1. Let $X = (X_1, X_2)^t$ be a 2-dimensional random vector which is uniformly distributed on the unit circle $\{(x_1, x_2) : x_1^2 + x_2^2 \leq 1\}$. Considering the mean square distortion, find a 2-level Lloyd-Max vector quantizer for X. Repeat this for codebooks of size 3 and 4. Calculate the distortion of at least one of these quantizers.

2. Let Q be an N-point vector quantizer with codebook C which is optimal in the mean-square sense for the input random vector X. Let $Y = TX$, where T is a linear orthogonal transform. Prove that $TC = \{Tc : c \in C\}$ is the codebook of an N-point optimal vector quantizer for Y.

3. Let $X = (X_1, X_2)$ be a two-dimensional random vector whose probability density function $f_X(x)$ is zero everywhere except for the four shaded sub-squares of the unit square where it has the constant value A (see figure on the next page). In this problem the squared error distortion is considered and we assume throughout that Gersho’s conjecture holds.

 (a) Determine the constant A and compute the marginal densities $f_{X_1}(x_1)$ and $f_{X_2}(x_2)$.

 (b) Let Q_{1*} be an optimal fixed-rate scalar quantizer for X_1 at some high rate R (bits/sample) and let \hat{Q} be a two-dimensional fixed-rate product vector quantizer defined by $\hat{Q}(x_1, x_2) = (Q_{1*}(x_1), Q_{1*}(x_2))$. Use the high resolution formula for the distortion of optimal fixed-rate scalar quantizers to calculate distortion of \hat{Q}.

 (c) Let Q^* be an optimal fixed-rate two-dimensional vector quantizer for X at some high rate R (bits/sample). Use the high-resolution formula for the distortion of optimal fixed-rate vector quantizers to calculate the distortion of Q^* (recall that $C_2^* = \frac{5}{36\sqrt{3}}$).

 (d) Assuming that Q^* and \hat{Q} have the same high rate R compute the loss (in dB) if \hat{Q} is used to quantize X instead of Q^*.
4. (For MATH 877 students.) Let \(\mathbf{X} = (X_1, \ldots, X_k) \) be a \(k \)-dimensional random vector such that each \(X_i \) has zero mean and finite variance. Let \(\mathcal{C} = \{y_1, y_2\} \) be the codebook of a \(k \)-dimensional vector quantizer \(Q \) with smallest possible mean squared distortion among all vector quantizers with two codevectors.

(a) Show that the line segment connecting \(y_1 \) and \(y_2 \) passes through the origin. (Hint: use one of the Lloyd-Max conditions to express the mean of \(\mathbf{X} \).)

(b) Use part (a) to argue that there exists an orthogonal transform \(\mathbf{T} \) on \(\mathbb{R}^k \) such that

\[
\mathbf{T}y_2 = (\|y_2\|, 0, 0, \ldots, 0)^t \quad \text{and} \quad \hat{y}_1 = \mathbf{T}y_1 = (-\|y_1\|, 0, 0, \ldots, 0)^t.
\]

(c) Assume that \((X_1, \ldots, X_k) \) are independent with each \(X_i \) being zero-mean Gaussian with variance \(\sigma^2 \). Let \(\hat{y}_1 = \mathbf{T}y_1 \), \(\hat{y}_2 = \mathbf{T}y_2 \), and prove that the nearest-neighbor quantizer with codebook \(\{\hat{y}_1, \hat{y}_2\} \) is also MSE-optimal for \(\mathbf{X} \). (Hint: Use Problem 2 and the fact that that \(\mathbf{T}\mathbf{X} \) has the same distribution as \(\mathbf{X} \) since the \(X_i \)'s are i.i.d. Gaussian.)

(d) Recall the unique optimal 2-level scalar quantizer for a Gaussian random variable on pages 24-25 of the Scalar Quantization lecture slides. Use part (c) to find an MSE-optimal two-level vector quantizer for \(\mathbf{X} \). Calculate the distortion of this quantizer.