelli Lemma (see Theorem [B.2.1]) for the summability of the estimate above, that is:
\[\sum_{n=1}^{\infty} 2e^{-2x^2t} < \infty, \forall x > 0, \]
we deduce that
\[\lim_{t \to \infty} F_t(A) = 0 \text{ a.s.} \]

Thus,
\[\lim_{T \to \infty} \left(v_T(A) - \sum_{x \times U} P(A | x, u) v_T(x, u) \right) = 0, \forall T \in \mathbb{X} \]

Thus, somewhat similar to the arguments in (7.33), every converging subsequence would have to be in the set \(G \).

Let \(\langle v, c \rangle := \sum v(x, u) c(x, u) \). Now, we have that
\[\lim \inf_{t \to \infty} \langle v_T, c \rangle \geq \gamma^* \]

since for any sequence \(v_{T_k} \) which converges to the liminf value, there exists a further subsequence \(v_{T'_{T_k}} \) (due to the (weak) compactness of the space of occupation measures) which has a weak limit, and this weak limit is in \(G \). Then,
\[\lim_{T_k \to \infty} \langle v_{T_k}, c \rangle = \langle \lim_{T'_{T_k} \to \infty} v_{T'_{T_k}}, c \rangle \geq \gamma^*. \]

Likewise, for the average cost problem:
\[\lim \inf_{T \to \infty} E[\langle v_T, c \rangle] \geq E[\lim \inf_{T \to \infty} \langle v_T, c \rangle] \geq \gamma^*. \]

Standard Borel Setup

As we observed, the discussion in Section 7.4.1 applies to the sample path optimality also. We now discuss a more general setting where the state and action spaces are Polish. Let \(\phi : \mathbb{X} \to \mathbb{R} \) be a continuous and bounded function.
7.4 The Convex Analytic Approach to Average Cost Markov Decision Problems

Define:

\[v_T(\phi) = \frac{1}{T} \sum_{t=1}^{T} \phi(x_t, u_t). \]

Define a measurable process, with \(\pi \) an admissible control policy (not necessarily stationary or Markov):

\[F_t(\phi) = \left(\sum_{s=1}^{t} \phi(x_t) \right) - t \left(\int_{P \times U} \int \phi(x_t') P^\pi(dx_t', du_t'|x) v_t(dx) \right) \]

(7.42)

We define \(G_{\mathcal{X}} \) to be the following set in this case.

\[G_{\mathcal{X}} = \{ \eta \in P(X \times U) : \eta(D) = \int_{X \times U} P(D|z) \eta(dz), \forall D \in B(\mathcal{X}) \}. \]

The optimality argument is in the stronger sample-path sense, rather than only in expectation. Consider the following:

\[\inf_{\gamma} \limsup_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} [c(x_t, u_t)], \]

(7.43)

where there is no expectation. The above is known as the sample path cost. Let \(\langle v, c \rangle := \sum v(x, u) c(x, u) \). If one can guarantee that every sequence of empirical measures \(\{ v_t \} \) would have a converging subsequence to some measure \(v \), we would have that

\[\lim_{T_k \to \infty} \langle v_{T_k}, c \rangle \geq \lim_{T_k' \to \infty} \langle v_{T_k}, c \rangle, \]

by the fact that for \(c \) continuous, non-negative if \(v_k \to v \),

\[\liminf_{k \to \infty} \langle v_k, c \rangle \geq \langle v, c \rangle. \]

Since for any sequence \(v_{T_k} \) which converges to the liminf value, there exists a further subsequence \(v_{T_{k'}} \) (due to the (weak) compactness of the space of occupation measures) which has a weak limit, and this weak limit is in \(G \). By Fatou’s Lemma:

\[\lim_{T_k \to \infty} \langle v_{T_k}, c \rangle = \langle \lim_{T_{k'} \to \infty} v_{T_{k'}}, c \rangle \geq \gamma \]

To apply the convex analytic approach, we require that under any admissible policy, the set of sample path occupation measures would be tight, for almost every sample path realization. If this can be established, then the result goes through not only for the expected cost, but also the sample-path average cost, as discussed for the finite state-action setup.

Researchers in the literature have tried to establish conditions which would ensure that the set of empirical occupational measures are tight. These typically follow one of two conditions: Either cost functions are near-monotone type conditions \[39\] (\(\lim_{|x| \to \infty} \inf_{u \in U} c(x, u) = \infty \)) or behave like moments \[123\] (when \(X \times U \) is locally compact, there exists a sequence of compact sets \(K_n \) so that \(\bigcup K_n = X \times U \) with \(\lim_{n \to \infty} \inf_{\{x', u \} \in K_n} c(x', u) = \infty \)), or the Markov chain satisfies strong recurrence properties \[39\] [10, Chapter 3]. Under such conditions, the sequence of empirical occupation measures \(\{ v_n \} \) which give rise to a finite cost are almost surely tight, every such sequence has a convergent subsequence and thus the arguments above apply: Every expected average-cost optimal policy is also sample-path optimal provided that the initial condition belongs to the support of the invariant probability measure under an optimal policy.
7.5 Constrained Markov Decision Processes

Consider the following average cost problem:

\[
\inf_{\gamma} J(x, \gamma) = \inf_{\gamma} \limsup_{T \to \infty} \frac{1}{T} E^x_\gamma \sum_{t=0}^{T-1} c(x_t, u_t) \tag{7.44}
\]

subject to the constraints:

\[
\limsup_{T \to \infty} \frac{1}{T} E^x_\gamma \sum_{t=0}^{T-1} d_i(x_t, u_t) \leq D_i \tag{7.45}
\]

for \(i = 1, 2, \cdots, m \) where \(m \in \mathbb{N} \).

A linear programming formulation leads to the following result.

Theorem 7.5.1 \([157] \[4]\) Let \(X, U \) be countable. Consider (7.44-7.45). An optimal policy will randomize between at most \(m + 1 \) deterministic policies.

Ross also discusses a setup with one constraint where a non-stationary history-dependent policy may be used instead of randomized stationary policies.

Finally, the theory of constrained Markov Decision Processes is also applicable to Polish state and action spaces, but this requires further technicalities. If there is an accessible atom (or an artificial atom as considered earlier in Chapter 3) under any of the policies considered, then the randomizations can be made at the atom.

7.6 Bibliographic Notes

7.7 Exercises

Exercise 7.7.1 Let \(X, U \) be finite sets and consider the occupation measure:

\[
v_T(A \times B) = \frac{1}{T} \sum_{t=0}^{T-1} 1_{\{(x_t, u_t) \in A \times B\}}, \quad A \subset X, B \subset U.
\]

While proving that the limit of such a measure process lives in a specific set, the following is used, which you are asked to prove. Let \(\gamma \) be some arbitrary but admissible control policy and let \(F_t \) be the \(\sigma \)-field generated by \(\{x_s, u_s, s \leq t\} \). Define a \(F_t \) measurable process

\[
F_t(A) = \left(\sum_{s=1}^{t} 1_{\{x_s \in A\}} - t \sum_{x \times U} P(A|x) v_t(x, u) \right).
\]

Show that, \(\{F_t(A), \ t \in \mathbb{Z}_+\} \) is a martingale sequence.

Hint: Observe that for all \(t \in \{1, 2, \ldots, T\} \)

\[
\left(\sum_{s=1}^{t} 1_{\{x_s \in A\}} - t \sum_{x \times U} P(x_1 \in A|x_0 = x, u_0 = u) v_t(x, u) \right)
\]

\[
= \left(\sum_{s=1}^{t} 1_{\{x_s \in A\}} - \sum_{s=0}^{t-1} \sum_{x \times U} P(x_{s+1} \in A|x_s = x, u_s = u) 1_{\{(x_s, u_s) = (x, u)\}} \right) \tag{7.46}
\]
Then, show that \(E[F_t(A) | F_{t-1}] = F_{t-1}(A) \).

Exercise 7.7.2 a) Let, for a Markov control problem, \(x_t \in X, u_t \in U \), where \(X \) and \(U \) are finite sets denoting the state space and the action space, respectively. Consider the optimal control problem of the minimization of

\[
\limsup_{T \to \infty} \frac{1}{T} \mathbb{E}^\gamma_0 \left[\sum_{t=0}^{T-1} c(x_t, u_t) \right],
\]

where \(c \) is a bounded function. Further assume that under any stationary control policy, the state transition kernel \(P(x_{t+1} | x_t, u_t) \) leads to an irreducible Markov Chain.

Does there exist an optimal control policy? Propose a method to find an optimal policy.

b) Is the optimal policy also sample-path optimal?

Exercise 7.7.3 Consider a controlled Markov Chain with state space \(X = \{0, 1\} \), action space \(U = \{0, 1\} \), and transition kernel for \(t \in \mathbb{Z}_+ \):

\[
\begin{align*}
P(x_{t+1} = 1 | x_t = 0, u_t = 1) &= \alpha \in (0, 1) \quad \text{if } u_t = 1 \quad \text{and} \quad \beta \in (0, 1) \quad \text{if } u_t = 0 \\
P(x_{t+1} = 1 | x_t = 0, u_t = 0) &= \beta \\
P(x_{t+1} = 1 | x_t = 1) &= 1 \\
P(x_{t+1} = 0 | x_t = 1, u_t = 0) &= 1 - \beta \\
P(x_{t+1} = 0 | x_t = 1, u_t = 1) &= 1 - \alpha \\
\end{align*}
\]

Let

\[
\begin{align*}
c(0, 1) &= \kappa \in \mathbb{R}_+, \quad c(0, 0) = 1 \\
c(1, 1) &= 1 \\
\end{align*}
\]

Suppose, the goal is to minimize the quantity

\[
\limsup_{T \to \infty} \frac{1}{T} \mathbb{E}^\gamma_0 \left[\sum_{t=0}^{T-1} c(x_t, u_t) \right],
\]

over all admissible policies \(\gamma \in \Gamma_A \).

Find the optimal policy and the optimal cost, as a function of \(\alpha, \beta, \kappa \). Explain your answer and how you arrived at your solution.

Exercise 7.7.4 Consider a two-state, controlled Markov Chain with state space \(X = \{0, 1\} \), and transition kernel for \(t \in \mathbb{Z}_+ \):

\[
\begin{align*}
P(x_{t+1} = 0 | x_t = 0) &= u_t^0 \\
P(x_{t+1} = 1 | x_t = 0) &= 1 - u_t^0 \\
P(x_{t+1} = 1 | x_t = 1) &= u_t^1 \\
P(x_{t+1} = 0 | x_t = 1) &= 1 - u_t^1 \\
\end{align*}
\]

Here \(u_t^0 \in [0, 1] \) and \(u_t^1 \in [0, 1] \) are the control variables. Suppose, the goal is to minimize the quantity

\[
\limsup_{T \to \infty} \frac{1}{T} \mathbb{E}^\gamma_0 \left[\sum_{t=0}^{T-1} c(x_t, u_t) \right],
\]

where

\[
\begin{align*}
c(0, u^0) &= 1 + u^0, \\
c(1, u^1) &= 1.5, \quad \forall u^1 \in [0, 1],
\end{align*}
\]

with given \(\alpha, \beta \in \mathbb{R}_+ \).
Find an optimal policy and find the optimal cost.

Hint: Consider deterministic and stationary policies and analyze the costs corresponding to such policies.

Exercise 7.7.5 [Machine repair revisited] Recall Exercise [7.7.5] with an average cost formulation. Show that there exists an optimal control policy and that this policy is stationary.

Exercise 7.7.6 For the model considered in Section 7.2 under Assumption 7.2.1 establish that T_z is a contraction on the space of bounded functions h with $h(z) = 0$, with modulus α.

Exercise 7.7.7 Study [158] as an example where an optimal policy may not be stationary or randomized.

Exercise 7.7.8 a) For an infinite horizon discounted cost partially observed Markov decision problem with finite state, action and measurement spaces, suppose that we wish to restrict the policies to be stationary control policies which only are based on the most recent observation; that is $u_t = \gamma(y_t)$ for some $\gamma : Y \rightarrow U$ (clearly, this is suboptimal among all admissible policies, as the analysis in the Chapter shows). Given this restrictive class of policies, can one obtain an optimal policy through linear programming? b) Can you consider a setup where an optimal policy above may not be optimal among all policies (e.g., an optimal one-memory policy may not be stationary)? Hint: Consider linear systems theory (stationary output feedback vs. time-varying output feedback).

Exercise 7.7.9 Consider a controlled Markov chain with state space $X = \{0, 1\}$, action space $U = \{0, 1\}$, and transition kernel for $t \in \mathbb{Z}_+$:

\[
P(x_{t+1} = 1|x_t = 0, u_t = 1) = 1
\]

\[
P(x_{t+1} = 1|x_t = 0, u_t = 0) = \frac{1}{2}
\]

\[
P(x_{t+1} = 1|x_t = 1, u_t = 0) = P(x_{t+1} = 1|x_t = 1, u_t = 1) = \frac{1}{2}.
\]

Let a cost function $c : X \times U \rightarrow \mathbb{R}_+$ be given by

\[
c(0, 1) = \kappa \in \mathbb{R}_+, \quad c(0, 0) = 1
\]

\[
c(1, 0) = \frac{1}{2}, \quad c(1, 1) = 1.
\]

Suppose that the goal is to minimize the quantity

\[
\lim_{T \to \infty} \sup T E_0^T \left[\sum_{t=0}^{T-1} c(x_t, u_t) \right],
\]

over all admissible policies $\gamma \in \gamma_A$. Recall that a policy is admissible if the controller has access to $\{x_s, s \leq t; u_l, l \leq t-1\}$ at time $t \in \mathbb{Z}_+$.

Find an optimal policy and the **optimal expected cost** explicitly, as a function of κ. Explain your answer and how you arrived at your solution.
8

Numerical Methods, Reinforcement Learning and Approximation Methods

8.1 Value and Policy Iteration Algorithms

8.1.1 Value Iteration

Consider expected discounted cost criterion, for some $\beta \in (0, 1)$,

$$J_\beta(x_0, \gamma) = E_\gamma [\sum_{t=0}^{\infty} \beta^t c(x_t, u_t)],$$

(8.1)

to be minimized. The Value Iteration Algorithm was presented earlier in Theorem 5.4.2, restated in the following.

Theorem 8.1.1 Suppose the cost function c is bounded, non-negative, and one of the measurable selection conditions (Assumption 5.1.1 or Assumption 5.1.2) applies. Then, there exists a unique solution to the discounted cost optimality equation

$$v(x) = \min_u \left(c(x, u) + \beta \int X v(y) T(dy|x, u) \right), \quad x \in X$$

Furthermore, the optimal cost (value function) is obtained by a successive iteration of policies (known as the Value Iteration Algorithm):

$$v_n(x) = \min_u \{ c(x, u) + \beta \int_X v_{n-1}(y) T(dy|x, u) \}, \quad \forall x, n \in \mathbb{N}$$

(8.2)

For any $v_0 \in L_\infty(X)$, the sequence converges to a unique fixed point. If $v_0(x) = 0$ for all $x \in X$, then $v_n(x) \uparrow v(x)$ for all $x \in X$.

8.1.2 Policy Iteration

We now discuss the Policy Iteration Algorithm. Let X be countable and c be a bounded cost function. Consider again (8.1). Let $\gamma_0 := \{ \gamma_0, \gamma_0, \cdots, \gamma_0, \cdots \}$ denote a deterministic stationary policy (which naturally leads to a finite discounted expected cost here). Let this expected cost be $W_0(\cdot)$; that is,

$$W_0(x) = E_\gamma^{\gamma_0} \left[\sum_{k=0}^{\infty} \beta^k c(x_k, \gamma_0(x_k)) \right], \quad x \in X$$

Then,

$$W_0(x) = c(x, \gamma_0(x)) + \beta \sum_{x'} W_0(x') P(x_{t+1}=x'|x_t=x, u_t=\gamma_0(x))$$
Let

\[T(W_0)(x) = \min_{u \in U} \left(c(x, u) + \beta \sum_{x'} W_0(x') P(x_{t+1} = x'|x_t = x, u_t = u) \right). \]

Clearly \(T(W_0) \leq W_0 \) pointwise (in \(x \)). Now, let \(\gamma_1 \) be such that

\[T(W_0)(x) = c(x, \gamma_1(x)) + \beta \sum_{x'} W_0(x') P(x_1 = x' | x_0 = x, u_0 = \gamma_1(x)) \quad (8.3) \]

Observe that, iterative application of (8.3) one more time (to \(W_0(x') \) above with \(T(W_0)(x') \leq W_0(x') \)) leads to

\[W_0(x) \geq E_x^{\gamma_1} \left[\sum_{k=0}^{n-1} \beta^k c(x_k, \gamma_1(x_k)) + \beta^n \int W_0(x_n) T(dx_n | x_{n-1} = x, u_{n-1} = \gamma_1(x)) \right]. \]

and, continuing further, for any \(x \in X, n \in \mathbb{Z}_+ \), we arrive at

\[W_0(x) \geq E_x^{\gamma_1} \left[\sum_{k=0}^{n-1} \beta^k c(x_k, \gamma_1(x_k)) \right] + \beta^n \int W_0(x_n) T(dx_n | x_{n-1} = x, u_{n-1} = \gamma_1(x)). \quad (8.4) \]

Taking the limit \(n \to \infty \), this leads to the relation \(W_1(x) \leq T(W_0)(x) \leq W_0(x) \), with

\[W_1(x) = E_x^{\gamma_1} \left[\sum_{k=0}^{\infty} \beta^k c(x_k, \gamma_1(x_k)) \right] \]

so that

\[W_1(x) := c(x, \gamma_1(x)) + \beta \sum_{x'} W_1(x') P(x_{t+1} = x'|x_t = x, u_t = \gamma_1(x)). \]

We can interpret the steps of the discussion above as follows: We start with the policy \(\{ \gamma_0, \gamma_0, \gamma_0, \cdots \} \) and then make the point that the policy \(\{ \gamma_1, \gamma_0, \gamma_0, \cdots \} \) is a better one and then \(\{ \gamma_1, \gamma_1, \gamma_0, \cdots \} \) is a better one and ultimately the policy \(\{ \gamma_1, \gamma_1, \gamma_1, \cdots \} \) is a better policy than what we started with.

We then continue this procedure for \(m = 2 \) by replacing \(W_1 \) with \(W_0 \) above, to arrive at

\[T(W_1)(x) = \min_{u \in U} \left(c(x, u) + \beta \sum_{x'} W_1(x') P(x_{t+1} = x'|x_t = x, u_t = u) \right) = c(x, \gamma_2(x)) + \beta \sum_{x'} W_1(x') P(x_1 = x' | x_0 = x, u_0 = \gamma_2(x)) \quad (8.5) \]

and ultimately \(W_2(x) \leq T(W_1)(x) \leq W_1(x) \), where

\[W_2(x) = E_x^{\gamma_2} \left[\sum_{k=0}^{\infty} \beta^k c(x_k, \gamma_1(x_k)) \right] \]

Then, we repeat the process for \(m > 2 \) with

\[T(W_m)(x) = \min_{u \in U} \left(c(x, u) + \beta \sum_{x'} W_m(x') P(x_{t+1} = x'|x_t = x, u_t = u) \right) = c(x, \gamma_{m+1}(x)) + \beta \sum_{x'} W_m(x') P(x_1 = x' | x_0 = x, u_0 = \gamma_{m+1}(x)) \quad (8.6) \]

and ultimately \(W_{m+1}(x) \leq T(W_m)(x) \leq W_m(x) \), where
\[W_{m+1}(x) = E^\gamma_{m+1}[\sum_{k=0}^{\infty} \beta^k c(x_k, \gamma_{m+1}(x_k))] \]

Remark 8.1. Note that for a finite state action problem, the following holds

\[W_1(x) = E^\gamma_1[\sum_{k=0}^{\infty} c(x_k, \gamma_1(x_k))] = c(x, \gamma_1(x)) + \beta \sum W_1(x_{t+1}) T(dx_{t+1} | x_t = x, u_t = \gamma_1(x)) \]

More generally, for a given stationary policy \(\gamma \):

\[J_\beta(x, \gamma) = E^\gamma_\beta[\sum_{k=0}^{\infty} c(x_k, \gamma(x_k))] = c(x, \gamma(x)) + \beta \sum_{x'} J_\beta(x', \gamma) P(x_{t+1} = x' | x_t = x, u_t = \gamma(x)) \]

can be computed by solving the following matrix equation

\[W = c_\gamma + \beta P^\gamma W, \]

leading to

\[W = (I - \beta P^\gamma)^{-1} c_\gamma, \]

where \(W \) is a column vector consisting of \(W(x), x \in X \); \(c_\gamma \) is a column vector consisting of elements \(c(x, \gamma(x)), x \in X \); and \(P^\gamma \) is a stochastic matrix with entries \(P^\gamma(x, x') = P(x_{t+1} = x' | x_t = x, u_t = \gamma(x)) \). Thus, the implementation of the policy iteration algorithm is quite simple.

Theorem 8.1.2 Through the policy iteration algorithm, there exists \(W : X \to \mathbb{R} \) such that \(W_n \downarrow W \) pointwise in \(x \), provided that for some \(n \in \mathbb{N}, W_n(x) < \infty \) for \(x \in X \). If \(\gamma = \{f, f, \cdots\} \) satisfies

\[E^\gamma_\beta[\sum_{k=0}^{\infty} \beta^k c(x_k, f(x_k))] = W(x), \]

then \(\gamma \) is optimal among all stationary policies. For a problem with finite state and action spaces, convergence is guaranteed in a finite number of stages and the resulting policy is optimal.

Proof. By (8.4) the sequence \(W_n \geq T(W_n) \geq W_{n+1} \), and thus there is a limit \(W \) (since the cost per state is bounded from below) and the limit satisfies \(W = T(W) \). Since such a \(W \) leads to a lower bound under any stationary policy by the construction of the algorithm, an argument similar to the one in the proof of Lemma 5.4.4 leads to the result. Note that we have the condition, as noted in Lemma 5.4.4,

\[\lim_{t \to \infty} \beta^t E^\gamma_\beta[W(x_t)] = 0, \]

since \(W(x) < \infty \).

8.2 Stochastic Learning Algorithms

In some Markov Decision Problems, one does not know the true transition kernel, or the cost function and may wish to use past data to obtain an asymptotically optimal solution. In some problems, this may be used as an efficient numerical method to obtain approximately optimal solutions. There may also be setups where a prior probabilistic knowledge on the system dynamics may be used to learn the true system. In particular, one may apply Bayesian (probabilistically driven given some prior information) or non-Bayesian (primarily empirical, without assuming a prior probabilistic model) methods.

A very important class of non-Bayesian methods are known as stochastic approximation algorithms: such approximation methods are used extensively in many application areas. A typical stochastic approximation algorithm has the
following form

\[x_{t+1} = x_t + \alpha_t (F(x_t) - x_t + w_t) \]

(8.7)

where \(w_t \) is a zero-mean noise variable. The goal is to arrive at a point \(x^* \) which satisfies \(x^* = F(x^*) \).

Exercise 8.2.1 Compare the above with the gradient descent algorithm. See also the stochastic gradient descent discussed in Exercise 4.5.16.

8.2.1 Q-Learning

Q-learning [195], [182], [17] is a stochastic approximation algorithm that does not require the knowledge of the transition kernel, or even the cost (or reward) function for its implementation. In this algorithm, the incurred per-stage cost variable is observed through simulation of a single sample path. When the state and the action spaces are finite, under mild conditions regarding infinitely often hits for all state-action pairs, this algorithm is known to converge to the optimal cost. We now discuss this algorithm.

Consider a Markov Decision Problem with finite state and action sets with the criterion given in (8.1) for some \(\beta \in (0, 1) \).

Let \(Q : \mathbb{X} \times \mathbb{U} \rightarrow \mathbb{R} \) denote the \(Q \)-factor of the controller. Let us assume that the decision maker applies an arbitrary admissible policy \(\gamma \) and updates its \(Q \)-factors as follows for \(t \geq 0 \),

\[Q_{t+1}(x, u) = Q_t(x, u) + \alpha_t(x, u) \left(c(x, u) + \beta \min_v Q_t(X_{t+1}, v) - Q_t(x, u) \right) \]

(8.8)

where the initial condition \(Q_0 \) is given, \(\alpha_t(x, u) \) is the step-size for \((x, u) \) at time \(t \), \(u_t \) is chosen arbitrarily -e.g., according to some random exploration policy \(\gamma \) as long as some technical conditions noted below hold, and the random state \(X_{t+1} \) evolves according to \(P(X_1 \in \cdot | x_0 = x, u_0 = u) \) starting at \(x_0 = x \). It is assumed that, for all \((x, u), t \geq 0 \), the following hold

Assumption 8.2.1 For all \((x, u), t \geq 0 \),

\[a) \quad \alpha_t(x, u) \in [0, 1] \]
\[b) \quad \alpha_t(x, u) = 0 \text{ unless } (x, u) = (x_t, u_t) \]
\[c) \quad \alpha_t(x, u) \text{ is a (deterministic) function of } (x_0, u_0), \ldots, (x_t, u_t). \]
\[d) \quad \sum_{t \geq 0} \alpha_t(x, u) \rightarrow \infty, \text{ almost surely} \]
\[e) \quad \sum_{t \geq 0} \alpha_t^2(x, u) \leq C, \text{ almost surely, for some (deterministic) constant } C < \infty. \]

A common way to pick \(\alpha \) coefficients in the algorithm is to take for every \((x, u) \) pair:

\[\alpha_t(x, u) = \frac{1}{1 + \sum_{k=0}^{t-1} 1 \{x_k = x, u_k = u\}} \]

The selection of the control actions for each state can be arbitrary, as long as the assumptions above are guaranteed to hold.

Let \(F \) be an operator acting on the \(Q \) factors defined by:

\[F(Q)(x, u) = c(x, u) + \beta \sum_{x'} T(x'|x, u) \min_v Q(x', v), \]

(8.9)

where \(T(x'|x, u) = P(x_1 = x'|x_0 = x, u_0 = u) \) is the transition kernel. Consider the following fixed point equation.
where

\[Q^t(x, u) = F(Q^*)(x, u) = c(x, u) + \beta \sum_{x'} T(x'|x, u) \min_v Q^*(x', v) \]

(8.10)

whose existence and uniqueness follow essentially identically from arguments used in the contraction analysis utilized in Chapter 5 (see Theorem 5.4.2), by using the norm \(\|Q\|_\infty = \max_{(x, u)} |Q(x, u)|. \)

Now, note that we can write (8.8) as

\[Q_{t+1}(x, u) = Q_t(x, u) + \alpha_t(x, u) \left(F(Q_t)(x, u) - Q_t(x, u) + \left(c(x, u) + \beta \min_v Q_t(x_{t+1}, v) - F(Q_t)(x, u) \right) \right) \]

(8.11)

which is in the same form as (8.7) since

\[w_t := \left(c(x_t, u_t) + \beta \min_v Q_t(x_{t+1}, v) - F(Q)(x_t, u_t) \right), \]

conditioned on the filtration generated by \(\{x_t, u_t\} \) up to time \(t \), is a zero-mean random variable.

Let us write (8.11) as

\[Q_{t+1}(x, u) = (1 - \alpha_t(x, u))Q_t(x, u) + \alpha_t(x, u) \left(F(Q_t)(x, u) + \left(c(x, u) + \beta \min_v Q_t(x_{t+1}, v) - F(Q_t)(x, u) \right) \right) \]

and by (8.10)

\[Q_{t+1}(x, u) - Q^*(x, u) = (1 - \alpha_t(x, u))(Q_t(x, u) - Q^*(x, u)) + \alpha_t(x, u) \left(F(Q_t)(x, u) - F(Q^*)(x, u) + \left(c(x, u) + \beta \min_v Q_t(x_{t+1}, v) - F(Q_t)(x, u) \right) \right) \]

(8.12)

Since for every realization of \(x_{t+1}, \) \(\min_v Q_t(x_{t+1}, v) - \min_{v'} Q_t^*(x_{t+1}, v') \leq \max_{v} |Q_t(x_t, v) - Q^*_t(x_{t+1}, v)| \), we have that

\[|F(Q_t)(x, u) - F(Q^*)(x, u)| \leq \beta \|Q_t - Q^*\|_\infty := \max_{x, u} |Q_t(x, u) - Q^*(x, u)| \]

(8.13)

Theorem 8.2.1 (i) Under Assumption 8.2.1, the algorithm (8.8) converges almost surely to \(Q^* \).

(ii) A stationary policy \(f^* \) which satisfies \(\min_u Q^*_t(x, u) = Q^*(x, f^*(x)) \) is an optimal policy.

Proof Sketch. (i) From (8.12), the process \(Q_t \) satisfies the following form, with \(S_t = Q_t - Q^*_t \):

\[S_{t+1}(x, u) = (1 - \alpha_t(x, u))S_t(x, u) + \alpha_t(x, u) \left((F(Q_t)(x, u) - F(Q^*)(x, u)) + w_t \right), \]

where \(\{\alpha_t\} \) satisfies Assumption 8.2.1.

The above is a linear update dynamics. Now, we will apply the principle of superposition from linear systems theory, as in [79] Theorem 1. Accordingly, we will consider the following two parallel dynamics:

\[S^p_{t+1}(x, u) = (1 - \alpha_t(x, u))S^p_t(x, u) + \alpha_t(x, u)w_t, \]

\[S^a_{t+1}(x, u) = (1 - \alpha_t(x, u))S^a_t(x, u) + \alpha_t(x, u) \left(F(Q_t)(x, u) - F(Q^*)(x, u) \right), \]

(8.14)

We clearly have \(S_t(x, u) = S^a_{t+1}(x, u) + S^a_{t+1}(x, u) \)

The next step is to show that \(S^a_{t+1}(x, u) \to 0 \) almost surely. We will show this further below.
Once this is attained, we can focus on $S^b_{t+1}(x, u) + S^a_{t+1}(x, u)$, using the fact that, by (8.13)

$$
\|\langle F(Q_t) \rangle(\cdot, \cdot) - F(Q^*)(\cdot, \cdot)\|_\infty \leq \beta \|S_t\|_\infty \leq \beta \|S^a_{t+1}\|_\infty + \beta \|S^b_{t+1}\|_\infty
$$

Almost surely, for every $\epsilon > 0$, there exists N such that for $t \geq N$, $\|S^a_{t+1}\|_\infty \leq \epsilon$ (where we suppress the sample path dependence). In the following, we assume that $t \geq N$. Now, let $\beta := \beta(M + 1)/M < 1$ and for $\|S^a_t\|_\infty > M\epsilon$ note that

$$
\beta \|S^a_t(x, u)\| + \epsilon \leq \beta \|S^b_t\|_\infty
$$

and

$$
S^b_{t+1}(x, u) = (1 - \alpha_t(x, u))S^b_t(x, u) + \alpha_t(x, u)\left(F(Q_t)(x, u) - F(Q^*)(x, u)\right)
\leq (1 - \alpha_t(x, u))S^b_t(x, u) + \alpha_t(x, u)(\beta \|S^a_{t+1}\| + \beta \|S^b_{t+1}\|)
\leq (1 - \alpha_t(x, u))S^b_t(x, u) + \alpha_t(x, u)\beta \|S^b_t\|_\infty
< \|S^b_t\|_\infty
$$

Thus, $\|S^b_t\|_\infty$ monotonically decreases, and would converge to some number not larger than $M\epsilon$, and in particular the condition $\|S^b_t\|_\infty > M\epsilon$ cannot be sustained. Furthermore, once $\|S^b_t\|_\infty \leq M\epsilon$, we can show via (8.15) and $\beta(M + 1)/M < 1$ that it will remain there thereafter.

Since $\epsilon > 0$ is arbitrary, the convergence result follows.

(ii) We now discuss S^a_t. Taking the square of S^a_t, we obtain:

$$
E[(S^a_{t+1}(x, u))^2| F_t] \leq (S^a_t(x, u))^2 - 2\alpha_t(S^a_t(x, u))^2 + \alpha_t^2(S^a_t(x, u))^2 + \alpha_t^2
$$

First, by an argument identical to that used in the proof of the Comparison Theorem (Theorem 4.2.3), we have that for any $T > 0$:

$$
E\left[\sum_{i=0}^{T-1} (2\alpha_i - \alpha_i^2)(S^a_t(x, u))^2 \leq (S^a_0(x, u))^2 + E\left[\sum_{i=0}^{T-1} \alpha_i^2\right]\right]
$$

Second, by Exercise 4.5.14, we conclude that S^a_t converges to some random variable almost surely. The above then implies that the limit must be zero: Suppose not; since α_t is not summable, there exists an infinite sequence of times so that each summation of α_t between the times is bounded from below by a positive constant. Through this, if $(S^a_t)^2$ were not to converge to zero, it would remain above a positive constant after a sufficiently large time, and then it would follow that $\sum_i(2\alpha_i - \alpha_i^2)S^a_t$ would not remain bounded. Therefore, if this were to happen with non-zero measure, the expectation of this term would be unbounded, which in turn would, as $T \to \infty$, violate (8.17). You can also, alternatively, build on Exercise 4.5.15.

(ii) Now, consider

$$
Q^*(x, u) = F(Q^*)(x, u) = c(x, u) + \beta \sum_{x'} P(x'|x, u) \min_v Q^*(x', v)
$$

Note that the minimum of u, for each x, is essentially the solution to the Discounted Cost Optimality Equation studied in Chapter 5 (see Theorem 5.4.2). Hence, the stationary policy $\{f^*_v\}$ is optimal.

\hfill \diamond

Exercise 8.2.2 To gain some further intuition, consider the following averaging dynamics: Let α_t be a sequence of scalars and define:

$$
s_T = \frac{1}{T} \sum_{k=0}^{T-1} a_k
$$

Observe that for $T > 1$, $Ts_T = (T - 1)s_{T-1} + a_{T-1}$ which leads to
8.3 Approximation through Quantization of the State and the Action Spaces

\[s_T = s_{T-1} + \frac{1}{T}(a_{T-1} - s_{T-1}) \]

In view of this observation, conclude that with \(\alpha_k \) in Assumption 8.2.1 taken as \(\frac{1}{k} \), we have an averaging dynamics. One may interpret the Q-learning algorithm and its convergence properties with this insight.

Receding Horizon Algorithms / Model Predictive Control

Roll-out algorithms, also known as sliding-horizon or receding horizon algorithms, are practically important. Such an algorithm is provably near-optimal as the horizon length increases under some conditions. We refer the reader to [95], [51], [62] and [27] among many other papers in this direction.

8.3 Approximation through Quantization of the State and the Action Spaces

This section is based on [160,161,163,164,167]. We will, with the goal of clarity in a concise presentation, only focus on the setup where the state spaces considered are compact.

Let \(X, U \) be standard Borel spaces with \(U(x) = U \) compact.

8.3.1 Finite Action Approximation to MDPs

Definition 8.2. A measurable function \(q : X \rightarrow U \) is called a quantizer from \(X \) to \(U \) if the range of \(q \), i.e., \(q(X) = \{ q(x) \in U : x \in X \} \), is finite.

The elements of \(q(X) \) (the possible values of \(q \)) are called the levels of \(q \).

Finite Action Approximate MDP: Quantization of the Action Space

Let \(d_U \) denote the metric on \(U \). Since the action space \(U \) is compact and thus totally bounded, one can find a sequence of finite sets \(\Lambda_n = \{a_{n,1}, \ldots, a_{n,k_n}\} \subset U \) such that for all \(n \),

\[\min_{i \in \{1, \ldots, k_n\}} d_U(a, a_{n,i}) < 1/n \text{ for all } a \in U. \]

In other words, \(\Lambda_n \) is a 1/n-net in \(U \). In the rest of Section 8.3.1 we assume that the sequence \(\{\Lambda_n\}_{n \geq 1} \) is fixed. To ease the notation in the sequel, let us define the mapping

\[T_n(f)(x) := \arg \min_{a \in \Lambda_n} d_U(f(x), a), \tag{8.18} \]

where ties are broken so that \(T_n(f)(x) \) is measurable.

Our main objective in this section is to find conditions on the components of the MDP under which there exists a sequence of finite subsets \(\{\Lambda_n\}_{n \geq 1} \) of \(U \) for which the following holds:

1. **(P)** If for each \(n \), MDP \(\Lambda_n \) is defined as the Markov decision process having the components \(\{X, \Lambda_n, p, c\} \), then we would like to find conditions under which the value function of MDP \(\Lambda_n \) converges to the value function of the original MDP as \(n \rightarrow \infty \).

Near optimality of quantized policies under strong continuity in actions for each state

Consider the problem (P) for MDPs with strongly continuous transition probabilities.
Assumption 8.3.1

(a) The one stage cost function c is nonnegative and bounded satisfying $c(x, \cdot) \in C_b(U)$ for all $x \in X$.

(b) The stochastic kernel $T(\cdot|x, u)$ is setwise continuous in $u \in U$ for every $x \in X$.

(c) U is compact.

The following theorem states that for any $f \in F$, the discounted cost function of $\Upsilon_n(f) \in Q(\Lambda_n)$ converges to the discounted cost function of f as $n \to \infty$. Therefore, it implies that the discounted value function of the MDP converges to the discounted value function of the original MDP.

Theorem 8.3.1 [Discounted Cost] Consider problem (P) for the discounted cost under Assumption 8.3.1. Then, for any stationary policy defined with $f : X \to U$, if $\Upsilon_n(f) = Q\left((f)(x)\right)$, then $J(\Upsilon_n(f), x) \to J(f, x)$ as $n \to \infty$, for all $x \in X$.

In contrast to the discounted cost criterion, the expected average cost is in general not sequentially continuous with respect to strategic measures for the $w_s\infty$ topology under practical assumptions. Observe that any deterministic stationary policy f defines a stochastic kernel on X given X via

$$Q_f(\cdot|x) := T(\cdot|x, f(x)).$$

Let Q_f^t denote the t-step transition probability of this Markov chain. If Q_f admits an ergodic invariant probability measure ν_f, then by Theorem 2.3.4 and Proposition 2.4.2, there exists an invariant set $M_f \in B(X)$ with full ν_f measure such that for all x in that set we have

$$V(f, x) = \int_X c(x, f(x))\nu_f(dx).$$

Assumption 8.3.2 Suppose Assumption 8.3.1 holds. In addition, we have

(e) For any $f \in F$, Q_f has a unique invariant probability measure ν_f.

(f1) The set of invariant probability measures $\Gamma_f := \{\nu \in P(X) : \nu Q_f = \nu\}$ for some $f \in F$ is relatively sequentially compact in the setwise topology.

(f2) There exists $x \in X$ such that for all $B \in B(X)$, $Q_f^t(B|x) \to \nu_f(B)$ uniformly in $f \in F$.

(g) $M := \cap_{f \in F} M_f \neq \emptyset$.

The following theorem states that for any $f \in F$, the average cost function of $\Upsilon_n(f) \in Q(\Lambda_n)$ converges to the average cost function of f as $n \to \infty$. In particular, the average value function of MDP converges to the average value function of the original MDP.

Theorem 8.3.2 [Average Cost] Let $x \in M$ and $f \in F$. Then, we have $V(\Upsilon_n(f), x) \to V(f, x)$ as $n \to \infty$, under Assumption 8.3.2 with (f1) or (f2).

Near optimality of quantized policies under weak continuity

Consider (P) for MDPs with weakly continuous transition probability. Specifically, we will show that the value function of MDP converges to the value function of the original MDP, which is equivalent to (P).

Assumption 8.3.3 (a) The one stage cost function c is bounded and continuous.
8.3 Approximation through Quantization of the State and the Action Spaces

(b) The stochastic kernel $\mathcal{T}(\cdot | x, a)$ is weakly continuous in $(x, a) \in \mathbb{X} \times \mathbb{U}$.

(c) \mathbb{U} is compact.

(d) \mathbb{X} is compact.

For any real-valued measurable function u on \mathbb{X}, let T be given by

$$(Tu)(x) := \min_{a \in \mathbb{A}} \left[c(x, a) + \beta \int_{\mathbb{X}} u(y) T(dy | x, a) \right].$$

(8.21)

Here, T is the Bellman optimality operator for the MDP considered earlier in (5.23). Analogously, let us define the Bellman optimality operator T_n of MDP \mathbb{N} as

$$T_n u(x) := \min_{a \in \mathbb{A}_n} \left[c(x, a) + \beta \int_{\mathbb{X}} u(y) T(dy | x, a) \right].$$

(8.22)

We have seen that both T and T_n are contraction operators. Furthermore, value functions of MDP and MDP \mathbb{N} are fixed points of these operators; that is, $T J^* = J^*$ and $T_n J_n^* = J_n^*$. Let us define $v_0 = v_0^0 = 0$, and $v_{t+1} = T v_t$ and $v_{t+1}^n = T_n v_t^n$ for $t \geq 1$; that is, $\{v_t\}_{t \geq 1}$ and $\{v_t^n\}_{t \geq 1}$ are successive approximations to the discounted value functions of the MDP and MDP \mathbb{N}, respectively (via value iteration).

Lemma 8.3. Under Assumption 8.3.3 for any $t \geq 1$, we have

$$\lim_{n \to \infty} \sup_{x \in \mathbb{X}} |v_t^n(x) - v_t(x)| = 0.$$

(8.23)

The following theorem states that the discounted value function of MDP \mathbb{N} converges to the discounted value function of the original MDP. It can be proved by using Lemma 8.3 and taking into account that $\{v_t\}_{t \geq 1}$ and $\{v_t^n\}_{t \geq 1}$ are successive approximations to the value functions J^* and J_n^*, respectively.

Theorem 8.3.3 [Discounted Cost] Under Assumption 8.3.3 we have

$$\lim_{n \to \infty} \sup_{x \in \mathbb{X}} |J_n^*(x) - J^*(x)| = 0.$$

(8.24)

We state an approximation result analogous to Theorem 8.3.3 for the average cost case. To do this, some new assumptions are needed on the components of the original MDP in addition to Assumption 8.3.3. A version of these assumptions was used in [189] and [85] to show the existence of the solution to the Average Cost Optimality Equality (ACOE) and Inequality (ACOI).

Assumption 8.3.4 Suppose Assumption 8.3.3 holds. Moreover, suppose that

(e) $\mathcal{T}(D|x, a) \geq \lambda(D)$ for all $(x, a) \in \mathbb{X} \times \mathbb{U}$ and $D \in \mathcal{B}(\mathbb{X})$.

Suppose that Assumption 8.3.4 holds. The following theorem states that there is a solution to the average cost optimality equation (ACOE) and the stationary policy which minimizes this ACOE is an optimal policy.

Theorem 8.3.4 [Average Cost] We have, under Assumption 8.3.4 the value functions (that is, the optimal expected average cost) satisfy

$$\lim_{n \to \infty} |V_n^* - V^*| = 0,$$

where V^* and V_n^* ($n \geq 1$) do not depend on x.

Remark 8.4. As we have observed earlier, when one considers partially observed MDPs (POMDPs), any POMDP can be reduced to a (completely observable) MDP whose states are the posterior state distributions or beliefs of the observer. One can show that setwise continuity of the reduced MDP is not possible even under very strict conditions, whereas weak continuity can be satisfied under reasonable conditions on the transition kernel and the continuity of the measurement channel. Thus the results in this section are applicable to POMDPs.

One can also obtain rates of convergence results [167] [161].

8.3.2 Finite State Approximation to MDPs

In this section we study the finite-state approximation problem for discrete time Markov decision processes, by reducing it to a finite state MDP obtained through quantization of the state space on a finite grid.

(i) Q1 Under what conditions on the components of the MDP do the true cost functions of the policies obtained from finite models converge to the optimal value function as the number of grid points goes to infinity?

(ii) Q2 Can we obtain bounds on the performance loss due to discretization in terms of the number of grid points if we strengthen the conditions sufficient in (Q1)?

We will not discuss Q2 here, but address Q1. For Q2, the reader is referred to the bibliographic notes at the end of the section. We just note that, under further explicit regularity conditions, one can indeed arrive at rates of convergence to optimality. The approach to solve problem (Q1) can be summarized as follows: First, we obtain approximation results for the compact-state case. We find conditions under which a compact representation leads to near optimality for non-compact state MDPs: solve the approximate MDP, and apply the optimal solution for the approximate MDP to the original MDP. We obtain the convergence of the finite-state models to non-compact models. Consider (Q1) for the MDPs with compact state space.

Finite State Approximate MDP: Quantization of the State Space Let d_X denote the metric on X. For each $m \geq 1$, there exists a finite subset $\{z_{m,i}\}_{i=1}^{k_m}$ of X such that

$$\min_{i \in \{1, \ldots, k_m\}} d_X(z, z_{m,i}) < 1/m$$

for all $z \in X$.

Let $X_m := \{x_{m,1}, \ldots, x_{m,k_m}\}$ and define Q_m mapping any $z \in X$ to the nearest element of X_m, i.e.,

$$Q_m(z) := \arg \min_{z_{m,i} \in X_m} d_X(z, z_{m,i}).$$

For each m, a partition $\{S_{m,i}\}_{i=1}^{k_m}$ of the state space X is induced by Q_m by setting

$$S_{m,i} = \{z \in X : Q_m(z) = z_{m,i}\}.$$

Let ψ be a probability measure on X which satisfies

$$\psi(S_{m,i}) > 0 \text{ for all } i, m,$$

and define probability measures $\psi_{m,i}$ on $S_{m,i}$ by restricting ψ to $S_{m,i}$:

$$\psi_{m,i}(\cdot) := \psi(\cdot)/\psi(S_{m,i}).$$

Using $\{\psi_{m,i}\}$, we define a sequence of finite-state MDPs, denoted as f-MDP$_m$, to approximate the compact-state MDP. For each m, f-MDP$_m$ is defined as: $(X_m, \mathbb{U}, \{U(z) : z \in X_m\}, T_m, d_m)$, where $\mathbb{U}(z) = \mathbb{U}$ for all $z \in X_m$, and the one-stage cost function $d_m : X_m \times \mathbb{U} \to [0, \infty)$ and the transition probability T_m on X_m given $X_m \times \mathbb{U}$ are given by

$$d_m(z_{m,i}, a) := \int_{S_{m,i}} d(z, a) \psi_{m,i}(dz).$$
8.3 Approximation through Quantization of the State and the Action Spaces

\[T_m(\cdot | z_m, i, a) := \int_{\mathcal{S}_{m,i}} Q_m \ast T(\cdot | z, a) \psi_{m,i}(dz), \]

where \(Q_m \ast T(\cdot | z, a) \in \mathcal{P}(\mathcal{X}_m) \) is the pushforward of the measure \(T(\cdot | z, a) \) with respect to \(Q_m \); that is,

\[Q_m \ast T(z_m | z, a) = T(\{ y \in \mathcal{X} : Q_m(y) = z_m | z, a \}), \]

for all \(z_m, j \in \mathcal{X}_m \).

Upon constructing the finite state MDP, we can obtain an optimal solution and apply it to the original MDP. We state the following results.

Theorem 8.3.5 (Discounted Cost) \([161]\) Suppose Assumption 8.3.3 holds. Then, for any \(\beta \in (0, 1) \) the discounted cost of the deterministic stationary policy \(\hat{f}_m \), obtained by extending the discounted optimal policy \(f_m^* \) of f-MDP, to \(\mathcal{X} \) (i.e., \(\hat{f}_m = f_m^* \circ Q_m \)), converges to the discounted value function \(J^* \) of the compact-state MDP:

\[\lim_{m \to \infty} \| J_\beta(\hat{f}_m, \cdot) - J^*_\beta \| = 0. \]

(8.25)

One challenge to be addressed in the proof of Theorem 8.3.5 is that in the quantized models (as an intermediate step in the proof) we do not have the weak continuity condition for each of the quantized kernels \(T_m \). The issue is that the value function in the dynamic programming update iterations is not continuous (and would only be piece-wise continuous), and accordingly the map \(\int T_n(dx | x, u) v(x) \), with \(v \) being a value function, is not necessarily continuous in the action variables which violates the measurable selection conditions considered earlier. Nonetheless, the machinery of universally measurable policies can be utilized and the existence of optimal policies for the approximate kernels is not an immediate problem (see \([167\) p. 6-7]) for the proof of the theorem. Alternatively, one can first quantize the action set and work on the approximate (finite-action) MDP, whose near optimality was established earlier. Note that for the finite action setup, continuity of the kernels in actions always holds.

Theorem 8.3.6 (Average Cost) \([161]\) Suppose in addition to the above: (i) \(T(D | z, a) \geq \zeta(B) \theta(z, a) \) for all \(D \in \mathcal{B}(\mathcal{X}) \) and \((z, a) \in \mathcal{X} \times U \), and (ii) \(\frac{\zeta(B)}{\zeta(z)} \leq \theta \), where \(\zeta \) is a finite measure on \(\mathcal{X}_n \times U \to \mathbb{R}^+ \), \(\lambda \in (0, 1) \), and (iii) the transition probability \(T(\cdot | z, a) \) is continuous in total variation. Then,

\[\lim_{m \to \infty} \| J_\beta(\hat{f}_m, \cdot) - J^*_\beta \| = 0. \]

(8.26)

Non-compact space case. The results above applies also to the non-compact setup. Let \(\mathcal{X} \) be a \(\sigma \)-compact separable metric space. Then, there exists a nested sequence of compact sets \(\{ K_n \} \) such that \(K_n \subset K_{n+1} \) and

\[\mathcal{X} = \bigcup_{n=1}^{\infty} K_n. \]

Similar to the finite-state MDP construction, define a sequence of compact-state MDPs, denoted as c-MDP, to approximate the original model. To this end, for each \(n \) let \(\mathcal{X}_n = K_n \cup \{ \Delta_n \} \), where \(\Delta_n \in K_n^c \) is a so-called pseudo-state.

We can define the transition probability \(T_n \) on \(\mathcal{X}_n \) given \(\mathcal{X}_n \times U \) and the one-stage cost function \(c_n : \mathcal{X}_n \times U \to [0, \infty) \) by

\[
T_n(\cdot | x, a) = \begin{cases}
T(\cdot | \cap K_n | x, a) + T(K_n^c | x, a) \delta_{\Delta_n}(\cdot), & \text{if } x \in K_n \\
\int_{K_n^c} \left(T(\cdot | \cap K_n | z, a) + T(K_n^c | z, a) \delta_{\Delta_n}(\cdot)\right) v_n(dz), & \text{if } x = \Delta_n,
\end{cases}
\]

\[
c_n(x, a) = \begin{cases}
c(x, a), & \text{if } x \in K_n \\
\int_{K_n^c} c(z, a) v_n(dz), & \text{if } x = \Delta_n.
\end{cases}
\]
With such a construction, similar approximation results can be shown to hold under technical drift conditions for both discounted and average cost problems [161].

8.3.3 Finite Model MDP Approximation: Quantization of Both the State and Action Spaces

It was shown in Theorems 8.3.1 and 8.3.2 that any MDP with (infinite) compact action space and with bounded one-stage cost function can be well approximated by an MDP with finite action space under assumptions that are satisfied by c-MDP for each n, for both the discounted cost and the average cost cases. Recall the sequence of finite subsets \(\{A_k\} \) of \(\mathbb{U} \). We define c-MDP\(_{n,k} \) as the Markov decision process having the components \(\{X_n, A_k, T_n, \alpha_n\} \) and we let \(\mathcal{F}_n(A_k) \) denote the set of all deterministic stationary policies for c-MDP\(_{n,k} \). Note that \(\mathcal{F}_n(A_k) \) is the set of policies in \(\mathcal{F}_n \) taking values only in \(A_k \). Therefore, in a sense, c-MDP\(_{n,k} \) and c-MDP\(_n \) can be viewed as the same MDP, where the former has constraints on the set of policies. For each n and k, by an abuse of notation, let \(f^*_n \) and \(f^*_n \) denote the optimal stationary policies of c-MDP\(_n \) and c-MDP\(_{n,k} \), respectively, for both the discounted and average costs. Then Theorems 8.3.1 and 8.3.2 show that for all n, we have

\[
\lim_{k \to \infty} J_n(f^*_{n,k}, x) = J_n(f^*_n, x) := J^*_n(x)
\]

\[
\lim_{k \to \infty} V_n(f^*_{n,k}, x) = V_n(f^*_n, x) := V^*_n(x)
\]

for all \(x \in \mathbb{X}_n \). In other words, the discounted and average value functions of c-MDP\(_{n,k} \) converge to the discounted and average value functions of c-MDP\(_n \) as \(k \to \infty \).

Let us fix \(x \in \mathbb{X} \). For \(n \) sufficiently large (so \(x \in K_n \)), we choose \(k_n \) such that \(|J_n(f^*_{n,k_n}, x) - J_n(f^*_n, x)| < 1/n \) (or \(|V_n(f^*_{n,k_n}, x) - V_n(f^*_n, x)| < 1/n \) for the average cost).

We have \(|J_n(f^*_{n,k_n}, x) - J(f^*_{n,k_n}, x)| \to 0 \) and \(|V_n(f^*_{n,k_n}, x) - V(f^*_{n,k_n}, x)| \to 0 \) as \(n \to \infty \), where again by an abuse of notation, the policies extended to \(\mathbb{X} \) are also denoted by \(f^*_{n,k_n} \). Since \(J_n(f^*_{n,k_n}, x) = J_n(f^*_n, x) \) and \(V_n(f^*_{n,k_n}, x) = V_n(f^*_n, x) \), it follows that

\[
\lim_{n \to \infty} J(f^*_{n,k_n}, x) = J^*(x) \quad \lim_{n \to \infty} V(f^*_{n,k_n}, x) = V^*(x).
\]

Therefore, before discretizing the state space to compute the near optimal policies, one can discretize, without loss of generality, the action space \(\mathbb{U} \) in advance on a finite grid using sufficiently large number of grid points.

8.4 Bibliographic Notes

Approximation results presented are primarily based on [160, 161, 163, 164, 167].

A generalization of some of the approximation results are presented in [109] in view of robustness properties.

8.5 Exercises

Exercise 8.5.1 Consider a controlled Markov chain with state space \(\mathbb{X} = \{0, 1\} \), action space \(\mathbb{U} = \{0, 1\} \), and transition kernel for \(t \in \mathbb{Z}_+ \):

\[
P(x_{t+1} = 1|x_t = 0, u_t = 1) = P(x_{t+1} = 1|x_t = 1, u_t = 1) = \alpha
\]

\[
P(x_{t+1} = 1|x_t = 0, u_t = 0) = P(x_{t+1} = 1|x_t = 1, u_t = 0) = 1 - \alpha.
\]

where \(\alpha \in (0, 1) \). Let a cost function \(c(x, u) \), with \(c: \mathbb{X} \times \mathbb{U} \to \mathbb{R}_+ \) be given by
\[c(0,1) = c(0,0) = 1 \quad c(1,0) = c(1,1) = 2.\]

Suppose that the goal is to minimize the quantity
\[E_0^x \left[\sum_{t=0}^{\infty} \beta^t c(x_t, u_t) \right],\]
for a fixed \(\beta \in (0,1)\), over all admissible policies \(\gamma \in \Gamma_A\).

Find an optimal policy and the optimal expected cost explicitly, as a function of \(\alpha, \beta\) (note that the initial condition is \(x_0 = 0\)).

Exercise 8.5.2 Consider the following problem: Let \(X = \{1, 2\}, U = \{1, 2\}\), where \(X\) denotes whether a fading channel is in a good state \((x = 2)\) or a bad state \((x = 1)\). There exists an encoder who can either try to use the channel \((u = 2)\) or not use the channel \((u = 1)\). The goal of the encoder is send information across the channel.

Suppose that the encoder’s cost (to be minimized) is given by:
\[c(x, u) = -1_{\{x=2, u=2\}} + \alpha(u - 1),\]
for \(\alpha = 1/2\) (if you view this as a maximization problem, you can see that the goal is to maximize information transmission efficiency subject to a cost involving an attempt to use the channel; the model can be made more complicated but the idea is that when the channel state is good, \(u = 2\) can represent a channel input which contains data to be transmitted and \(u = 1\) denotes that the channel is not used).

Suppose that the transition kernel is given by:
\[
\begin{align*}
P&(x_{t+1} = 2|x_t = 2, u_t = 2) = 0.8, \quad P(x_{t+1} = 1|x_t = 2, u_t = 2) = 0.2 \\
P&(x_{t+1} = 2|x_t = 2, u_t = 1) = 0.2, \quad P(x_{t+1} = 1|x_t = 2, u_t = 1) = 0.8 \\
P&(x_{t+1} = 2|x_t = 1, u_t = 2) = 0.5, \quad P(x_{t+1} = 1|x_t = 1, u_t = 2) = 0.5 \\
P&(x_{t+1} = 2|x_t = 1, u_t = 1) = 0.9, \quad P(x_{t+1} = 1|x_t = 1, u_t = 1) = 0.1
\end{align*}
\]

We will consider either a discounted cost criterion for some \(\beta \in (0,1)\) (you can fix an arbitrary value)
\[
\inf_{\gamma} E_0^x \left[\sum_{t=0}^{\infty} \beta^t c(x_t, u_t) \right] \quad (8.27)
\]

or the average cost criterion
\[
\inf_{\gamma} \limsup_{T \to \infty} \frac{1}{T} E_0^x \left[\sum_{t=0}^{T-1} c(x_t, u_t) \right]. \quad (8.28)
\]

a) Using Matlab or some other program, obtain a solution to the problem given above in (8.27) through the following:
 (i) Policy Iteration
 (ii) Value Iteration.
 (iii) Q-Learning. Note that a common way to pick \(\alpha\) coefficients in the Q-learning algorithm is to take for every \(x, u\) pair:
\[
\alpha_t(x, u) = \frac{1}{1 + \sum_{k=0}^{t} 1_{\{x_k = x, u_k = u\}}}
\]
b) Consider the criterion given in (8.28). Apply the convex analytic method, by solving the corresponding linear program, to find the optimal policy. In Matlab, the command linprog can be used to solve linear programming problems. See (7.34).

Exercise 8.5.3 Let \(c: X \times U \to \mathbb{R}_+ \) be bounded, where \(X \) is the state space and \(U \) is the action space for a controlled stochastic system. Suppose that under a stationary policy \(\gamma \), the expected discounted cost, for \(\beta < 1 \), is given by

\[
J_\beta(x, \gamma) := \mathbb{E}_\gamma \left[\sum_{k=0}^{\infty} \beta^k c(x_k, \gamma(x_k)) \right] = c(x, \gamma(x)) + \beta \int J_\beta(x_{t+1}, \gamma) T(dx_{t+1}|x_t = x, u_t = \gamma(x))
\]

Let \(f_1 \) and \(f_2 \) be two stationary policies. Define a third policy, \(g \), as:

\[
g(x) = f_1(x)1_{\{x \in C\}} + f_2(x)1_{\{x \in X \setminus C\}}
\]

where

\[
C = \{ x : J_\beta(x, f_1) \leq J_\beta(x, f_2) \}
\]

and \(X \setminus C \) denotes the complement of this set.

Show that \(J_\beta(x, g) \leq J_\beta(x, f_1) \) and \(J_\beta(x, g) \leq J_\beta(x, f_2) \) for all \(x \in X \).

Exercise 8.5.4 Once can apply Q-learning even when the model is not known, but for the results to be optimal, it is essential that the system we are dealing with is an MDP. Imagine that we have a POMDP but we run the Q-learning algorithm as if the system is an MDP. Recent results have shown that Q-learning converges even in this case, and even to near optimality under mild conditions related to either filter stability or appropriate approximation bounds.
Decentralized Stochastic Control

9.1 Introduction

In classical stochastic control problems considered so far, we were given a system of the form

\[x_{t+1} = f(x_t, u_t, w_t), \quad t \in \mathbb{Z}_+, \]

where actions are to be generated using some control policy \(\gamma = \{\gamma_t\} \) with

\[u_t = \gamma_t(I_t), \quad t \in \mathbb{Z}_+, \]

where \(I_t \) is the information available at \(t \). Here, \(w_t \) is i.i.d. noise. If \(I_t = \{x_0, \cdots, x_t; u_0, \cdots, u_{t-1}\} \), we have a fully observed system. If the controller only has measurements

\[y_t = g(x_t, v_t), \]

\(I_t = \{y_0, \cdots, y_t; u_0, \cdots, u_{t-1}\} \), we have a partially observed system.

As we observed earlier in these notes, given an optimality criterion (e.g. expected finite horizon cost, discounted cost, average cost, terminal cost), for such classical stochastic control setups, there are few powerful techniques to establish the existence/computation of optimal policies:

- Dynamic programming: weak-continuity / strong continuity properties and measurable selection conditions leads to existence / explicit computations
- For infinite horizon problems, linear programming/convex analytic techniques
- Strategic measures approach

All of these crucially build on the fact that \(I_t \subset I_{t+1} \), that is, information is expanding. In the absence of this condition, much of the analysis on existence/structure/recursions fails. In particular, the reader is referred to the derivation at the beginning of Chapter 5.

However, a very important class of optimal stochastic control problems involve setups where a number of decentralized decision makers are present: We will consider a collection of decision makers (DMs) where each has access to some local information variable. Such a collection of decision makers who wish to minimize a common cost function and who has an agreement on the system (that is, the probability space on which the system is defined, and the policy and action spaces) is said to be a stochastic team. Such problems are called decentralized stochastic control problems.

In decentralized stochastic control, a typical model is as follows

\[x_{t+1} = f(x_t, u^1_t, \ldots, u^L_t, w_t), \]

with each decision maker DM \(m \) arriving at action \(u^m \) using only local information:
Decentralized stochastic control theory requires far more general approaches when compared with the classical setup that we have considered up until this chapter.

To study such problems in a systematic fashion, we will present a classification for stochastic teams based on the informational and dynamical relations between the decentralized decision makers in the following. Towards this goal, in the following we introduce Witsenhausen’s intrinsic model.

9.2 Witsenhausen’s Intrinsic Model

Hans Witsenhausen [200] provided the following characterization of information structures in a dynamic sequential team. We consider a decentralized stochastic control model with N decision makers (DMs) (also called agents).

Witsenhausen’s contributions (e.g., [199, 201, 203]) to dynamic teams and characterization of information structures have been crucial in our understanding of dynamic teams. In this section, we introduce the characterizations as laid out by Witsenhausen, termed as the Intrinsic Model [201]; see [215] for a more comprehensive overview and further characterizations and classifications of information structures. In this model (described in discrete time), any action applied at any given time is regarded as applied by an individual decision maker/agent, who acts only once. One advantage of this model, in addition to its generality, is that the characterizations regarding information structures can be compactly described.

Suppose that in the decentralized system considered below, there is a pre-defined order in which the decision makers act. Such systems are called sequential systems (for non-sequential teams, we refer the reader to Andersland and Teneketzis [3], [6] and Teneketzis [180], in addition to Witsenhausen [198] and [215, p. 113]). Suppose that in the following, the action and measurement spaces are standard Borel spaces, that is, Borel subsets of Polish (complete, separable and metric) spaces. In the context of a sequential system, the Intrinsic Model has the following components:

- A collection of measurable spaces $\{(\Omega, \mathcal{F}), (\mathbb{U}^i, \mathcal{U}^i), (\mathbb{Y}^i, \mathcal{Y}^i), i \in \mathcal{N}\}$, specifying the system’s distinguishable events, and the control and measurement spaces. Here $\mathcal{N} = |\mathcal{N}|$ is the number of control actions taken, and each of these actions is taken by an individual (different) DM (hence, even a DM with perfect recall can be regarded as a separate decision maker every time it acts). The pair (Ω, \mathcal{F}) is a measurable space (on which an underlying probability may be defined). The pair $(\mathbb{U}^i, \mathcal{U}^i)$ denotes the measurable space from which the action, u^i, of decision maker i is selected. The pair $(\mathbb{Y}^i, \mathcal{Y}^i)$ denotes the measurable observation/measurement space for DM i.

- A measurement constraint which establishes the connection between the observation variables and the system’s distinguishable events. The \mathbb{Y}^i-valued observation variables are given by $y^i = \eta^i(\omega, u^{[1,i-1]})$, $u^{[1,i-1]} = \{u^k, k \leq i-1\}$, η^i measurable functions and u^k denotes the action of DM k. Hence, the information variable y^i induces a σ-field, $\sigma(\mathcal{I}^i)$ over $\Omega \times \prod_{k=1}^{i-1} \mathbb{U}^k$. The collection $\{\mathcal{J}^i; i = 1, \ldots, N\}$ or $\{\eta^i; i = 1, \ldots, N\}$ is called the information structure of the system.

- A design constraint which restricts the set of admissible N-tuple control laws $\gamma = \{\gamma^1, \gamma^2, \ldots, \gamma^N\}$, also called designs or policies, to the set of all measurable control functions, so that $u^i = \gamma^i(y^i)$, with $y^i = \eta^i(\omega, u^{[1,i-1]})$, and γ^i, η^i measurable functions. Let \mathcal{I}^i denote the set of all admissible policies for DM i and let $\Gamma^i = \prod_k \mathcal{I}^k$.

We note that, the intrinsic model of Witsenhausen gives a set-theoretic characterization of information fields, however, for standard Borel spaces, the model above is equivalent to that of Witsenhausen’s.

One can also introduce a fourth component.

- A probability measure P defined on (Ω, \mathcal{F}) which describes the measures on the random events in the model.
\(\left(\mathbb{U}^1 \times \cdots \times \mathbb{U}^N \right) \to \mathbb{R}_+. \) Any choice \(\gamma = (\gamma^1, \ldots, \gamma^n) \) of the control strategy induces a probability measure \(P^\gamma \) on the system variables (that is, actions and measurements). We define the performance \(J(\gamma) \) of a strategy as the expected loss (under probability measure \(P^\gamma \)), i.e., \(J(\gamma) = \mathcal{E}^\gamma [c(\omega, u^1, \ldots, u^n)] \), where \(\omega \) is the primitive variable (or the primitive random variable, since a measure is specified) and \(u^i \) is the control action of DM \(i \).

Let
\[
\gamma = \{\gamma^1, \ldots, \gamma^N\}.
\]

We then have,
\[
J(\gamma) = E[c(\omega_0, u)] = E[c(\omega; \gamma^1(y^1), \ldots, \gamma^N(y^N))],
\]
for some non-negative measurable loss (or cost) function \(c : \Omega \times \prod_i \mathbb{U}^k \to \mathbb{R}_+ \). Here, we have the notation \(u = \{u^i, i \in N \} \). Here, \(\omega_0 \) may be viewed as the cost function relevant exogenous variable and is contained in \(\omega \).

Definition 9.2.1 For a given stochastic team problem with a given information structure, \(\{J; \Gamma^n, i \in N\} \), a policy (strategy) \(N \)-tuple \(\gamma^* := (\gamma^1, \ldots, \gamma^N) \in \Gamma \) is an optimal team decision rule (team-optimal decision rule or simply team-optimal solution) if
\[
J(\gamma^*) = \inf_{\gamma \in \Gamma} J(\gamma) := J^*,
\]
provided that such a strategy exists. The cost level achieved by this strategy, \(J^* \), is the minimum (or optimal) team cost.

Definition 9.2.2 For a given \(N \)-person stochastic team with a fixed information structure, \(\{J; \Gamma^n, i \in N\} \), an \(N \)-tuple of strategies \(\gamma^* := (\gamma^1, \ldots, \gamma^N) \) constitutes a Nash equilibrium (synonymously, a person-by-person optimal (pbp optimal) solution) if, for all \(\beta \in \Gamma^n \) and all \(i \in N \), the following inequalities hold:
\[
J^* := J(\gamma^*) \leq J(\gamma^{-i^*}, \beta),
\]
where we have adopted the notation
\[
(\gamma^{-i^*}, \beta) := (\gamma^1, \ldots, \gamma^{-i^*}, \beta, \gamma^{i^*+1}, \ldots, \gamma^N).
\]

For notational simplicity, let for any \(1 \leq k \leq N \), \(\gamma^{-k} := \{\gamma^i, i \in 1, \cdots, N \} \setminus \{k\} \). In the following, we will denote by bold letters the ensemble of random variables across the DMs; that is \(y = \{y^i, i = 1, \cdots, N \} \) and \(u = \{u^i, i = 1, \cdots, N \} \).

As an example, consider the following model of a system with two decision makers which is taken from [215]. Let \(\Omega = \{\omega_1, \omega_2, \omega_3\} \), \(\mathcal{F} \) be the power set of \(\Omega \). Let the action space be \(\mathbb{U}^1 = \{U\text{(up)}, D\text{(down)}\} \), \(\mathbb{U}^2 = \{L\text{(left)}, R\text{(right)}\} \), and \(\mathbb{U}^1 \) and \(\mathbb{U}^2 \) be the power sets of \(\mathbb{U}^1 \) and \(\mathbb{U}^2 \) respectively. Let the information fields \(\mathcal{I}^1 = \{\emptyset, \{\omega_1\}, \{\omega_2, \omega_3\}, \Omega\} \) and \(\mathcal{I}^2 = \{\emptyset, \{\omega_1, \omega_2\}, \{\omega_3\}, \Omega\} \). (This information corresponds to the non-identical imperfect (quantized) measurement setting considered in [215].)

Suppose the probability measure \(P \) is given by \(P(\omega_i) = p_i, i = 1, 2, 3 \) and \(p_1 = p_2 = 0.3, p_3 = 0.4 \), and the loss function \(c(\omega, u^1, u^2) \) is given by
\[
\begin{array}{c|cc}
| & L & R \\
\hline
U & 1 & 0 \\
D & 3 & 1 \\
\end{array}
\begin{array}{c|cc}
| & L & R \\
\hline
U & 2 & 3 \\
D & 2 & 1 \\
\end{array}
\begin{array}{c|cc}
| & L & R \\
\hline
U & 1 & 2 \\
D & 0 & 2 \\
\end{array}
\]

\(\omega : \omega_1 \leftrightarrow 0.3, \omega_2 \leftrightarrow 0.3, \omega_3 \leftrightarrow 0.4 \).

For the above model, the unique optimal control strategy is given by
\[
\gamma^{i^*}(y^1) = \begin{cases} U, & y^1 = \{\omega_1\} \\ D, & \text{else} \end{cases}
\]
The development of a systematic solution procedure to a generalized sequential decentralized stochastic control problem is a difficult task. Most of the work in the literature has concentrated on identifying solution techniques for specific subclasses. Typically, these subclasses are characterized on the basis of the information structure of the system.

9.3 Classification of information structures

An information structure is called static if the observation of all DMs depends only on the primitive random variable (and not on the control actions of others). Systems that don’t have static information structure are said to have dynamic information structure. In such systems, some DMs influence the observations of others through their actions.

9.3.1 Classical, quasiclassical and nonclassical information structures

- A sequential team is static, if the information available at every decision maker is only affected by exogenous disturbances (Nature); that is no other decision maker can affect the information at any given decision maker.

- A sequential team problem is dynamic if the information available to at least one DM is affected by the action of at least one other DM.

- An IS \(\{y^i, 1 \leq i \leq N\} \) is classical if \(y^i \) contains all of the information available to DM \(k \) for \(k < i \). E.g.: Classical stochastic control problems.

- An IS is quasi-classical or partially nested, if whenever \(u^k \), for some \(k < i \), affects \(y^i \), \(y^i \) contains \(y^k \).

- An IS which is not partially nested is nonclassical.

Under this intrinsic model, an Information structure (IS) is dynamic if the information available to at least one DM is affected by the action of at least one other DM. An IS is static, if the information available at every decision maker is only affected by exogenous disturbances (i.e., state of the Nature) \(\omega \in \Omega \); that is no other decision maker can affect the information at any given decision maker. Figure 9.1 is a depiction for a static team problem.

![Fig. 9.1: An example of a static information structure. Here, \(Q^i(y^i \in \cdot | \omega_0) := P(\eta^i(\omega) \in \cdot | \omega_0), i = 1, 2, 3. \)]
9.3 Classification of information structures

ISs can also be classified as classical, quasi-classical or nonclassical. An IS is classical if \(y^i \) contains all of the information available to DM \(k \) for \(k < i \); that is, information is expanding (also known as the perfect-recall property). An IS is quasi-classical or partially nested, if whenever \(u^k \), for some \(k < i \), affects \(y^i \) through the measurement function \(\eta^i : y^i \rightarrow y^k \) (that is \(\sigma(y^k) \subset \sigma(y^i) \)). An IS which is not partially nested is nonclassical.

The material in these lecture notes up to this chapter were thus with regard to classical information structures.

9.3.2 A state space model

In a state space model, we assume that the decentralized control system has a state \(x_t \) that is evolving with time. The evolution of the state is controlled by the actions of the control stations. We assume that the system has \(N \) control stations where each control station \(i \) chooses a control action \(u^i_t \) at time \(t \). The system runs in discrete time, either for finite or infinite horizon. In the context of Witsenhausen’s intrinsic model, any decision maker applying an action at a given time stage is interpreted as a different decision maker.

Let \(X \) denote the space of realizations of the state \(x_t \), and \(U^i \) denote the space of realization of control actions \(u^i_t \). Let \(T \) denote the set of time for which the system runs.

The initial state \(x_1 \) is a random variable and the state of the system evolves as

\[
x_{t+1} = f_t(x_t, u^1_t, \ldots, u^N_t; w^0_t), \quad t \in T,
\]

where \(\{w^0_t, t \in T\} \) is an independent noise process that is also independent of \(x_1 \).

We assume that each control station \(i \) observes the following at time \(t \)

\[
y^i_t = g^i_t(x_t, u^i_t),
\]

where \(\{w^i_t, t \in T\} \) are measurement noise processes that are independent across time, independent of each other, and independent of \(\{w^0_t, t \in T\} \) and \(x_1 \).

The above evolution does not completely describe the dynamic control system, because we have not specified the data available at each control station. In general, the random variable \(I^i_t \) available at control station \(i \) at time \(t \) will be a function of all the past system variables \(\{x_{[1,t]}, y_{[1,t]}, u_{[1,t-1]}, w_{[1,t]}\} \), i.e.

\[
I^i_t = \eta^i_t(x_{[1,t]}, y_{[1,t]}, u_{[1,t-1]}, w_{[1,t]}),
\]

where we use the notation \(u = \{u^1, \ldots, u^N\} \) and \(x_{[1,t]} = \{x_1, \ldots, x_t\} \). The collection \(\{I^i_t, i = 1, \ldots, N, t \in T\} \) is called the information structure of the system, in analogy with Witsenhausen’s intrinsic model.

When \(T \) is finite, say equal to \(\{1, \ldots, T\} \), the above model is a special case of the sequential intrinsic model presented above. The set \(\{x_1, w^0_1, u^1_1, \ldots, w^N_T, t \in T\} \) denotes the primitive random variable with probability measure given by the product measure of the marginal probabilities; the system has \(N \times T \) DMs, one for each control station at each time. DM \((i, t)\) observes \(I^i_t \) and chooses \(u^i_t \). The information sub-fields \(\mathcal{J}^k \) are determined by \(\{\eta^k_t, i = 1, \ldots, N, t \in T\} \).

Some important information structures are

1. **Complete information sharing**: In complete information sharing, each DM has access to present and past measurements and past actions of all DMs. Such a system is equivalent to a centralized system.

\[
I^i_t = \{y_{[1,t]}, u_{[1,t-1]}\}, \quad t \in T.
\]

2. **Complete measurement sharing**: In complete measurement sharing, each DM has access to the present and past measurements of all DMs. Note that past control actions are not shared.

\[
I^i_t = \{y_{[1,t]}\}, \quad t \in T.
\]
3. **Delayed information sharing** In delayed information sharing, each DM has access to \(n \)-step delayed measurements and control actions of all DMs.

\[
I_i^t = \begin{cases}
\{ y_{t-n+1}^{i}, u_{t-n+1}^{i}, y_{1,t-n}^{i}, u_{1,t-n}^{i} \}, & t > n \\
\{ y_{t}^{i}, u_{t}^{i} \}, & t \leq n
\end{cases}
\tag{9.8}
\]

4. **Delayed measurement sharing** In delayed measurement sharing, each DM has access to \(n \)-step delayed measurements of all DMs. Note that control actions are not shared.

\[
I_i^t = \begin{cases}
\{ y_{t-n+1}^{i}, u_{t-n+1}^{i}, y_{1,t-n}^{i}, u_{1,t-n}^{i} \}, & t > n \\
\{ y_{t}^{i}, u_{t}^{i} \}, & t \leq n
\end{cases}
\]

5. **Delayed control sharing** In delayed control sharing, each DM has access to \(n \)-step delayed control actions of all DMs. Note that measurements are not shared.

\[
I_i^t = \begin{cases}
\{ y_{t-n+1}^{i}, u_{t-n+1}^{i}, y_{1,t-n}^{i}, u_{1,t-n}^{i} \}, & t > n \\
\{ y_{t}^{i}, u_{t}^{i} \}, & t \leq n
\end{cases}
\]

6. **Periodic information sharing** In periodic information sharing, the DMs share their measurements and control periodically after every \(k \) time steps. No information is shared at other time instants.

\[
I_i^t = \begin{cases}
\{ y_{t-k}^{i,t}, u_{t-k}^{i,t}, y_{1,t-k}^{i}, u_{1,t-k}^{i} \}, & t \geq k \\
\{ y_{t}^{i,t}, u_{t}^{i,t} \}, & t < k
\end{cases}
\]

7. **Completely decentralized information** In a completely decentralized system, no data is shared between the DMs.

\[
I_i^t = \{ y_{t}^{i} \}, \quad t \in T.
\]

In all the information structures given above, each DM has perfect recall (PR), that is, each DM has full memory of its past information. In general, a DM need not have perfect recall. For example, a DM may only have access to its current observation, in which case the information structure is

\[
I_i^t = \{ y_{t}^{i} \}, \quad t \in T.
\]

To complete the description of the team problem, we have to specify the loss function. For some applications, one may have that the loss function is of additive form:

\[
c(x_{[1,T]}, u_{[1,T]}) := \sum_{t \in T} c(x_t, u_t)
\]

where each term in the summation is known as the incremental (or stagewise) loss. The objective would be to choose control policies \(\gamma_i^t \) such that \(u_i^t = \gamma_i^t(I_i^t) \) so as to minimize the expected loss \(c(x_{[1,T]}, u_{[1,T]}) \). In the sequel, we will denote the set of all measurable control laws \(\gamma_i^t \) under the given information structure by \(I_i^t \).

9.4 Solutions to Static Teams

Definition 9.4.1 Given a static stochastic team problem \(\{ J; \Gamma^i, i \in N \} \), a policy \(N \)-tuple \(\gamma \in \Gamma \) is stationary if (i) \(J(\gamma) \) is finite, (ii) the \(N \) partial derivatives in the following equations are well defined, and (iii) \(\gamma \) satisfies these equations:
There is a close connection between stationarity and person-by-person-optimality, as we discuss in the following.

The following results are due to Krainak et. al. [111] and [215], generalizing Radner [153]. We follow the presentation in [215], which also contains the proofs of the results.

Theorem 9.4.1 [153] [111] Let \(\{ J; \Gamma^i, i \in N \} \) be a static stochastic team problem where \(U^i = \mathbb{R}^{m_i}, i \in N \), the loss function \(c(\omega_0, u) \) is convex and continuously differentiable in \(u \) a.s., and \(J(\gamma) \) is bounded from below on \(\Gamma \). Let \(\gamma^* \in \Gamma \) be a policy \(N \)-tuple with a finite cost \(J(\gamma^*) < \infty \), and suppose that for every \(\gamma \in \Gamma \) such that \(J(\gamma) < \infty \), the following holds:

\[
\sum_{i \in N} E\{ \nabla_{u^i} c(\omega_0; \gamma^{-i}(y), u^i) \} \big| u^i = \gamma(y^i) \} = 0, \text{ a.s.} \quad i \in N.
\] (9.11)

\(\gamma^* \) is a team-optimal policy, and it is unique if \(c \) is strictly convex in \(u \).

Proof Sketch. First, by the convexity of \(c \), we obtain

\[
\frac{1}{\alpha} \left[c(\omega; \gamma^*(y) + \alpha(\gamma(y) - \gamma^*(y))) - c(\omega; \gamma^*(y)) \right] \leq c(\omega; \gamma(y)) - c(\omega; \gamma^*(y)),
\]

for all \(\alpha \in (0, 1] \). Using the definition of \(J \), this inequality can equivalently be written as (by taking the total expectation):

\[
h(\alpha) := \frac{1}{\alpha} \left[E\{ c(\omega; \gamma^*(y) + \alpha(\gamma(y) - \gamma^*(y))) \} - J(\gamma^*) \right] \leq J(\gamma) - J(\gamma^*),
\]

where \(\alpha \in (0, 1] \). Note that both \(J(\gamma) \) and \(J(\gamma^*) \) are finite, by hypothesis, and the first random variable (i.e., the first loss function) also has a finite expectation for every \(\alpha \in (0, 1] \) because of the bound provided by the inequality. Now, due to the convexity of \(c \), its finite integral, \(E\{ c(\omega; \gamma^*(y) + \alpha(\gamma(y) - \gamma^*(y))) \} \) is also convex in \(\alpha \). This leads to the conclusion that \(h(\alpha) \) is a monotonically nonincreasing function as \(\alpha \downarrow 0 \), and furthermore \(h(1) = J(\gamma) - J(\gamma^*) \) is bounded (by hypothesis). It then follows from the monotone convergence theorem that \(\lim_{\alpha \downarrow 0} h(\alpha) \) exists, and the limit and expectation operations can be interchanged. As a consequence of continuous differentiability, this then leads to the inequality

\[
\sum_{i = 1}^{N} E\{ \nabla_{u^i} c(\omega_0; \gamma^*(y)) \} \leq J(\gamma) - J(\gamma^*)
\]

from which team-optimality of \(\gamma^* \) follows, since the left-hand-side is nonnegative, by (9.12).

If \(c \) were strictly convex in \(u \), a.s., then all the inequalities above would be strict, for \(\gamma \neq \gamma^* \), thus leading to

\[
J(\gamma^*) < J(\gamma)
\]

which says that \(\gamma^* \) is the unique team-optimal solution. \(\diamond \)

Note that the conditions of Theorem 9.4.1 above do not include the stationarity of \(\gamma^* \), and furthermore inequalities (9.12) may not generally be easy to check, since they involve all permissible policies \(\gamma \) (with finite cost). Instead, either one of the following two conditions will achieve this objective [111] [215]:

(c.1) For all \(\gamma \in \Gamma \) such that \(J(\gamma) < \infty \), the following random variables are integrable

\[
\nabla_{u^i} c(\omega_0; \gamma^*(y)) \big| (\gamma^i(y^i) - \gamma^*(y^i)), \quad i \in N
\]

(c.2) \(\Gamma^i \) is a Hilbert space for each \(i \in N \), and \(J(\gamma) < \infty \) for all \(\gamma \in \Gamma \). Furthermore,

\[
E_{\omega|y^i} \{ \nabla_{u^i} c(\omega_0; \gamma^*(y)) \} \in \Gamma^i, \quad i \in N.
\]
Alternatively, in (c.2), we can utilize Hölder’s inequality and relax the Hilbert space conditions. Of course, (c.2) can be obtained from (c.1) if \(\Gamma_i, i \in N \), are taken as Hilbert spaces. Here we give it as a separate condition because in some problems (such as linear quadratic—as we shall see shortly) (c.2) follows quite readily from the problem formulations.

Theorem 9.4.2 [111] [215] Let \(\{J; \Gamma_i, i \in N\} \) be a static stochastic team problem which satisfies all the hypotheses of Theorem 9.4.1 with the exception of the inequality (9.12). Instead of (9.12), let either (c.1) or (c.2) be satisfied. Then, if \(\gamma^* \in \Gamma \) is a stationary policy it is also team optimal. Such a policy is unique if \(c(\omega_0; u) \) is strictly convex in \(u \), a.s.

What needs to be shown is that under stationarity, (c.1) or (c.2) implies Theorem 9.4.1; this follows once again from the law of the iterated expectations (Theorem 4.1.3); see [215]. If (c.1) holds, then for all \(i \in N \),

\[
E \left[\nabla_u c(\omega_0; \gamma^*(y)) [\gamma^i(y^i) - \gamma^*(y^i)] \right] \\
= E \left[E \left[\nabla_u c(\omega; \gamma^*(y)) [\gamma^i(y^i) - \gamma^*(y^i)] \right] \right] \\
= E \left[\nabla_u c(\omega; \gamma^*(y)) \left(\gamma^i(y^i) - \gamma^*(y^i) \right) \right] \\
= 0
\]

(9.13)

under stationarity and thus Theorem 9.4.2 holds.

To appreciate some of the fine points of Theorems 9.4.1 and 9.4.2, let us now consider the following example, which was discussed by Radner (1962) [153], and Krainak et al. (1982) [111].

Example 9.1. Let \(N = 2, U^1 = U^2 = \mathbb{R}, \xi = x \) be a Gaussian random variable with zero mean and unit variance \((\sim N(0, 1))\), and the loss functional be given by

\[
L(x; u^1, u^2) = (u^1 - u^2)^2 e^{x^2} + 2u^1 u^2.
\]

Note that \(L \) is strictly convex and continuously differentiable in \((u^1, u^2)\) for every value of \(x \). Hence, if the true value of \(x \) were known to both agents, the problem would admit a unique team optimal solution: \(u^1 = u^2 = 0 \), which is also stationary. Since this team-optimal solution does not use the precise value of \(x \), it is certainly optimal also under “no-measurement” information at the decision makers. Note, however, that in this case the only pairs that make \(J(\gamma) \) finite, are \(u^1 = u^2 = u \in \mathbb{R} \), since

\[
E[e^{x^2}] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{x^2} dx = \infty.
\]

The set of permissible policies not being an open set, clearly we cannot talk about stationarity in this case. Theorem 9.4.1 (which does not involve stationarity) is applicable here. Note also that for every \(u \in \mathbb{R}, u^1 = u^2 = u \) is a \textit{php optimal} solution, but only one of these is team optimal.

Now, as a more interesting case consider the measurement scheme:

\[
y^1 = x + w^1; \quad y^2 = x + w^2
\]

where \(w^1 \) and \(w^2 \) are independent random variables uniformly distributed on the interval \([-1, 1]\), which are also independent of \(x \). Note that here the random state of nature, \(\xi \), is chosen as \((x, w^1, w^2)'\). Clearly, \(u^1 = u^2 = 0 \) is team-optimal for this case also, but it is not obvious at the outset whether it is stationary or not. Toward this end, let us evaluate (9.11) for \(i = 1 \) and with \(\gamma^2(y^2) = 0:\)

\[
(\partial/\partial u^1)E_{x,y^1|y^2} \{ (u^1)^2 e^{\xi^2} \} = (\partial/\partial u^1) \left[(u^1)^2 e^{\xi^2} \right] = 2u^1 E_{x|y^1} \{ e^{\xi^2} \}
\]

where the last step follows because the conditional probability density of \(x \) given \(y^1 \) is nonzero only in a finite interval (thus making the conditional expectation finite). By symmetry, it follows that both derivatives in (9.11) vanish at \(u^1 = u^2 = 0 \), and hence the team-optimal solution is stationary. It is not difficult to see that in fact this is the only pair of stationary policies. Note that all the hypotheses of Theorem 9.4.2 are satisfied here, under condition (c.5).
Quadratic-Gaussian teams

Given a probability space \((\Omega, \mathcal{F}, P_\Omega)\), and an associated vector-valued random variable \(\xi\), let \(\{J; I^i, i \in N\}\) be a static stochastic team problem with the following specifications [215]:

(i) \(U^i = \mathbb{R}^{m_i}, i \in N\); i.e., the action spaces are unconstrained Euclidean spaces.

(ii) The loss function is a quadratic function of \(u\) for every \(\xi\):

\[
L(\xi; u) = \sum_{i,j \in N} u^i R_{ij}(\xi) u^j + 2 \sum_{i \in N} u^i r_i(\xi) + c(\xi) \tag{9.14}
\]

where \(R_{ij}(\xi)\) is a matrix-valued random variable (with \(R_{ij} = R_{ji}^\top\)), \(r_i(\xi)\) is a vector-valued random variable, and \(c(\xi)\) is a random variable, all generated by measurable mappings on the random state of nature, \(\xi\).

(iii) \(L(\xi; u)\) is strictly (and uniformly) convex in \(u\) a.s., i.e., there exists a positive scalar \(\alpha\) such that, with \(R(\xi)\) defined as a matrix comprised of \(N\) blocks, with the \(ij\)'th block given by \(R_{ij}(\xi)\), the matrix \(R(\xi) - \alpha I\) is positive definite a.s., where \(I\) is the appropriate dimensional identity matrix.

(iv) \(R(\xi)\) is uniformly bounded above, i.e., there exists a positive scalar \(\beta\) such that the matrix \(\beta I - R(\xi)\) is positive definite a.s.

(v) \(Y^i = \mathbb{R}^{r_i}, i \in N\), i.e., the measurement spaces are Euclidean spaces.

(vi) \(y^i = \eta^i(\xi), i \in N\), for some appropriate Borel measurable functions \(\eta^i, i \in N\).

(vii) \(I^i\) is the (Hilbert) space of all Borel measurable mappings of \(\gamma^i: \mathbb{R}^{r_i} \rightarrow \mathbb{R}^{m_i}\), which have bounded second moments, i.e., \(E_{\gamma^i}(\gamma^i(y)^\top \gamma^i(y)) < \infty\).

(viii) \(E_{\xi}[r_i(\xi)r_i(\xi)] < \infty, i \in N; \ E_{\xi}[c(\xi)] < \infty\).

Definition 9.4.2 A static stochastic team is quadratic if it satisfies (i)–(viii) above. It is a standard quadratic team if furthermore the matrix \(R\) is constant for all \(\xi\) (i.e., it is deterministic). If, in addition, \(\xi\) is a Gaussian distributed random vector, and \(r_i(\xi) = Q_i \xi, \eta_i(\xi) = H^i \xi, i \in N\), for some deterministic matrices \(Q_i, H^i; i \in N\), the decision problem is a quadratic-Gaussian team (more widely known as a linear-quadratic-Gaussian (LQG) team under some further structure on \(Q_i\) and \(H^i\)).

One class of quadratic teams for which the team-optimal solution can be obtained in closed form are those where the random state of nature \(\xi\) is a Gaussian random vector. Let us decompose \(\xi\) into \(N + 1\) block vectors

\[
\xi = (x', y'^1, y'^2, \ldots, y'^N)^T\tag{9.15}
\]

of dimensions \(r_0, r_1, r_2, \ldots, r_N\), respectively. Being a Gaussian random vector, \(\xi\) is completely described in terms of its mean value and covariance matrix, which we specify below:

\[
E[\xi] =: \bar{\xi} = (\bar{x}', \bar{y}'^1, \ldots, \bar{y}'^N) \tag{9.16}
\]

\[
\text{cov} (\xi) =: \Sigma, \text{ with } [\Sigma]_{ij} =: \Sigma_{ij}, \ i, j = 0, 1, \ldots, N \tag{9.17}
\]

\([\Sigma]_{ij}\) denotes the \(ij\)'th block of the matrix \(\Sigma\) of dimension \(r_i \times r_j\), which stands for the cross-variance between the \(i\)'th and \(j\)'th block components of \(\xi\). We further assume (in addition to the natural condition \(\Sigma \geq 0\)) that \(\Sigma_{ii} > 0\) for \(i \in N\), which means that the measurement vectors \(y^i\)'s have nonsingular distributions. To complete the description of the quadratic-Gaussian team, we finally take the linear terms \(r_i(\xi)\) in the loss function (9.14) to be linear in \(x\), which makes \(x\) the “payoff relevant” part of the state of nature:

\[
r_i(\xi) = D_i x, \ i \in N \tag{9.18}
\]

where \(D_i\) is an \(r_i \times r_0\) dimensional constant matrix.
In the characterization of the team-optimal solution for the quadratic-Gaussian team we will need the following important result on the conditional distributions of Gaussian random vectors.

Lemma 9.4.1 Let z and y be jointly Gaussian distributed random vectors with mean values \bar{z}, \bar{y}, and covariance

$$\text{cov} (z, y) = \begin{pmatrix} \Sigma_{zz} & \Sigma_{zy} \\ \Sigma_{zy} & \Sigma_{yy} \end{pmatrix} \geq 0, \quad \Sigma_{yy} > 0,$$

(9.19)

Then, the conditional distribution of z given y is Gaussian, with mean

$$E[z|y] = \bar{z} + \Sigma_{zy} \Sigma_{yy}^{-1} (y - \bar{y})$$

(9.20)

and covariance

$$\text{cov}(z|y) = \Sigma_{zz} - \Sigma_{zy} \Sigma_{yy}^{-1} \Sigma_{zy}^\prime$$

(9.21)

⋄

The complete solution to the quadratic-Gaussian team is given in the following.

Theorem 9.4.3 [215] The quadratic-Gaussian team decision problem as formulated above admits a unique team-optimal solution, that is affine in the measurement of each agent:

$$\gamma_i(y_i) = \Pi_i(y_i - \bar{y}_i) + M_i \bar{x}_i, \quad i \in N.$$

(9.22)

Here, Π_i is an $(m_i \times r_i)$ matrix ($i \in N$), uniquely solving the set of linear matrix equations:

$$R_{ii} \Pi_i \Sigma_{ii} + \sum_{j \in N, j \neq i} R_{ij} \Pi_j \Sigma_{ji} + D_i \Sigma_{0i} = 0,$$

(9.23)

and M_i is an $(m_i \times r_0)$ matrix for each $i \in N$, obtained as the unique solution of

$$\sum_{j \in N} R_{ij} M_j + D_i = 0, \quad i \in N.$$

(9.24)

Remark 9.2. The proof of this result follows immediately from Theorem 9.4.1. However, a *Projection Theorem* based concise proof can also be provided exploiting the quadratic nature of the problem (see [215, p. 55], [154] and [79]), by defining the problem as an inner-product minimization and projection (onto the closed subspace of decentralized control policies viewed as a product of individual policies of each DM) problem the solution of which builds on an orthogonality condition.

An important application of the above result is the following static Linear Quadratic Gaussian Problem: Consider a two-controller system evolving in \mathbb{R}^n with the following description: Let x_1 be Gaussian and $x_2 = Ax_1 + B^1 u_1^1 + B^2 u_1^2 + w_1$

$$y_1^1 = C^1 x_1 + v_1^1,$$

$$y_1^2 = C^2 x_1 + v_1^2,$$

with w, v^1, v^2 zero-mean, i.i.d. disturbances. For $\rho_1, \rho_2 > 0$, let the goal be the minimization of

$$J(\gamma^1, \gamma^2) = \mathcal{E} \left[||x_1||^2_2 + \rho_1 ||u_1^1||^2_2 + \rho_2 ||u_1^2||^2_2 + ||x_2||^2_2 \right]$$

(9.25)

over the control policies of the form:

$$u_i^i = \mu_i^i(y_i^1), \quad i = 1, 2$$

For such a setting, optimal policies are linear.
9.5 Static Reduction of Dynamic Teams

Following Witsenhausen [203], we say that two information structures are equivalent if: (i) The policy spaces are equivalent/isomorphic in the loose sense that policies under one information structure are realizable under the other information structure, (ii) the costs achieved under equivalent policies are identical almost surely, and (iii) if there are constraints in the admissible policies, the isomorphism among the policy spaces preserves the constraint conditions.

A large class of sequential team problems admit an equivalent information structure which is static. This is called the static reduction of an information structure.

9.5.1 Dynamic teams with quasi-classical (partially nested) information structures

An important information structure which is not nonclassical, is of the quasi-classical type, also known as partially nested; an IS is partially nested if an agent’s information at a particular stage \(t \) can depend on the action of some other agent at some stage \(t' \leq t \) only if she also has access to the information of that agent at stage \(t' \). For such team problems with partially nested information, one talks about precedence relationships among agents: an agent DM \(i \) is precedent to another agent DM \(j \) (or DM \(i \) communicates to DM \(j \)), if the former agent’s actions affect the information of the latter, in which case (to be partially nested) DM \(j \) has to have the information based on which the action-generating policy of DM \(i \) was constructed.

For partially nested (or quasi-classical) information structures, static reduction has been studied by Ho and Chu in the specific context of LQG systems [101] and for a class of non-linear systems satisfying restrictive invertibility properties [102].

Under quasi-classical information, LQG stochastic team problems are tractable by conversion into equivalent static team problems: Consider the following dynamic team with \(N \) agents, where each agent acts only once, with \(A_k, k \in \mathbb{N} \), having the following measurement

\[
y^k = C^k \xi + \sum_{i:i \rightarrow k} D_{i} u^i,
\]

where \(\xi \) is an exogenous random variable picked by nature, and \(i \rightarrow k \) denotes the precedence relation that the action of \(A_i \) affects the information of \(A_k \) and \(u^i \) is the action of \(A_i \).

If the information structure is quasi-classical, then

\[
\mathcal{I}^k = \{ y^k, \mathcal{I}^i, i \rightarrow k \}.
\]

That is, \(A_k \) has access to the information available to all the signaling agents. Such an IS is equivalent to the IS \(\tilde{\mathcal{I}}^k = \{ \tilde{y}^k \} \), where \(\tilde{y}^k \) is a static measurement given by

\[
\tilde{y}^k = \left\{ C^k \xi, \{ C^i \xi, i \rightarrow k \} \right\}.
\]

Such a conversion can be done provided that the policies adopted by the agents are deterministic, with the equivalence to be interpreted in the sense that any deterministic policy measurable under the original IS being measurable also under the new (static) IS and vice versa, since the actions are determined by the measurements. The restriction of using only deterministic policies is, however, without any loss of optimality: with policies of all other agents fixed (possibly randomized) no agent can benefit from randomized decisions in such team problems. We discussed this property of irrelevance of random information/actions in optimal stochastic control in Chapter 5 in view of Blackwell’s Irrelevant Information Theorem (see [214, Remark 2]).

This observation, made by Ho and Chu [101], leads to the following result.

Theorem 9.5.1 Consider an LQG system with a partially nested information structure. For such a system, optimal solutions are affine (that is, linear plus a constant).
Remark 9.3. Another class of dynamic team problems that can be converted into solvable dynamic optimization problems are those where even though the information structure is nonclassical, there is no incentive for signaling because any signaling from say agent A_i to agent A_j conveys information to the latter which is “cost irrelevant”, that is it does not lead to any improvement in performance [211] [215].

9.5.2 Nonclassical case: Witsenhausen’s equivalent model and static reduction of sequential dynamic teams

Following Witsenhausen [203 Eqn (4.2)], as reviewed in [215 Section 3.7], we say that two information structures are equivalent if: (i) The policy spaces are equivalent/isomorphic in the sense that policies under one information structure are realizable under the other information structure, (ii) the costs achieved under equivalent policies are identical almost surely, and (iii) if there are constraints in the admissible policies, the isomorphism among the policy spaces preserves the constraint conditions.

A large class of sequential team problems admit an equivalent information structure which is static. This is called the static reduction of a dynamic team problem. For some of the results of the chapter, we need to go beyond a static reduction, and we will need to make the measurements independent of each other as well as ω_0. This is not possible for every team which admits a static reduction, for example quasi-classical team problems with LQG models [101] do not admit such a further reduction, since the measurements are partially nested. Witsenhausen refers to such an information structure as independent static in [203 Section 4.2(e)].

Consider now dynamic team setting according to the intrinsic model where each DM t measures

$$y^t = g_t(\omega_0, \omega_t, y^1, \ldots, y^{t-1}, u^1, \ldots, u^{t-1}),$$

and the decisions are generated by $u^t = \gamma_t(y^t)$, with $1 \leq t \leq N$. Here $\omega_0, \omega_1, \ldots, \omega_N$ are primitive (exogenous) variables. We will indeed, for every $1 \leq n \leq N$, view the relation

$$P(dy^n|\omega_0, y^1, \ldots, y^{n-1}, u^1, \ldots, u^{n-1}),$$

as a (controlled) stochastic kernel (to be defined later), and through standard stochastic realization results (see [84 Lemma 1.2] or [36 Lemma 3.1]), we can represent this kernel in a functional form through

$$y^n = g_n(\omega_0, \omega_n, y^1, \ldots, y^{n-1}, u^1, \ldots, u^{n-1})$$

for some independent ω_n and measurable g_n.

This team admits an independent-measurements reduction provided that the following absolute continuity condition holds: For every $t \in N$, there exists a function f_t such that for all Borel S:

$$P(y^t \in S|\omega_0, u^1, \ldots, u^{t-1}, y^1, y^2, \ldots, y^{t-1}) $$

$$= \int_S f_t(y^t, \omega_0, u^1, \ldots, u^{t-1}, y^1, y^2, \ldots, y^{t-1}) Q_t(dy^t), \quad (9.28)$$

We can then write (since the action of each DM is determined by the measurement variables under a policy)

$$P(d\omega_0, dy, du) $$

$$= P(d\omega_0) \prod_{t=1}^N \left(f_t(y^t, \omega_0, u^1, \ldots, u^{t-1}, y^1, y^2, \ldots, y^{t-1}) Q_t(dy^t) 1_{\gamma_t(y^t) \in du} \right).$$

The cost function $J(\gamma)$ can then be written as

$$J(\gamma) = \int P(d\omega_0) \prod_{t=1}^N \left(f_t(y^t, \omega_0, u^1, \ldots, u^{t-1}, y^1, y^2, \ldots, y^{t-1}) Q_t(dy^t) c(\omega_0, u) \right).$$
with \(u^k = \gamma^k(y^k) \) for \(1 \leq k \leq N \), and where now the measurement variables can be regarded as independent from each other, and also from \(\omega_0 \), and by incorporating the \(\{f_t\} \) terms into \(c \), we can obtain an equivalent static team problem. Hence, the essential step is to appropriately adjust the probability space and the cost function.

The new cost function may now explicitly depend on the measurement values, such that

\[
c_s(\omega_0, y, u) = c(\omega_0, u) \prod_{t=1}^{N} f_t(y^t, \omega_0, u^1, u^2, \ldots, u^{t-1}, y^1, y^2, \ldots, y^{t-1}).
\] (9.29)

Here we can reformulate even a static team to one which is, clearly still static, but now with independent measurements which are also independent from the cost relevant exogenous variable \(\omega_0 \). Such a condition is not very restrictive.

We note that Witsenhausen, in [203, Eqn (4.2)], considered a standard Borel setup; as Witsenhausen notes, a static reduction always holds when the measurement variables take values from countable set since a reference measure as in \(Q_t \) above can be constructed on the measurement variable \(y^t \) (e.g., \(Q_t(y^t) = \sum_{i \geq 1} 2^{-i-1} \delta_{Y^t = m_i} \) where \(Y^t = \{m_i, i \in \mathbb{N}\} \)) so that the absolute continuity condition always holds. On the other hand independent-measurements reduction does not always hold for countable measurement spaces. We refer the reader to [52] for further findings, sufficiency conditions, and relations with classical continuous-time stochastic control where the relation with Girsanov’s classical measure transformation is recognized, and [215, p. 114] for further discussion.

Witsenhausen’s Counterexample

The celebrated Witsenhausen’s counterexample [197] is a dynamic non-classical team problem

Suppose \(x \) and \(w_1 \) are two independent, zero-mean Gaussian random variables with variance \(\sigma^2 \) and 1 so that

\[
y^0 = x, \quad y^1 = u_0 + w_1 \quad u_0 = \gamma_0(x), \quad u_1 = \gamma_1(y).
\]

with the performance criterion:

\[
Q_W(x, u_0, u_1) = k(u_0 - x)^2 + (u_1 - u_0)^2,
\] (9.30)

The above can also be expressed as a linear system driven by Gaussian noise: We obtain a two-stage problem where \(x_0 \) and \(v \) are zero-mean Gaussian random variables with variances \(\sigma^2 \) and 1 respectively.

\[
y_0 = x_0, \quad u_0 = \mu_0(y_0), \quad x_1 = x_0 + u_0, \quad y_1 = x_1 + w_1, \quad u_1 = \mu_1(y_1), \quad x_2 = x_1 + u_1.
\]

The goal would be to minimize the expected value of

\[
Q_W(x, u_0, u_1) = k(u_0)^2 + x_2^2
\]

This problem is described by a linear system; all primitive variables are Gaussian and the performance criterion is quadratic, yet linear policies are not optimal. We note that this is a non-convex problem [217] and thus variational
methods do not necessarily lead to optimality. In fact, we don’t even have a good lower bound on the optimal cost for Witsenhausen’s counterexample even though approximation results exist (see [166] for a detailed discussion).

The static reduction for Witsenhausen’s counterexample proceeds as follows:

\[
\int (k(u^1 - y^1)^2 + (u^1 - u^2)^2)Q(dy^1)\gamma_1(u^1|y^1)\gamma_1(u^2|y^2)P(dy^2|u^1) \\
= \int (k(u^1 - y^1)^2 + (u^1 - u^2)^2)Q(dy^1)\gamma_1(u^1|y^1)\gamma_1(u^2|y^2)\eta(y^2 - u^1)dy^2 \\
= \int \left((ku_0^2 + (u_0 - u_1)^2)\gamma_1(u^1|y^1)\gamma_1(u^2|y^2)\frac{\eta(y^2 - u_1)dy^2}{\eta(y^2)} \right)Q(dy^1)\eta(y^2)dy^2 \\
= \int \left((ku_0^2 + (u_0 - u_1)^2)\gamma_1(u^1|y^1)\gamma_1(u^2|y^2)\frac{\eta(y^2 - u_1)dy^2}{\eta(y^2)} \right)Q(dy^1)Q(dy^2) \tag{9.31}
\]

where \(Q \) denotes a Gaussian measure with zero mean and unit variance and \(\eta \) its density.

9.6 Expansion of information Structures: A recipe for identifying sufficient information

We start with a general result on **optimum-performance equivalence** of two stochastic dynamic teams with different information structures. This is in fact a result which has a very simple proof, but it is quite effective as we will see shortly.

Proposition 9.6.1 Let \(D_1 \) and \(D_2 \) be two stochastic dynamic teams with the same loss function, and differing only in their information structures, \(\eta_1 \) and \(\eta_2 \), respectively, with corresponding composite strategy spaces \(\Gamma_1 \) and \(\Gamma_2 \), such that \(\Gamma_2 \subseteq \Gamma_1 \). Let \(D_1 \) admit a team-optimal solution, denoted by \(\gamma^*_1 \in \Gamma_1 \), with the further property that \(\gamma^*_1 \in \Gamma_2 \). Then \(\gamma^*_1 \) also solves \(D_2 \).

A recipe for utilizing the result above would be [215]:

Given a team problem, say \(D_2 \), with IS \(\eta_2 \), which is presumably difficult to solve, obtain a *finer* IS \(\eta_1 \), and solve the team problem under this expanded IS (assuming that this new team problem is easier to solve). Then, if the team-optimal solution here is adapted to the sigma-field generated by the original coarser IS, it solves also the original problem \(D_2 \).

9.7 Convexity of Decentralized Stochastic Control Problems

9.7.1 Convexity of static team problems and an equivalent representation of cost functions

We begin this section with the following definition.

![Fig. 9.3: Witsenhausen’s counterexample as a two-stage linear stochastic control problem.](image-url)
A (static or dynamic) team problem is convex on Γ if $J(\gamma) < \infty$ for all $\gamma \in \Gamma$ and for any $\alpha \in (0, 1)$, $\gamma_1, \gamma_2 \in \Gamma$:

$$J(\alpha \gamma_1 + (1 - \alpha) \gamma_2) \leq \alpha J(\gamma_1) + (1 - \alpha) J(\gamma_2)$$

We state the following immediate result without proof, more general refinements will be stated later in the chapter.

Theorem 9.7.1 Consider a static team. $J(\gamma)$ is convex if $c(\omega_0, u)$ is convex in u for all ω_0, provided that $J(\gamma) < \infty$ for all $\gamma \in \Gamma$.

The condition in Theorem 9.7.1 is not tight, however, due to information structure and measurability aspects.

Example 9.4. Consider $\Omega = [0, 1]$ and let P be the uniform distribution on Ω, with $N = 2$, $U^1 = U^2 = [1, 2]$. Let:

$$c(\omega, u^1, u^2) = 1_{\{\omega \in [0, 0.9]\}} (u^1 - 2)^2 + (u^2 - 2)^2 + 1_{\{\omega \in (0.9, 1]\}} (\sqrt{1 + u^1} + \sqrt{1 + u^2})$$

Now, suppose further that $I^1 = I^2 = 1$ ($\gamma^1(\omega) = 1_{\{\omega \in [0, 0.1]\}}$). It follows that here the team problem is convex, even though $c(\omega, u^1, u^2)$ is not convex on $\{\omega : \omega \in (0.9, 1]\}$, which has a non-zero probability measure. To see this, note that one may view this optimization problem as $J(u^1_1, u^1_2; u^2_1, u^2_2)$ where $u^i_j = \gamma^i(\omega_j)$, with $\omega_1 \equiv \{\omega : \omega \in [0, 0.1]\}$ and $\omega_2 \equiv \{\omega : \omega \in [0.1, 1]\}$. It follows that

$$J(u^1_1, u^1_2; u^2_1, u^2_2) = \sum_{i=1,2} 0.1(u^i_1 - 2)^2 + 0.8(u^i_2 - 2)^2 + 0.1(\sqrt{u^i_1} + 1)$$

The Hessian of J is a diagonal matrix with strictly positive entries, leading to the convexity of the problem.

In the following, we will make use of the fact that $u^k \leftrightarrow y^k \leftrightarrow \{y \sim k, \omega\}$ form a Markov chain almost surely. Before proceeding further, let us note that the join of two σ-fields over some set X is the coarsest σ-field containing both. The meet of two σ-fields is the finest σ-field which is a subset of both. Let \mathcal{F}^i be the σ-field generated by η^i over Ω, and let $\mathcal{F}_c = \bigcap_i \mathcal{F}^i$ be the meet of these fields, this is termed as common knowledge by Aumann [15] for finite probability spaces. In addition, let \mathcal{F}_j be the join of the σ-field, denoted with $\mathcal{F}_j = \bigcup_i \mathcal{F}^i$.

In the following, as earlier in the chapter, we assume that the measurement and the control action spaces are standard Borel.

An equivalent representation of the cost through iterated expectations. Let us express the expected cost under a given measurable team policy γ as follows. With the interpretation that $P(u^k \in \cdot | y^k) = 1_{\{u^k = \gamma^k(y^k)\}}$, we obtain from the law of the iterated expectations that

$$E[c(\omega_0, u)] = E\left[E[c(\omega_0, u) | y] \right]$$

Under any measurable policy, given y, u is specified. Thus, with

$$\mathcal{C}(y^1, \ldots, y^N, u^1, \ldots, u^N) := E[c(\omega_0, u) | y],$$

that is $\mathcal{C}(y^1, \ldots, y^N, u^1, \ldots, u^N) = \left(\int P(d\omega_0 | y) c(\omega_0, u^1, \ldots, u^N) \right)$, the cost function becomes $E[\mathcal{C}(y^1, \ldots, y^N, u^1, \ldots, u^N)]$.

We will use this representation in the following.

Theorem 9.7.2 (i) If a team problem is convex, then

$$E[c(\omega_0, u) | \mathcal{F}_c]$$

is convex in u almost surely.

(ii) If...
\[
E[c(\omega_0, u)|F_j]
\]

is convex in \(u\) almost surely, then the team problem is convex on the set of team policies that satisfy \(J(\gamma) < \infty\).

Proof. (i) We will show the contra-positive. Let \(B\) be a Borel set such that \(P(B) > 0\), \(B \in F_c\), and \(E[c(\omega_0, u)|B]\) be non-convex so that there exist \(u\) and \(u'\) and \(\lambda \in (0, 1)\) such that
\[
E[c(\omega_0, \lambda u + (1 - \lambda)u')|B] > \lambda E[c(\omega_0, u)|B] + (1 - \lambda)E[c(\omega_0, u')|B]
\]

Now, let \(\gamma\) and \(\bar{\gamma}\) be two team policies so that these only differ on \(B\); and on \(B\) \(\gamma = u\) and \(\bar{\gamma} = u'\). Such measurable policies exist, for example by taking \(\gamma(\omega) = \{0, 0, \cdots, 0\}\) when \(\omega \notin B\). These policies are both Borel measurable and are admissible given the information structure. Then
\[
J(\lambda \gamma + (1 - \lambda)\bar{\gamma}) > \lambda J(\gamma) + (1 - \lambda)J(\bar{\gamma})
\]

and convexity fails.

(ii) We adopt the equivalent representation (9.32) in this part of the proof. Note that under any measurable policy, the random variable \(c(y^1, \cdots, y^N, u^1, \cdots, u^N)\) is measurable on the \(\sigma\)-field generated by \(y\) and thus the join \(\sigma\)-field. The proof then follows from the following. Consider two policies \(\gamma\) and \(\bar{\gamma}\) with finite expected costs. It follows then that
\[
\begin{align*}
J(\lambda \gamma + (1 - \lambda)\bar{\gamma}) &= \int P(dy)\bar{c}(y^1, \cdots, y^N, \lambda \gamma^1(y^1), \cdots, \lambda \gamma^N(y^N) + (1 - \lambda)\bar{\gamma}^N(y^N)) \\
&\leq \int P(dy)\left(\lambda \bar{c}(y^1, \cdots, y^N, \gamma^1(y^1), \cdots, \gamma^N(y^N)) \\
&\quad + (1 - \lambda)\bar{c}(y^1, \cdots, y^N, \bar{\gamma}^1(y^1), \cdots, \bar{\gamma}^N(y^N))\right) \\
&= \lambda J(\gamma) + (1 - \lambda)J(\bar{\gamma})
\end{align*}
\]

\(\diamondsuit\)

It can be observed that Example 9.4 satisfies the conditions of Theorem 9.7.2. These conditions will also be used to study Witsenhausen’s counterexample [197] later in the chapter.

A generalization of Radner and Krainak et. al.’s theorems

We provide a generalization of Radner’s or Krainak et al.’s theorem by utilizing an information structure dependent nature of convexity. For example, Radner or Krainak et al.’s theorems are not applicable to Example 9.4.

Theorem 9.7.3 Let \(\{J, \Gamma_i, i \in N\}\) be a static stochastic team problem, the loss function \(E[c(\omega_0, u)|F_j]\) is convex and continuously differentiable in \(u\) almost surely. Let \(\gamma^* \in \Gamma\) be a policy \(N\)-tuple with a finite cost \((J(\gamma^*) < \infty)\), and suppose that for every \(\gamma \in \Gamma\) such that \(J(\gamma) < \infty\), the following holds:
\[
\sum_{i \in N} E\{\nabla u_i \bar{c}(y, \gamma^*(y))|y^i - \gamma_i^*(y^i)\} \geq 0,
\]

where \(\bar{c}(y, u) := E[c(\omega_0, u)|F_j]\). Then, \(\gamma^*\) is a team-optimal policy, and it is unique if \(\bar{c}(y, u)\) is strictly convex in \(u\) almost surely.

Proof. The proof follows by defining the new loss function:
Consider the static reduction of Witsenhausen’s counterexample and the Gaussian signaling problem (9.31)-(9.34). For such team problems with partially nested information, a static reduction exists under certain invertibility conditions as partially nested information structures: Convexity of the reduced model

Theorem 9.7.4 Let \(\{J; \Gamma^i, i \in N \} \) be a static stochastic team problem which satisfies all the hypotheses of Theorem 9.7.3 with the exception of inequality (9.33). Instead of (9.32), let either (c.5) or (c.6) be satisfied with \(\tilde{c} \) replaced with \(c \). Then, if \(\tilde{\gamma}^2 \in \Gamma \) is a stationary policy it is also team optimal. Such a policy is unique if \(E[c(\omega_0, u)|F_j] \) is strictly convex in \(u \), a.s.

Proof. The proof follows by defining the new loss function \(\tilde{c} \) as in the proof of Theorem 9.7.3 and following Theorem 9.4.2.

9.7.2 Convexity of Sequential Dynamic Teams

Convexity of the reduced model

The static reduction of a sequential dynamic team problem, if exists, is not unique. However, the following holds: Either all of the static reductions are convex or none is. This holds under a minor technicality for quasi-classical patterns. Here, first the information is to be expanded to allow for control sharing. Thus, we can state that a stochastic dynamic team problem with a static reduction is convex if and only if its static reduction is.

Non-convexity of the Witsenhausen counterexample and its variants. Consider the celebrated Witsenhausen’s counterexample [197]: This is a dynamic non-classical team problem with \(y^1 \) and \(w^1 \) zero-mean independent Gaussian random variables with unit variance and \(u^1 = \gamma^1(y^1), u^2 = \gamma^2(u^1 + w^1) \) and the cost function \(c(\omega, u^1, u^2) = k^2(y^1 - u^1)^2 + (u^1 - u^2)^2 \) for some \(k > 0 \): The static reduction is given in (9.31).

Another interesting example is the point-to-point communication problem: Here, the setup is exactly as in the Witsenhausen’s counterexample, but \(c(\omega, u^1, u^2) = k^2(u^1)^2 + (y^1 - u^2)^2 \). This problem is a peculiar one in that, even though the information structure is non-classical, and is non-convex; an optimal encoder and decoder is linear. A proof of this result builds on information theoretic ideas, such as the data-processing inequality (see Chapters 3, 11 in [215] for a detailed account). In this case, the reduction writes as:

\[
\int (k(u^1)^2 + (y^1 - u^2)^2)Q(dy^1)\gamma^1(dy^1|y^1)\gamma_1(dy^2|y^2)P(dy^2|u^1) = \int \left((k(u^1)^2 + (y^1 - u^2)^2)Q(dy^1)\gamma^1(dy^1|y^1)\gamma_1(dy^2|y^2) \frac{\eta(y^2 - u^1)dy^2}{\eta(y^2)} \right)Q(dy^1)Q(dy^2) \tag{9.34}
\]

Consider the static reduction of Witsenhausen’s counterexample and the Gaussian signaling problem (9.31)-(9.34). For both (9.31) and (9.34), using the fact that \(e^{-x^2} \) is not a convex function, we recognize that this problem is not convex by Theorem 9.7.2(i) (with the common knowledge/information being the trivial \(\sigma \)-algebra consisting of the empty set and its complement).

We note that Witsenhausen states without proof in [197] (p. 134) that the counterexample is non-convex in \(\gamma^1 \) for every optimal \(\gamma^2 \) (selected as a best response to \(\gamma^1 \)). The discussion above can be viewed as an explicit proof for this result. Note also that for both problems above, linear policies contain person by person optimal policies, but this does not imply global optimality. For the first problem, Witsenhausen had shown the suboptimality of linear policies. For the second problem (9.34), however, linear policies are indeed optimal.

Partially nested information structures: Convexity of the reduced model

As reviewed earlier, an important information structure which is not nonclassical, is of the partially nested type. For such team problems with partially nested information, a static reduction exists under certain invertibility conditions as
discussed earlier. For such problems, the cost function is not altered by the static reduction. This leads to the following result.

Theorem 9.7.5 Consider a partially nested stochastic dynamic team which admits a static reduction where the cost function \(c(\omega_0,u)\) convex in \(u\). If the information structure is expanded to also include control sharing whenever measurements are shared under the partially nested information structure, then the team problem is convex.

See [217]. We note that Ho and Chu [101] established this result that for the special setup involving the partially nested LQG teams. In this case, optimal policies are linear through an equivalence to static teams.

Non-classical information structures, signaling and its effect on lack of convexity

What makes a large number of problems possessing the nonclassical information structure difficult is the fact that signaling is present: Signaling is the policy of communication through control actions. Under signaling, the decision makers apply their actions to affect the information available at the other decision makers. In this case, the control policies induce a probabilistic map (hence, a channel or a stochastic kernel) from the exogenous random variable space to the observation space of the signaled decision makers. For the nonclassical case, the problem thus also features an information transmission aspect, and the signaling decision maker’s objective also includes the design of an optimal measurement channel.

Consider the following example [211]. Consider a two-controller system evolving in \(\mathbb{R}^n\):

\[
\begin{align*}
x_{t+1} &= Ax_t + B^1 u^1_t + B^2 u^2_t + w_t, \\
y^1_t &= C^1 x_t + v_t^1, \\
y^2_t &= C^2 x_t + v_t^2,
\end{align*}
\]

where \(w, v^1, v^2\) are zero-mean, i.i.d. disturbances, and \(A, B^1, B^2, C^1, C^2\) matrices of appropriate dimensions. For \(\rho_1, \rho_2 > 0\), let the objective be the minimization of the cost functional be

\[
J = \mathbb{E} \left[\left(\sum_{t=1}^{T} |x_t|^2 + \rho_1 |u^1_t|^2 + \rho_2 |u^2_t|^2 \right) + \|x_T\|^2 \right]
\]

over control policies of the form:

\[
u^i_t = \mu^i_t(y^i_{[0,t]}, u^i_{[0,t-1]}), \quad i = 1, 2; \quad t = 0, 1, \ldots, T - 1.
\]

For a multi-stage problem (say with \(T = 2\)), unlike \(T = 1\) in [9.25], the cost is in general no-longer convex in the action variables of the controllers acting in the first stage \(t = 0\). This is because these actions might affect the estimation quality of the other controller in the future stages, if one DM can signal information to the other DM in one stage. We note that this condition is equivalent to \(C^1 A^1 B^2 \neq 0\) or \(C^2 A^1 B^1 \neq 0\) with \(l + 1\) denoting the delay in signaling with \(l = 0\) in the problem considered.

9.8 The Strategic Measures Approach

For classical stochastic control problems, strategic measures were defined (see [170], [150], [69] and [73]) as the set of probability measures induced on the product (sequence) spaces of the states, measurements, and actions; that is, given an initial state distribution and a policy, one can uniquely define a probability measure on the product space of the states, measurements, and actions. Certain measurability, compactness, and convexity properties of strategic measures for classical stochastic control problems were studied in [32, 69, 73, 150].

In [217], strategic measures for decentralized stochastic control problems were introduced and many of their properties were established. For decentralized stochastic control problems, considering the set of strategic measures along with
compactification and/or convexification of these sets of measures through introducing private and/or common randomness allow one to place operationally flexible topologies (such as those leading to a standard Borel space, e.g., weak convergence topology, among others) on the set of strategic measures, as we will study in the following.

9.8.1 Measurable policies as a subset of randomized policies and strategic measures

A common method in control theory is to view a measurable policy as a special case of relaxed policies where relaxation is often employed by randomization. Such an approach has been ubiquitously adopted in various fields often with different terminology (e.g., relaxed controls (Young topology) in optimal deterministic control\cite{130,209}, distributional strategies in economics\cite{139,133}, local hidden variables in quantum information theory etc.)

A common method in control theory is to view a measurable policy as a special case of relaxed policies where relaxation is often employed by randomization. Such an approach has been ubiquitously adopted in various fields often with different terminology (e.g., relaxed controls (Young topology) in optimal deterministic control\cite{130,209}, distributional strategies in economics\cite{139,133}, local hidden variables in quantum information theory etc.)

We recall here the following representation result\cite{36}. Let X, M be Borel spaces. Let the notation $\mathcal{P}(X)$ denote the set of probability measures on X. Consider the set of probability measures

$$\Theta := \{ \zeta \in \mathcal{P}(X \times M) : \zeta(dx, dm) = P(dx) Q^f(dm|x), Q^f(\cdot|x) = 1_{\{f(x) \in \cdot\}}, f : X \to M \} ,$$

on $X \times M$ having fixed input marginal P on X and the stochastic kernel from X to M is realized by some measurable function $f : X \to M$. We equip this set with weak convergence topology. This set is the (Borel measurable) set of the extreme points of the set of probability measures on $X \times M$ with a fixed marginal P on X. For compact M, the Borel measurability of Θ follows from\cite{149} since the set of probability measures on $X \times M$ with a fixed marginal P on X is a convex and compact set in a complete separable metric space, and therefore, the set of its extreme points is Borel measurable. Moreover, the non-compact case holds by\cite{36}, Lemma 2.3. Furthermore, given a fixed marginal P on X, any stochastic kernel Q from X to M can be identified by a probability measure $\xi \in \mathcal{P}(\Theta)$ such that

$$Q(\cdot|x) = \int_{\Theta} \xi(dQ^f) Q^f(\cdot|x). \quad (9.35)$$

In particular, a stochastic kernel can thus be viewed as an integral representation over probability measures induced by deterministic policies.

For a team setup, for any DM k, let

$$\Theta^k := \{ \zeta \in \mathcal{P}(\gamma^k \times \mathbb{U}^k) : \zeta = P_k Q^{\gamma^k}, \ zeta(\cdot|\gamma^k) = 1_{\{\gamma^k(\cdot) \in \cdot\}}, \gamma^k \in \Gamma^k, P_k(\cdot) = P(\gamma^k \in \cdot) \} .$$

For a static team, P_k would be fixed; that is, independent of the policies of the preceding DMs. Therefore, in static case, in view of (9.35), any element $\zeta \in \mathcal{P}(\gamma^k \times \mathbb{U}^k)$ with fixed marginal P_k on γ^k can be expressed as the mixture of Θ^k

$$\zeta(A) = \int_{\Theta^k} \xi^k(dQ) Q(A), \quad A \in \mathcal{B}(\gamma^k \times \mathbb{U}^k), \quad (9.36)$$

for some $\xi \in \mathcal{P}(\Theta^k)$. In the sequel, we generalize this idea to the set of strategic measures induced by measurable policies and define various relaxed policies that are obtained as a mixture of measurable policies. Indeed, instead of viewing N-tuple of policies as the joint strategy of DMs, we regard the induced probability distribution on the product space of state, measurements, and actions as the joint strategy and name it strategic measure.

9.8.2 Sets of strategic measures for static teams

Consider a static team problem defined under Witsenhausen’s intrinsic model. In the following, $B = B^0 \times \prod_{k=1}^N (A^k \times B^k)$ are used to denote the cylindrical Borel sets in $\Omega_0 \times \prod_{k=1}^N (\gamma^k \times \mathbb{U}^k)$.

Let $L_A(\mu)$ be the set of strategic measures induced by all admissible measurable policies with $(\omega_0, y) \sim \mu$; that is, $P \in L_A(\mu) \subset \mathcal{P}\left(\Omega_0 \times \prod_{k=1}^{N}(\mathcal{Y}_k \times \mathcal{U}_k)\right)$ if and only if

$$P(B) = \int_{B_0 \times \prod_{k=1}^{N} A_k} \mu(d\omega_0, d\eta) \prod_{k=1}^{N} 1_{\{u^k = \gamma^k(y^k) \in B^k\}},$$

(9.37)

for all cylindrical $B \in \mathcal{B}\left(\Omega_0 \times \prod_{k=1}^{N}(\mathcal{Y}_k \times \mathcal{U}_k)\right)$, where $\gamma^k \in \Gamma^k$ for $k = 1, \ldots, N$. Let $L_A(\mu, \gamma)$ be the strategic measure under a particular strategy $\gamma \in \Gamma$.

The first relaxation is obtained via individual randomization of policies. Namely, let $L_R(\mu)$ be the set of strategic measures induced by all individually randomized team policies where $\omega_0, y \sim \mu$; that is,

$$L_R(\mu) := \left\{ P \in \mathcal{P}\left(\Omega_0 \times \prod_{k=1}^{N}(\mathcal{Y}_k \times \mathcal{U}_k)\right) : \forall \gamma \in \Gamma, \quad P(B) = \int_{B} \mu(d\omega_0, d\eta) \prod_{k=1}^{N} \Pi^k(du^k|y^k) \right\},$$

where Π^k takes place from the set of stochastic kernels from \mathcal{Y}_k to \mathcal{U}_k for each $k = 1, \ldots, N$.

Another relaxation, which is stronger than the former one, is obtained by taking the mixture of the elements of $L_A(\mu)$. To this end, define $T = [0, 1]^N$. We then let

$$L_C(\mu) := \left\{ P \in \mathcal{P}\left(\Omega_0 \times \prod_{k=1}^{N}(\mathcal{Y}_k \times \mathcal{U}_k)\right) : \forall \gamma \in \Gamma, \quad P(B) = \int_{B \times T} \eta(dz) \mu(d\omega_0, d\eta) \prod_{k=1}^{N} \Pi^k(du^k|y^k, z) \right\},$$

where $\gamma(z)$ denotes a collection of team policies measurably parametrized by $z \in T$ so that the map $L_A(\mu, \gamma(\cdot)) : T \rightarrow L_A(\mu)$ is Borel measurable as $L_A(\mu)$ is a Borel subset of $\mathcal{P}\left(\Omega_0 \times \prod_{k=1}^{N}(\mathcal{Y}_k \times \mathcal{U}_k)\right)$ under weak convergence topology (as we will see in Theorem 9.3).

Let L_{CR} denote the set of strategic measures that are induced by some fixed but common independent randomness and arbitrary private independent randomness; that is,

$$L_{CR}(\mu) := \left\{ P \in \mathcal{P}\left(\Omega_0 \times \prod_{k=1}^{N}(\mathcal{Y}_k \times \mathcal{U}_k)\right) : \forall \gamma \in \Gamma, \quad P(B) = \int_{B \times T} \eta(dz) \mu(d\omega_0, d\eta) \prod_{k=1}^{N} \Pi^k(du^k|y^k, z) \right\},$$

where Π^k takes place from the set of stochastic kernels from $\mathcal{Y}_k \times T$ to \mathcal{U}_k for each $k = 1, \ldots, N$. Here, the common randomness η is fixed.

Let L_{CCR} denote the set of strategic measures that are induced by some arbitrary but common independent randomness and arbitrary private independent randomness, as in $L_C(\mu)$; that is,

$$L_{CCR}(\mu) := \left\{ P \in \mathcal{P}\left(\Omega_0 \times \prod_{k=1}^{N}(\mathcal{Y}_k \times \mathcal{U}_k)\right) : \forall \gamma \in \Gamma, \quad P(B) = \int_{B \times T} \eta(dz) \mu(d\omega_0, d\eta) \prod_{k=1}^{N} \Pi^k(du^k|y^k, z) \right\},$$

where Π^k takes place from the set of stochastic kernels from $\mathcal{Y}_k \times T$ to \mathcal{U}_k for each $k = 1, \ldots, N$. Here, the common randomness η is arbitrary, unlike $L_{CR}(\mu)$. The following result, essentially from [217], states some structural results about above-defined sets of strategic measures. In particular, it establishes convexity related properties of these sets.
There also exist further convex relaxations: Quantum Relaxations, Non-Signaling Relaxations and Local-Markov Relaxations. We do not discuss these in these notes.

Theorem 9.5. Consider a static team problem. Then, we have the following characterizations.

(i) $L_R(\mu)$ has the following representation:

$$
L_R(\mu) = \left\{ P \in \mathcal{P} \left(\Omega_0 \times \prod_{k=1}^{N} (\mathcal{Y}_k \times \mathcal{U}_k) \right) : P(B) = \int U(\mathcal{d}z) L_A(\mu, \gamma(z))(B),
U \in \mathcal{P}(\mathcal{Y}), U(\mathcal{d}v_1, \ldots, \mathcal{d}v_N) = \prod_{\gamma} \eta_k(\mathcal{d}v_k), \eta_k \in \mathcal{P}([0,1]) \right\};
$$

that is, $U \in \mathcal{P}(\mathcal{Y})$ is constructed by the product of N independent random variables on $[0,1]$.

(ii) $L_C(\mu) = L_{CCR}(\mu)$ and this is a convex set. The set of extreme points of $L_C(\mu)$ is $L_A(\mu)$. Furthermore, $L_R(\mu) \subset L_C(\mu)$.

(iii) We have the following equalities:

$$
\inf_{\gamma \in \mathcal{T}} \frac{J(\gamma)}{P} = \inf_{P \in L_A(\mu)} \int P(\mathcal{d}s) c(s) = \inf_{P \in L_R(\mu)} \int P(\mathcal{d}s) c(s) = \inf_{P \in L_C(\mu)} \int P(\mathcal{d}s) c(s).
$$

In particular, deterministic policies are optimal among the randomized class. In other words, individual and common randomness does not improve the optimal team cost.

(iv) The sets $L_R(\mu)$ and $L_{CCR}(\mu)$ are not convex. In particular, the presence of independent or (fixed) common randomness does not convexify the set of strategic measures.

(v) $L_R(\mu)$ and $L_C(\mu)$ are not necessarily weakly closed.

9.8.3 Sets of strategic measures for dynamic teams in the absence of static reduction

Note that if the dynamic team setup admits a static reduction (in particular independent static reduction), then one can define strategic measures by considering equivalent static problem and characterize the convexity properties of the set of strategic measures, as done in the previous section. In this section, we suppose that dynamic team does not admit a static reduction. Let μ be the distribution of ω_0. Recall that in dynamic setup, the distribution of measurements y is not fixed as opposed to the static case. In this case, we present the following characterization for strategic measures in dynamic sequential teams. Let, for all $n \in \mathcal{N}^*$,

$$
h_n = \{ \omega_0, y^1, u^1, \ldots, y^{n-1}, u^{n-1}, y^n, u^n \},
$$

and $p_n(dy^n|h_{n-1}) := P(dy^n|h_{n-1})$ be the transition kernel characterizing the measurements of DM n according to the intrinsic model. We note that this may be obtained by the relation:

$$
p_n(y^n \in \cdot | \omega_0, y^1, u^1, \ldots, y^{n-1}, u^{n-1}) := P \left(n^i(\omega, u^{i-1}, \cdot) \in \cdot | \omega_0, y^1, u^1, \ldots, y^{n-1}, u^{n-1} \right)
= P \left(g^n(\omega_0, \omega_n, u^1, \ldots, u^{n-1}) \in \cdot | \omega_0, y^1, u^1, \ldots, y^{n-1}, u^{n-1} \right).
$$

Note that once a policy is fixed, $p_n(dy^n|h_{n-1})$ represents the conditional distribution of y^n given the past history h_{n-1}. Let $L_A(\mu)$ be the set of strategic measures induced by measurable policies and let $L_R(\mu)$ be the set of strategic measures induced by individually randomized policies for the dynamic team. We have the following characterizations of $L_A(\mu)$ and $L_R(\mu)$ that are quite useful when establishing the closedness of these sets.

Theorem 9.6 ([217, Theorem 2.2]). Consider a dynamic team problem that does not admit a static reduction. Then, we have the following characterizations.
(i) A probability measure \(P \in \mathcal{P}\left(\Omega_0 \times \prod_{k=1}^N (\mathbb{Y}^k \times \mathbb{U}^k)\right) \) is a strategic measure induced by a measurable policy (that is in \(L_A(\mu) \)) if and only if, for every \(n = 1, \ldots, N \), we have
\[
\int P(dh_{n-1}, dy^n) g(h_{n-1}, y^n) = \int P(dh_{n-1}) \left(\int_{\mathbb{Y}^n} g(h_{n-1}, z) p_n(dz|h_{n-1}) \right)
\]
and
\[
\int P(dh_n) g(h_{n-1}, y^n, u^n) = \int P(dh_{n-1}, dy^n) \left(\int_{\mathbb{U}^n} g(h_{n-1}, y^n, a) 1(\gamma^n(y^n) \in da) \right),
\]
for all continuous and bounded function \(g \) with appropriate arguments, where \(P(d\omega_0) = \mu(d\omega_0) \) and \(\gamma^n \in \Gamma^n \).

(ii) A probability measure \(P \in \mathcal{P}\left(\Omega_0 \times \prod_{k=1}^N (\mathbb{Y}^k \times \mathbb{U}^k)\right) \) is a strategic measure induced by an individually randomized policy (that is in \(L_R(\mu) \)) if and only if, for every \(n = 1, \ldots, N \), we have
\[
\int P(dh_{n-1}, dy^n) g(h_{n-1}, y^n) = \int P(dh_{n-1}) \left(\int_{\mathbb{Y}^n} g(h_{n-1}, z) p_n(dz|h_{n-1}) \right) \tag{9.39}
\]
and
\[
\int P(dh_n) g(h_{n-1}, y^n, u^n) = \int P(dh_{n-1}, dy^n) \left(\int_{\mathbb{U}^n} g(h_{n-1}, y^n, a) \Pi^n(da^n|y^n) \right) \tag{9.40}
\]
for all continuous and bounded function \(g \) with appropriate arguments, where \(P(d\omega_0) = \mu(d\omega_0) \) and \(\Pi^n \) is a stochastic kernel from \(\mathbb{Y}^n \) to \(\mathbb{U}^n \).

Remark 9.7. A result similar to Theorem 9.5 can also be stated for the dynamic case, in particular with regard to \(L_A(\mu) \) being the set of extreme points of the convex hull of \(L_R(\mu) \). The reader is referred to [217, Theorem 2.3] which essentially establishes this; see also [72] Theorem 1.c] for related discussions.

A celebrated result in economics theory, known as Kuhn’s theorem [112], notes that the convex hull of admissible (i.e. those in \(L_A(\mu) \)) strategic measures (hence \(L_C(\mu) \)) is equivalent to \(L_R(\mu) \) when the information structure is classical.

We can thus state that this does not apply in the absence of classical-ness, as \(L_R(\mu) \) would not be convex (if the information structure is not classical, then convexity fails [217, p.12]), but the convex hull of admissible policies is, by definition, convex; but the convex hull of \(L_R(\mu) \) is \(L_C(\mu) \).

9.8.4 Measurability properties of sets of strategic measures

As noted earlier, the set \(L_A(\mu) \) is a Borel subset of \(\mathcal{P}\left(\Omega_0 \times \prod_{k=1}^N (\mathbb{Y}^k \times \mathbb{U}^k)\right) \) under weak convergence topology. The same is true for \(L_R(\mu) \), which is stated in the following theorem. This result will be crucial in the analysis to follow.

Theorem 9.8 ([217, Theorem 2.10]). Consider a sequential (static or dynamic) team.

(i) The set of strategic measures \(L_R(\mu) \) is Borel when viewed as a subset of the space of probability measures on \(\Omega_0 \times \prod_{k=1}^N (\mathbb{Y}^k \times \mathbb{U}^k) \) under the topology of weak convergence.

(ii) The set of strategic measures \(L_A(\mu) \) is Borel when viewed as a subset of the space of probability measures on \(\Omega_0 \times \prod_{k=1}^N (\mathbb{Y}^k \times \mathbb{U}^k) \) under the topology of weak convergence.

For further properties of the sets of strategic measures, see [217].
9.9 Existence of Optimal Solutions

The following theorem states a general existence result for static teams and for dynamic teams admitting static reduction. Its proof depends on Weierstrass Extreme Value Theorem.

Theorem 9.9. Consider a static team or the static reduction of a dynamic team with \(c \) denoting the cost function. Let \(c \) be lower semi-continuous in \(u \) for every fixed \(\omega_0, y \) and \(L_R(\mu) \) or \(L_C(\mu) \) be a compact set under weak convergence topology. Then, there exists an optimal team policy. This policy can be chosen deterministic and hence induces a strategic measure in \(L_A(\mu) \).

Remark 9.10. Since the cost function \(c_\omega \) in independent static reduction of a dynamic team also depends on the measurements \(y \), we include \(y \) as an argument to the cost function \(c \) in the previous theorem.

Theorem 9.11. [214, Theorem 5.2] Consider a static or a dynamic team that admits an independent static reduction. Let \(c \) be lower semi-continuous in \(u \) for any \(\omega_0, y \). Suppose further that \(U^i \) is \(\sigma \)-compact (that is, \(U^i = \bigcup_n K_n \) for a countable collection of increasing compact sets \(K_n \)) and, without any loss, the control laws can be restricted to those with \(E[\phi^i(u^i)] \leq M \) for some lower semi-continuous \(\phi^i : U^i \to \mathbb{R}_+ \) which satisfies \(\lim_{n \to \infty} \inf_{u^i \notin K_n} \phi^i(u^i) = \infty \). Then, an optimal team policy exists.

Theorem 9.12. [214, Theorem 5.2] Consider a static or a dynamic team that admits an independent static reduction. Let \(c \) be lower semi-continuous in \(u \) for any \(\omega_0, y \). Suppose further that \(U^i \) is \(\sigma \)-compact (that is, \(U^i = \bigcup_n K_n \) for a countable collection of increasing compact sets \(K_n \)) and, without any loss, the control laws can be restricted to those with \(E[\phi^i(u^i)] \leq M \) for some lower semi-continuous \(\phi^i : U^i \to \mathbb{R}_+ \) which satisfies \(\lim_{n \to \infty} \inf_{u^i \notin K_n} \phi^i(u^i) = \infty \). Then, an optimal team policy exists.

Remark 9.13. Building on [217, Theorems 2.3 and 2.5] and [87, p. 1691] (due to Blackwell’s theorem on irrelevant information [31, 33], [215, p. 457]), an optimal policy, when exists, can be assumed to be deterministic.

So far, we presented existence results for static or dynamic teams that admit independent static reduction. In the following, we present existence results for teams that do not admit independent static reduction.

Theorem 9.14. [217, Theorem 2.9] Consider a sequential team with a classical information structure with the further property that \(\sigma(\omega_0) \subset \sigma(y^1) \) (under every policy, \(y^1 \) contains \(\omega_0 \)). Suppose further that \(\prod_{k=1}^N Y^k \) is compact. If \(c \) is lower semi-continuous and each of the kernels \(p_n \) (defined in (9.38)) is weakly continuous so that

\[
\int f(y^n) p_n(dy^n|\omega_0, y^1, \ldots, y^{n-1}, u^1, \ldots, u^{n-1})
\]

is continuous in \(\omega_0, y^1, \ldots, y^{n-1}, u^1, \ldots, u^{n-1} \) for every continuous and bounded \(f \), then there exists an optimal team policy which is deterministic.

A further existence result along similar lines, for a class of static teams, is presented next.

Theorem 9.15. [214, Theorem 5.6] Consider a static team with a classical information structure (that is, with an expanding information structure so that \(\sigma(y^n) \subset \sigma(y^{n+1}), n \geq 1 \)). Suppose further that \(\prod_{k=1}^N (Y^k \times U^k) \) is compact. If

\[
\tilde{c}(y^1, \ldots, y^N, u^1, \ldots, u^N) := E[c(\omega_0, u)|y, u]
\]

is lower semi-continuous in \(u \) for every \(y \), then there exists an optimal team policy which is deterministic.

Remark 9.16. The power of this last result may first seem limited. However, some reflection leads to the conclusion that, in the continuous-time theory of stochastic control, a related but not identical argument has remarkable consequences.
If one makes the measurements independent via a change of measure argument, as in Girsanov’s celebrated argument, so that the information structure is first made static, and then makes the information structure classical by considering the actions at time \(t \) measurable on the filtration generated by the past noise processes and actions up to time \(t \); the proof of Theorem 9.15 can be slightly adapted to show that such a set of measurement-action measures (with fixed marginal on the measurements) that satisfy conditional independence \(u_{[0,t]} \leftrightarrow y_{[0,t]} \leftrightarrow y_s - y_t \) is weakly closed (these are known as wide-sense admissible control policies). Furthermore, the value is continuous in this joint measure on \(\{(u,y), s \in [0,T]\} \) and this set of measures is tight. These lead to the compactness-continuity conditions and accordingly an existence result for optimal policies follows. Furthermore, by showing that the set of \(\{ (u,y), s \geq 0 \} \) measures which have quantized support in the measurement variable are dense, one can show also that piece-wise constant control policies are nearly optimal. This allows one to approximate a continuous-time process with a (sampled) discrete-time process and the machinery developed earlier in the lecture notes are applicable. This approach is the essence of Kushner’s method [115], though stated somewhat differently.

9.9.1 Some Applications and Revisiting Existence Results for Classical (Single-DM) Stochastic Control

Witsenhausen’s counterexample with Gaussian variables

Consider the celebrated Witsenhausen’s counterexample [197] as depicted in Figures 9.3 and 9.2. This is a dynamic non-classical team problem with \(y \) and \(x \) zero-mean independent Gaussian random variables with unit variance and \(\gamma^1(y^1), u^2 = \gamma^2(u^1 + w^1) \) and the cost function \(c(\omega, u^1, u^2) = k(y^1 - u^1)^2 + (u^1 - u^2)^2 \) for some \(k > 0 \). Witsenhausen’s counterexample can be expressed, through a change of measure argument (also due to Witsenhausen) as in [9.31].

Since the optimal policy for \(\gamma^2(y^2) = E[u^1|y^1] \) and \(E[(E[u^1|y^1])^2] \leq E[(u^1)^2] \), it is evident with a two-stage analysis (see [87] p. 1701) that without any loss we can restrict the policies to be so that \(E[(u^i)^2] \leq M \) for some finite \(M \), for \(i = 1, 2 \); this ensures a weak compactness condition on both \(\gamma^1 \) and \(\gamma^2 \). Since the reduced cost \(\left(k(y^1 - u^1)^2 + (u^1 - u^2)^2 \right) \frac{g(y^2 - u^1)}{g(y^1)} \) is continuous in the actions, Theorem 9.12 applies.

Existence for partially observable Markov Decision Processes (POMDPs)

Consider a partially observable stochastic control problem (POMDP) with the following dynamics.

\[
x_{t+1} = f(x_t, u_t, w_t), \quad y_t = g(x_t, v_t).
\]

Here, \(x_t \) is the \(X \)-valued state, \(u_t \) is the \(U \)-valued control, \(y_t \) is the \(Y \)-valued measurement process. In this section, we will assume that these spaces are finite dimensional real vector spaces. Furthermore, \((w_t, v_t) \) are i.i.d noise processes and \(\{w_t\} \) is independent of \(\{v_t\} \). The controller only has causal access to \(\{y_t\} \); A deterministic admissible control policy \(\Pi \) is a sequence of functions \(\{\gamma_t\} \) so that \(u_t = \gamma(y_{[0,t]}; u_{[0,t-1]}) \). The goal is to minimize

\[
E_x^\Pi \sum_{t=0}^{T-1} c(x_t, u_t),
\]

for some continuous and bounded \(c : X \times U \to \mathbb{R}_+ \).

Such a problem can be viewed as a decentralized stochastic control problem with increasing information, that is, one with a classical information structure.

Any POMDP can be reduced to a (completely observable) MDP [218], [155], whose states are the posterior state distributions or beliefs of the observer. A standard approach for solving such problems then is to reduce the partially observable model to a fully observable model (also called the belief-MDP) by defining
and observing that \((\pi_t, u_t)\) is a controlled Markov chain where \(\pi_t\) is \(\mathcal{P}(\mathcal{X})\)-valued with \(\mathcal{P}(\mathcal{X})\) being the space of probability measures on \(\mathcal{X}\) under the weak convergence topology. Through such a reduction, existence results can be established by obtaining conditions which would ensure that the controlled Markovian kernel for the belief-MDP is weakly continuous, that is if \(\int F(\pi_{t+1})P(dx_{t+1}|\pi_t = \pi, u_t = u)\) is jointly continuous (weakly) in \(\pi\) and \(u\) for every continuous and bounded function \(F\) on \(\mathcal{P}(\mathcal{X})\).

This was studied recently in [74] Theorem 3.7, Example 4.1 and [108] (see also [49] in a control-free context). In the context of the example presented, if \(f(\cdot, \cdot, w)\) is continuous and \(g\) has the form: \(y_t = g(x_t) + e_t\), with \(g\) continuous and \(w_t\) admitting a continuous density function \(\eta_t\), an existence result can be established building on the measurable selection criteria under weak continuity [96] Theorem 3.3.5, Proposition D.5], provided that \(\mathcal{U}\) is compact.

On the other hand, through Theorem 9.15, such an existence result can also be established by obtaining a static reduction under the aforementioned conditions. Indeed, through (9.29), with \(\eta_t\) denoting the density of \(v_n\), we have \(P(y_n \in B|x_n) = \int_{B} \eta(y - g(x_n))dy\). With \(\eta\) and \(g\) continuous and bounded, taking \(y^n := y_n\), by writing \(x_{n+1} = f(x_n, u_n, w_n) = f(f(x_{n-1}, u_{n-1}, w_{n-1}), u_n, w_n)\), and iterating inductively to obtain

\[x_{n+1} = h_n(x_0, u_{[0,n-1]}, w_{[0,n-1]}),\]

for some \(h_n\) which is continuous in \(u_{[0,n-1]}\) for every fixed \(x_0, w_{[0,n-1]}\), one obtains a reduced cost (9.29) that is a continuous function in the control actions. Theorem 9.15 then implies the existence of an optimal control policy. This reasoning is also applicable when the measurements are not additive in the noise but with \(\int_B m(y, x)\eta(dy)\) for some \(m\) continuous in \(x\) and \(\eta\) a reference measure.

Revisiting fully observable Markov Decision Processes with the construction presented in the chapter

Consider a fully observed Markov decision process where the goal is to minimize

\[E_{x_0}^H \sum_{t=0}^{T-1} c(x_t, u_t),\]

for some continuous and bounded \(c : \mathcal{X} \times \mathcal{U} \rightarrow \mathbb{R}_+\). Suppose that the controller has access to \(x_{[0,t]}, u_{[0,t-1]}\) at time \(t\). This system can always be viewed as a sequential team problem with a classical information structure. Under the assumption that the transition kernel according to the usual formulation, that \(P(dx_{1}|x_0 = x, u_0 = u)\) is weakly continuous (in the sense discussed in the previous application above), it follows that the transition kernel according to the formulation introduced in (9.38) is also weakly continuous by an application [172] Theorem 3.5]. It follows that when \(\mathcal{U}\) is compact, and hence the existence of an optimal policy follows. A similar analysis is applicable when one considers the case where \(P(dx_1|x_0 = x, u_0 = u)\) is strongly continuous in \(u\) for every fixed state \(x\) and the bounded cost function is continuous only in \(u\) (this is another typical setup where measurable selection conditions hold (see Assumptions 5.1.1 and 5.1.2)).

9.10 Approximation of Optimal Solutions via Finite Approximations

In this section, we consider the finite approximation of static team problems. Since results of this section can also be applied to static reduction of dynamic teams, we suppose that the cost function \(c\) also depends on the measurements \(y\) (which is not the case in the original problem formulation). Recall that, in the independent static reduction of a dynamic team, the reduced cost function \(c_y\) is a function of \(\omega_0, u, y\). To obtain finite approximation result, the following assumptions are imposed on the components of the model.

Assumption 9.10.1 (a) The cost function \(c\) is continuous in \((u, y)\) for any fixed \(\omega_0\). In addition, it is bounded on any compact subset of \(\Omega_0 \times \prod_{k=1}^{N} (\mathbb{Y}^k \times \mathbb{U}^k)\).
(b) For each \(k \), \(\mathbb{U}^k \) is a closed and convex subset of a completely metrizable locally convex vector space.

(c) For each \(k \), \(\mathbb{Y}^k \) is locally compact.

(d) For any subset \(G \) of \(\prod_{k=1}^{N} \mathbb{U}^k \), the function \(w_G(\omega_0, y) := \sup_{u \in G} c(\omega_0, y, u) \) is integrable with respect to \(\mu(d\omega_0, dy) \), for any compact subset \(G \) of \(\prod_{k=1}^{N} \mathbb{U}^k \) of the form \(G = \prod_{k=1}^{N} G^k \).

(e) For any \(\gamma \in \Gamma \) with \(J(\gamma) < \infty \) and each \(k \), there exists \(u^{k,*} \in \mathbb{U}^k \) such that \(J(\gamma^{-k}, \gamma^{k}_{u^{k,*}}) < \infty \), where \(\gamma^{k}_{u^{k,*}} \equiv u^{k,*} \).

In what follows, for any subset \(G \) of \(\prod_{k=1}^{N} \mathbb{U}^k \), we let

\[
\Gamma_G := \left\{ \gamma \in \Gamma : \gamma \left(\prod_{k=1}^{N} \mathbb{Y}^k \right) \subset G \right\}
\]

and \(\Gamma_{c,G} := \Gamma_c \cap \Gamma_G \), where \(\Gamma_c \) denotes the set of continuous strategies. Using these definitions, let us define the following set of strategic measures for any subset \(G \) of \(\prod_{k=1}^{N} \mathbb{U}^k \):

\[
L^G_A(\mu) := \left\{ P \in L_A(\mu) : P(B) = \int_{B^0 \times \prod_{k=1}^{N} \mathbb{A}^k} \mu(d\omega_0, dy) \prod_{k=1}^{N} 1_{\{u^k = \gamma^k(y^k) \in B^k\}}, \gamma \in \Gamma_G \right\}.
\]

Let \(L^G_A(\mu) \) denote the set of strategic measures in \(L^G_A(\mu) \) induced by continuous policies.

The following result states that, there exists a near optimal strategic measure whose support on the product of action spaces \(\prod_{k=1}^{N} \mathbb{U}^k \) is convex and compact (and thus bounded) subset \(G \) of it, and conditional distributions of actions given measurements are induced by continuous policies.

Proposition 9.17. Suppose Assumption 9.10.1 holds. Then, for any \(\varepsilon > 0 \) there exists a compact subset \(G \) of \(\prod_{i=1}^{N} \mathbb{U}^i \) of the form \(G = \prod_{i=1}^{N} G^i \), where each \(G^i \) is convex and compact, such that

\[
\inf_{P \in L^G_A(\mu)} \int P(ds) c(s) < J^* + \varepsilon.
\]

Given any strategic measure, using Assumption 9.10.1(e) and the fact that every measure on a Borel space is tight [147 Theorem 3.2], one can construct a strategic measure in \(L_A(\mu) \) whose support on the product of action spaces is convex and compact and whose cost is \(\varepsilon/2 \)-close to the cost of the given strategic measure. For the new strategic measure, since it has a convex and compact support on the product of action spaces, using Lusin’s theorem [67, Theorem 7.5.2], we can construct a strategic measure induced by continuous policies whose cost function is \(\varepsilon/2 \)-close to the cost of bounded support strategic measure. We can complete the proof by combining these two results.

Since each \(\mathbb{Y}^i \) is a locally compact separable metric space, there exists an increasing sequence of compact subsets \(\{ K^i_l \} \) such that \(K^i_l \subset \text{int } K^i_{l+1} \) and \(\mathbb{Y}^i = \bigcup_{l=1}^{\infty} K^i_l \) [3 Lemma 2.76], where \(\text{int } D \) denotes the interior of the set \(D \).

Let \(d_i \) denote the metric on \(\mathbb{Y}^i \). For each \(l \geq 1 \), let \(\mathbb{Y}^i_{l,n} := \{ y_{i,1}, \ldots, y_{i,i_{l,n}} \} \subset K^i_l \) be an \(1/n \)-net in \(K^i_l \). Recall that if \(\mathbb{Y}^i_{l,n} \) is an \(1/n \)-net in \(K^i_l \), then for any \(y \in K^i_l \) we have

\[
\min_{z \in \mathbb{Y}^i_{l,n}} d_i(y, z) < \frac{1}{n}.
\]

For each \(l \) and \(n \), let \(q^i_{l,n} : K^i_l \to \mathbb{Y}^i_{l,n} \) be a nearest neighborhood quantizer given by

\[
q^i_{l,n}(y) = \arg\min_{z \in \mathbb{Y}^i_{l,n}} d_i(y, z),
\]
where ties are broken so that \(q_{l,n}^i \) is measurable. If \(K_i^l = [-M, M] \subset \mathbb{Y}^i = \mathbb{R} \) for some \(M \in \mathbb{R}^+ \), the finite set \(\mathcal{Y}^i_{l,n} \) can be chosen such that \(q_{l,n}^i \) becomes a uniform quantizer. We let \(Q_{l,n}^i: \mathcal{Y}^i \to \mathcal{Y}^i_{l,n} \) denote the extension of \(q_{l,n}^i \) to \(\mathcal{Y}^i \) given by
\[
Q_{l,n}^i(y) := \begin{cases} q_{l,n}^i(y), & \text{if } y \in K_i^l, \\ y_{i,0}, & \text{otherwise}, \end{cases}
\]
where \(y_{i,0} \in \mathbb{Y}^i \) is some auxiliary element.

Define \(\Gamma_{l,n}^i = \Gamma_i \circ Q_{l,n}^i \subset \Gamma^i \); that is, \(\Gamma_{l,n}^i \) is defined to be the set of all strategies \(\tilde{\gamma}^i \in \Gamma^i \) of the form \(\tilde{\gamma}^i = \gamma^i \circ Q_{l,n}^i \), where \(\gamma^i \in \Gamma^i \). Define also \(\Gamma_{l,n} := \prod_{i=1}^N \Gamma_{l,n}^i \subset \Gamma \). Note that, for any \(i = 1, \ldots, N \), \(\Gamma_{l,n}^i \) is the set of policies for DM \(i \) which can only use the output levels of the quantizer \(Q_{l,n}^i \). In other words, in addition to measurement channel \(g^i(dy|\omega_0) \) between DM \(i \) and the Nature, there is also an analog-to-digital converter (quantizer) between them.

Using these definitions, let us define the following set of strategic measures for any \(l \) and \(n \):
\[
L_{A, l,n}^i(\mu) := \left\{ P \in L_A(\mu) : P(B) = \int_{B^0 \times \prod_{k=1}^N \mathcal{A}^k} \mu(d\omega_0, dy) \prod_{k=1}^N 1_{\{u^k = \gamma^k(y^k) \in B^k\}}, \gamma \in \Gamma_{l,n} \right\}.
\]

The following theorem states that an optimal (or almost optimal) strategic measure can be approximated with arbitrarily small approximation error for the induced costs by strategic measures in \(L_{A, l,n}^i(\mu) \) for sufficiently large \(l \) and \(n \).

Theorem 9.18. [166] For any \(\varepsilon > 0 \), there exist \((l, n(l)) \), a compact subset \(G \) of \(\prod_{i=1}^N \mathcal{Y}^i \) of the form \(G = \prod_{i=1}^N G^i \), where each \(G^i \) is convex and compact, and \(P \in L_{A, l,n}^i(\mu) \) such that
\[
\int P(ds) c(s) < J^* + \varepsilon
\]

For each \((l, n) \), we define a team model with finite measurement spaces. We prove that, for sufficiently large \(l \) and \(n \), optimal strategic measure of the team model corresponding to \((l, n) \) will provide a strategic measure to the original team model which is nearly optimal.

To this end, fix any \((l, n) \). For the pair \((l, n) \), the corresponding finite measurement team model has the following measurement spaces: \(\mathcal{Z}^i_{l,n} := \{y_{i,0}, y_{i,1}, \ldots, y_{i,i}, \ldots\} \) (i.e., the output levels of \(Q_{l,n}^i \), \(i \in \mathcal{N} \)). The stochastic kernels \(g_{l,n}^i (\cdot | \omega_0) \) from \(\Omega_0 \) to \(\mathcal{Z}^i_{l,n} \) denotes the measurement constraints and given by:
\[
g_{l,n}^i (\cdot | \omega_0) := \sum_{j=0}^{i,n} g(\mathcal{S}_{i,j}^{l,n} | \omega_0) \delta_{y_{i,j}} (\cdot),
\]
where \(\mathcal{S}_{i,j}^{l,n} := \{ y \in \mathbb{Y}^i : Q_{l,n}^i (y) = y_{i,j} \} \). Indeed, \(g_{l,n}^i (\cdot | \omega_0) \) is the push-forward of the measure \(g^i(\cdot | \omega_0) \) with respect to the quantizer \(Q_{l,n}^i \).

Let \(\Phi_{l,n}^i := \{ \phi^i : \mathcal{Z}^i_{l,n} \to \mathbb{U}^i, \phi^i \text{ measurable} \} \) denote the set of measurable policies for DM \(i \) and let \(\Phi_{l,n} := \prod_{i=1}^N \Phi_{l,n}^i \). The cost of this team model is \(J_{l,n} : \Phi_{l,n} \to \mathbb{R}^+ \) and defined as
\[
J_{l,n}(\phi) := \int_{\Omega_0 \times \prod_{i=1}^N \mathcal{Z}^i_{l,n}} c(\omega_0, y, u) P_{l,n}(d\omega_0, dy),
\]
where \(\phi = (\phi^1, \ldots, \phi^N), u = \phi(y) \), and
In the following, we present the ingredients of such an approach, as formalized by Nayyar, Mahajan and Teneketzis and termed the common information approach. Such a dynamic programming approach has been adopted extensively in the literature (see for example, [13], [208], [56], [1], [211]), and unified and generalized in [140,141]) through the use of a team-policy which uses common information to generate partial functions for each DM to generate their actions using local information. Thus, in the dynamic programming approach, a separation of team decision policies in the form of a two-tier architecture, a higher-level controller and a lower-level controller, can be established with the use of common knowledge.

In order to obtain the approximation result, we need to impose the following additional assumption.

Assumption 9.10.2 For any compact subset G of $\prod_{k=1}^{N} \mathbb{U}^{k}$ of the form $G = \prod_{i=1}^{N} G^{i}$, we assume that the function w_{G} is uniformly integrable with respect to the measures $\{\mu_{i,n}\}$; that is,

$$\lim_{R \to \infty} \sup_{\{w_{G}>R\}} \int_{\{w_{G}>R\}} w_{G}(\omega_{0},y) \, d\mu_{i,n} = 0.$$

Note that Assumption 9.10.1-(d),(e) hold if the cost function is bounded. Indeed, conditions in Assumption 9.10.1 are quite mild and hold for the celebrated counterexample of Witsenhausen.

Theorem 9.19. [166] Suppose Assumptions 9.10.1 and 9.10.2 hold. Then, for any $\varepsilon > 0$, there exists a pair $(l,n(l))$ and a compact subset $G = \prod_{k=1}^{N} G^{i}$ of $\prod_{k=1}^{N} \mathbb{U}^{k}$ such that an optimal (or almost optimal) strategic measure $P^{l,n(l)}_{Y}$ in the set $\mathcal{T}^{G}_{l,n(l)}(\mu_{l,n(l)})$ for the $(l,n(l))$ team is ε-optimal for the original team problem when $P^{l,n(l)}$ is extended to $\Omega \times \prod_{k=1}^{N} (\mathcal{Y}^{k} \times \mathbb{U}^{k})$ via quantizers $Q_{l,n(l)}^{i}$; that is,

$$P^{l,n(l)}_{ex}(\cdot) = \int \mu(\omega_{0},d\gamma) \prod_{k=1}^{N} 1_{\{u^{k} = \gamma^{k} \in Q_{l,n(l)}^{i}(y^{k})\}}$$

where

$$P^{l,n(l)}(B) = \int \mu_{l,n(l)}(\omega_{0},d\gamma) \prod_{k=1}^{N} 1_{\{u^{k} = \gamma^{k}(y^{k})\}}$$

9.11 Dynamic Programming Approaches to Team Decision Problems

9.11.1 Dynamic programming approach based on Common Information and a Controlled Markov State

In a team problem, if all the random information at any given decision maker is common knowledge between all decision makers, then the system is essentially centralized. If only some of the system variables are common knowledge, the remaining unknowns may or may not lead to a computationally tractable program generating an optimal solution. A possible approach toward establishing a tractable program is through the construction of a controlled Markov chain where the controlled Markov state may now live in a larger state space (for example a space of probability measures) and the actions are elements in possibly function spaces. This controlled Markov construction may lead to a computation of optimal policies.

Such a dynamic programming approach has been adopted extensively in the literature (see for example, [13], [208], [56], [1], [211]), and unified and generalized in [140,141]) through the use of a team-policy which uses common information to generate partial functions for each DM to generate their actions using local information. Thus, in the dynamic programming approach, a separation of team decision policies in the form of a two-tier architecture, a higher-level controller and a lower-level controller, can be established with the use of common knowledge.

In the following, we present the ingredients of such an approach, as formalized by Nayyar, Mahajan and Teneketzis [141] and termed the common information approach:

1. Elimination of irrelevant information at the DMs: In this step, irrelevant local information at the DMs, say DM k, is identified as follows. By letting the policy at other DMs to be arbitrary, the policy of DM k can be optimized as a best-response function, and irrelevant data at DM k can be removed.
2. Construction of a coordinated system: This step identifies the common information and local/private information at the DMs, after Step 1 above has been carried out. A fictitious coordinator (higher-level controller) uses the common information to generate team policies, which in turn dictates the (lower-level) DMs what to do with their local information.

3. Formulation of the cost function as a Partially Observed Markov Decision Process (POMDP), in view of the coordinator’s optimal control problem: A fundamental result in stochastic control is that the problem of optimal control of a partially observed Markov chain (with additive per-stage costs) can be solved by turning the problem into a fully observed one on a larger state space where the state is replaced by the “belief” on the state.

4. Solution of the POMDP leads to the structural results for the coordinator to generate optimal team policies, which in turn dictates the DMs what actions to take given their local information realizations.

5. Establishment of the equivalence between the solution obtained and the original problem, and translation of the optimal policies. Any coordination strategy can be realized in the original system. Note that, even though there is no real coordinator, such a coordination can be realized implicitly, due to the presence of common information.

We will provide a further explicit setting with such a recipe at work, in the context of the \textit{k-stage periodic belief sharing pattern} in the next section. In particular, Lemma 9.11.1 and Lemma 9.11.2 will highlight this approach. When a given information structure does not allow for the construction of a controlled Markov chain even in a larger, but fixed for all time stages, state space, one question that can be raised is what information requirements would lead to such a structure. We will also investigate this problem in the context of the one-stage belief sharing pattern in the next section.

\textbf{k-Stage Periodic Belief Sharing Pattern}

In this section, we will use the term \textit{belief} for a probability measure-valued random variable. This terminology has been used particularly in the artificial intelligence and computer science communities, which we adopt here. We will, however, make precise what we mean by such a belief process in the following.

As mentioned earlier in Chapter 6, a fundamental result in stochastic control is that the problem of optimal control of a partially observed Markov chain can be solved by turning the problem into a fully observed one on a larger state space where the state is replaced by the belief on the state. Such an approach is very effective in the centralized setting; in a decentralized setting, however, the notion of a state requires further specification. In the following, we illustrate this approach under the \textit{k}-step periodic belief sharing information pattern.

Consider a joint process \(\{x_t, y_t, \; t \in \mathbb{Z}_+\}\), where we assume for simplicity that the spaces where \(x_t, y_t\) take values from are finite dimensional real-valued or countable. They are generated by

\[
x_{t+1} = f(x_t, u_1^t, \ldots, u_L^t, w_t),
\]

\[
y_t^i = g(x_t, v_t^i),
\]

where \(x_t\) is the state, \(u_i^t \in U^i\) is the control action, \((w_t, v_t^i, 1 \leq i \leq L)\) are second order, zero-mean, mutually independent, i.i.d. noise processes. We also assume that the state noise, \(w_t\), either has a probability mass function, or a probability measure with a density function. To minimize the notational clutter, \(P(x)\) will denote the probability mass function for discrete-valued spaces or probability density function for continuous spaces.

Suppose that there is a common information vector \(I_t^c\) at some time \(t\), which is available to all the decision makers. At times \(k^s - 1\), with \(k > 0\) fixed, and \(s \in \mathbb{Z}_+\), the decision makers share all their information: \(I_{k^s-1}^c = \{y_{[0,k^s-1]}, u_{[0,k^s-1]}\}\) and for \(I_0^c = \{P(x_0)\}\), that is at time 0 the DMs have the same \textit{a priori} belief on the initial state. Hence, at time \(t\), DM \(i\) has access to \(\{y_{[k^s,t]}, I_{k^s-1}^c\}\).

Until the next common observation instant \(t = k(s + 1) - 1\) we can regard the individual decision functions specific to DM \(i\) as \(u_i^t = \gamma_i(y_{[k^s,t]}, I_{k^s-1}^c)\); we let \(\gamma_s\) denote the ensemble of such decision functions and let \(\gamma\) denote the team policy.
It then suffices to generate γ_s for all $s \geq 0$, as the decision outputs conditioned on $y_{[ks,t]}^i$, under $\gamma_s^i(y_{[ks,t]}^i, I_{ks-1}^c)$, can be generated. In such a case, we can define $\gamma_s^i(y_{[ks,t]}^i, I_{ks-1}^c)$ to be the joint team decision rule mapping I_{ks-1}^c into a space of action vectors: \{ $\gamma_s^i(y_{[ks,t]}^i, I_{ks-1}^c), i \in \mathcal{C} = \{1, 2, \ldots, L\}, t \in \{ks, ks + 1, \ldots, k(s + 1) - 1\}\}.

Let $[0, T - 1]$ be the decision horizon, where T is divisible by k. Let the objective of the decision makers be the joint minimization of

$$E_{x_0}^{\gamma_1^1, \gamma_2^2, \ldots, \gamma_L^L} \left[\sum_{t=0}^{T-1} c(x_t, u_1^1, u_2^2, \ldots, u_L^L) \right],$$

over all policies $\gamma_1^1, \gamma_2^2, \ldots, \gamma_L^L$, with the initial condition x_0 specified. The cost function

$$J_{x_0}(\gamma) = E_{x_0}^{\gamma} \left[\sum_{t=0}^{T-1} c(x_t, u_t) \right]$$

can be expressed as:

$$J_{x_0}(\gamma) = E_{x_0}^{\gamma} \left[\sum_{s=0}^{T-1} \bar{c}(\gamma_s, \bar{x}_s) \right]$$

with

$$\bar{c}(\gamma_s, \bar{x}_s) = E_{x_0}^{\gamma} \left[\sum_{t=ks}^{k(s+1)-1} c(x_t, u_t) \right].$$

Lemma 9.11.1 Consider the decentralized system setup above. Let I_{c}^t be a common information vector supplied to the DMs regularly every k time stages, so that the DMs have common memory with a control policy generated as described above. Then, \{ $\bar{x}_s := x_{ks}, \gamma_s^i(y_{[ks,t]}^i, I_{ks-1}^c), s \geq 0$\} forms a controlled Markov chain.

In view of the above, we have the following separation result.

Lemma 9.11.2 Let I_{c}^t be a common information vector supplied to the DMs regularly every k time steps. There is no loss in performance if I_{ks-1}^c is replaced by $P(\bar{x}_s | I_{ks-1}^c)$.

An essential issue for a tractable solution is to ensure a common information vector which will act as a sufficient statistic for future control policies. This can be done via sharing information at every stage, or some structure possibly requiring larger but finite delay.

The above motivates us to introduce the following pattern.

Definition 9.11.1 k-stage periodic belief sharing pattern An information pattern in which the decision makers share their posterior beliefs to reach a joint belief about the system state is called a belief sharing information pattern. If the belief sharing occurs periodically every k-stages ($k > 1$), the DMs also share the control actions they applied in the last $k - 1$ stages, together with intermediate belief information. In this case, the information pattern is called the k-stage periodic belief sharing information pattern.

Remark 9.20. For $k > 1$, it should be noted that, the exchange of the control actions is essential.

9.11.2 A Universal Dynamic Program

[214] considered the following topology on control policies, while developing a universal dynamic programming algorithm applicable to any sequential decentralized stochastic control problem, generalizing Witsenhausen’s program [199] which was tailored primarily for countable probability spaces.

Define
Theorem 9.21.

(i) State: \(x_t = \{\omega_0, u^1, \ldots, u^{t-1}, y^1, \ldots, y^t\}, 1 \leq t \leq N\).

(i') Extended State: \(\pi_t \in \mathcal{P}(\Omega_0 \times \prod_{i=1}^t \mathcal{Y}^i \times \prod_{i=1}^{t-1} \mathcal{U}^i)\) where, for Borel \(B \in \Omega_0 \times \prod_{i=1}^t \mathcal{Y}^i \times \prod_{i=1}^{t-1} \mathcal{U}^i\),

\[
\pi_t(B) := E_{\pi_t}[1\{\omega_0, y^1, \ldots, y^t; u^1, \ldots, u^{t-1}\in B\}].
\]

Thus, \(\pi_t \in \mathcal{P}(\Omega_0 \times \prod_{i=1}^t \mathcal{Y}^i \times \prod_{i=1}^{t-1} \mathcal{U}^i)\) where the space of probability measures is endowed with the weak convergence topology.

(ii) Control Action: Given \(\pi_t\), \(\hat{\gamma}^t\) is a probability measure in \(\mathcal{P}(\Omega_0 \times \prod_{k=1}^t \mathcal{Y}^k \times \prod_{k=1}^t \mathcal{U}^k)\) that satisfies the conditional independence relation:

\[
u^t \leftrightarrow y^t \leftrightarrow x_t = (\omega_0, y^1, \ldots, y^t; u^1, \ldots, u^{t-1})
\]

that is, for every Borel \(B \in \mathcal{U}^t\), almost surely under \(\hat{\gamma}^t\), the following holds:

\[
P(u^t \in B|y^t, (\omega_0, y^1, \ldots, y^t; u^1, \ldots, u^{t-1})) = P(u^t \in B|y^t)
\]

with the restriction

\[x_t \sim \pi_t.\]

Denote with \(\Gamma^t(\pi_t)\) the set of all such probability measures. Any \(\hat{\gamma}^t \in \Gamma^t(\pi_t)\) defines, for almost every realization \(y^t\), a conditional probability measure on \(\mathcal{U}^t\). When the notation does not lead to confusion, we will denote the action at time \(t\) by \(\gamma^t(du^t|y^t)\), which is understood to be consistent with \(\hat{\gamma}^t\).

(ii') Alternative Control Action for Static Teams with Independent Measurements: Given \(\pi_t, \hat{\gamma}^t\) is a probability measure on \(\mathcal{Y}^t \times \mathcal{U}^t\) with a fixed marginal \(P(dy^t)\) on \(\mathcal{Y}^t\), that is \(\pi^t_y(dy^t) = P(dy^t)\). Denote with \(\Gamma^t(\pi^{y^t}_t)\) the set of all such probability measures. As above, when the notation does not lead to confusion, we will denote the action at time \(t\) by \(\gamma^t(du^t|y^t)\), which is understood to be consistent with \(\hat{\gamma}^t\). In particular, \((y^t, u^t)\) is independent of \((y^k, u^k)\) for \(k \neq t\).

With the control actions defined as in the above [214] developed a universal dynamic program for any sequential decentralized stochastic control and established, as a corollary of the program, further existence results, one which is essentially identical to that presented in 9.12 but slightly more restrictive in that the cost function is assumed to be continuous in all of its arguments.

Theorem 9.21. [214]

(i) Under the kernel [213] and controlled Markov construction presented, the optimal team problem admits a well-defined backwards-induction (dynamic programming) recursion.

(ii) In particular, if the problem is independent static-reducible, actions are compact-valued and the cost function is continuous, an optimal policy exists and the value function is continuous in the prior (that is, in the distribution of primitive noise variables) under weak convergence.

Remark 9.22. The above construction is related to an interpretation put forward by Witsenhausen in his standard form [199] where all the uncertainty is embedded into the initial state and the controlled system evolves deterministically. Witsenhausen had considered only countable probability spaces for an optimality analysis.

Remark 9.23. The fully observed MDP setup can be viewed as a special case of the above. In this context, by Blackwell’s theorem (Theorem 5.1.1), we know that we can reduce the search space to policies that are Markov. In this case, the optimality analysis via Bellman’s principle (Theorem 5.1.3) can be recovered via the Universal Dynamic Program.

9.12 Bibliographic Notes

We primarily followed [214], [217] and Chapters 2, 3, 4 and 12 of [215] for this topic. For a more complete coverage, the reader may follow [215].
In the economics and game theory literature, information structures are also studied extensively. Stochastic team problems are termed as identical interest games. In this literature, $L_C(\mu)$ appears in the analysis of Aumann’s correlated equilibrium [16]. Common and independent randomness discussions appear in the analysis of comparison of information structures [124]. For further discussions, including a multi-stage generalization known as communication equilibria, see [78]. For a detailed treatment, we refer the reader to [133, p. 131].

9.13 Exercises

Exercise 9.13.1 Consider the following team decision problem with dynamics:

$$
x_{t+1} = ax_t + b_1 u^1_t + b_2 u^2_t + w_t,
$$

$$
y^1_t = x_t + v^1_t,
$$

$$
y^2_t = x_t + v^2_t,
$$

Here x_0, v^1_t, v^2_t, w_t are mutually and temporally independent zero-mean Gaussian random variables. Let $\{\gamma^i\}$ be the policies of the controllers so that $u^i_t = \gamma^i(x^i_0, y^1_t, \cdots, y^i_t)$ for $i = 1, 2$.

Consider:

$$
\min_{\gamma^1, \gamma^2} E_{x_0}^{x_0, \gamma^2} \left[\left(\sum_{t=0}^{T-1} x^2_t + \rho_1 (u^1_t)^2 + \rho_2 (u^2_t)^2 \right) + x^2_T \right],
$$

where $\rho_1, \rho_2 > 0$.

Explain if the following are correct or not:

a) For $T = 1$, the problem is a static team problem.

b) For $T = 1$, optimal policies are linear.

c) For $T = 1$, linear policies may be person-by-person-optimal. That is, if γ^1 is assumed to be linear, then γ^2 is linear; and if γ^2 is assumed to be linear then γ^1 is linear.

d) For $T = 2$, optimal policies are linear.

e) For $T = 2$, linear policies may be person-by-person-optimal.

Exercise 9.13.2 Consider a common probability space (with a finite sample space Ω) on which the information available to two decision makers DM^1 and DM^2 are defined, such that I_1 is available at DM^1 and I_2 is available at DM^2.

R. J. Aumann [15] defines that an information E is common knowledge between two decision makers DM^1 and DM^2, if whenever E happens, DM^1 knows E, DM^2 knows E, DM^1 knows that DM^2 knows E, DM^2 knows that DM^1 knows E, and so on.

Let Ω be finite. Suppose that one claims that an event E is common knowledge if and only if $E \in \sigma(I_1) \cap \sigma(I_2)$, where $\sigma(I_1)$ denotes the σ–field over Ω generated by information I_1 and likewise for $\sigma(I_2)$.

Is this argument correct? Provide an answer with precise arguments. You may wish to consult [15], [143], [47] and Chapter 12 of [215].

Exercise 9.13.3 Consider the following static team decision problem with dynamics:

$$
x_1 = ax_0 + b_1 u^1_0 + b_2 u^2_0 + w_0,
$$

$$
y^1_0 = x_0 + v^1_0,
$$

Here x_0, v^1_0, v^2_0, w_0 are mutually and temporally independent zero-mean Gaussian random variables. Let $\{\gamma^i\}$ be the policies of the controllers so that $u^i_t = \gamma^i(x^i_0, y^1_t, \cdots, y^i_t)$ for $i = 1, 2$.

Consider:

$$
\min_{\gamma^1, \gamma^2} E_{x_0}^{x_0, \gamma^2} \left[\left(\sum_{t=0}^{T-1} x^2_t + \rho_1 (u^1_t)^2 + \rho_2 (u^2_t)^2 \right) + x^2_T \right],
$$

where $\rho_1, \rho_2 > 0$.

Explain if the following are correct or not:

a) For $T = 1$, the problem is a static team problem.

b) For $T = 1$, optimal policies are linear.

c) For $T = 1$, linear policies may be person-by-person-optimal. That is, if γ^1 is assumed to be linear, then γ^2 is linear; and if γ^2 is assumed to be linear then γ^1 is linear.

d) For $T = 2$, optimal policies are linear.

e) For $T = 2$, linear policies may be person-by-person-optimal.
Here v_0, v_0^2, w_0 are independent, Gaussian, zero-mean with finite variances.

Let $\gamma^i : \mathbb{R} \rightarrow \mathbb{R}$ be policies of the controllers: $u_0^1 = \gamma_0^1(v_0^1), u_0^2 = \gamma_0^2(v_0^2)$.

Find
\[
\min_{\gamma^1, \gamma^2} E_{\nu_0} \gamma^1, \gamma^2 [x_1^2 + \rho_1(u_0^1)^2 + \rho_2(u_0^2)^2],
\]
where ν_0 is a zero-mean Gaussian distribution and $\rho_1, \rho_2 > 0$.

Find an optimal team policy $\gamma = \{\gamma^1, \gamma^2\}$.

Exercise 9.13.4 Let X be a binary random variable. Suppose two decision makers DM 1 and DM 2 have access to some local random variables Y^1 and Y^2, respectively, defined on a common probability space and correlated with X, and exchange their conditional expectations over time. Suppose further that:

- the information σ-fields at each decision maker is increasing: $F^i_t \subseteq F^i_{t+1}, i = 1, 2, t \in \mathbb{Z}_+$.
- for all $n \in \mathbb{N}$, there exists $m > n$ such that F^i_m contains information on $E[X|F^i_n], i, j = 1, 2$. That is, the decision makers exchange their estimates (but not their raw data - Y^i is private to DM i, $i = 1, 2$) infinitely often.

State and rigorously justify your answers for the following:

a) [10 Points] Is there a limit for $\lim_{n \to \infty} E[X|F^i_n], j = 1, 2$? Either argue that the limit exists, or provide a counterexample.

b) [10 Points] For the cases where the limit exists, is it the case that
\[
\lim_{n \to \infty} E[X|F^1_n] = \lim_{n \to \infty} E[X|F^2_n]
\]
Either prove the result, or provide a counterexample.

Hint: See [44] (see also [80] and [183])

Exercise 9.13.5 Consider a linear Gaussian system with mutually independent and i.i.d. noises:

\[
x_{t+1} = A x_t + \sum_{j=1}^{L} B^j u^j_t + w_t,
\]

\[
y^i_t = C^i x_t + v^i_t, \quad 1 \leq i \leq L,
\]

with the one-step delayed observation sharing pattern.

Construct a controlled Markov chain for the team decision problem: First show that one could have
\[
\{y^1_t, y^2_t, \ldots, y^L_t, P(dx_t|y^1_{[0,t-1]}, y^2_{[0,t-1]}, \ldots, y^L_{[0,t-1]})\}
\]
as the state of the controlled Markov chain.

Consider the following problem:

\[
\tilde{E}_{\mathbb{P}} \left[\sum_{t=0}^{T-1} c(x_t, u^1_t, \ldots, u^L_t) \right]
\]

For this problem, if at time $t \geq 0$ each of the decision makers (say DM i) has access to $P(dx_t|y^1_{[0,t-1]}, y^2_{[0,t-1]}, \ldots, y^L_{[0,t-1]})$ and their local observation $y^i_{[0,t]}$, show that they can obtain a solution where the optimal decision rules only uses
\[
\{P(dx_t|y^1_{[0,t-1]}, y^2_{[0,t-1]}, \ldots, y^L_{[0,t-1]}), y^i_t\}:
\]
What if, they do not have access to \(P \left(\delta x_t | y_{1,t-1}^1, y_{2,t-1}^2, \ldots, y_{L,t-1}^L \right) \), and only have access to \(y_{1,t}^1 \)? What would be a sufficient statistic for each decision maker for each time stage?

Exercise 9.13.6 Two decision makers, Alice and Bob, wish to control a system:

\[
x_{t+1} = ax_t + u_a^t + u_b^t + w_t,
\]

\[
y_a^t = x_t + v_a^t,
\]

\[
y_b^t = x_t + v_b^t,
\]

where \(u_a^t, y_a^t \) are the control actions and the observations of Alice, \(u_b^t, y_b^t \) are those for Bob and \(v_a^t, v_b^t, w_t \) are independent zero-mean Gaussian random variables with finite variance. Suppose the goal is to minimize for some \(T \in \mathbb{Z}_+ \):

\[
E_{x_0} \left[\sum_{t=0}^{T-1} x_t^2 + r_a(u_a^t)^2 + r_b(u_b^t)^2 \right],
\]

for \(r_a, r_b > 0 \), where \(\Pi_a, \Pi_b \) denote the policies adopted by Alice and Bob. Let the local information available to Alice be \(I_a^t = \{ y_a^s, u_a^s, s \leq t-1 \} \cup \{ y_a^t \} \), and \(I_b^t = \{ y_b^s, u_b^s, s \leq t-1 \} \cup \{ y_b^t \} \) is the information available at Bob at time \(t \).

Consider an \(n \)-step delayed information pattern: In an \(n \)-step delayed information sharing pattern, the information at Alice at time \(t \) is

\[
I_a^t \cup I_{a,t-n},
\]

and the information available at Bob is

\[
I_b^t \cup I_{b,t-n}.
\]

State if the following are true or false:

a) If Alice and Bob share all the information they have (with \(n = 0 \)), it must be that, the optimal controls are linear.

b) Typically, for such problems, for example, Bob can try to send information to Alice to improve her estimation on the state, through his actions. When is it the case that Alice cannot benefit from the information from Bob, that is for what values of \(n \), there is no need for Bob to signal information this way?

c) If Alice and Bob share all information they have with a delay of 2, then their optimal control policies can be written as

\[
u_a^t = f_a \left(E[x_t | I_a^{t-2}, I_{b}^{t-2}, y_a^{t-1}, y_b^t] \right),
\]

\[
u_b^t = f_b \left(E[x_t | I_a^{t-2}, I_{b}^{t-2}, y_b^{t-1}, y_b^t] \right),
\]

for some functions \(f_a, f_b \). Here, \(E[\cdot | \cdot] \) denotes the expectation.

d) If Alice and Bob share all information they have with a delay of 0, then their optimal control policies can be written as

\[
u_a^t = f_a \left(E[x_t | I_a^t, I_b^t] \right),
\]

\[
u_b^t = f_b \left(E[x_t | I_a^t, I_b^t] \right),
\]

for some functions \(f_a, f_b \). Here, \(E[\cdot | \cdot] \) denotes the expectation.
Controlled Stochastic Differential Equations

This chapter introduces the basics of stochastic differential equations and then studies controlled such equations. A complete treatment is beyond the scope of these notes, however, the essential tools and ideas will be presented so that a student who is comfortable with the discrete-time discussion thus far in the notes can realize that with a little additional effort the continuous-time case can also be followed. The reader is referred to e.g. [10, 104, 107, 116, 146] for more comprehensive treatments on various aspects ranging from mathematical foundations to optimal control and filtering.

Our approach here will primarily be to map the material presented so far in the notes to the continuous-time case (at least for a particular class of systems), with the understanding that the discrete-time theory is well understood. The approach will roughly be the following. With X_t, $t \in \mathbb{R}_+$, consider the stochastic process X_t, $t \in \mathbb{R}_+$. Given a sufficiently regular function, to be presented later, suppose that we have

$$
\lim_{h \to 0} \frac{E[f(X_h)|X_0 = x] - f(x)}{h} =: A f(x), \quad x \in \mathbb{R}
$$

for some map A (to be studied further). This means that $E[f(X_h)|X_0 = x] = f(x) + A f(x) + o(h)$, where $\frac{o(h)}{h} \to 0$ as $h \to 0$. Notably, if $\mu_t(B) = E[1_{\{X_t \in B\}}]$, for all Borel B, then

$$
\int \mu_t(dx)f(x) = \int_0^t (\int A f(z) \mu_s(dz)) ds + \int f(x) \mu_0(dx)
$$

We will observe that, the above can be viewed as the strategic measure evolution for the sampled (and thus discrete with $k \in \mathbb{Z}_+$) stochastic process

$$
X_{(k+1)h} = X_{kh} + hb(X_{kh}) + \sigma(X_{kh})B_h
$$

where $B_h \sim N(0, h)$ is Gaussian and $Af(x) = b(x) \frac{df}{dx}(x) + \frac{1}{2} (\sigma^2(x)) \frac{d^2 f}{dx^2}(x)$. In the limit as $h \to 0$, we arrive in some particular sense, at the limit equation

$$
dX_t = b(X_t) + \sigma(X_t)dB_t,
$$

which is called a stochastic differential equation (and hence $\lim_{h \to 0} \frac{B_h}{h}$ will be, in some sense, the derivative of the Gaussians to be studied: B_h, to be called the Brownian motion). A number of technical questions will arise with respect to the notion of convergence, the non-differentiability of the Brownian process etc. This model will be generalized, and there will also be control entering the flow, e.g. via $b(x, u)$ with u denoting the control term.

We will restrict the model to certain systems, e.g. those driven by the Brownian process, though one can in principle study more general models (the term multiplying $\sigma(X_{kh})$ doesn’t need to be a Gaussian measure and there exist many other processes that can be considered, known as semimartingale processes). Despite this high level discussion, we should note that the construction of a stochastic process on a continuous time interval, such as $[0, T]$ requires more caution when compared with a discrete-time stochastic process, as we will observe. In this chapter, we will primarily...
be concerned with controlled Markov processes X_t, each taking values in \mathbb{R}^n for $t \in [0, T]$ or $t \in [0, \infty)$ and the integration term involves the Brownian process.

10.1 Continuous-time Markov processes

10.1.1 Two ways to construct a continuous-time Markov process

As discussed in Chapter 1 and Section 1.4, one way to define a stochastic process is to view it as a vector valued random variable. However, this requires us to put a proper topology on the set of sample paths, which may be a restrictive task. We will come back to this later.

Another definition would involve defining the process on finitely many time instances: Let \(\{X_t(\omega), t \in [0, T]\} \) be stochastic process so that for each t, $X_t(\omega)$ is a random variable measurable on some probability space $\(\Omega, \mathcal{F}, P \)$. We can define the σ-algebra generated by cylinder sets (as in Chapter 1) of the form:

\[
\{\omega \in \Omega : X_{t_1}(\omega) \in A_1, X_{t_2}(\omega) \in A_2, \cdots, X_{t_N}(\omega) \in A_N, A_k \in \mathcal{B}(\mathbb{R}^n), N \in \mathbb{N}\}
\]

By defining a stochastic process in this fashion and assigning probabilities to such finite dimensional events, Theorem 1.2.3 implies that there exists a unique stochastic process on the σ-algebra generated by the sets of this form. However, unlike a discrete-time stochastic process, not all properties of the stochastic process is captured by finite dimensional distributions of it and the σ-field generated by such sets is not a sufficiently rich set of sets. For example the set of sample paths that satisfy $\sup_{t \in [0,1]} |X_t(\omega)| \leq 10$ may not be a well-defined event (that is, a set) in this σ-algebra. Likewise, the extension theorem considered in Theorem 1.2.2 requires a probability measure already defined on the cylinder sets; it may not be possible to define such a probability measure by only considering finite dimensional distributions; see [204] for a further study of such intricacies. Thus, establishing the existence of a probability measure for the process itself is quite an involved task for such continuous processes.

One may expect that if a stochastic process has continuous sample paths, then by specifying the process on rational time instances will uniquely define the process. Thus, if the process is known to admit certain regularity properties, the technical issues with regard to only defining a process on finitely many sample points will disappear.

10.1.2 The Brownian motion

Definition 10.1.1 A stochastic process B_t is called a Wiener process or Brownian motion if (i) the finite dimensional distributions of B_t are such that $B_{t_1}, B_{t_2} - B_{t_1}, \cdots, B_{t_n} - B_{t_{n-1}}$ are independent Gaussian zero mean random variables with $B_k - B_s \sim \mathcal{N}(0, k - s)$, and (ii) B_t has continuous sample paths.

Such a process exists and can be constructed as a limit of random walks as briefly suggested in Remark 10.2 below. Now, going back to the construction we discussed in the previous section, we can define the Brownian motion as a $C([0, \infty))$-valued (that is, a continuous path valued) random variable: The topology on $C([0, \infty))$ is the topology of uniform convergence on compact sets (this is a stronger convergence than the topology of point-wise convergence but weaker than the topology of uniform convergence over \mathbb{R}). This is in agreement with the finite dimensional characterization through which we could define the Brownian motion.

Remark 10.1. A more general topology (than the uniform convergence on compact sets) is the Skorokhod topology defined on the space of functions which are right continuous with left limits: Such a topology defines a separable metric space. However, this discussion is beyond the scope of this chapter [28].

Remark 10.2. [Why Brownian Motion?] The Gaussian property of the continuous limit process is universal in the sense that, any continuous time process with sufficiently regular independent increments must be the Brownian process.
(known as Donsker’s theorem). In particular, even though typically in the construction of the Brownian motion (or its existence), one considers Gaussian i.i.d. random increments and takes its limit; this is not necessary for the Gaussian properties of the limit: Let $\{Z_1, Z_2, \ldots \}$ be an i.i.d. random sequence with mean 0 and variance 1. For each $n \in \mathbb{N}$ define the random variable (with variance t for each $n \in \mathbb{N}$):

$$W_n(t) = \frac{1}{\sqrt{n}} \sum_{1 \leq k \leq \lfloor nt \rfloor} Z_k, \quad t \in [0, 1].$$

This is a random function. By the central limit theorem, $W_n(t) - W_n(s) \to \mathcal{N}(0, t - s)$ (in distribution, that is weakly): This also justifies the use of the Brownian motion for some stochastic integration models. However, we note that for stochastic integration, one could consider more general processes (known as semimartingales).

10.1.3 The Itô Integral

On White Noise

In many physical systems, one encounters models of the form

$$\frac{dx}{dt} = (f(x_t) + u_t) + n_t,$$

where n_t is some noise process. In engineering, one would like to model the noise process to be white, in the sense that n_t, n_s are independent for $t \neq s$, and yet, n_t is zero-mean and with a finite variance for all t. We call such a process white, because the Fourier transform (and thus the frequency spectrum) of the correlation function defined as $R(\tau) = E[x_{t+\tau}x_t]$ of such a process is a constant: If the process is a discrete-time process, then this interpretation would be directly applicable since the Fourier transform of a discrete-time impulse would be constant for all frequency values.

For a continuous-time process, however, if $R(\tau) = E[x_{t+\tau}x_t] = 0$ for all $\tau \neq 0$, then a serious complication arises. If $R(0) < \infty$, then this signal has zero-energy and its Fourier transform would be identically 0. If $R(0) = \infty$, then such an R would have significant irregularities: Such a process would have its correlation function as $E[n_t n_s] = \delta(t - s)$; where the dirac delta function δ is a distribution acting on a proper set of test functions (such as the Schwartz signals \mathcal{S} [103]). Such a process is not a well-defined Gaussian process since it doesn’t have a well-defined correlation function as δ itself is not a function. But, one can view this process as a distribution, or always cautiously always work under an integral sign; this way one can make an operational use for such a definition. For example, with f, g nice functions such as those in \mathcal{S}, one could talk about

$$E\left[\left(\int f(t)n_t dt \right) \left(\int g(s)n_s ds \right)\right] = \int_{t,s} f(t)g(s)E[n_t n_s] dtds = \int f(t)g(t)dt,$$

and obtain operational properties.

Thus, it is evident that $\{n_t\}$, as a signal, would not be an ordinary process and instead of n_t, we will only work with its integral, B_t. Thus, while working with B_t, instead of derivatives, we will study integral equations. On the other hand, it will be evident that we cannot take the ordinary Lebesgue or Riemann integrations for B_t since B_t is too irregular. Instead, a method to obtain integrations will be introduced: The Itô integral provides a well-defined integration. The properties of integration, differentiation, chain rule etc. for such integrations is called **stochastic calculus**. Later in the chapter, we will add control to the dynamics.

The Itô integration

We define a differential equation or a stochastic integral as an appropriate limit to make sense of the expression:
The definition is done in a few steps, as in the construction of the Lebesgue integral briefly discussed in Chapter 1. First, we define simple functions of the form:

\[f(t, \omega) = \sum_{k=0}^{2^n-1} e_k(\omega)1_{\{t \in [kT2^{-n}, (k+1)T2^{-n})\}} \]

where \(n \in \mathbb{N} \). We define

\[\int_0^T f(t, \omega)dB_t(\omega) = \sum_k e_k(\omega)[B_{t_{k+1}}(\omega) - B_{t_k}(\omega)] \]

where \(t_k = t_k^{(n)} = kT2^{-n}, k = \{0, 1, \cdots, 2^n - 1\} \). In the following, we use this notation: \(B^n_t := B_{kT2^{-n}} \).

Now, note that if one defines:

\[f_1(t, \omega) = \sum_k B_{\{kT2^{-n}\}}1_{\{t \in [kT2^{-n}, (k+1)T2^{-n})\}} \]

it can be shown that

\[\mathbb{E}[\int_0^T f_1(t, \omega)dB_t(\omega)] = 0, \]

but instead with

\[f_2(t, \omega) = \sum_k B_{\{(k+1)T2^{-n}\}}1_{\{t \in [kT2^{-n}, (k+1)T2^{-n})\}} \]

it can be shown that

\[\mathbb{E}[\int_0^T f_1(t, \omega)dB_t(\omega)] = T! \]

Thus, even though both \(f_1 \) and \(f_2 \) look to be reasonable approximations for some function \(f(t, \omega) \), such as \(B_t(\omega) \), the integrals have drastically different meanings.

In particular the variations in the \(B_t \) process is too large to define an integration (in the usual sense of Riemann-Stieltjes), as we discuss further below: It does make a difference on whether one defines \(\int_0^T f(t, \omega)dB_t(\omega) \) as an appropriate limit of a sequence of expressions

\[\sum_k f(t_j^*, \omega)[B_{\min(T,t_{k+1})}(\omega) - B_{\max(s,t_k)}(\omega)] \]

for some \(f(t_j^*, \omega) \) with \((t_j^* \in [t_j, t_{j+1}] \). If we take \(t_j^* = t_j \) (the left end point), this is known as the Itô Integral. If we take \(t_j^* = \frac{1}{2}(t_j + t_{j+1}) \), this is known as the Stratonovich integral.

To gain further insight as to why this leads to an issue, we discuss the following. Using the independent-increments property (that is (i) in Definition 10.1.1) of the Brownian motion, the following can be shown:

Lemma 10.1.1 In \(L_2 \) (that is, mean-square) and hence in probability

\[\lim_{n \to \infty} \sum_k (B^n_{t_{k+1}} - B^n_{t_k})^2 = T. \]

Theorem 10.1.1 Define the total variation of the Wiener process in the interval \([a, b]\) as:

\[TV(B, a, b) = \sup_{a \leq t_1 \leq t_2 \leq \cdots \leq t_k \leq b, k \in \mathbb{N}} \sum_k |B_{t_{k+1}} - B_{t_k}| \]

Almost surely, \(TV(B, a, b) = \infty. \)
Proof. We follow the argument in [186]. By Lemma [10.1.1] and Theorem [B.3.2], it follows that there exists some subsequence \(n_m \) so that \(\sum_k (B_{t_{k+1}} - B_{t_k})^2 \to b - a \) almost surely (see Theorem [B.3.2]). Now, if \(TV(B, a, b) < \infty \), this would imply that
\[
\sum_k (B_{t_{k+1}} - B_{t_k})^2 \leq \sup_k |B_{t_{k+1}} - B_{t_k}| \sum_k |B_{t_{k+1}} - B_{t_k}| \to 0,
\]
as \(n \to \infty \), since by continuity of sample paths (which would then be uniformly continuous due to compactness of the support, for any sample path with probability one) \(\sup_k |B_{t_{k+1}} - B_{t_k}| < 0 \). This would lead to a contradiction. \(\diamond \)

Now, Itô’s integral will work well, if we restrict the integrand \(f(t, \omega) \) to be such that \(f(t, \omega) \) is measurable on the \(\sigma \)-field generated by \(\{ B_s, s \leq t \} \). With this intuition, we define \(\mathcal{F}_t \) to be the \(\sigma \)-algebra generated by \(B_s, s \leq t \). In other words, \(\mathcal{F}_t \) is the smallest \(\sigma \)-algebra containing sets of the form:
\[
\{ \omega : B_{t_1}(\omega) \in A_1, \ldots, B_{t_k}(\omega) \in A_k \}, \quad t_k \leq t,
\]
for Borel \(A_1, \ldots, A_k \). We also assume that all sets of measure zero are included in \(\mathcal{F}_t \) (this operation is known as the completion of a \(\sigma \)-field).

Definition 10.1.2 Let \(\mathcal{N}_t, t \geq 0 \), be an increasing family of \(\sigma \)-algebras of subsets of \(\Omega \). A process \(g(t, \omega) \) is called \(\mathcal{N}_t \)-adapted if for each \(t \), \(g(t, \cdot) \) is \(\mathcal{N}_t \)-measurable.

Definition 10.1.3 Let \(\mathcal{V}(S, T) \) be the class of functions:
\[
f(t, \omega) : [0, \infty) \times \Omega \to \mathbb{R}
\]
such that (i) \(f(t, \omega) \) is \(\mathcal{B}([0, \infty)) \times \mathcal{F} \)-measurable, (ii) \(f(t, \omega) \) is \(\mathcal{F}_t \)-adapted and (iii) \(E[\int_S^T f^2(t, \omega)dt] < \infty \).

We will often take \(S = 0 \) in the following. For functions in \(\mathcal{V} \), the Itô integral is defined as follows: A function \(\phi \) is called elementary if it has the form:
\[
\phi(t, \omega) = \sum_k e_k(\omega)1_{\{t \in [t_k, t_{k+1})\}}
\]
with \(e_k \) being \(\mathcal{F}_{t_k} \)-measurable. For elementary functions, we define the Itô integral as:
\[
\int_0^T \phi(t, \omega)dB_t(\omega) = \sum_k e_k(\omega) \left(B_{t_{k+1}}(\omega) - B_{t_k}(\omega) \right)
\]
(10.2)

With this definition, it follows that for a bounded and elementary \(\phi \),
\[
E \left[\left(\int_0^T \phi(t, \omega)dB_t(\omega) \right)^2 \right] = E[\int_0^T \phi^2(t, \omega)dt].
\]
(10.3)

This property is known as the Itô isometry. The proof follows from expanding the summation in (10.2) and using the properties of the Brownian motion. Now, the remaining steps to define the Itô integral are as follows:

- **Step 1:** Let \(g \in \mathcal{V} \) and \(g(\cdot, \omega) \) continuous for each \(\omega \). Then, there exist elementary functions \(\phi_n \in \mathcal{V} \) such that
\[
E[\int_0^T (g - \phi_n)^2 dt] \to 0,
\]
as \(n \to \infty \). The proof here follows from the dominated convergence theorem.

- **Step 2:** Let \(h \in \mathcal{V} \) be bounded. Then there exist \(g_n \in \mathcal{V} \) such that \(g_n(\cdot, \omega) \) is continuous for all \(\omega \) and \(n \) and
\[
E[\int_0^T (h - g_n)^2 dt] \to 0.
\]
Step 3: Let \(f \in \mathcal{V} \). Then, there exists a sequence \(h_n \in \mathcal{V} \) such that \(h_n \) is bounded for each \(n \) and
\[
E[\int_0^T (f - h_n)^2 dt] \to 0.
\]
Here, we use truncation and then the dominated convergence theorem.

Definition 10.1.4 (The Itô Integral) Let \(f \in \mathcal{V}(S,T) \). The Itô integral of \(f \) is defined by
\[
\int f(t,\omega)dB_t(\omega) = \lim_{n \to \infty} \int_0^T \phi_n(t,\omega)dB_t(\omega),
\]
where the convergence to the limit is in \(L_2(P) \) in the sense; that is,
\[
\lim_{n \to \infty} E\left[\left(\int_0^T \phi_n(t,\omega)dB_t(\omega) - \int_0^T f(t,\omega)dB_t(\omega) \right)^2\right] = 0.
\]
The existence of a limit is established through the construction of a Cauchy sequence and the completeness of \(L_2(P) \), the space of measurable functions with a finite second moment under \(P \), with the corresponding norm. A computationally useful result is the following (generalizing (10.3)).

Corollary 10.1.1 For all \(f \in \mathcal{V}(S,T) \)
\[
E\left[\left(\int_0^T f(t,\omega)dB_t(\omega) \right)^2\right] = E\left[\int_0^T f^2(t,\omega)dt\right].
\]
And thus, if \(f, f_n \in \mathcal{V}(S,T) \) and
\[
E[\int_0^T (f_n - f)^2 dt] \to 0,
\]
then in \(L_2(P) \)
\[
\int_0^T f_n(t,\omega)dB_t(\omega) \to \int_0^T f(t,\omega)dB_t(\omega)
\]

Example 10.3. Let us show that
\[
\int_0^t B_s dB_s = \frac{1}{2}B_t^2 - \frac{1}{2}t. \tag{10.4}
\]
If we define the elementary function to be: \(\phi_n(\omega) = \sum B_j(\omega)1_{\{t \in [t_j, t_{j+1})\}} \), it follows that \(E[\int_0^t (\phi_n - B_s)^2 ds] \to 0 \). Therefore, the limit of the integrals of \(\phi_n(\omega) \), that is the \(L_2(P) \) limit of \(\sum_j B_j(B_{j+1} - B_j) \), will be the integral. Observe now that
\[
-(B_{j+1} - B_j)^2 = 2B_j(B_{j+1} - B_j) + B_j^2 - B_{j+1}^2
\]
and thus summing over \(j \), we obtain
\[
\sum_j -(B_{j+1} - B_j)^2 = \sum_j 2B_j(B_{j+1} - B_j) + B_j^2 - B_{j+1}^2,
\]
leading to
\[
B_t^2 - \sum_j (B_{j+1} - B_j)^2 = \sum_j 2B_j(B_{j+1} - B_j) + B_0
\]
Now, taking the intervals \([j, j+1]\) arbitrarily small, we see that the first term converges to \(B_t^2 - t \) and the term on the right hand side converges to \(2 \int_0^t B_s dB_s \), leading to the desired result. We will derive the same result using Itô’s formula.
shortly. The message of this example is to highlight the computational method: Find a sequence of elementary function which converges in $L_2(P)$ to f, and then compute the integrals, and take the limit as the intervals shrink.

\textbf{Remark 10.4.} An important extension of the Itô integral is to a setup where f_t is \mathcal{H}_t-measurable, where $\mathcal{H}_t \subseteq \mathcal{F}_t = \sigma(B_s, s \leq t)$. In applications, this is important to let us apply the integration to settings where the process that is integrated is measurable only on a subset of the filtration generated by the Brownian process. This allows one to define multi-dimensional Itô integrals as well. This is particularly useful for controlled stochastic differential equations, where the control policies are measurable with respect to a filtration that does not contain that generated by the Brownian motion, but the controller policy cannot depend on the future realizations of the Brownian motion either.

\textbf{Remark 10.5.} As explained in [146] and many other texts, a curious student will question the selection of choosing the Itô integral over any other, and in particular the Stratonovich integral: Different applications are more suitable for either interpretation. In stochastic control, measurability aspects (of admissible controls) are the most crucial ones. If one appropriately defines the functional or stochastic dependence between a function to be integrated or a noise process, the application of either will come naturally: If the functions are to not look at the future, then Itô’s formula is appropriate. However, for some applications involving stochastic stability, ergodicity [12, 110] and smoothness properties of densities of solutions [90] to stochastic differential equations where one would build on connections with geometric control theory [178] with piece-wise constant control action sequences replacing the driving noise process, Stratonovich integral has been shown to be relevant.

10.1.4 Itô Formula

Itô’s formula allows us to take integrations of functions of processes and it generalizes the chain rule in classical calculus.

\textbf{Definition 10.1.5} We say $v(S, T) \in \mathcal{W}_H$ if
\[
v(t, \omega) : [S, T] \times \Omega \to \mathbb{R}
\]
such that (i) $v(t, \omega)$ is $\mathcal{B}([0, \infty)) \times \mathcal{F}$-measurable, (ii) $v(t, \omega)$ is \mathcal{H}_t-adapted where \mathcal{H}_t is as in Remark 10.4 and (iii) $P(\int_0^T v^2(t, \omega) dt < \infty) = 1$.

\textbf{Definition 10.1.6 (Itô Process)} Let B_t be a one-dimensional Brownian motion on (Ω, \mathcal{F}, P). A (one-dimensional) Itô process is a stochastic process X_t on (Ω, \mathcal{F}, P) of the form
\[
X_t = X_0 + \int_0^t u(s, \omega) ds + \int_0^t v(s, \omega) dB_s \tag{10.5}
\]
where $v \in \mathcal{W}_H$ so that v is \mathcal{H}_t-adapted and $P(\int_0^T v^2(t, \omega) dt < \infty) = 1$ for all $t \geq 0$. Likewise, u is also \mathcal{H}_t-adapted and $P(\int_0^T u^2(t, \omega) dt < \infty) = 1$ for all $t \geq 0$.

Instead of the integral form in (10.5), we may use the differential form:
\[
dX_t = u dt + v dB_t,
\]
with the understanding that this means the integral form.

\textbf{Theorem 10.1.2 [Itô Formula]} Let X_t be an Itô process given by
\[
dX_t = u dt + v dB_t.
\]
Let $g(t, x) \in C^{1,2}([0, \infty) \times \mathbb{R})$ (that is, g is C^1 in t and C^2 in x). Then,
\[
Y_t = g(t, X_t),
\]
is again an Itô process and
\[dY_t = \frac{\partial g}{\partial t}(t, X_t)dt + \frac{\partial g}{\partial x}(t, X_t)dB_t + \frac{1}{2} \frac{\partial^2 g}{\partial x^2}(t, X_t)(dB_t)^2 \]
where
\[(dB_t)^2 = (dB_t)(dB_t) = dt \]
with \(dtdt = dtdB_t = dB_tdt = 0 \) and \(dB_tdB_t = dt \).

Remark 10.6. Let us note that if instead of \(dB_t \), we only had a differentiable function \(m_t \) so that \(dX_t = udtdt + vdm_t \), the regular chain rule would lead to:
\[dY_t = \frac{\partial g}{\partial t}(t, X_t)dt + \frac{\partial g}{\partial x}(t, X_t)(udtdt + vdm_t). \]

Note that Itô’s Formula is a generalization of the ordinary chain rule for derivatives. The difference is the presence of the quadratic term that appears in the formula.

Example 10.7. Compute:
\[\int_t^0 B_sdB_s \]
View \(Y_t = \frac{1}{2} B_t^2 \). Then, by Itô’s formula,
\[dY_t = B_tdB_t + \frac{1}{2} dt \]
and thus
\[\int dY_s = Y_t - Y_0 = \frac{1}{2} B_t^2 = \int B_sdB_s + \frac{1}{2} t. \]
Note that this is in agreement with (10.4).

Itô’s Formula can be extended to higher dimensions by considering each coordinate separately.

10.2 Stochastic Differential Equations

Consider now an equation of the form:
\[dX_t = b(t, X_t)dt + \sigma(t, X_t)dB_t \]
(10.6)
with the interpretation that this means
\[X_t = X_0 + \int_0^t b(t, X_t)dt + \int_0^t \sigma(t, X_t)dB_t \]

Three natural questions are as follows: (i) Does there exist a solution to this differential equation? (ii) Is the solution unique? (iii) How can one compute the solution?

Theorem 10.2.1 (Existence and Uniqueness Theorem) Let \(T > 0 \) and \(b : [0, T] \times \mathbb{R}^n \to \mathbb{R}^n, \sigma : [0, T] \times \mathbb{R}^n \to \mathbb{R}^{n \times m} \) be measurable functions satisfying:
\[|b(t, x)| + |\sigma(t, x)| \leq C(1 + |x|), \quad t \in [0, T], x \in \mathbb{R}^n \]
for some \(C \in \mathbb{R} \) with \(|\sigma|^2 = \sum_{i,j} \sigma_{ij}^2 \), and
\[|b(t, x) - b(t, y)| + |\sigma(t, x) - \sigma(t, y)| \leq D(|x - y|), \quad t \in [0, T], x, y \in \mathbb{R}^n \]

for some constant \(D \). Let \(X_0 = Z \) be a random variable which is independent of the \(\sigma \)-algebra generated by \(B_s, s \geq 0 \) with \(E[|Z|^2] < \infty \). Then, the stochastic differential equation (10.6) has a unique solution \(X_t(\omega) \) that is continuous in \(t \) with the property that \(X_t \) is adapted to the filtration generated by \(\{ Z, B_s, s \leq t \} \) and \(E[\int_0^T |X_t|^2] < \infty \).

Proof Sketch. The proof of existence follows from a similar construction for the existence of solutions to ordinary differential equations: One defines a sequence of iterations:

\[
dY_{t}^{k+1} = X_0 + \int_0^t b(s, Y_s^k)ds + \int_0^t \sigma(s, Y_s^k)dBs
\]

with \(Y_0^t := X_0 \) for all \(t \in [0, T] \). Then, the goal is to obtain a bound on the \(L_2 \)-errors so that

\[
\lim_{m,n \to \infty} E[|Y_m^n - Y_t^n|^2] \to 0,
\]

so that \(Y_t^n \) is a Cauchy sequence under the \(L_2^2(P) \) norm. Call the limit \(X \). The next step is to ensure that \(X \) indeed satisfies the equation and that there can only be one solution. Finally, one proves that \(X_t \) can be taken to be continuous. \(\diamond \)

Let us appreciate some of the conditions stated for deterministic models.

Remark 10.8. Consider the following deterministic differential equations:

- \[
\frac{dx}{dt} = 4 \frac{x}{t}
\]

 with \(x(1) = 1 \) does not admit a unique solution on the interval \([-1, 1]\).

- The differential equation

 \[
 \frac{dx}{dt} = x^2
 \]

 with \(x(0) = 1 \) admits the solution \(x_t = \frac{1}{1-t} \) and as \(t \uparrow 1 \), the solution blows up in finite time so that there is no solution for \(t \geq 1 \).

The solution discussed above is what is called a strong solution. Such a solution is such that \(X_t \) is measurable on the filtration generated by the Brownian motion and the initial variable. Such a solution has an important engineering/control appeal in that the solution is completely specified once the realizations of the Brownian motion are together with the initial state are specified.

In many applications, however, the conditions of Theorem 10.2.1 do not hold. In this case, one cannot always find a strong solution. However, in this case, one may be able to find a solution which satisfies the probabilistic flow in the system so that the evolution of the probabilities are satisfied: Note, however that, this solution may no longer be adapted to the filtration generated by the actual Brownian motion and the initial state; but may be adapted to some other Brownian process defined on some probability space. Such a solution is called a weak solution or a martingale solution. This concept is in fact instrumental in studying controlled stochastic differential equations as we will discuss later in the chapter. This is also related to the solution to the Fokker-Planck equation that we will discuss further in the chapter in Section 10.2.2.

10.2.1 Some Properties of SDEs

Definition 10.2.1 A diffusion (also called Itô diffusion) is a stochastic process \(X_t(\omega) \) satisfying a stochastic differential equation of the form:

\[
dX_t = b(X_t)dt + \sigma(X_t)dB_t, \quad t \geq s, X_s = x
\]

where \(B_t \) is \(m \)-dimensional Brownian motion and \(b, \sigma \) satisfy the conditions of Theorem 10.2.1 so that
Let Lemma 10.2.1 whenever f

Theorem 10.2.4 Let X_t be a diffusion and f be bounded and (Borel) measurable. Then, for $t, h \geq 0$:

$$E_x[f(X_{t+h})|\mathcal{F}_t](\omega) = E_{X_t(\omega)}[f(X_h)]$$

Theorem 10.2.3 (Strong Markov Property) Let f be bounded and Borel, and τ be a stopping time with respect to \mathcal{F}_t. Then, for $h \geq 0$, conditioned on the event that $\tau < \infty$:

$$E_x[f(X_{t+h})|\mathcal{F}_t](\omega) = E_{X_{\tau}(\omega)}[f(X_h)]$$

Definition 10.2.2 Let X_t be a time-homogenous Itô diffusion in \mathbb{R}^n. The infinitesimal generator A of X_t is defined by:

$$Af(x) = \lim_{t \to 0} \frac{E_x[f(X_t)] - f(x)}{t}, \quad x \in \mathbb{R}^n,$$

whenever f is so that the limit is defined.

Lemma 10.2.1 Let $Y_t = Y_t^x$ be an Itô process in \mathbb{R}^n of the form:

$$Y_t^x(\omega) = x + \int_0^t u(s, \omega) + \int_0^t v(s, \omega)dB_s(\omega).$$

Let $f \in C^2_0(\mathbb{R}^n)$, that is f is twice continuously differentiable and has compact support and τ be a stopping time with respect to \mathcal{F}_t with $E_x[\tau] < \infty$. Assume that u, v are bounded. Then,

$$E[f(Y_\tau)] = f(x) + E_x \left[\int_0^\tau \left(\sum_i u^i(s, \omega) \frac{\partial f}{\partial x^i}(Y_s) + \frac{1}{2} \sum_{i,j} (vv^T)_{ij}(s, \omega) \frac{\partial^2 f}{\partial x^i \partial x^j}(Y_s) \right) ds \right].$$

This lemma, combined with Definition 10.2.2, gives us the following result:

Theorem 10.2.4 Let $dX_t = b(X_t)dt + \sigma(X_t)dB_t$. If $f \in C^2_0(\mathbb{R}^n)$, then,

$$Af(X_s) = \left(\sum_i b^i(x) \frac{\partial f}{\partial x^i}(X_s) + \frac{1}{2} \sum_{i,j} (\sigma \sigma^T)_{ij}(s, \omega) \frac{\partial^2 f}{\partial x^i \partial x^j}(X_s) \right)$$

In particular, if we have that $X_t = B_t$, then with $b(x) = 0$ we obtain

$$Af(X_s) = \frac{1}{2} \sum_i (\sigma \sigma^T)_{ii}(s, \omega) \frac{\partial^2 f}{\partial (x^2)^2}(X_s)$$

or more concisely, with Δ denoting the Laplacian operator

$$A(f) = \frac{1}{2} \Delta f = \frac{1}{2} \sum_i \frac{\partial^2 f}{\partial (x^i)^2} f(x)$$

(10.7)

A very useful result follows.

Theorem 10.2.5 (Dynkin’s Formula) Let $f \in C^2_0(\mathbb{R}^n)$ and τ be a stopping time with $E_x[\tau] < \infty$. Then,
10.3 Controlled Stochastic Differential Equations and the Hamilton-Jacobi-Bellman Equation

\[E_x[f(X_\tau)] = f(x) + E_x[\int_0^\tau A f(X_s) ds] \]

Remark 10.9. The conditions for Dynkin’s Formula can be generalized. As in Theorem 4.1.5 if the stopping time \(\tau \) is bounded by a fixed constant, the conditions on \(f \) can be relaxed. Furthermore if \(\tau \) is the exit time from a bounded set, then it suffices that the function is \(C^2 \) and does not have compact support.

Remark 10.10. Consider a stochastic differential equation:

\[dX_t = b(X_t) dt + \sigma(X_t) dB_t \]

A probability measure \(P \) on the sample path space (or its stochastic realization \(X_t \)) is said to be a weak solution if under \(P \)

\[f(X_t) - \int_0^t A f(X_s) ds \]

is a martingale with respect to \(\mathcal{M}_t = \sigma(X_s, s \leq t) \), for any \(C^2 \) function \(f \) with bounded first and second order partial derivatives. Every strong solution is a weak solution, but not every weak solution is a strong solution; every such \(P \) admits a stochastic realization \([107]\) but the stochastic realization may not be defined on the original probability space as a measurable function of the original Brownian motion. For example, if \(X_t \) can be defined to be randomized, where the randomization variables are independent noise processes, one could embed the noise terms into a larger filtration; this will lead to a weak solution but not a strong solution since there is additional information required (that is not contained in the original Brownian process).

10.2.2 Fokker-Planck equation

The discussion on the infinitesimal generator function (and Dynkin’s formula) suggests that one can compute the evolution of the probability measure \(\mu_t(\cdot) = P(X_t \in \cdot) \), by considering for a sufficiently rich class of functions \(f \in \mathcal{D} \)

\[E[f(X_t)] = \int \mu_t(dx)f(x). \]

Note that continuous and bounded functions are measure determining (as discussed in the proof of Theorem 9.6, see \([28, p. 13]\) or \([70, Theorem 3.4.5]\)) and since smooth signals are dense among such functions, we can take \(f \) to be smooth. Suppose that we assume that \(\mu_t \) admits a density function and this is denoted by the same letter. Furthermore, let \(p(x,t) := \mu_t(x) \).

By taking \(\mathcal{D} \) to be the space of smooth signals with compact support, which is a dense subset of the space of square integrable functions on \(\mathbb{R} \), using the infinitesimal generator function, and applying integration by parts twice, we obtain that for sources of the form

\[dX_t = b(X_t) dt + \sigma(X_t) dB_t \]

the following equation:

\[\frac{\partial p(x,t)}{\partial t} = -\frac{\partial}{\partial x} (b(x)p(x,t)) + \frac{1}{2} \frac{\partial^2}{\partial x^2} (\sigma(x)p(x,t)) \]

with \(p(x,0) = f(x) \) being the initial probability density. This is the celebrated Fokker-Planck equation.

The Fokker-Planck equation is a partial differential equation whose existence for a solution requires certain technical conditions. As we discussed earlier, this is related to having a weak solution to a stochastic differential equation and in fact they typically imply one another. Of course, the Fokker-Planck equation may admit a density as a solution, but it may also admit a solution in a further weaker sense in that the evolution of the solution measure \(P(X_t \in \cdot) \) may not admit a density. We refer the reader to \([148]\) for a detailed discussion on the Fokker-Planck equation.

10.3 Controlled Stochastic Differential Equations and the Hamilton-Jacobi-Bellman Equation

10.3.1 Revisiting the deterministic optimal control problem in continuous-time

Consider
and suppose that the goal is to minimize
\[J(\gamma) = \int_0^T c(s, x(s), u(s))ds + P(x(T)) \]
over all feedback control policies \(\gamma \), where we take \(c \) to be continuous and bounded. Via Bellman’s principle, as in Theorem 5.1.3, we define value functions:
\[V(t, x) = \inf_{\gamma} \int_t^T c(s, x(s), u(s))ds + P(x(T)) \]
with the terminal condition
\[V(T, x) = P(x(T)) \]

Remark 10.11. For the existence of an optimal policy, very relaxed conditions can be arrived at via the theory of Young measures: See Section 10.4.1 for a detailed analysis leading to general existence conditions.

In the following, we first present an informal derivation, but this analysis will be justified in Theorem 10.3.1. Applying Bellman’s principle from the theory studied earlier, for a policy to be optimal it looks reasonable to arrive at the following (which will be justified shortly):
\[V(t, x) = \inf_{\gamma} \int_t^{t+h} c(s, x(s), u(s))ds + V(t+h, x(t+h)) \]
(10.8)

Now, take \(h \) small, which will soon be taken to zero: we have that \(x(t+h) = x(t) + f(x(t), u(t))h + o(h) \), where \(o(h)/h \to 0 \) as \(h \to 0 \). If we assume that \(V \) is continuously differentiable in its entries, we then have
\[V(t+h, x(t+h)) = V(t, x(t)) + V_t(x(t))h + (V_x(x, t) \cdot f(x, u))h + o(h) \]

If we also have that, \(\int_t^{t+h} c(s, x(s), u(s))ds = c(t, x(t), u(t))h + o(h) \), then (10.8) would write as
\[V(t, x) = \inf_{\gamma} \left\{ c(t, x(t), u(t))h + V(t, x) + V_t(x(t), x)h + (V_x(x, t) \cdot f(x, u))h + o(h) \right\} \]
and
\[0 = \inf_{\gamma} \left\{ c(t, x(t), u(t))h + V_t(x(t), x)h + (V_x(x, t) \cdot f(x, u))h + o(h) \right\} \]

Dividing by zero the above simplifies as only the last term depends on \(h \), and then taking the limit as \(h \to 0 \), assuming that \(o(h)/h \to 0 \) uniformly for all control policies, we arrive at
\[0 = \inf_{\gamma} \left\{ c(t, x(t), u(t)) + V_t(x(t), x) + (V_x(x, t) \cdot f(x, u)) \right\} \]

In more standard form, this leads to, provided the minimum exists
\[-V_t(x, t) = \min_{u(t)} \left(c(t, x, u(t)) + (V_x(x, t) \cdot f(x, u(t)) \right) \]
(10.9)

This is the celebrated HJB (Hamilton-Jacobi-Bellman) equation. This defines a partial differential equation with boundary condition \(V(T, x) = P(x(T)) \).

The above analysis has some admitted gaps: we imposed the value functions to be so that local linearized approximations could be made and some assumptions were not even justified. Nonetheless, as is often the case in applied mathematics, heuristic reasoning may lead to important equations whose validity however then needs to be rigorously justified. In
particular, the above leads to an important equation which is a surprisingly strong result, as established in the following verification theorem:

Theorem 10.3.1 [Optimality of HJB Solutions] Let $V(t, x)$ be C^1 (i.e., continuously differentiable) in both t and x, and solve the HJB equation \[(10.9)\]. Suppose further that the policy γ satisfies \[(10.9)\] with $u(t) = \gamma(t)$. Then, γ is optimal.

Proof. Let $V(t, x)$ be C^1 in both entries. Consider any admissible policy γ for deterministic control. Let the HJB equation hold. Then, for any control action:

$$
\frac{\partial V}{\partial t}(t, x) + \min_u \left(\frac{\partial V}{\partial x}(t, x) \cdot f(x, u) + c(t, x, u) \right) = 0, \quad V(T, x) = P(x_T),
$$

and thus, for any action u:

$$
\frac{\partial V}{\partial t}(t, x) + \left(\frac{\partial V}{\partial x}(t, x) \cdot f(x, u) + c(t, x, u) \right) \geq 0, \quad V(T, x) = P(x_T),
$$

and thus, for any policy γ

$$
\frac{\partial V}{\partial t}(t, x) + \left(\frac{\partial V}{\partial x}(t, x) \cdot f(x, \gamma(t)) + c(t, x, \gamma(t)) \right) \geq 0.
$$

Now, consider $V(t, x_\gamma)$ where γ denotes the explicit dependence on the policy. We have that

$$
\frac{dV(t, x_\gamma)}{dt} = \frac{\partial V}{\partial t}(t, x_\gamma) + \frac{\partial V}{\partial x}(t, x) \cdot f(x, u)|_{x=x_\gamma, u=\gamma(t)}
$$

By the above, we have then

$$
-(\frac{\partial V(t, x_\gamma)}{\partial t} + \frac{\partial V}{\partial x}(t, x) \cdot f(x, u)|_{x=x_\gamma, u=\gamma(t)}) \leq c(x, \gamma(t))
$$

and

$$
-\frac{dV(t, x_\gamma)}{dt} \leq c(x, \gamma(t))
$$

Taking the integral and noting that this holds for any γ, we arrive at

$$
V(0, x_0) \leq \int_0^T c(x_t, \gamma(t))dt + P(x_T).
$$

Note that the initial value is independent of control and hence $V(0, x_0)$ is a lower bound for any control. Equality holds if the HJB is satisfied by some admissible control policy, which would then be optimal.

Remark 10.12. For some generalizations on HJB and optimal control: (i) one can relax the regularity conditions on V (leading to solution concepts such as viscosity solutions). (ii) Instead of sufficiency, one can arrive at necessary conditions via what is known as the maximum principle via variational local optimality conditions. We refer the reader to [125] for a rather comprehensive and accessible discussion.

10.3.2 The stochastic case

Suppose now that we have a controlled system:

$$
dX_t = b(t, X_t, u_t)dt + \sigma(t, X_t)dB_t,
$$

where $u_t \in U$ is the control action variable. We assume that u_t is measurable at least on \mathcal{F}_t (but we can restrict this further so that it is measurable on a strictly smaller sigma field). Thus, the differential equation is well defined as an Itô integral. We will assume that a solution exists.
As we discussed extensively throughout the notes, the selection of the control actions need to be measurable with respect to some information at the controller. If \(u_t \) is measurable on the filtration generated by \(X_t \), then the policy is called admissible. If it only depends on \(X_t \), then it is called a Markov policy. If it only depends on \(X_t \), then it is stationary. Randomization also is possible, but this requires a more careful treatment when compared with the discrete-time counterpart (more on this later, see also [10]).

Before we move on, however, we should discuss some salient aspects related to measurability. Recall that we had noted that for a control-free stochastic differential equation, if \(b \) and \(\sigma \) satisfy certain regularity properties, then one can ensure that a strong solution exists. However, if we only restrict that the control policy is measurable, with not additional assumptions, it is not guaranteed that a strong solution for \(X_t \) would exist. We will revisit this issue later in the section. Prior to this discussion in Section 10.4, we discuss the optimal control problem and present a short-cut to optimality through appropriate verification theorems.

Let us first restrict the policies to be Markov. We will see that under a verification theorem, this is without loss, under certain conditions. The reader is encouraged to take a look at the verification theorems for discrete-time problems: These are Theorem 5.1.3 for finite horizon problems, Theorem 5.4.3 for discounted cost problems, and Theorem 7.1.1 for average cost problems. You can see that the essential difference is to express the expectations through Dynkin’s formula and the differential generators.

Finite Horizon Problems

Suppose that given a control policy, the goal is to minimize

\[
E[\int_0^T c(s, X_s, u_s)ds + c_T(X_T)],
\]

where \(c_T \) is some terminal cost function.

As in Chapter 5, if a policy is optimal, we will arrive at the following equation for every possible state:

\[
V(r, X_r) = \min_{\gamma} E[\int_r^t c(s, X_s, u_s)ds + V(t, X_t)|X_r],
\]

In the following, following the same flow of ideas as in the deterministic case in Section 10.3.1, we first provide a rather informal derivation of the optimality equation, but the formal verification result will be precise. We assume that \(V \) is so that it is in the domain of the generator for every control policy, with

\[
\mathbb{L}^u_t V(t, x) = \sum_i b^i(t, x, u) \frac{\partial V}{\partial x_i}(t, x) + \frac{1}{2} \sum_{i,j} \sigma^i(t, x) \sigma^j(t, x) \frac{\partial^2 V}{\partial x_i \partial x_j}(t, x)
\]

applying the mean-value theorem, assuming it would hold for now, we arrive at

\[
\min_u \left(c(s, x, u) + \mathbb{L}^u_s V(s, x) + \frac{\partial V}{\partial s}(s, x) \right) = 0 \quad (10.10)
\]

Thus, if a policy is optimal, it needs to satisfy the above property provided that \(V \) satisfies the necessary regularity conditions under the considered set of policies to validate the operations above and indeed the above would also be sufficient for
optimality by the analysis to follow. However, as in the deterministic case, the analysis above is informal and we have not presented precise conditions under which the above would hold. As we have seen before in the earlier chapters, verification theorems show that a policy that satisfies the verification is optimal over all admissible policies:

Theorem 10.3.2 (Verification Theorem) Consider: \(dX_t = b(t, X_t, u_t)dt + \sigma(t, X_t, u_t)dB_t\). Suppose that \(V\) is \(C^2(t, x)\) and

\[
\frac{\partial V}{\partial t}(t, x) + \min_u \left(\mathcal{L}^u_t V(t, x) + c(t, x, u) \right) = 0, \quad V(T, x) = c_T(x), \quad (10.11)
\]

Then, an admissible control policy which achieves the minimum for every \((t, x)\) is optimal among all policies that satisfy the equality (via Itô’s rule)

\[
E[V(0, X_0)] = E[\int_0^T (\frac{\partial V}{\partial s}(s, X_s^u) - \mathcal{L}^u_s V(s, X_s^u))ds] + E[V(T, X_T^u)]
\]

Proof Sketch. For any admissible control policy, using Itô’s rule

\[
E[V(0, X_0)] = E[\int_0^T (\frac{\partial V}{\partial s}(s, X_s^u) - \mathcal{L}^u_s V(s, X_s^u))ds] + E[V(T, X_T^u)]
\]

The equation \(\frac{\partial V}{\partial t}(t, x) + \min_u \{\mathcal{L}^u_t V(t, x) + c(t, x, u)\} = 0\) implies that for any admissible control:

\[
\frac{\partial}{\partial t}V(t, x) + \mathcal{L}^u_t V(t, x) + c(t, x, u) \geq 0,
\]

and as in the deterministic case (in Theorem [10.3.1]),

\[
-\frac{\partial}{\partial s}V(s, X_s^u) - \mathcal{L}^u_s V(s, X_s^u) \leq c(s, X_s^u, u_s),
\]

and thus for any admissible control:

\[
E[V(0, X_0)] \leq E[\int_0^T (c(s, X_s^u, u_s)ds + c_T(X_T^u))].
\]

On the other hand, a policy \(\gamma^*\) which satisfies the equality in \(10.11\), leads to an equality and hence \(J(\gamma^*) \leq J(\gamma)\) for any other admissible control.

Example 10.13. [Optimal portfolio selection] We consider a continuous-time version of a problem considered in Exercise [2.7.2]. A common example in finance applications is the portfolio selection problem where a controller (investor) would like to optimally allocate his wealth between a stochastic stock market and a market with a guaranteed income (see [186]): Consider a stock with an average return \(\mu > 0\) and volatility \(\sigma > 0\) and a bank account with interest rate \(r > 0\). These are modeled by:

\[
\begin{align*}
 &dS_t = \mu S_t dt + \sigma S_t dB_t, \quad S_0 = 1 \\
 &dR_t = r R_t dt, \quad R_0 = 1
\end{align*}
\]

Suppose that the investor can only use his own money to invest and let \(u_t \in [0, 1]\) denote the proportion of the money that he invests in the stock. This implies that at any given time, his wealth dynamics is given by:

\[
 dX_t = \mu u X_t dt + \sigma u X_t dW_t + r (1 - u_t) X_t dt,
\]

or \(dX_t = \left(\mu u + r (1 - u) \right) X_t dt + \sigma u X_t dB_t\). Suppose that the goal is to maximize \(E[\log(X_T)]\) for a fixed time \(T\) (or minimize \(-E[\log(X_T)]\)). In this case, the Bellman equation writes as:
\[0 = \frac{\partial V(t,x)}{\partial t} + \min_u \left(\frac{\sigma^2 u^2 x^2 \partial^2 V(t,x)}{2} + (\mu u + r(1-u))x \frac{\partial V(t,x)}{\partial x} \right), \]

with \(V(T,x) = -\log(x). \) With a guess of the value function of the form \(V(t,x) = -\log(x) + b_t, \) one obtains an ordinary differential equation for \(b_t \) with terminal condition \(b_T = 0. \) It follows that the optimal control is \(u_t(x) = \frac{\mu - r}{\sigma^2} \) leading to
\[V(t,x) = -\log(x_t) - C(T-t), \]
for some constant \(C. \)

10.3.3 Discounted Infinite Horizon Problems

Suppose that given a control policy, the goal is to minimize
\[E[\int_0^T e^{-\lambda s} c(X_s, u_s) ds]. \]

In this section, we will consider a time-homogenous setup:
\[dX_t = b(X_t, u_t) dt + \sigma(X_t, u_t) dB_t, \]
and let
\[L^u g(x) = \sum_i b^i(x, u) \frac{\partial g}{\partial x^i}(x) + \frac{1}{2} \sum_{i,j} \sigma^i(x, u) \sigma^j(x, u) \frac{\partial^2 g}{\partial x^i \partial x^j}(x). \]

In this case, we have the following result:

Theorem 10.3.3 (Verification Theorem) Suppose that \(V \) is \(C^2(x) \)
\[\min_u \left(L^u V(x) - \lambda V(x) + c(x, u) \right) = 0, \quad (10.12) \]

Then, an admissible control policy which achieves the minimum for every \((t,x)\) is optimal among the admissible policies which satisfy the equality (via Itô’s rule)
\[E[V(X_0)] - e^{-\lambda T} E[V(X_T^u)] = E[\int_0^T e^{-\lambda s}(-L^u V(X_s) + \lambda V(X_s)) ds] \]

Proof. For any admissible control policy, using Itô’s rule for \(V(X_t)e^{-\lambda t} \) one obtains:
\[E[V(X_0)] - e^{-\lambda T} E[V(X_T^u)] = E[\int_0^T e^{-\lambda s}(-L^u V(X_s) + \lambda V(X_s)) ds] \]

Proceeding as before in the proof of Theorem [10.3.2] leads to the desired result.

10.3.4 Average-Cost Infinite Horizon Problems

Suppose that given a control policy, the goal is to minimize
\[\lim_{T \to \infty} \frac{1}{T} E[\int_0^T c(X_s, u_s) ds]. \]

Once again here we consider a time-homogenous setup:
\[dX_t = b(X_t, u_t) dt + \sigma(X_t, u_t) dB_t, \]
and let
\[L^u g(x) = \sum_i b^i(x, u) \frac{\partial g}{\partial x^i}(x) + \frac{1}{2} \sum_{i,j} \sigma^i(x, u) \sigma^j(x, u) \frac{\partial^2 g}{\partial x^i \partial x^j}(x) \]
Theorem 10.3.4 (Verification Theorem) Suppose that V is $C^2(x)$ and $\eta \in \mathbb{R}$ so that

$$\min_u \mathcal{L}^u V(x) - \eta + c(x, u) = 0,$$

with the set of admissible strategies that satisfies:

$$\limsup_{T \to \infty} \frac{E[V(X_0) - V(X^u_T)]}{T} = 0$$

Then, an admissible control policy which achieves the minimum for every (t, x) is optimal among policies which satisfy for all T

$$E[V(X_0)] = E[\int_0^T (-\mathcal{L}^u V(X_s^u))ds] + E[V(X_T^u)]$$

Proof. For any admissible control policy, using Itô’s rule for $V(X_t)$ one obtains:

$$\frac{E[V(X_0) - V(X^u_T)]}{T} + \eta = E\left[\frac{1}{T} \int_0^T (\eta - \mathcal{L}^u V(X^u_s))ds\right]$$

Proceeding as before in Theorem 10.3.2 through the use of the Bellman equation leads to the desired result. \hfill \Box

10.3.5 The convex analytic method

The analysis we made in Chapter 5 and 7 applies to the diffusion setting as well. In particular, a discounted HJB equation plays the role of the discounted cost optimality equation. For the average cost problems, one can apply either a vanishing discount approach or an convex-analytic approach. We refer the reader to [10], [41, 45] and [176].

10.4 Partially Observed Case, Girsanov’s Theorem and Separated Policies

Consider a partially observed setup with

$$Y_t = \int h(X_s)ds + B_t$$

for some independent Brownian process B_t.

Such a setup leads to a number of technical difficulties. The analysis (especially for the case with measurements that are not linear and Gaussian) can be quite subtle due to the fact that the control policy (only restricted to be measurable in general) may lead to issues on the existence of strong solutions for a given stochastic differential equation since the control policy may couple the state dynamics with the past in an arbitrarily complicated, though measurable, way and hence violating the existence conditions for strong solutions to stochastic differential equations. Even for linear models, the analysis requires some careful reflection: Lindquist [126] provides a detailed account on this aspect and provides a general separation theorem provided that the control laws are among those which lead to the existence of a solution to the controlled stochastic differential system, generalizing e.g. the analysis in Kushner where only control laws of the Lipschitz type were considered by Kushner [117] (Lipschitz in the conditional estimate) and Wonham [205] (viewed as a map from the normed linear space of continuous functions $y_{[0,t]}$ to controls) to eliminate concerns on the existence of strong solutions. To avoid such technical issues on strong solutions, relaxed solution concepts were introduced and studied in the literature based on measure transformation due to Girsanov [22, 60, 61].

Now, consider the measurement model given in (10.14). For a moment, suppose that $h \equiv 0$, that is Y_t is just an independent process. Suppose also that there is no control in the diffusion process $dX_t = b(X_t)dt + \sigma(X_t)dB'_t$. In this case, it is evident that the measurement process and the noise process are independent and let us call this probability measure on the processes as $Q := P_X \times Q_Y$. In this case, consider for any measurable bounded f on the paths of $X_{[0,t]}$ and $Y_{[0,t]}$ as:
E_B[f(X_{0,T}, Y_{0,T}) | Y_{0,T}] = \int f(x_{0,T}, y_{0,T}) P_X(dx_{0,T}) ,

since the measurement processes \(Y_t \) gives no information on the state process \(X_t \). Thus, the computation is quite simple in this case.

Now, consider our original process given by (10.14) where \(h \) is non-zero. Let \(P \) be the joint probability measure on the state and the measurement processes. Since \(P \ll Q \), we have that

\[
\int f(x_{0,T}, y_{0,T}) P(dx_{0,T}, dy_{0,T}) = \int G(x_{0,T}, y_{0,T}) f(x_{0,T}, y_{0,T}) Q(dx_{0,T}, dy_{0,T})
\]

for some \(Q \)-integrable function \(G \), which is the Radon-Nikodym derivative of \(P \) with respect to \(Q \). It turns out that under mild conditions, we have that

\[
G(x_{0,T}, y_{0,T}) = \frac{dP}{dQ} = e^{\int_0^t h(x_s) ds - \frac{1}{2} \int_0^t |h(x_s)|^2 ds}
\]

with \(\int_0^t h(x_s) ds \) being a stochastic integral, this time with respect to the random measure/process \(Y_s \). This relation allows us to view the partially observed problem as one with independent measurements, with the dependence pushed to the Radon-Nikodym derivative, not unlike what was done in Section 9.5.2.

Therefore,

\[
E_P[f(X_{0,T}, Y_{0,T}) | y_{0,T}] = \frac{\int_{x_{0,T}} f(x_{0,T}, y_{0,T}) G(x_{0,T}, y_{0,T}) Q(dx_{0,T}, y_{0,T})}{\int_{x_{0,T}} G(x_{0,T}, y_{0,T}) Q(dx_{0,T}, y_{0,T})}
\] (10.15)

This equation is known as the (Kushner)-Kallianpur-Striebel formula. If we focus on the numerator, this is known as the unnormalized filter [116].

10.4.1 Relaxed and Wide-Sense Admissible Policies in Partially Observed Models and Implications on Existence and Discrete-Time Approximations

In the following, we build on [162]. We first revisit a version of the deterministic optimal control problem considered in Section 10.3.1.

A related existence discussion in deterministic continuous-time

It is instructive to discuss here various control topologies that are already well-known in classical control theory (when there is a single controller who has access to the state variable). In deterministic nonlinear, geometric, and continuous-time control, properties on stabilizability, controllability, and reachability are drastically impacted by the restrictions on the classes of allowed controls (e.g., continuous, Lipschitz, finitely differentiable, or smooth control functions in the state or time when control is open-loop [48, 106, 159, 173]) and naturally the control topology induced is dictated by the class of admissible controls. For optimal control, to allow for continuity/compactness arguments, apriori imposing compactness over spaces of measurable functions would be an artificial restriction, and the use of powerful theorems such as the Arzela-Ascoli theorem which necessarily entail (usually very restrictive and suboptimal) conditions on continuity properties of the considered policies. In deterministic optimal control theory, relaxed controls [209, 194] allow for this machinery to be applied with no artificial restrictions on the classes of control policies considered; these are known as Young measures.

Let us consider an open-loop controller, where the control is only a function of the time variable. We let \(\nu(dt, du) \) be a measure on \([0, T] \times U \) where the first marginal \(\lambda(dt) \) is the normalized Lebesgue measure on time interval \([0, T] \) and let \(\nu(du | t) = 1_{\{\gamma(t) \in du\}} \) be the conditional measure induced by deterministic open loop control. So, any deterministic open-loop control is embedded via:

\[
\nu(dt, du) = \lambda(dt) 1_{\{\gamma(t) \in du\}}.
\]
If allow for randomized policies, we obtain the set $P_\lambda([0,T] \times U)$ of all probability measures with fixed marginal on $[0,T]$. This set is weakly closed, whose extreme points are those induced by deterministic policies. Thus, any deterministic optimal control problem, which can be written in an integral form and have lower semi-continuous cost functions in actions, will have an optimal solution, which will then be deterministic as these form the extreme points of randomized controls. It can also in fact be shown that such policies are dense in the space of randomized policies, in addition to these policies forming the extreme points in the set of randomized policies (see e.g., [21, Proposition 2.2] [120], [139, 19, Theorem 3], but also many texts in optimal stochastic control where denseness of deterministic controls have been established inside the set of relaxed controls [35]). We refer the reader to [130] for further discussion.

The following example builds on these, with somewhat different arguments. Let the set of relaxed controls (35). We refer the reader to [130] for further discussion. but also many texts in optimal stochastic control where denseness of deterministic controls have been established inside the set of relaxed controls [35]).

The stochastic case

The stochastic case

In this section, we will revisit the concept of relaxed control policies for classical stochastic control problems, with a further relaxation known as wide sense admissible policies introduced by Fleming and Pardoux [76] and prominently introduced by Fleming and Pardoux [76] and prominently...
used to establish the existence of optimal solutions for partially observed stochastic control problems. Borkar \cite{38,40,42,43} has utilized these policies for a coupling/simulation method to arrive at optimality results for average cost partially observed stochastic control problems.

Consider a continuous-time Markov decision process \(\{x_t\} \) on an Euclidean space \(\mathbb{R}^N \), controlled by a control process \(\{u_t\} \) taking values in a convex and compact Borel action space \(U \subset \mathbb{R}^L \), and with an associated observation process \(\{y_t\} \) taking values in \(\mathbb{R}^M \), where \(0 \leq t \leq T \). The evolution of \(\{x_t, y_t\} \) is given by stochastic differential equations

\[
\begin{align*}
\frac{dx_t}{dt} &= b(x_t, y_t, u_t)dt + \sigma(x_t, y_t)dW_t, \\
\frac{dy_t}{dt} &= h(x_t)dt + dB_t.
\end{align*}
\]

Here, \(W \) and \(B \) are independent standard Wiener processes with values in \(\mathbb{R}^D \) and \(\mathbb{R}^M \), respectively (hence, \(\sigma \) is a \(N \times D \)-matrix). The objective is to minimize the following cost function

\[
E \left[\int_0^T F(x_t, u_t)dt + G(x_T) \right],
\]

where \(F : \mathbb{R}^N \times U \rightarrow [0, \infty) \) and \(G : \mathbb{R}^N \rightarrow [0, \infty) \). In the literature, it is customary to require that control process \(\{u_t\} \) be adapted to the filtration generated by the observation process \(\{y_t\} \); that is, for each \(t \in [0, T] \), \(u_t \) is \(\sigma(y_s, 0 \leq s \leq t) \)-measurable. We will call such policies (strict-sense or precise) admissible policies. In \cite{76}, Fleming and Pardoux introduced another class of policies which they named to be wide-sense admissible policies. Using this relaxed class of policies, they study the existence of optimal policies to the above problem.

The idea is to first apply Girsanov’s transformation so that the measurements form an independent Wiener process and \(\{u_s, 0 \leq s \leq t\} \) is independent of the increment \(y_r - y_t \) for all \(t \leq r \leq T \). The latter condition states that actions up to time \(t \) are independent of the observations after time \(t \) given past observations and actions. In other words, instead of saying that actions should be dependent on current and past observations, this condition states that actions should be independent of future observations given past observations and actions.

Remark 10.14. The utility of this approach was already observed in Section 9.9 (see Remark 9.16). In particular, if one makes the measurements independent, so that the information structure is first static, and then makes the information structure classical by considering the actions at time \(t \) measurable on the filtration generated by the past noise processes and actions up to time \(t \); Theorem 9.15 building on \cite{214} Theorem 5.6, can be adapted to show that such a set of measurement-action measures (with fixed marginal on the measurements) that satisfy conditional independence \(u_{[0,t]} \leftrightarrow y_{[0,t]} \leftrightarrow y_t - y_t \) is weakly closed. Furthermore, the value is continuous in this joint measure on \(\{(u, y)_s, s \in [0, T]\} \) and this set of measures is tight. These lead to the compactness-continuity conditions and accordingly an existence result for optimal policies follows. Furthermore, by showing that the set of \(\{(u, y)_s, s \geq 0\} \) measures which have quantized support in the measurement variable are dense, one can show also that piece-wise constant control policies are nearly optimal. This allows one to approximate a continuous-time process with a (sampled) discrete-time process and the machinery developed earlier in the lecture notes are applicable. This approach is the essence of Kushner’s method \cite{115}, though stated somewhat differently. This approximation result by discrete-time models also applies for fully-observed models with the same argument.

Remark 10.15. It may be important to note that Bismut \cite{30} arrived at further existence results, through an approach which avoids separation (and the construction of a belief-MDP), in discrete-time a similar approach is given in Section 9.9.1.

Revisiting the Discrete-time Case

Inspired by the work of Fleming and Pardoux \cite{76}, Borkar introduced wide-sense control policies to study discrete-time partially-observed finite state-observation Markov decision processes with average cost criterion (see \cite{38,40,42,43}). We recognize also that Borkar achieves what is in essence equivalent to Witsenhausen’s static reduction reviewed earlier in Section 9.5.2. For simplicity, we only consider here the case where state and observation spaces are finite. We consider a discrete-time Markov decision process \(\{x_n\} \) on a finite state space \(\mathbb{X} \), controlled by a control process \(\{u_n\} \) taking values in a compact Borel action space \(U \), and with an associated observation process \(\{y_n\} \) taking values in a finite observation space \(\mathbb{Y} \), where \(n = 0, 1, 2, \ldots \). The evolution of \(\{x_n, y_n\} \) is given by

\[
\]
where \(\rho : \mathbb{X} \times \mathbb{U} \rightarrow \mathcal{P}(\mathbb{X}) \times \mathcal{P}(\mathbb{Y}) \) is some transition kernel. To ease the exposition, we assume that \(\rho \) is of the following form:

\[
\rho(x_{n+1}, y_{n+1} | x_n, u_n) = r(y_{n+1} | x_{n+1}) \otimes p(x_{n+1} | x_n, u_n),
\]

where \(p \) is the state transition kernel and \(r \) is the observation kernel. The initial distribution of \(x_0 \) is \(\mu \).

A control process \(\{u_n\} \) is admissible in classical sense if it is adapted to the filtration \(\{\sigma(y_m, m \leq n)\} \) generated by observations \(\{y_n\} \). In this case, one can write

\[
u_n = \pi_n(y_0, \ldots, y_n), n \geq 0,
\]

for some \(\pi_n : \prod_{k=0}^{n} \mathbb{Y} \rightarrow \mathbb{U} \). Let us denote \(\pi = \{\pi_n\} \).

Note that one can always write the evolution of the state process \(\{x_n\} \) as a noise-driven dynamical system

\[
x_{n+1} = F(x_n, u_n, w_n),
\]

where \(F : \mathbb{X} \times \mathbb{U} \times [0, 1] \rightarrow \mathbb{X} \) is measurable and \(\{w_n\} \) are independently and identically distributed uniformly on \([0, 1]\).

Using this dynamical system, we now reproduce the above process on a more convenient probability space. This will then enable us to define wide-sense admissible policies.

In the following, we reduce the problem to an independent static one via Witsenhausen/Girsanov/Borkar, see Borkar’s explicit analysis or Witsenhausen’s method presented in Section 9.5.2.

Under this reduction, we obtain a new probability space \(P_0^\pi \) under which:

(a) \(\{y_n\} \) is i.i.d. uniform on \(\mathbb{Y} \) and independent of \(x_0 \) and \(\{w_n\} \),

(b) \(\{u_0, \ldots, u_n, y_0, \ldots, y_n\} \) is independent of \(\{w_n\} \), \(x_0 \), and \(\{y_m, m > n\} \), for all \(n \).

Using these properties, Borkar defines \(P_0 \) to be wide sense admissible if \(P_0 \) satisfies (a) and (b). Such a notion allows for closedness of conditional independence properties under weak convergence of joint probability measures, and thus leads to very general existence results. See [162] for a subtle clarification.

10.5 Near Optimality of Controls Designed for Discrete-time Models via Sampling

See Remark [10.14] which also applies to the fully observed setup when an absolute continuity condition (known as non-denegeracy) holds: If one makes the measurements or, in the fully observed case, state variables independent from control through a measure transformation, so that the information structure is first static, and then makes the information structure classical by considering the actions at time \(t \) measurable on the filtration generated by the past noise processes and actions up to time \(t \); Theorem [9.15] building on [214] Theorem 5.6, can be adapted to show that such a set of measurement-action measures (with fixed marginal on the measurements) that satisfy conditional independence \(u_{[0,t]} \leftrightarrow y_{[0,t]} \leftrightarrow y_s - y_t \) is weakly closed (replace \(y_t \) with \(x_t \) in the fully observed case). Furthermore, the value is continuous in this joint measure on \(\{(u, y)_s, s \in [0, T]\} \) and this set of measures is tight. These lead to the compactness-continuity conditions and accordingly an existence result for optimal policies follows. Furthermore, by showing that the set of \(\{(u, y)_s, s \geq 0\} \) measures which have quantized support in the measurement variable are dense, one can show also that piece-wise constant control policies are near optimal. This allows one to approximate a continuous-time process with a (sampled) discrete-time process and the machinery developed for discrete-time optimal control will be applicable. This approach is the essence of Kushner’s method [115].
10.6 Stochastic Stability of Diffusions

Recall that an Itô diffusion is a stochastic process $X_t(\omega)$ satisfying a stochastic differential equation of the form:

$$dX_t = b(X_t)dt + \sigma(X_t)dB_t, \quad t \geq s, X_s = x$$

where B_t is m-dimensional Brownian motion. Often b, σ satisfy regularity conditions of the form

$$|b(x) - b(y)| + |\sigma(x) - \sigma(y)| \leq D|x - y|,$$

for some finite D (if one wishes to impose the existence of strong solutions), though this is not a requirement for the analysis to follow. Note that here b, σ only depend on x and not on t. Thus, the process here is time-homogenous.

Continuous-time counterparts of Foster-Lyapunov criteria considered in Chapters 3 and 4 exist and are well-developed. We refer the reader to [117], [129], [137], [136] as well as [110]. Dynkin’s formula plays a key role in obtaining the continuous-time counterparts of the Foster-Lyapunov criteria developed in Chapter 4.

For functions $V : X \to \mathbb{R}_+$ that are properly defined, as in the Foster-Lyapunov criteria studied in Chapter 4, conditions of the form

$$AV(x) \leq b_1 x \in S$$

will lead to recurrence, positive Harris recurrence and finite expectations, respectively. However, the conditions needed on both V and the Markov process need to be carefully addressed. For example, one needs to ensure that the processes are non-explosive, that is, they do not become unbounded in finite time; and one needs to establish conditions for the strong Markov property. Furthermore, they must lead to a well-defined $AV(x)$ (see Definition 10.2.2).

In the following, we review related results from Meyn and Tweedie [136, 137]. We consider processes taking values from a locally compact Polish space X.

Let $P^t(x, B) := P_x(X_t \in B)$ for $B \in \mathcal{B}(X)$. Let for any Borel A,

$$\eta_A = \int_0^\infty 1_{\{X_t \in A\}} dt,$$

denote the occupation time. We say that the process X_t is ψ-irreducible if

$$\psi(B) > 0 \implies E_x[\eta_B] > 0, \quad x \in X,$$

and the process is Harris recurrent if

$$\psi(B) > 0 \implies P_x(\eta_B = \infty) = 1, \quad x \in X.$$

Definition 10.16. A probability measure π on $\mathcal{B}(X)$ is invariant if for every $B \in \mathcal{B}(X)$

$$\pi(B) = \int \pi(dx) P^t(x, B), \quad \forall t > 0.$$

A Harris recurrent chain which admits an invariant probability measure is called positive Harris recurrent.

Denote by $D(A)$ the set of all functions $V : X \times \mathbb{R}_+ \to \mathbb{R}$ for which there exists a measurable function $U : X \times \mathbb{R}_+ \to \mathbb{R}$ such that for each $x \in X$, $t > 0$,

$$E_x[V(X_t, t)] = V(x, 0) + E_x[\int U(x_s, s) ds]$$

and
\[\int_0^t E_x[|U(x_s, s)|] ds < \infty \] (10.22)

In this case, we have \(AV(x) = U(x) \) and we call \(A \) the extended infinitesimal generator of the process \(X_t \) and we say that \(V \) is in the domain of \(A \).

In general, it is not easy to know when a function is in the domain of \(A \). One method to enhance the set of functions that are relevant is to consider truncated processes. Let \(\{O_m, m \in \mathbb{N}\} \) be a sequence of open bounded sets (with compact closure) for which for every \(m \in \mathbb{N}, O_m \subset O_{m+1} \subset O_{m+2} \) with \(\cup_{m=1}^{\infty} O_m = \mathbb{X} \). Define:

\[T^m = \tau_{O_m} := \inf\{t \geq 0 : X_t \in O_m^c\} \]

and let

\[\zeta = \lim_{m \to \infty} T^m. \]

We call \(X_t \) non-explosive if \(P_x(\zeta = \infty) = 1 \) for all \(x \in \mathbb{X} \).

Let for \(m \in \mathbb{Z}_+, \Delta_m \) denote a fixed state in \(O_m^c \) and define with \(x^m \):

\[x^m_t = x_t \mathbb{1}_{\{t < T^m\}} + \Delta_m \mathbb{1}_{\{t \geq T^m\}} \]

Thus, for a non-explosive process, we can define \(x^m_t = x_{\min\{t, T^m\}} \).

For Itô processes, let \(A_m \) denote the extended infinitesimal generator for \(x^m_t \). In this case, \(A_m \) contains \(C^2 \) (class of functions on \(\mathbb{X} \times \mathbb{R} \) with continuous first and second partial derivatives).

It is important to note that in general, the domain of \(A \) may be much smaller than the domain of \(A_m \), in view of the integrability condition stated in (10.22).

Theorem 10.6.1 [137, Theorem 4.5] Let \(X_t \) be non-explosive weak Feller process: that is \(P^t g(x) = E[g(X_t)|x_0 = x] \) is continuous in \(x \) for every continuous and bounded \(g \), for all \(t \geq 0 \). Then,

(i) If

\[A_m V(x) \leq -\epsilon + b \mathbb{1}_{x \in S}, \quad x \in O_m, m \in \mathbb{N} \] (10.23)

holds for some compact \(S \), then an invariant probability exists.

(ii)

\[A_m V(x) \leq -f(x) + b \mathbb{1}_{x \in S}, \quad x \in O_m, m \in \mathbb{N} \] (10.24)

holds for compact \(S \) and \(f : \mathbb{X} \to [1, \infty) \), then under any invariant probability measure \(\pi \), \(E_\pi[f(X)] \leq b \).

Proof. Building on [77, 175] Theorem 2] (see Theorem 3.4.2 for an argument in discrete-time), for a weak Feller process there are two possibilities: either an invariant probability exists or

\[\lim_{T \to \infty} \sup_{\nu} \frac{1}{T} \int_0^T \nu P^s(C) ds = 0, \]

for all compact \(C \), where the supremum is over all initial probability measures on \(x_0 \). Condition (i) then implies that the latter cannot take place. The second result follows from the discussion for Theorem 4.2.5 together with (i).

A useful technique in arriving at stochastic stability is to sample the process to obtain a discrete-time Markov chain, whose stability will imply the stability of the original process through a careful construction of invariant probability measures, similar to the discussion on sampled chains in Chapter 3. Any invariant measure for the continuous-time process is also invariant for a sampled discrete-time process, and thus the uniqueness of an invariant measure for the sampled process would imply the uniqueness of an invariant measure for the continuous-time process, provided one exists.
Let \(\alpha \) be a probability measure on \(\mathbb{R}_+ \). Define
\[
K_\alpha(x, B) = \int P^t(x, B) \alpha(dt)
\]
Thus, \(K_\alpha \) represents a sampled chain. A Borel set \(S \) is called \(\nu_\alpha \)-petite if \(\nu_\alpha \) is a non-trivial measure and \(\alpha \) is a probability measure on \((0, \infty) \) that satisfies:
\[
K_\alpha(x, B) \geq \nu_\alpha(B), \quad x \in S,
\]
for all \(B \in \mathcal{B}(\mathbb{R}) \). Furthermore, we have the following if \(S \) is a petite set. Meyn and Tweedie define a process to be a \(T \)-process if for some distribution \(\alpha \), the kernel \(K_\alpha(x, A) \geq T(x, A) \) where \((\cdot, A) \) is lower semi-continuous for each Borel \(A \) and \(T(x, \mathbb{R}) \neq 0 \) for each \(x \in \mathbb{R} \). Note that strong Feller processes are \(T \)-processes as \(T \) can be taken to be \(K_\alpha \) itself.

Recall from Theorem 3.2.9 that for an irreducible \(T \)-process, every compact set is petite [137].

Theorem 10.6.2 \([137, \text{Theorem 4.2}]\) Let \(\{x_t\} \) be an irreducible non-explosive process and \((10.23) \) hold for \(S \) closed and petite, and with \(V \) bounded on \(S \). Then, the process is positive Harris recurrent.

We also refer the reader to [58] Theorem 4.1 and emphasize that, as in Chapter 4, irreducibility is not required for the existence of an invariant probability measure. Theorem [10.6.2] then implies the importance of the petiteness condition on \(S \). As we observed earlier in Chapter 3, such sets allow for regeneration and hence lead to Harris recurrence and uniqueness of an invariant probability measure.

Let the notation \(\{\lim_{t \to \infty} |x_t| = \infty\} \) denote the event that for any compact \(C \), for all \(t \) sufficiently large \(x_t \notin C \). If
\[
\mathbb{P}_x(\lim_{t \to \infty} |x_t| = \infty) = 0,
\]
\(x_t \) is said to be non-evanescent.

Theorem 10.6.3 \([137, \text{Theorem 3.1}]\) Let \(\{x_t\} \) satisfy
\[
\mathcal{A}_m V(x) \leq b \chi_{x \in S}, \quad x \in O_m, \ m \in \mathbb{N}
\]
for a compact \(S \), \(b < \infty \) and where \(V \) is a norm-like function (i.e., \(\lim_{x \to \infty} V(x) = \infty \)). Then,
\[
\mathbb{P}_x(\lim_{t \to \infty} |x_t| = \infty) = 0
\]
for each \(x \in \mathbb{R} \).

Further stochastic stability results, beyond the existence of invariant probability measures, have found applications; for these, we refer the reader to [117] and [186]. We state one next.

Theorem 10.6.4 \([117, \text{Prop. 5.5.1}]\) Suppose that there exists a function \(V : \mathbb{R}^n \to \mathbb{R}_+ \) which is in the domain of \(\mathcal{A}_m \) for every \(m \), and satisfies
\[
\mathcal{A} V(x) \leq -\alpha V(x) + b, \quad x \in O_m, \ m \in \mathbb{N}
\]
for some \(\alpha, b > 0 \). Then,
\[
\mathbb{E}[V(X_t)] \leq e^{-\alpha t} \mathbb{E}[V(X_0)] + \frac{b}{\alpha},
\]
provided that \(\mathbb{E}[V(X_0)] < \infty \).

Exercise 10.6.1 Prove Theorem 10.6.4. Hint. Apply Dynkin's formula to \(V(x_t) e^{\alpha t} \); note \(\mathcal{A}(V(x_t) e^{\alpha t}) = \alpha V(x_t) e^{\alpha t} + e^{\alpha t} \mathcal{A} V(x_t) \) and use (10.25).
10.7 Exercises

Exercise 10.7.1

a) Solve

\[dX_t = \mu X_t + \sigma dB_t \]

Hint: Multiply both sides with the integrating factor \(e^{-\mu t} \) and work with \(d(e^{-\mu t} X_t) \).

b) Solve

\[dX_t = \mu dt + \sigma X_t dB_t \]

Hint: Multiply both sides with the integrating factor \(e^{-\sigma B_t + \frac{1}{2} \sigma^2 t} \). Finally, verify by direct computation (via Ito’s formula) that

\[X_t = X(0) e^{\sigma B_t + (\mu - \frac{\sigma^2}{2}) t} \]

is the solution. The equation in b) above is often used as a model for mathematical finance where \(\mu \) is called the drift and \(\sigma \) is called the volatility (of the financial environment).

Exercise 10.7.2 (Girsanov’s measure transformation / static reduction)

Consider

\[S_n = \sum_{k=1}^{n} X_k \]

where \(X_k \sim \mathcal{N}(0,1) \) is i.i.d. Since a sum of Gaussians is Gaussian, \((S_1, \cdots, S_n) \) is a Gaussian random vector with measure, say with measure \(P \), and density

\[C_n e^{-\frac{1}{2} \left(s_1^2+(s_2-s_1)^2+\cdots+(s_n-s_{n-1})^2\right)} \]

for some constant \(C_n \). Now, instead, assume that \(S'_n = \sum_{k=1}^{n} (X_k + \mu_k) \) where \(\mu_k \) is a sequence of constants. In this case, \((S'_1, \cdots, S'_n) \) is a Gaussian random vector with measure \(Q \) and density, for some constant \(C'_n \),

\[C'_n e^{-\frac{1}{2} \left((s_1-\mu_1)^2+(s_2-s_1-\mu_2)^2+\cdots+(s_n-s_{n-1}-\mu_n)^2\right)} = C'_n e^{-\frac{1}{2} \left(s_1^2+(s_2-s_1)^2+\cdots+(s_n-s_{n-1})^2\right) e^{\sum_k \mu_k (S_k-S_{k-1})-\frac{1}{2} \sum_k \mu_k^2}} \]

Thus, the Radon-Nikodym derivative

\[\frac{dQ}{dP} = e^{\left(\sum_k \mu_k (S_k-S_{k-1})-\frac{1}{2} \sum_k \mu_k^2\right)} \]

This is the same derivation we studied in Section 9.5.2.

With this interpretation, consider the measurement process given in (10.18-10.19) with \(dy_t = h(x_t) dt + dB_t \) and let \(P \) be the measure on this process. Let \(P_0 \) denote the measure on an independent Brownian motion with \(x_t \) as given in (10.18). Now, by viewing \(\mu_k \) as the drift term \(h(x_t) dt \), compare (10.26) with

\[Z_T = \exp \left[\int_0^T h(x_s) dy_s - \frac{1}{2} \int_0^T |h(x_s)|^2 ds \right]. \]

where

\[\frac{dP}{dP_0} = Z_T. \]

Exercise 10.7.3 (Feynman-Kac Formula: Expected hitting time to a boundary)

Let \(S \subset \mathbb{R}^n \) be a bounded open set with smooth boundary \(\partial S \). The following partial differential equation (see also (10.7) for the notation of the Laplacian of
a function f given with
\[\Delta f := \sum_i \frac{\partial^2 f}{\partial x_i^2} f(x) \]

\[-\frac{1}{2} \Delta u = 1, \quad u \in S \]

\[u = 0 \quad u \in \partial S \]

is known to admit a solution $u(x)$. Now, for any initial point $x \in S$ and consider the Brownian motion B_t with $B_0 = x$. Define
\[\tau^x_S = \inf\{ t \geq 0 : B_t \in \partial S \} \]

Show that
\[u(x) = E[\tau^x_S] \]

Hint. By (10.7) we know that for the equation $X_t = B_t$, the generator satisfies the relation $A(f) = \frac{1}{2} \Delta f$. Then, with $\min(N, \tau^x_S) = \tau^N$ via Dynkin’s formula
\[E[u(X_{\tau^N})] = E[u(X_0)] + E[\int_0^{\tau^N} \frac{1}{2} \Delta U(X_s)ds] \]

Since $-\frac{1}{2} \Delta u = -1$ until the stopping time and u is bounded, we have that $\lim_{N \to \infty} E[\tau^N]$ is bounded and τ^x_S has finite expectation. As a result,
\[u(x) = E[u(X_0)|X_0 = x] = E_x[\int_0^{\tau^N} \frac{1}{2} \Delta U(X_s)ds + E_x[u(X_{\tau^N})]] \to_{N \to \infty} E_x[\tau^x_S] \]

Finally, conclude with observing that for $x \in \partial S$ $u(x) = 0$ (and by the above for x inside S, $\Delta u(x) = -1$).

Exercise 10.7.4 (White Noise Property of the Brownian Noise) Define the Fourier transform of dB_t as:
\[a_k(\omega) = \int_0^1 dB_t(\omega) e^{-i2\pi k t} dt. \]

Show that $a_k, k \in \mathbb{Z}$ is Gaussian, and i.i.d. Now, compute $E[dB_t dB_s] = E[dB_t dB_s]$ and show that this expectation leads to a delta signal, through the expression $\sum_k e^{-i2\pi k(t-s)}$, which leads to the delta function in the sense of distributions. Hint: To show the i.i.d., property, it suffices to show that $E[a_k a_j] = 0$ for $k \neq j$, since for Gaussian processes uncorrelatedness is equivalent to independence. This example reveals that even though dB_t does not exists as a well-defined process, under the integral sign, meaningful properties can be exhibited.

Exercise 10.7.5 Complete the details for the solution to the optimal portfolio selection problem given in Example 10.13.

Exercise 10.7.6 Solve an average-cost version of the linear quadratic regulator problem and identify conditions on the cost function that leads to a cost that is independent of the initial condition.

Exercise 10.7.7 Consider a Brownian process in \mathbb{R}^d. Show that this process is recurrent for $d = 1, 2$ but transient for $d \geq 3$.

Exercise 10.7.8 Construct an example of a control-free stochastic differential equation with additive Brownian noise such that, while in the absence of the noise term the (deterministic) process is unstable, the presence of the noise makes the system stochastically stable.

Exercise 10.7.9 Read [125, Chapters 4 and 5] to study the maximum principle and viscosity solutions for the deterministic-setup.
Basics of Function Spaces

A.1 Normed Linear (Vector) Spaces and Metric Spaces

Definition A.1.1 A linear (vector) space \(\mathbb{X} \) is a space which is closed under addition and scalar multiplication: In particular, we define an addition operation, \(+ \) and a scalar multiplication operation \(\cdot \) such that

\[
+ : \mathbb{X} \times \mathbb{X} \rightarrow \mathbb{X} \\
\cdot : \mathbb{C} \times \mathbb{X} \rightarrow \mathbb{X}
\]

with the following properties (we note that we may take the scalars to be either real or complex numbers). The following are satisfied for \(x, y \in \mathbb{X} \) and \(\alpha, \beta \) scalars:

(i) \(x + y = y + x \)
(ii) \((x + y) + z = x + (y + z) \).
(iii) \(\alpha \cdot (x + y) = \alpha \cdot x + \alpha \cdot y \).
(iv) \((\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x \).
(v) There is a null vector \(0 \) such that \(x + 0 = x \).
(vi) \(\alpha \cdot (\beta \cdot x) = (\alpha \beta) \cdot x \)
(vii) For every \(x \in \mathbb{X} \), \(1 \cdot x = x \)
(viii) For every \(x \in \mathbb{X} \), there exists an element, called the (additive) inverse of \(x \) and denoted with \(-x \) with the property \(x + (-x) = 0 \).

Example A.1. (i) The space \(\mathbb{R}^n \) is a linear space. The null vector is \(\mathbb{0} = (0, 0, \ldots, 0) \in \mathbb{R}^n \).
(ii) Consider the interval \([a, b]\). The collection of real-valued continuous functions on \([a, b]\) is a linear space. The null element \(\mathbb{0} \) is the function which is identically \(0 \). This space is called the space of real-valued continuous functions on \([a, b]\)
(iii) The set of all infinite sequences of real numbers having only a finite number of terms not equal to zero is a vector space. If one adds two such sequences, the sum also belongs to this space. This space is called the space of finitely many non-zero sequences.
(iv) The collection of all polynomial functions defined on an interval \([a, b]\) with complex coefficients forms a complex linear space. Note that the sum of polynomials is another polynomial.

Definition A.1.2 A non-empty subset \(M \) of a (real) linear vector space \(\mathbb{X} \) is called a subspace of \(\mathbb{X} \) if

\[
\alpha x + \beta y \in M, \quad \forall x, y \in M \quad \text{and} \quad \alpha, \beta \in \mathbb{R}.
\]
In particular, the null element \(0\) is an element of every subspace. For \(M, N\) two subspaces of a vector space \(X\), \(M \cap N\) is also a subspace of \(X\).

Definition A.1.3 A normed linear space \(X\) is a linear vector space on which a map from \(X\) to \(\mathbb{R}\), that is a member of \(\Gamma(X; \mathbb{R})\) called norm is defined such that:

- \(|x| \geq 0\) \(\forall x \in X\), \(|x| = 0\) if and only if \(x\) is the null element (under addition and multiplication) of \(X\).
- \(|x + y| \leq |x| + |y|\)
- \(|\alpha x| = |\alpha||x|\), \(\forall \alpha \in \mathbb{R}, \ \forall x \in X\)

Definition A.1.4 In a normed linear space \(X\), an infinite sequence of elements \(\{x_n\}\) converges to an element \(x\) if the sequence \(\{|x_n - x|\}\) converges to zero.

Example A.2. a) The normed linear space \(C([a, b])\) consists of continuous functions on \([a, b]\) together with the norm \(|x| = \max_{a \leq t \leq b} |x(t)|\).

b) \(l_p(\mathbb{Z}+; \mathbb{R}) := \{x \in \Gamma(\mathbb{Z}+; \mathbb{R}) : |x|_p = \left(\sum_{i \in \mathbb{Z}+} |x(i)|^p\right)^{\frac{1}{p}} < \infty\}\) is a normed linear space for all \(1 \leq p < \infty\). c) Recall that if \(S\) is a set of real numbers bounded above, then there is a smallest real number \(y\) such that \(x \leq y\) for all \(x \in S\). The number \(y\) is called the least upper bound or supremum of \(S\). If \(S\) is not bounded from above, then the supremum is \(\infty\).

In view of this, for \(p = \infty\), we define

\[l_\infty(\mathbb{Z}+; \mathbb{R}) := \{x \in \Gamma(\mathbb{Z}+; \mathbb{R}) : |x|_\infty = \sup_{i \in \mathbb{Z}+} |x(i)| < \infty\} \]

d) \(L_p([a, b]; \mathbb{R}) = \{x \in \Gamma([a, b]; \mathbb{R}) : |x|_p = \left(\int_a^b |x(t)|^p dt\right)^{\frac{1}{p}} < \infty\}\) is a normed linear space. For \(p = \infty\), we typically write: \(L_\infty([a, b]; \mathbb{R}) := \{x \in \Gamma([a, b]; \mathbb{R}) : |x|_\infty = \sup_{t \in [a, b]} |x(t)| < \infty\}\). However, for \(1 \leq p < \infty\), to satisfy the condition that \(|x|_p = 0\) implies that \(x(t) = 0\), we need to assume that functions which are equal to zero almost everywhere are equivalent; for \(p = \infty\) the definition is often revised with essential supremum instead of supremum so that

\[|x|_\infty = \inf_{y(t) = x(t) a.e.} \sup_{t \in [a, b]} |y(t)| \]

To show that \(l_p\) defined above is a normed linear space, we need to show that \(|x + y|_p \leq |x|_p + |y|_p\).

Theorem A.1.1 (Minkowski’s Inequality) For \(1 \leq p \leq \infty\)

\[||x + y||_p \leq ||x||_p + ||y||_p \]

The proof of this result uses a very important inequality, known as Hölder’s inequality.

Theorem A.1.2 (Hölder’s Inequality)

\[\sum x(k)y(k) \leq ||x||_p ||y||_q, \]

with \(1/p + 1/q = 1\) and \(1 \leq p, q \leq \infty\).

Definition A.1.5 A metric defined on a set \(X\), is a function \(d : X \times X \to \mathbb{R}\) such that:

- \(d(x, y) \geq 0, \ \forall x, y \in X\) and \(d(x, y) = 0\) if and only if \(x = y\).
- \(d(x, y) = d(y, x), \ \forall x, y \in X\).
- \(d(x, y) \leq d(x, z) + d(z, y), \ \forall x, y, z \in X\).
Definition A.1.6 A metric space \((X, d)\) is a set equipped with a metric \(d\).

A normed linear space is also a metric space, with metric
\[
d(x, y) = ||x - y||.
\]

An important class of normed spaces that are widely used in optimization and engineering problems are Banach spaces:

A.1.1 Banach Spaces

Definition A.1.7 A sequence \(\{x_n\}\) in a normed space \(X\) is Cauchy if for every \(\epsilon\), there exists an \(N\) such that
\[
||x_n - x_m|| \leq \epsilon,
\]
for all \(n, m \geq N\).

The important observation on Cauchy sequences is that, every converging sequence is Cauchy, however, not all Cauchy sequences are convergent: This is because the limit might not live in the original space where the sequence elements take values in. This brings the issue of completeness:

Definition A.1.8 A normed linear space \(X\) is complete, if every Cauchy sequence in \(X\) has a limit in \(X\). A complete normed linear space is called Banach.

Banach spaces are important for many reasons including the following one: In optimization problems, sometimes we would like to see if a sequence converges, for example if a solution to a minimization problem exists, without knowing what the limit of the sequence could be. Banach spaces allow us to use Cauchy sequence arguments to claim the existence of optimal solutions. If time allows, we will discuss how this is used by using contraction and fixed point arguments for transformations.

In applications, we will also discuss completeness of a subset. A subset of a Banach space \(X\) is complete if and only if it is closed. If it is not closed, one can provide a counterexample sequence which does not converge. If the set is closed, every Cauchy sequence in this set has a limit in \(X\) and this limit should be a member of this set, hence the set is complete.

Exercise A.1.1 The space of bounded functions \(\{x : [0, 1] \rightarrow \mathbb{R}, \sup_{t \in [0,1]} |x(t)| < \infty\}\) is a Banach space.

The above space is also denoted by \(L_\infty([0,1]; \mathbb{R})\) or \(L_\infty([0,1])\).

Theorem A.1.3 \(l_p(\mathbb{Z}^+; \mathbb{R}) := \{x \in f(\mathbb{Z}^+; \mathbb{R}) : ||x||_p = \left(\sum_{i \in \mathbb{N}^+} |x(i)|^p\right)^{\frac{1}{p}} < \infty\}\) is a Banach space for all \(1 \leq p \leq \infty\).

Sketch of Proof: The proof is completed in three steps.

(i) Let \(\{x_n\}\) be Cauchy. This implies that for every \(\epsilon > 0\), \(\exists N\) such that for all \(n, m \geq N\) \(||x_n - x_m|| \leq \epsilon\). This also implies that for all \(n > N\), \(||x_n|| \leq ||x_N|| + \epsilon\). Now let us denote \(x_n\) by the vector \(\{x^n_1, x^n_2, x^n_3, \ldots\}\). It follows that for every \(k\) the sequence \(\{x^n_k\}\) is also Cauchy. Since \(x^n_k \in \mathbb{R}\), and \(\mathbb{R}\) is complete, \(x^n_k \rightarrow x_k\) for some \(x_k\). Thus, the sequence \(x_n\) pointwise converges to some vector \(x^*_n\).

(ii) Is \(x \in l_p(\mathbb{Z}^+; \mathbb{R})\)? Define \(x_{n,K} = \{x^n_1, x^n_2, \ldots, x^n_{K-1}, 0, 0, \ldots\}\), that is vector which truncates after the \(K\)th coordinate. Now, it follows that
\[
||x_{n,K}|| \leq ||x_N|| + \epsilon,
\]
for every \(n \geq N\) and \(K\) and
\[
\lim_{n \rightarrow \infty} ||x_{n,K}||_p = \lim_{n \rightarrow \infty} \sum_{i=1}^{K} |x^n_i|^p = \sum_{i=1}^{K} |x_i|^p.
\]
since there are only finitely many elements in the summation. The question now is whether \(||x_\infty|| \in p(\mathbb{Z}_+; \mathbb{R}) \). Now,
\[
||x_{n,K}|| \leq ||x_N|| + \epsilon,
\]
and thus
\[
\lim_{n \to \infty} ||x_{n,K}|| = ||x_K|| \leq ||x_N|| + \epsilon,
\]
Let us take another limit, by the monotone convergence theorem (Recall that this theorem says that a monotonically increasing sequence which is bounded has a limit).
\[
\lim_{K \to \infty} ||x_{*K}||^p = \lim_{K \to \infty} \sum_{i=1}^{K} |x_i|^p = ||x_\infty||^p \leq ||x_N|| + \epsilon.
\]
(iii) The final question is: Does \(||x_n - x_*|| \to 0 \)? Since the sequence is Cauchy, it follows that for \(n, m \geq N \)
\[
||x_n - x_m|| \leq \epsilon
\]
Thus,
\[
||x_{n,K} - x_{m,K}|| \leq \epsilon
\]
and since \(K \) is finite
\[
\lim_{m \to \infty} ||x_{n,K} - x_{m,K}|| = ||x_{n,K} - x_{*K}|| \leq \epsilon
\]
Now, we take another limit
\[
\lim_{K \to \infty} ||x_{n,K} - x_{*K}|| \leq \epsilon
\]
By the monotone convergence theorem again,
\[
\lim_{K \to \infty} ||x_{n,K} - x_{*K}|| = ||x_n - x|| \leq \epsilon
\]
Hence, \(||x_n - x|| \to 0 \). ⋄

The above spaces are also denoted \(l_p(\mathbb{Z}_+) \), when the range space is clear from context.

The following is a useful result.

Theorem A.1.4 (Hölder’s Inequality)
\[
\sum x(t)y(t) \leq ||x||_p ||y||_q,
\]
with \(1/p + 1/q = 1 \) and \(1 \leq p, q \leq \infty \).

Remark: A brief remark for notations: When the range space is \(\mathbb{R} \), the notation \(l_p(\Omega) \) denotes \(L_p(\Omega; \mathbb{R}) \) for a discrete-time index set \(\Omega \) and likewise for a continuous-time index set \(\Omega \), \(L_p(\Omega) \) denotes \(L_p(\Omega; \mathbb{R}) \). ⋄

A.1.2 Hilbert Spaces

We first define pre-Hilbert spaces.

Definition A.1.9 A pre-Hilbert space \(X \) is a linear vector space where an inner product is defined on \(X \times X \). Corresponding to each pair \(x, y \in X \) the inner product \(\langle x, y \rangle \) is a scalar (that is real-valued or complex-valued). The inner product satisfies the following axioms:

1. \(\langle x, y \rangle = \overline{\langle y, x \rangle} \) (the superscript denotes the complex conjugate) (we will also use \(\overline{\langle y, x \rangle} \) to denote the complex conjugate)
2. \(\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle \)
3. $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$

4. $\langle x, x \rangle \geq 0$, equals 0 iff x is the null element.

The following is a crucial result in such a space, known as the Cauchy-Schwarz inequality, the proof of which was presented in class:

Theorem A.1.5 For $x, y \in X$,

$$\langle x, y \rangle \leq \sqrt{\langle x, x \rangle} \sqrt{\langle y, y \rangle},$$

where equality occurs if and only if $x = \alpha y$ for some scalar α.

Exercise A.1.2 In a pre-Hilbert space $\langle x, x \rangle$ defines a norm: $||x|| = \sqrt{\langle x, x \rangle}$

The proof for the result requires one to show that $\sqrt{\langle x, x \rangle}$ satisfies the triangle inequality, that is $||x + y|| \leq ||x|| + ||y||$,

which can be proven by an application of the Cauchy-Schwarz inequality.

Not all spaces admit an inner product. In particular, however, $l_2(\mathbb{N}_+; \mathbb{R})$ admits an inner product with $\langle x, y \rangle = \sum_{n \in \mathbb{N}_+} x(n)y(n)$ for $x, y \in l_2(\mathbb{N}_+; \mathbb{R})$. Furthermore, $||x|| = \sqrt{\langle x, x \rangle}$ defines a norm in $l_2(\mathbb{N}_+; \mathbb{R})$.

The inner product, in the special case of \mathbb{R}^N, is the usual inner vector product; hence \mathbb{R}^N is a pre-Hilbert space with the usual inner product.

Definition A.1.10 A complete pre-Hilbert space, is called a Hilbert space.

Hence, a Hilbert space is a Banach space, endowed with an inner product, which induces its norm.

Proposition A.1.1 The inner product is continuous: if $x_n \to x$, and $y_n \to y$, then $\langle x_n, y_n \rangle \to \langle x, y \rangle$ for x_n, y_n in a Hilbert space.

Proposition A.1.2 In a Hilbert space X, two vectors $x, y \in X$ are orthogonal if $\langle x, y \rangle = 0$. A vector x is orthogonal to a set $S \subset X$ if $\langle x, y \rangle = 0 \quad \forall y \in S$.

Theorem A.1.6 (Projection Theorem:) Let H be a Hilbert space and B a closed subspace of H. For any vector $x \in H$, there is a unique vector $m \in B$ such that

$$||x - m|| \leq ||x - y||, \forall y \in B.$$

A necessary and sufficient condition for $m \in B$ to be the minimizing element in B is that, $x - m$ is orthogonal to B.

A.1.3 Separability

Definition A.1.11 Given a normed linear space X, a subset $D \subset X$ is dense in X, if for every $x \in X$, and each $\epsilon > 0$, there exists a member $d \in D$ such that $||x - d|| \leq \epsilon$.

Definition A.1.12 A set is countable if every element of the set can be associated with an integer via an ordered mapping.

Examples of countables spaces are finite sets and the set \mathbb{Q} of rational numbers. An example of uncountable sets is the set \mathbb{R} of real numbers.
Theorem A.1.7 a) A countable union of countable sets is countable. b) Finite Cartesian products of countable sets is countable. c) Infinite Cartesian products of countable sets may not be countable. d) $[0, 1]$ is not countable.

Cantor’s diagonal argument and the triangular enumeration are important steps in proving the theorem above.

Since rational numbers are the ratios of two integers, one may view rational numbers as a subset of the product space of countable spaces; thus, rational numbers are countable.

Definition A.1.13 A space X is separable, if it contains a countable dense set.

Separability basically informs us that it suffices to work with a countable set, when the set is uncountable. Examples of separable sets are \mathbb{R}, and the set of continuous and bounded functions on a compact set metrised with the maximum distance between the functions.

Complete, separable and metric spaces form a very broad class of signal spaces. Such spaces are called Polish spaces. Borel subsets of such spaces are called standard Borel spaces.
B

On the Convergence of Random Variables

B.1 Limit Events and Continuity of Probability Measures

Given $A_1, A_2, \ldots, A_n \in \mathcal{F}$, define:

$$\limsup_n A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$$
$$\liminf_n A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k$$

For the superior limit, an element is in this set, if it is in infinitely many A_ns. For the inferior case, an element is in the limit, if it is in almost except for a finite number of A_ns. The limit of a sequence of sets exists if the above limits are equal. We have the following result:

Theorem B.1.1 For a sequence of events A_n:

$$P(\liminf_n A_n) \leq \liminf_n P(A_n) \leq \limsup_n P(A_n) \leq P(\limsup_n A_n)$$

We have the following regarding continuity of probability measures:

Theorem B.1.2 (i) For a sequence of events A_n with $A_n \subset A_{n+1}$ for all n,

$$\lim_{n \to \infty} P(A_n) = P(\bigcup_{n=1}^{\infty} A_n)$$

(ii) For a sequence of events A_n with $A_{n+1} \subset A_n$ for all n,

$$\lim_{n \to \infty} P(A_n) = P(\bigcap_{n=1}^{\infty} A_n)$$

B.2 Borel-Cantelli Lemma

Theorem B.2.1 (i) If $\sum_n P(A_n)$ converges, then $P(\limsup_n A_n) = 0$. (ii) If $\{A_n\}$ are independent and if $\sum P(A_n) = \infty$, then $P(\limsup_n A_n) = 1$.

Exercise B.2.1 Let $\{A_n\}$ be a sequence of independent events where A_n is the event that the nth coin flip is head. What is the probability that there are infinitely many heads if $P(A_n) = 1/n^2$?

An important application of the above is the following:
Theorem B.2.2 Let $Z_n, n \in \mathbb{N}$ and Z be random variables and for every $\epsilon > 0$,

$$\sum_n P(|Z_n - Z| \geq \epsilon) < \infty.$$

Then,

$$P(\{\omega : Z_n(\omega) = Z(\omega)\}) = 1.$$

That is Z_n converges to Z with probability 1.

B.3 Convergence of Random Variables

B.3.1 Convergence almost surely (with probability 1)

Definition B.3.1 A sequence of random variables X_n converges almost surely to a random variable X if $P(\{\omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)\}) = 1$.

B.3.2 Convergence in Probability

Definition B.3.2 A sequence of random variables X_n converges in probability to a random variable X if $\lim_{n \to \infty} P(|X_n - X| \geq \epsilon) = 0$ for every $\epsilon > 0$.

B.3.3 Convergence in Mean-square

Definition B.3.3 A sequence of random variables X_n converges in the mean-square sense to a random variable X if $\lim_{n \to \infty} E[|X_n - X|^2] = 0$.

B.3.4 Convergence in Distribution

Definition B.3.4 Let X_n be a random variable with cumulative distribution function F_n, and X be a random variable with cumulative distribution function F. A sequence of random variables X_n converges in distribution (or weakly) to a random variable X if $\lim_{n \to \infty} F_n(x) = F(x)$ for all points of continuity of F.

Theorem B.3.1 a) Convergence in almost sure sense implies in probability. b) Convergence in mean-square sense implies convergence in probability. c) If $X_n \to X$ in probability, then $X_n \to X$ in distribution.

We also have partial converses for the above results:

Theorem B.3.2 a) If $P(|X_n| \leq Y) = 1$ for some random variable Y with $E[Y^2] < \infty$, and if $X_n \to X$ in probability, then $X_n \to X$ in mean-square. b) If $X_n \to X$ in probability, there exists a subsequence X_{n_k} which converges to X almost surely. c) If $X_n \to X$ and $X_n \to Y$ in probability, mean-square or almost surely. Then $P(X = Y) = 1$.

A sequence of random variables is uniformly integrable if:

$$\lim_{K \to \infty} \sup_n E[X_n 1_{|X_n| \geq K}] = 0.$$

Note that, if $\{X_n\}$ is uniformly integrable, then $\sup_n E[|X_n|] < \infty$.

Theorem B.3.3 Under uniform integrability, convergence in almost sure sense implies convergence in mean-square.

Theorem B.3.4 If \(X_n \to X \) in probability, there exists some subsequence \(X_{n_k} \) which converges to \(X \) almost surely.

Theorem B.3.5 (Skorohod’s representation theorem) Let \(X_n \to X \) in distribution. Then, there exists a sequence of random variables \(Y_n \) and \(Y \) such that, \(X_n \) and \(Y_n \) have the same cumulative distribution functions; \(X \) and \(Y \) have the same cumulative distribution functions and \(Y_n \to Y \) almost surely.

With the above, we can prove the following result.

Theorem B.3.6 The following are equivalent: i) \(X_n \) converges to \(X \) in distribution. ii) \(E[f(X_n)] \to E[f(X)] \) for all continuous and bounded functions \(f \). iii) The characteristic functions \(\Phi_n(u) := E[e^{iuX_n}] \) converge pointwise for every \(u \in \mathbb{R} \).
Some Remarks on Measurable Selections

As we observe in Chapter 5, in stochastic control measurability issues arise extensively both for the measurability of control policies as well as that of value functions/optimal costs.

Theorem 5.1.1 and Theorem 5.3 are two examples where these were crucially utilized. In addition, we observed that the theory of martingales and filtration, the measurability properties are essential.

One particular aspect is to ensure that maps of the form:

\[J(x) := \inf_{u \in U} c(x, u) \]

are measurable or at least Lebesgue-integrable.

Theorem C.0.1 (Kuratowski Ryll-Nardzewski Measurable Selection Theorem) \[114\] Let \(X, U \) be Polish spaces and \(\Gamma = (x, \psi(x)) \) where \(\psi(x) \subset U \) be such that, \(\psi(x) \) is closed for each \(x \in X \) and \(\Gamma \) be a Borel measurable set in \(X \times U \). Then, there exists at least one measurable function \(f : X \to U \) such that \(\{(x, f(x)), x \in X\} \subset \Gamma \).

This result was utilized in Chapter 5.

In the following, we assume that the spaces considered are Polish. A function \(f \) is \(\mu \)-measurable if there exists a Borel measurable function \(g \) which agrees with \(f \) \(\mu \)-a.e. A function that is \(\mu \)-measurable for every probability measure is called universally measurable.

A measurable image of a Borel set is called an analytic set \[69\].

Fact C.0.1 The image of a Borel set under a measurable function, and hence an analytic set, is universally measurable.

Remark C.1. We note that in some texts, an analytic set is defined as the continuous image of a Borel set. However, as \[69\] notes, one could always express the image of a Borel set \(A \) under a measurable function \(f : X \to Y \) as a projection (which is a continuous map) of \((A, f(A)) \) onto \(Y \).

The integral of a universally measurable function is well-defined and is equal to the integral of a Borel measurable function which is \(\mu \)-almost equal to that function. While applying dynamic programming, we often seek to establish the existence of measurable functions through the operation:

\[J_t(x_t) = \inf_{u \in U(x_t)} \left(c(x, u) + \int J_{t+1}(x_{t+1})Q(dx_{t+1}|x_t, u) \right) \]

However, we need a stronger condition that universal measurability for the recursions to be well-defined. A function \(f \) is called lower semi-analytic if \(\{x : f(x) < c\} \) is analytic for each scalar \(c \).
Theorem C.0.2 Let $i: X \to 2^S$ (that is, i maps X to subsets of S) be such that i^{-1} is Borel measurable, and $f: S \to \mathbb{R}$ be measurable. Then:

$$v(x) = \inf_{z: z \in i(x)} f(z)$$

is lower semi-analytic.

Observe that (see p. 85 of [69])

$$\{x : v(x) < c\} = i^{-1}\{\{z : f(z) < c\}\}$$

The set $\{z : f(z) < c\}$ is Borel, and thus if i^{-1} is also Borel, it follows that v is lower semi-analytic. We require then that $i^{-1}: S \to X$ to be Borel.

Theorem C.0.3 Lower semi-analytic functions are universally measurable.

Theorem C.0.4 Consider $G = \{(x, u) : u \in U(x)\}$ which is a Borel measurable set. The map,

$$v(x) = \inf_{(x, z) \in G} v(x, z),$$

is lower semi-analytic (and thus universally measurable).

Proof. The graph G is measurable. It follows that $\{x : v(x) < c\} = i^{-1}\{\{(x, z) : v(x, z) < c\}\}$, where i^{-1} is the projection of G onto X, which is a continuous operation; the image may not be measurable but as a measurable mapping of a Borel set, it is analytic. As a result v is lower semi-analytic. \hfill \diamond

Implication: Dynamic programming can be carried out for such expressions. In particular, the following is due to Bertsekas and Shreve (see Chapter 7):

Theorem C.0.5 (i) Let E_1, E_2 be Borel and $g: E_1 \times E_2 \to \mathbb{R}$ be lower semi-analytic. Then,

$$h(e_1) = \inf_{e_2 \in E_2} g(e_1, e_2)$$

is lower semi-analytic.

(ii) Let E_1, E_2 be Borel and $g: E_1 \times E_2 \to \mathbb{R}$ be lower semi-analytic. Let $Q(de_2|e_1)$ be a stochastic kernel. Then,

$$f(e_1) := \int g(e_2)Q(de_2|e_1)$$

is lower semi-analytic.

We note that the second result would not be correct if g is only taken to be universally measurable. The result above ensures that we can follow the dynamic programming arguments in an inductive manner under conditions that are far less restrictive than the conditions stated in the measurable selection conditions.

Building on this discussion, and the material in Chapter 5, we summarize three useful results in the following.

Fact C.0.2 Consider (C.1).

(i) If c is continuous on $X \times U$ and U is compact, then J is continuous.

(ii) If c is continuous on U for every x, and U is compact, then J is measurable (Prop D.5 in [96] and Himmelberg and Schäl [169]); see Theorem 5.3.

(iii) If c is measurable on $X \times U$ and U is Borel, then J is lower semi-analytic.

Compactness of U is a crucial component for these results. However, as discussed in Section 5.1.4, $U(x)$ may be allowed to depend on x, for item (ii) under the assumption that the graph $G = \{(x, u) : u \in U(x)\}$ defined above is Borel, and $U(x)$ is compact for every x; see p. 182 in [96] (and also [100], [169], [?] and [114], among others).
D

On Spaces of Probability Measures

D.1 Convergence of Sequences of Probability Measures

Let \(X\) be a Polish space and let \(\mathcal{P}(X)\) denote the family of all probability measure on \((X, \mathcal{B}(X))\). Let \(\{\mu_n, \ n \in \mathbb{N}\}\) be a sequence in \(\mathcal{P}(X)\).

A sequence \(\{\mu_n\}\) is said to converge to \(\mu \in \mathcal{P}(X)\) weakly if

\[
\int_X c(x)\mu_n(dx) \to \int_X c(x)\mu(dx) \tag{D.1}
\]

for every continuous and bounded \(c : X \to \mathbb{R}\).

On the other hand, \(\{\mu_n\}\) is said to converge to \(\mu \in \mathcal{P}(X)\) setwise if

\[
\int_X c(x)\mu_n(dx) \to \int_X c(x)\mu(dx)
\]

for every measurable and bounded \(c : X \to \mathbb{R}\). Setwise convergence can also be defined through pointwise convergence on Borel subsets of \(X\) (see, e.g., [98]), that is

\[\mu_n(A) \to \mu(A), \quad \text{for all } A \in \mathcal{B}(X)\]

since the space of simple functions are dense in the space of bounded and measurable functions under the supremum norm.

For two probability measures \(\mu, \nu \in \mathcal{P}(X)\), the total variation metric is given by

\[
\|\mu - \nu\|_{TV} := 2 \sup_{B \in \mathcal{B}(X)} |\mu(B) - \nu(B)|
= \sup_{f : \|f\|_{\infty} \leq 1} \left| \int_X f(x)\mu(dx) - \int_X f(x)\nu(dx) \right|, \tag{D.2}
\]

where the supremum is over all measurable real \(f\) such that \(\|f\|_{\infty} = \sup_{x \in X} |f(x)| \leq 1\). A sequence \(\{\mu_n\}\) is said to converge to \(\mu \in \mathcal{P}(X)\) in total variation if \(\|\mu_n - \mu\|_{TV} \to 0\).

\(^1\)It is important to emphasize that what typically is studied in probability as weak convergence is not the exact weak convergence notion used in functional analysis: The topological dual space of the set of probability measures does not only consist of expectations of continuous and bounded functions. However, the dual space of the space of continuous and bounded functions with the supremum norm does admit a representation in terms of expectations [127]; hence, the weak convergence here is in actuality the weak∗ convergence in analysis and distribution theory.
Setwise convergence is equivalent to pointwise convergence on Borel sets whereas total variation requires uniform convergence on Borel sets. Thus these three convergence notions are in increasing order of strength: convergence in total variation implies setwise convergence, which in turn implies weak convergence.

On the other hand, total variation is a stringent notion for convergence. For example a sequence of discrete probability measures never converges in total variation to a probability measure which admits a density function with respect to the Lebesgue measure and such a space is not separable. Setwise convergence also induces a topology on the space of probability measures and channels which is not easy to work with since the space under this convergence is not metrizable (\[83\], p. 59).

However, the space of probability measures on a complete, separable, metric (Polish) space endowed with the topology of weak convergence is itself a complete, separable, metric space \([28]\).

There are various ways to metrize weak convergence. One immediate metric, of conceptual value but not for explicit computational value, builds on the following reasoning: One can construct (since the space of continuous functions on a compact set is separable under the supremum norm) a countable collection of continuous functions \(\{c_k, k \in \mathbb{N}\}\) such that it suffices to only consider these functions in (D.1) to establish weak-convergence. We can thus use these weak-convergence determining functions (see e.g. \([70\), Theorem 3.4.5]) to define a countable collection of semi-norms

\[
 d_k(\mu, \nu) := \left| \int c_k(x) \mu(dx) - \int c_k(x) \nu(dx) \right|
\]

and from these we can construct a locally convex space which is metrizable (using the usual metric construction: \(d(\mu, \nu) := \sum 2^{-k} d_k(\mu, \nu) \)).

The Prohorov metric, also, can be used to metrize this convergence topology.

As a more practical metric, the Wasserstein metric can also be used (for compact \(X\)) to metrize the weak convergence space topology.

Definition D.1.1 (Wasserstein metric) The Wasserstein metric of order \(p, 1 \leq p < \infty\), for two distributions \(\mu, \nu \in P(X)\) with finite \(p\)th moments (thus defined only on such a subset of \(P(X)\)) is defined as

\[
 W_p(\mu, \nu) = \inf_{\eta \in \mathcal{H}(\mu, \nu)} \left(\int_{X \times X} \eta(dx, dy) \|x - y\|^p \right)^{\frac{1}{p}},
\]

where \(\mathcal{H}(\mu, \nu)\) denotes the set of probability measures on \(X \times X\) with first marginal \(\mu\) and second marginal \(\nu\) and \(\| \cdots \|\) is a norm.

For compact \(X\), the Wasserstein distance of order \(p\) metrizes the weak topology on the set of probability measures on \(X\) (see \([191\), Theorem 6.9]). For non-compact \(X\), weak convergence combined with convergence of moments up to order \(p\) (that is of \(\int \mu_n \|x\|^p \to \int \mu(dx) \|x\|^p\)) is equivalent to convergence in \(W_p\). Finally, the bounded-Lipschitz metric \(\rho_{BL}\) \([191\), p.109] can also be used to metrize weak convergence:

\[
 \rho_{BL}(\mu, \nu) = \sup_{\|f\|_{BL} \leq 1} \left| \int_X f(e) \mu(de) - \int_X f(e) \nu(de) \right|
\]

where

\[
 \|f\|_{BL} := \|f\|_{\infty} + \sup_{e \neq e'} \frac{f(e) - f(e')}{d_X(e, e')}
\]

and \(d_X\) is the metric on \(X\).

We note that \(W_1\) can equivalently be written as \([192\), Remark 6.5]:

\[
 W_1(\mu, \nu) := \sup_{\|f\|_{Lip} \leq 1} \left| \int_X f(e) \mu(de) - \int_X f(e) \nu(de) \right|
\]
\[\|f\|_{Lip} := \sup_{e \neq e'} \frac{f(e) - f(e')}{d_G(e, e')}. \]

Comparing this with \(\text{(D.3)} \), it follows that

\[\rho_{BL} \leq W_1. \tag{D.4} \]

Another important distance measure (though not a metric) that is commonly used is relative entropy:

Definition D.1.

(i) For two probability measures \(P \) and \(Q \) we define the relative entropy as

\[D(P\|Q) = \int \log \frac{dP}{dQ} dP = \int \log \frac{dP}{dQ} dQ \]

where we assume \(P \ll Q \) and \(\frac{dP}{dQ} \) denotes the Radon-Nikodym derivative of \(P \) with respect to \(Q \).

(ii) Let \(X \) and \(Y \) be two random variables, let \(P \) and \(Q \) be two different joint measures for \((X, Y) \) with \(P \ll Q \). Then we define the (conditional) relative entropy between \(P(X|Y) \) and \(Q(X|Y) \) as

\[D(P(X|Y)\|Q(X|Y)) = \int \log \left(\frac{dP(X|Y)}{dQ(X|Y)}(x, y) \right) dP(x, y) \]

\[= \int \left(\int \log \left(\frac{dP(X|Y)}{dQ(X|Y)}(x, y) \right) dP(x|Y = y) \right) dP(y) \tag{D.5} \]

Total variation is related to relative entropy via Pinsker’s inequality \(\| P - Q \|_{TV} \leq \sqrt{\frac{2}{\log(e)}} D(P\|Q) \). This also shows that convergence in relative entropy implies that under total variation.

Weak convergence is very important in applications of stochastic control and probability in general. Prohorov’s theorem \[67\] provides a way to characterize compactness properties under weak convergence. Furthermore, such a convergence notion has very important measurability properties; recall the following from Chapter 5:

Theorem D.1.1 Let \(S \) be a Polish space and \(M \) be the set of all measurable and bounded functions \(f : S \to \mathbb{R} \). Then, for any \(f \in M \), the integral

\[\int \pi(dx) f(x) \]

defines a measurable function on \(\mathcal{P}(S) \) under the topology of weak convergence.

This is a useful result since it allows us to define measurable functions in integral forms on the space of probability measures when we work with the topology of weak convergence. The second useful result follows from Theorem 6.3.1 and Theorem 2.1 of Dubins and Freedman \[66\] and Proposition 7.25 in Bertsekas and Shreve \[26\].

Theorem D.1.2 Let \(S \) be a Polish space. A function \(F : \mathcal{P}(S) \to \mathcal{P}(S) \) is measurable on \(\mathcal{B}(\mathcal{P}(S)) \) (under weak convergence), if for all \(B \in \mathcal{B}(S) \) \((F(\cdot))(B) : \mathcal{P}(S) \to \mathbb{R} \) is measurable under weak convergence on \(\mathcal{P}(S) \), that is for every \(B \in \mathcal{B}(S) \), \((F(\pi))(B) \) is a measurable function when viewed as a function from \(\mathcal{P}(S) \) to \(\mathbb{R} \).

D.1.1 Generalized Dominated Convergence Theorems

Under weak and setwise convergences, we can arrive at generalized forms of the dominated convergence theorem (Theorem 1.2.6). In particular, from \[121\] Theorem 3.5 and \[172\] Theorem 3.5, we have the following:

Theorem D.1.3 (i) Suppose \(\{\mu_n\}_n \subset \mathcal{P}(X) \) converges weakly to some \(\mu \). For a bounded real-valued sequence of functions \(\{f_n\}_n \) such that \(\|f_n\|_\infty < C \) for all \(n > 0 \) with \(C < \infty \), if \(\lim_{n \to \infty} f_n(x_n) = f(x) \) for all \(x_n \to x \), i.e. \(f_n \) continuously converges to \(f \), then
\[\lim_{n \to \infty} \int_{X} f_n(x) \mu_n(dx) = \int_{X} f(x) \mu(dx). \]

(ii) Suppose \(\{ \mu_n \} \subset \mathcal{P}(\mathbb{X}) \) converges setwise to some \(\mu \). For a bounded real valued sequence of functions \(\{ f_n \} \) such that \(\|f_n\|_{\infty} < C \) for all \(n > 0 \) with \(C < \infty \), if \(\lim_{n \to \infty} f_n(x) = f(x) \) for all \(x \), i.e. \(f_n \) pointwise converges to \(f \), then

\[\lim_{n \to \infty} \int_{X} f_n(x) \mu_n(dx) = \int_{X} f(x) \mu(dx). \]

D.1.2 The \(w\text{-}s \) Topology

Let as before \(\mathbb{X} \) and \(\mathbb{Y} \) be Polish spaces.

Definition D.1.2 The \(w\text{-}s \) topology on the set of probability measures \(\mathcal{P}(\mathbb{X} \times \mathbb{Y}) \) is the coarsest topology under which \(\int f(x,y) \mu(dx,dy) : \mathcal{P}(\mathbb{X} \times \mathbb{Y}) \to \mathbb{R} \) is continuous for every measurable and bounded \(f(x,y) \) which is continuous in \(y \) for every \(x \) (but unlike the weak topology, \(f \) does not need to be continuous in \(x \)).

Theorem D.1.4 [170, Theorem 3.10] [178, Theorem 2.5] Let \(\mu_n \in \mathcal{P}(\mathbb{X} \times \mathbb{Y}) \). If \(\mu_n \to \mu \) in weakly where the marginals \(\mu_n(dx \times \mathbb{Y}) \to \mu(dx \times \mathbb{Y}) \) setwise, then the convergence \(\mu_n \to \mu \) is also in the \(w\text{-}s \) sense.
References

240 References

