Review of main concepts from MATH 474

- Finite source alphabet \(\mathcal{X} \), binary code alphabet \(\mathcal{D} = \{0, 1\} \), and \(\mathcal{D}^* = \{0, 1\}^* \) denotes the set of all finite-length binary strings.
- A variable-length source code is a mapping \(C : \mathcal{X} \rightarrow \mathcal{D}^* \). For \(x \in \mathcal{X} \), \(C(x) \) is the codeword for \(x \) having length \(l(x) = |C(x)| \).
- If \(X \) is a random variable with alphabet \(\mathcal{X} \) and pmf \(p(x) = P(X = x) \), the expected code length is
 \[
 L(C) = E[l(X)] = \sum_{x \in \mathcal{X}} p(x)l(x)
 \]
- \(C \) is nonsingular if it is injective as a mapping:
 \[
 x \neq y \implies C(x) \neq C(y) \quad \text{for all } x, y \in \mathcal{X}
 \]

Example (Cover&Thomas): \(\mathcal{X} = \{1, 2, 3, 4\} \)

<table>
<thead>
<tr>
<th>(\mathcal{X})</th>
<th>(C_1)</th>
<th>(C_2)</th>
<th>(C_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>010</td>
<td>00</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>01</td>
<td>11</td>
<td>110</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>110</td>
<td>111</td>
</tr>
</tbody>
</table>

- \(C_1 \) is nonsingular
- \(C_2 \) is uniquely decodable
- \(C_3 \) is a prefix code
- If \(X \sim p(x) \) with \(p(1) = 1/2, p(2) = 1/4, p(3) = p(4) = 1/8 \), then
 \[
 L(C_3) = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} + 3 \cdot \frac{1}{8} + 3 \cdot \frac{1}{8} = 1.75
 \]
For any uniquely decodable code \(C \), the codeword lengths \(l(x) = |C(x)| \) satisfy
\[
\sum_{x \in X} 2^{-l(x)} \leq 1
\]

Conversely, if the nonnegative integers \(l(x), x \in X \) satisfy Kraft’s inequality, then there exists a prefix code \(C \) on \(X \) with codeword lengths \(|C(x)| = l(x) \).

We will only consider prefix codes since the (larger) class of uniquely decodable codes don’t offer any advantage in terms if their (expected) code lengths.

The entropy of a discrete random variable \(X \) on alphabet \(X \) and pmf \(p(x) \) is
\[
H(p) = H(X) = -\sum_{x \in X} p(x) \log p(x)
\]

Assume \(X \) is an arbitrary random variable on alphabet \(X \).

Bounds on optimal code length

For any prefix code \(C \)
\[
L(C) \geq H(X)
\]
and equality holds if and only if the pmf of \(X \) is such that \(p(x) = 2^{-l(x)} \) for all \(x \in X \) (dyadic distribution).

There exists a prefix code \(C \) such that
\[
L(C) < H(X) + 1
\]

The proof of the lower bound is based on Kraft’s and Jensen’s inequalities.

One code that satisfies the upper bound is the Shannon-Fano code having codeword lengths
\[
l(x) = \lceil -\log p(x) \rceil
\]

Coding blocks of source symbols

Replace the alphabet \(X \) with \(X^n \) and the random variable \(X \) with the sequence \(X^n = (X_1, X_2, \ldots, X_n) \). Assume \(X^n \sim p(x^n) \).

For a prefix code \(C \) on \(X^n \) with codeword length \(l(x^n) = |C(x^n)| \) for \(x^n = (x_1, \ldots, x_n) \) define
\[
L_n(C) = \frac{1}{n} \mathbb{E}[l(X^n)] = \frac{1}{n} \sum_{x^n \in X^n} p(x^n)l(x^n) \quad \text{(per symbol length)}
\]

The minimum per symbol expected codeword length for source \(X^n \) is
\[
L^*_n = \min_{C \in \mathcal{C}_n} L_n(C)
\]
where \(\mathcal{C}_n \) denotes the set of all prefix codes on \(X^n \).
Lossless source coding theorem

- For any source X^n the minimum expected codeword length per source symbol satisfies
 \[
 \frac{1}{n} H(X^n) \leq L^*_n < \frac{1}{n} H(X^n) + \frac{1}{n}
 \]

- If X_1, X_2, \ldots is a stationary process with entropy rate
 \[
 \bar{H}(X) = \lim_{n \to \infty} \frac{1}{n} H(X^n),
 \]
 then
 \[
 \lim_{n \to \infty} L^*_n = \bar{H}(X)
 \]

Note: If X_1, X_2, \ldots is an i.i.d. source, then $\bar{H}(X) = H(X_1)$.

Practical concerns

- To build the code tree for the Shannon-Fano or Huffman codes, one has to generate all codewords \(\{C(x^n) : x^n \in \mathcal{X}^n\} \).
- The size of the code tree (\# of nodes = \(2|\mathcal{X}|^n - 1\)) increases exponentially with the block length.
- For larger \(n \) both the Huffman and the Shannon-Fano code (in the naive implementation) become impractical.
- For both codes one needs to look at the entire sequence \(x^n \) before encoding. One would like to start generating the codeword sequentially as the source symbols \(x_i \) are received.

Remarks:

- Suppose \(X^n \sim p(x^n) \). The Shannon-Fano code \(C_n \) with codeword length \(I(x^n) = \lceil -\log p(x^n) \rceil \) satisfies
 \[
 L_n(C_n) \leq \frac{1}{n} H(X^n) + \frac{1}{n} \leq L^*_n + \frac{1}{n}
 \]
 Thus the per symbol expected codeword length is within 1/n bit of the optimum.
- Both the Shannon-Fano and the Huffman codes become increasingly efficient \(n \) increases, i.e., as more and more symbols are grouped together and encoded as a sequence \(x^n = (x_1, x_2, \ldots, x_n) \).

Shannon-Fano-Elias (arithmetic) coding

- \(\mathcal{X} = \{a_1, a_2, \ldots, a_m\} \) is ordered such that \(a_1 < a_2 < \cdots < a_m \).
- Consider the induced lexicographical ordering on \(\mathcal{X}^n \) for \(n \geq 2 \):
 \[
 y^n = (y_1, \ldots, y_n) < (x_1, \ldots, x_n) = x^n \text{ if and only if}
 \]
 \[
 y_1 < x_1
 \]
 or there exists \(k \in \{2, \ldots, n\} \) such that
 \[
 y_i = x_i, \quad i = 1, \ldots, k-1, \quad \text{and} \quad y_k < x_k.
 \]
- Let \(p(x^n) \) be a pmf on \(\mathcal{X}^n \) such that \(p(x^n) > 0, \forall x^n \in \mathcal{X}^n \), and define
 \[
 \hat{F}(x^n) = \sum_{y^n \leq x^n} p(y^n), \quad F(x^n) = \sum_{y^n \leq x^n} p(y^n)
 \]
• Note that $0 \leq \hat{F}(x^n) < F(x^n) \leq 1$ for all x^n. Define the tag of x^n by
 $$\hat{T}(x^n) = \hat{F}(x^n) + \frac{1}{2} p(x^n)$$
 so that $\hat{T}(x^n)$ is the midpoint of the interval $[\hat{F}(x^n), F(x^n))$.
• For $z \in [0,1)$ we let $b(z) = b_1(z) b_2(z) b_3(z) \cdots$ be its infinite binary fraction representation: $b_i(z) \in \{0,1\}$ and
 $$z = \sum_{i=1}^{\infty} b_i(z) 2^{-i}$$
• Make representation unique by excluding representations where for some $i \geq 1$, $b_i(z) = 0$ and $b_j(z) = 1$ for all $j > i$.
• Let $b'(z)$ denote the binary representation of z truncated to l bits:
 $$b'(z) = b_1(z) \cdots b_l(z)$$

Theorem 1
The Shannon-Fano-Elias code is a prefix code with expected code length satisfying
 $$L(C) < H(X^n) + 2$$

Remark: For the per symbol expected codeword length we have
 $$L_n(C) \leq \frac{1}{n} H(X^n) + \frac{2}{n}$$
If X_1, X_2, \ldots is a stationary source,
 $$\lim_{n \to \infty} L_n(C) = \bar{H}(X).$$
(code is asymptotically optimal).

Definition (Shannon-Fano-Elias code)
The Shannon-Fano-Elias (SFE) code C on X^n is defined by
 $$C(x^n) = b'(x^n)(\hat{T}(x^n))$$
where
 $$l(x^n) = \lceil -\log p(x^n) \rceil + 1$$
That is, the codeword associated with x^n is the binary representation of $\hat{T}(x^n)$ truncated to $\lceil -\log p(x^n) \rceil + 1$ bits.

Proof: The bound on $L(C)$ is trivial since
 $$|C(x^n)| = l(x^n) = \lceil -\log p(x^n) \rceil + 1 < -\log p(x^n) + 2$$
so
 $$\sum_{x^n} p(x^n) l(x^n) < -\sum_{x^n} p(x^n) \log p(x^n) + 2 \leq H(X^n) + 2$$
We have to prove that C is a prefix code. Let $[z]_l$ be $z \in [0,1)$ truncated to l bits:
 $$[z]_l = \sum_{i=1}^{l} b_i(z) 2^{-i}$$
Note that
 $$z - [z]_l = \sum_{i=l+1}^{\infty} b_i(z) 2^{-i} < 2^{-l}$$
since representations with $b_i = 1$ for all $i \geq l + 1$ are excluded.
Proof cont’d: Thus
\[
\tilde{T}(x^n) - [\tilde{T}(x^n)]_{t(x^n)} \leq 2^{-l(x^n)}
\]
(1)

Since \(l(x^n) = [- \log p(x^n)] + 1 \geq - \log p(x^n) + 1 \),
\[
2^{-l(x^n)} \leq \frac{p(x^n)}{2} = \tilde{T}(x^n) - \hat{F}(x^n)
\]
(2)

(1) and (2) give
\[
[\tilde{T}(x^n)]_{t(x^n)} \geq \tilde{T}(x^n) - 2^{-l(x^n)}
\]
\[
\geq \tilde{T}(x^n) - \frac{p(x^n)}{2}
\]
\[
= \hat{F}(x^n)
\]

and (2) implies
\[
[\tilde{T}(x^n)]_{t(x^n)} + 2^{-l(x^n)} \leq \tilde{T}(x^n) + 2^{-l(x^n)}
\]
\[
\leq \tilde{T}(x^n) + \frac{p(x^n)}{2}
\]
\[
= \hat{F}(x^n)
\]

As described, the SFE code can be implemented as follows:

Encoding
(1) Given \(x^n = (x_1, \ldots, x_n) \), calculate
\[
\tilde{T}(x^n) = \sum_{y^n < x^n} p(y^n) + \frac{p(x^n)}{2}
\]
(2) Let \(l = [- \log p(x^n)] + 1 \) and let \(C(x^n) \) be the binary representation of \(\tilde{T}(x^n) \) truncated to \(l \) bits.

Decoding
(3) Given \(C(x^n) = b_1 b_2 \cdots b_l \), compute \(z = \sum_{i=1}^{l} b_i 2^{-i} \).
(4) Find the unique \(x^n \) such that \(\hat{F}(x^n) < z < F(x^n) \).

- This procedure does not require the storage of all codewords in advance.
- The naive implementation of (1) and (4) requires computing sums with an exponential number of terms.

Example:
\(\mathcal{X} = \{0, 1\}, n = 2 \), source is i.i.d. with pmf \(p(0) = 0.8, p(1) = 0.2 \).

\[
\begin{array}{cccccc}
\quad x^2 \quad & p(x^2) & \hat{F}(x^2) & \tilde{T}(x^2) & l(x^2) & C(x^2) \\
00 & 0.64 & 0 & 0.32 & 2 & 00 \\
01 & 0.16 & 0.64 & 0.72 & 4 & 1011 \\
10 & 0.16 & 0.8 & 0.88 & 4 & 1110 \\
11 & 0.04 & 0.96 & 0.98 & 6 & 111110 \\
\end{array}
\]

Some details:
\[
\hat{F}(10) = p(00) + p(01) = 0.8 \cdot 0.8 + 0.8 \cdot 0.2 = 0.8
\]
\[
\tilde{T}(10) = 0.8 + \frac{1}{2} p(01) = 0.8 + \frac{0.16}{2} = 0.88 \equiv 0.11100 \ldots
\]
\[
l(10) = [- \log p(10)] + 1 = [2.643] + 1 = 4, \quad C(01) = 1110
\]

Note: \(L_2(C) = \frac{2.8}{2} = 1.4 \) and \(H(X) = 0.72 \) \(\Rightarrow \) need to use larger \(n \) for better efficiency.
Arithmetic coding implementation of SFE code (high-level description)

Let \(X_1, X_2, \ldots \) be a source with alphabet \(\mathcal{X} \). For any \(k \geq 1 \) let
\[
p(x^k) = P(X^k = x^k) = P(X_1 = x_1, \ldots, X_k = x_k)
\]
The following hold for \(k \geq 2 \) and \(x^k \in \mathcal{X}^k \):
- \(p(x^{k-1}) = \sum_{y \in \mathcal{X}} p(x^{k-1}y) \) (law of total probability)
- \(p(x_k|x^{k-1}) = P(X_k = x_k | X^{k-1} = x^{k-1}) = \frac{p(x^k)}{p(x^{k-1})} \)
- \(p(x^k) = \prod_{i=1}^k p(x_i|x^{i-1}) \) (product rule)

Here we used the convention that \(p(x_i|x^{i-1}) = p(x_i) \) if \(i = 1 \).

Encoding

For \(k \geq 2 \) we have
\[
\hat{F}(x^k) = \sum_{y^k < x^k} p(y^k) = \sum_{y^{k-1} < x^{k-1}} \sum_{y_k \in \mathcal{X}} p(y^{k-1}y_k) + \sum_{y_k < x_k} p(y_k|x^{k-1})p(x^{k-1})
\]

Suppose the conditional probabilities \(p(y|x^k) \) are easy to compute. Then
- We can sequentially compute the intervals \(\hat{F}(x^k), F(x^k) \).
- The number of additions in the encoding operation is reduced from \(O(|\mathcal{X}|^n) \) to \(O(n|\mathcal{X}|) \).

Decoding

- Given the codeword \(b_1 b_2 \cdots b_l \), compute \(z = \sum_{i=1}^l b_i 2^{-i} \).
- Recall that \(x^n \) is the unique string in \(\mathcal{X}^n \) such that \(\hat{F}(x^n) < z < F(x^n) \). Since \(\hat{F}(x^k), F(x^k) \) for all \(k \)

Thus \(\hat{F}(x^k), F(x^k) \) are the largest \(y \in \mathcal{X} \) such that
\[
\hat{F}(x^k-y) < z
\]
and let \(x_k = y \). Repeat this for \(k = 2, \ldots, n \). The resulting \(x^n \) will satisfy \(\hat{F}(x^n) < z < F(x^n) \), so we decode \(x^n \).
- Since only the values \(\hat{F}(x^{k-1}y), y \in \mathcal{X}, k = 1, \ldots, n \) are needed, the number of additions and comparisons is again \(O(n|\mathcal{X}|) \).
Another look at the encoding process

- Define the intervals $J(x^k) = [\hat{F}(x^k), F(x^k)]$, $k = 1, \ldots, n$
- We showed that $J(x^k) \subset J(x^{k-1})$, $k = 2, \ldots, n$. Each $J(x^k)$ has length $p(x^k)$, so the lengths shrink exponentially with k.
- The tag satisfies $T(x^n) \in J(x^k)$ for each k.
- Consider a dyadic interval $[0.b_1b_2 \ldots b_j, 0.b_1b_2 \ldots b_j + 2^{-j})$. This contains all numbers in $[0, 1)$ whose binary representation starts with the bits $b_1b_2 \ldots b_j$. Now choose $b_1b_2 \ldots b_j$ such that

 $$J(x^k) \subset [0.b_1b_2 \ldots b_j, 0.b_1b_2 \ldots b_j + 2^{-j})$$

 Since $I(x^n) = [0.C(x^n), 0.C(x^n) + 2^{-l(x^n)}) \subset J(x^n)$, we have

 $$I(x^n) \subset [0.b_1b_2 \ldots b_j, 0.b_1b_2 \ldots b_j + 2^{-j}).$$

- Thus the binary string $b_1b_2 \ldots b_j$ is a prefix of $C(x^n)$ and the encoder can release the bits $b_1b_2 \ldots b_j$.

Sequential encoding

- The codeword bits can be generated sequentially: the x_k are read one-by-one, and as soon as $J(x_k)$ is contained in a dyadic interval, the corresponding (previously unsent) bits are released in an incremental fashion. Then the process starts over until $k = n$.
- The decoder can reverse the above procedure to sequentially generate the symbols of x^n as the bits of the codeword $C(x^n)$ are received.

Example:

$\mathcal{X} = \{0, 1\}$, i.i.d. source with pmf $p(0) = 0.8$, $p(1) = 0.2$, $x^4 = 0110$.

Simplify notation: $\hat{F}(x^k) = \hat{F}_k$, $F(x^k) = F_k$, $p(x^k) = p_k$, so that

$$\hat{F}_k = \hat{F}_{k-1} + p_{k-1} \sum_{y < x_k} p(y), \quad p_k = p_{k-1} \cdot p(x_k)$$

Always choose the smallest dyadic interval (of length $\leq 1/2$) containing $J_k = [\hat{F}_k, F_k]$ and produce corresponding bit(s):

- $x_1 = 0$:

 $$\hat{F}_1 = 0, \quad F_1 = 0 + p(0) = 0.8, \quad J_1 = [\hat{F}_1, F_1) = [0, 0.8)$$

 J_1 is not included in a dyadic interval \implies no bits produced.

- $x_2 = 1$:

 $$\hat{F}_2 = 0 + p_1 \cdot p(0) = 0.64, \quad F_2 = 0.64 + p_2 = 0.8, \quad J_2 = [0.64, 0.8)$$

 $[0.64, 0.8) \subset [1/2, 1) = [0.1, 1.0)_b \implies b_1 = 1$.

Example cont’d:

$x_3 = 1$:

$$\hat{F}_3 = 0.64 + p_2 \cdot p(0) = 0.768, \quad F_3 = 0.768 + p_3 = 0.8, \quad J_3 = [0.768, 0.8)$$

$$[0.768, 0.8) \subset [3/4, 3/4 + 1/16) = [0.1100, 0.1101)_b \implies b_2b_3b_4 = 100$$

$x_4 = 0$: Encoding terminates since we know that $n = 4$.

$$\hat{F}_4 = 0.768 + p_3 \cdot 0 = 0.768, \quad F_4 = 0.768 + \frac{1}{2} p_4 = 0.7808$$

We have $0.7808 = 0.110001111110\ldots$ and

$$l(0110) = \lceil -\log p_4 \rceil + 1 = 7$$

so $C(0110) = b_1b_2b_3b_4b_5b_6b_7 = 1100011$

Note: The first 4 of the 7 bits were produced before the entire source string was processed.
Practical issues

- The described (simplified) procedure requires floating point operations with infinite precision. The interval $J(x^k)$ shrinks very fast as k increases. The procedure quickly becomes impractical for larger block length n.
- Encoding and decoding delay: How many input letters should be processed for the output to be decodable?
- The above problems are solved by practical algorithms for arithmetic coding (Rissanen (1976), Pasco (1976)).

Conclusion

- Arithmetic coding gives a practical method for lossless coding having codeword length

$$l(x^n) = - \log p(x^n) + O(1)$$

for all $x^n \in X^n$ when designed for pmf $p(x^n)$.
- If the source X^n has pmf $p(x^n)$ and the code design uses pmf $q(x^n)$, then

$$L_n(C) = \frac{1}{n} \sum x^n l(x^n)p(x^n) = \frac{1}{n} H(X^n) + \frac{1}{n} D(p||q) + O(1/n)$$

- Arithmetic coding reduces the problem of lossless coding to finding a good coding distribution $q(x^n)$ for the given data (more on this later).

Universal Coding

- All codes we studied so far (Huffman, Shannon-Fano) assumed the source distribution (pmf) is known.
- In practice we often have limited information about the true distribution of the source. Instead, all we know (or assume) is that the source distribution is one from a given family (class) of source distributions.
- A sequence of codes that (asymptotically) compresses any source in a given source class to its entropy is called universal for that source class.
- Examples of source classes: stationary and memoryless (i.i.d.) sources, stationary Markov chains, stationary Markov processes of a given order k, stationary and ergodic sources.

Idea for universal coding:

- Use the data x^n to form an estimate of the source distribution.
- Construct optimal code for the estimated distribution.
- Use code to compress x^n and transmit the compressed data along with the description of the code (or the distribution)
- The decoder can reconstruct x^n since it knows (or can generate) the code used to compress it.

Note: This is not the only way to construct universal codes.

To show an example for this general procedure we need some new definitions from information theory.
Assume $\mathcal{X} = \{1, 2, \ldots, m\}$.

Definition (Type)
For $x^n \in \mathcal{X}^n$ and $a \in \mathcal{X}$ let
\[
\text{n}(a|x^n) = |\{i : x_i = a, i = 1, 2, \ldots, n\}|
\]
be the number of times a occurs in x^n. Define the type (empirical distribution) of x^n as the pmf on \mathcal{X} given by
\[
P_{x^n} = \left(\frac{n(1|x^n)}{n}, \frac{n(2|x^n)}{n}, \ldots, \frac{n(m|x^n)}{n} \right)
\]

Note: P_{x^n} is indeed a pmf on \mathcal{X} since
\[
\sum_{a \in \mathcal{X}} P_{x^n}(a) = \frac{1}{n} \sum_{a \in \mathcal{X}} n(a|x^n) = \frac{n}{n} = 1
\]

Enumerative universal code
Define $C : \mathcal{X}^n \rightarrow \{0, 1\}^*$ using the following construction:

1. Given x^n, describe its type P_{x^n} using a fixed-length nonsingular code $C_1 : \mathcal{P}_n \rightarrow \{0, 1\}^{l_1}$, where
\[
l_1 = \lceil \log |\mathcal{P}_n| \rceil
\]

2. Given P_{x^n}, use a fixed-length nonsingular code $C_2 : T(P_{x^n}) \rightarrow \{0, 1\}^{l_2}$ to identify x^n in $T(P_{x^n})$, where
\[
l_2 = \lceil \log |T(P_{x^n})| \rceil
\]

3. Define the code C by
\[
C(x^n) = C_1(P_{x^n})C_2(x^n)
\]

Note: C is a variable-length code since l_2 depends on the type of x^n.

Definition (Type class)
Let \mathcal{P}_n denote the set of all types of sequences in \mathcal{X}^n. If $P \in \mathcal{P}_n$, then $T(P)$ denotes the set of sequences of type P:
\[
T(P) = \{x^n \in \mathcal{X}^n : P_{x^n} = P\}
\]

Combinatorial facts (recall that $|\mathcal{X}| = m$):

- The number of types of sequences in \mathcal{X}^n is
\[
|\mathcal{P}_n| = \binom{n + m - 1}{m - 1}
\]

- For any $P \in \mathcal{P}_n$ the size of the associated type class is
\[
|T(P)| = \frac{n!}{(nP(1))!(nP(2))! \cdots (nP(m))!}
\]

- C is clearly nonsingular.

- C is a prefix code: if $C(y^n)$ is a prefix of $C(x^n)$, then $C_1(y^n) = C_1(x^n)$, and so $P_{x^n} = P_{y^n}$. But then $|C(y^n)| = |C(x^n)|$, so we must have $C(y^n) = C(x^n)$, which implies $y^n = x^n$.

- The length of $C(x^n)$ is
\[
l(x^n) = \lceil \log |\mathcal{P}_n| \rceil + \lceil \log |T(P_{x^n})| \rceil
\]

- We know $|\mathcal{P}_n|$ and $|T(P_{x^n})|$ exactly, but these expressions are hard to work with. Instead, we will develop some useful estimates.
Theorem 2 (Number of types)

\[|P_n| \leq (n + 1)^m \]

Proof: For each \(a \in \mathcal{X} \), \(n(a|x^n) \) can take at most \(n + 1 \) values 0, 1, \ldots, \(n \). Thus the vector \((n(1|x^n), n(2|x^n), \ldots, n(m|x^n)) \) can take at most \((n + 1)^m \) different values.

For any pmf \(Q \) on \(\mathcal{X} \), let \(Q^n \) be the product distribution on \(\mathcal{X}^n \):

\[Q^n(x^n) = \prod_{i=1}^{n} Q(x_i) \]

Recall the definition of the relative entropy between two pmfs \(P \) and \(Q \):

\[D(P\|Q) = \sum_{a \in \mathcal{X}} P(a) \log P(a) Q(a) \]

and the fact that \(D(P\|Q) \geq 0 \) with equality if and only of \(P = Q \).

Lemma 3

For any pmf \(Q \) on \(\mathcal{X} \) and \(x^n \in \mathcal{X}^n \)

\[Q^n(x^n) = 2^{-n\left[D(P_{x^n}\|Q) + H(P_{x^n})\right]} \]

Proof:

\[
\begin{align*}
Q^n(x^n) &= \prod_{i=1}^{n} Q(x_i) = \prod_{a \in \mathcal{X}} Q(a)^{n(a|x^n)} \\
&= \prod_{a \in \mathcal{X}} Q(a)^{nP_{x^n}(a)} = \prod_{a \in \mathcal{X}} 2^{nP_{x^n}(a) \log Q(a)} \\
&= \prod_{a \in \mathcal{X}} 2^n \left[P_{x^n}(a) \log \frac{Q(a)}{P_{x^n}(a)} + P_{x^n}(a) \log P_{x^n}(a)\right] \\
&= 2^n \sum_{a \in \mathcal{X}} \left[P_{x^n}(a) \log \frac{Q(a)}{P_{x^n}(a)} + P_{x^n}(a) \log P_{x^n}(a)\right] \\
&= 2^{-n\left[D(P_{x^n}\|Q) + H(P_{x^n})\right]} \end{align*}
\]

Analysis of expected codeword length

Using the upper bounds \(|P_n| \leq (n + 1)^m \) and \(|T(P_{x^n})| \leq 2^{nH(P_{x^n})} \), we have

\[
l(x^n) = \left[\log |P_n|\right] + \left[\log |T(P_{x^n})|\right] \\
\leq m \log(n + 1) + nH(P_{x^n}) + 2
\]

Assume \(X_1, X_2, \ldots \) is an i.i.d. source with an arbitrary pmf \(Q \). Then Lemma 3 implies

\[
\log Q^n(x^n) = -nD(P_{x^n}\|Q) - nH(P_{x^n})
\]

so that

\[
nH(P_{x^n}) = -\log Q^n(x^n) - nD(P_{x^n}\|Q)
\]

and

\[
nE[H(P_{X^n})] = -\sum_{x^n} Q^n(x^n) \log Q^n(x^n) - \sum_{x^n} Q(x^n) nD(P_{x^n}\|Q)
\]

\[\geq 0 \]
We obtain
\[E l(X^n) \leq m \log(n+1) + nE[H(P_{X^n})] + 2 \]
\[\leq m \log(n+1) + H(X^n) + 2 \]
Thus
\[\frac{1}{n} E l(X^n) \leq \frac{m \log(n+1)}{n} + \frac{H(X^n)}{n} + \frac{2}{n} \]
Since \(H(X^n) = nH(Q) \),
\[\lim_{n \to \infty} \frac{1}{n} E l(X^n) = H(X) \]
where \(H(X) = H(Q) \) is the entropy of the i.i.d. source \(X_1, X_2, \ldots \)
The same code works for all \(Q \): The code is universal for the class of i.i.d. sources!

Remarks:
- With more work, the upper bound
 \[\frac{1}{n} E l(X^n) - H(X) \leq \frac{m \log(n+1)}{n} + \frac{2}{n} \]
 can be improved to
 \[\frac{1}{n} E l(X^n) - H(X) \leq \frac{(m-1) \log n}{2n} + \frac{c}{n} \]
 where \(c > 0 \) depends on \(m \) only.
- The universal code we constructed is a so-called two-pass code: the entire string needs to be processed (first pass) before encoding (second pass) can start.
- With the aid of arithmetic coding we will construct one-pass (online) universal codes.

Source classes and universal codes
- Assume \(\mathcal{P} \) is a class of distributions of sources \(X_1, X_2, \ldots \) with alphabet \(\mathcal{X} \).
- The redundancy of a prefix \(n \)-code \(C_n : \mathcal{X}^n \to \{0, 1\}^* \) with respect to the source distribution \(p \in \mathcal{P} \) is
 \[R(C_n, p) = \frac{1}{n} [E_p l(X^n) - H_p(X^n)] \]
 where \(l(x^n) = |C_n(x^n)| \).

Definition (Universal code)
A sequence of prefix \(n \)-codes \(\{C_n\} \) is universal with respect to the source class \(\mathcal{P} \) if for any \(p \in \mathcal{P} \)
\[\lim_{n \to \infty} R(C_n, p) = 0 \]

Examples of source classes
Stationary and memoryless (i.i.d.) sources:
- Let \(\mathcal{X} = \{1, \ldots, m\} \) and define the parameter set \(\Theta_0 = \{(p_1, p_2, \ldots, p_m) : \sum_{i=1}^{m} p_i = 1, p_i \geq 0 \text{ all } i\} \)
 Any \(\theta = (p_1, \ldots, p_m) \) defines a pmf \(p_\theta(x^n) \) on \(\mathcal{X}^n \) given by
 \[p_\theta(x^n) = \prod_{i=1}^{m} p_{x_i} \]
 i.e., if \(X^n \sim p_\theta(x^n) \), then \(X_1, X_2, \ldots, X_n \) are i.i.d. with pmf \(P(X_i = j) = p_j, j \in \mathcal{X} \).
- \(\Theta_0 \) parametrizes the set of all i.i.d. distributions \(\mathcal{P}_{\Theta_0} \).
Redundancy and coding distributions

- For a prefix n-code C with codeword length $l(x^n)$ define
 \[c = \left(\sum_{x^n \in \mathcal{X}^n} 2^{-l(x^n)} \right)^{-1} \]

 Then $q(x^n) = c 2^{-l(x^n)}$ is a valid pmf on \mathcal{X}^n and since $c \geq 1$ by Kraft’s inequality,
 \[l(x^n) \geq -\log q(x^n) \]

- Conversely, if $q(x^n)$ is a pmf on \mathcal{X}^n, then the Shannon-Fano code with codeword lengths $l(x^n) = \lceil -\log q(x^n) \rceil$ is a prefix code such that
 \[l(x^n) < -\log q(x^n) + 1 \]

- Thus every pmf $q(x^n)$ can serve as a coding distribution (model) and every prefix code gives rise to a coding distribution.

Coding distributions and prefix codes are essentially equivalent (within 1 bit)!

\[R(C_n, p_\theta) = \frac{1}{n} \left[E_{p_\theta} l(X^n) - H_{p_\theta}(X^n) \right] \leq \frac{m \log(n + 1) + 2}{n} \]

Thus this code is universal for P_{θ_0} in the strong sense that its worst-case redundancy asymptotically vanishes:
\[\lim_{n \to \infty} \max_{\theta \in \Theta_0} R(C_n, p_\theta) = 0 \]

First-order Markov sources:

- Let $\Theta_1 = \{ (p_{ij})_{i,j=1}^m : \sum_{j=1}^m p_{ij} = 1, p_{ij} \geq 0 \text{ all } i \text{ and } j \}$

- Let (q_1, \ldots, q_m) be a pmf on \mathcal{X} (initial distribution) and for $\theta = (p_{ij})$ define the pmf $p_{\theta}(x^n)$ by

 \[p_{\theta}(x^n) = q_{x_1} \prod_{i=2}^m p_{x_{i-1}x_i} \]

 Thus, if $X^n \sim p_{\theta}(x^n)$, then X_1, \ldots, X_n is a Markov chain with initial distribution $P(X_1 = j) = q_j$ and transition probabilities

 \[P(X_k = j | X_{k-1} = i) = p_{ij} \]

- Θ_1 parametrizes the set of all first-order Markov chain distributions (up to the initial distribution).

Lemma 5

If C is the Shannon-Fano code for distribution $q(x^n)$ and X^n has pmf $p(x^n)$, then
\[D(p\|q) \leq \left[E_p l(X^n) - H_p(X^n) \right] < D(p\|q) + 1 \]

Proof: Since $l(x^n) = \lceil -\log q(x^n) \rceil$,
\[\log \frac{p(x^n)}{q(x^n)} \leq l(x^n) + \log p(x^n) < \log \frac{p(x^n)}{q(x^n)} + 1 \]

Thus
\[\sum_{x^n \in \mathcal{X}^n} p(x^n) \log \frac{p(x^n)}{q(x^n)} \leq \sum_{x^n \in \mathcal{X}^n} p(x^n) \left(l(x^n) + \log p(x^n) \right) < \sum_{x^n \in \mathcal{X}^n} p(x^n) \left(\log \frac{p(x^n)}{q(x^n)} + 1 \right) \]
Note: Normalizing by the block length we get the bound
\[
\frac{1}{n} D(p\|q) \leq R(C_n, p) < \frac{1}{n} D(p\|q) + \frac{1}{n}
\]
The 1/n term becomes 2/n if arithmetic coding is used instead of Shannon-Fano.

Corollary 6

A sequence of Shannon-Fano (or arithmetic) codes \(\{C_n\} \) obtained from a sequence of coding distributions \(\{q_n\} \) is universal for a source class \(\mathcal{P} \) if and only if
\[
\lim_{n \to \infty} \frac{1}{n} D(p^n\|q_n) = 0 \quad \text{for all } p \in \mathcal{P}
\]

How can we obtain such universal coding distributions?

- Let \(f \) be a probability density on \(\Theta \). Then
 \[
 q(x^n) = \int_{\Theta} p_\theta(x^n) f(\theta) \, d\theta
 \]
is a pmf on \(\mathcal{X}^n \).
- \(q \) is a mixture of i.i.d. distributions on \(\mathcal{X}^n \). The idea is that if we appropriately “mix” i.i.d. sources, then we obtain a coding distribution \(q \) that works very well for each i.i.d. source.
- We consider Dirichlet densities with parameters \(\alpha_i > 0 \), \(i = 1, \ldots, m \) on \(\Theta \):
 \[
 f_{\alpha_1, \ldots, \alpha_m}(\theta) = \frac{\Gamma\left(\sum_{i=1}^{m} \alpha_i\right)}{\prod_{i=1}^{m} \Gamma(\alpha_i)} \prod_{i=1}^{m} \theta_i^{\alpha_i-1}
 \]
 where \(\Gamma \) denotes the gamma function. (For \(m = 2 \) this is the pdf of the Beta(\(\alpha_1, \alpha_2 \)) distribution.)

Mixture distributions

- Let \(\mathcal{X} = \{1, \ldots, m\} \) and define the parameter set \(\Theta \subset \mathbb{R}^{m-1} \) by
 \[
 \Theta = \left\{(p_1, \ldots, p_{m-1}) : \sum_{i=1}^{m-1} p_i \leq 1; \ p_i \geq 0, \ i = 1, \ldots, m-1\right\}
 \]
 For \(\theta = (p_1, \ldots, p_{m-1}) \in \Theta \) and \(x^n = (x_1, \ldots, x_n) \in \mathcal{X}^n \) let
 \[
 p_\theta(x^n) = \prod_{j=1}^{n} p_{x_j} = \prod_{i=1}^{m} p_{i|x^n}^{n(i|x^n)}
 \]
 where \(p_m = 1 - \sum_{i=1}^{m-1} p_i \).
 Then \(p_\theta(\cdot) \) is a pmf on \(\mathcal{X}^n \) for any fixed \(\theta = (p_1, \ldots, p_{m-1}) \), corresponding to an i.i.d. source \(X_1, X_2, \ldots, X_n \) with distribution
 \[
 P(X_i = j) = p_j, \quad j \in \mathcal{X}
 \]

Lemma 7 (Dirichlet mixture distribution)

The coding distribution corresponding to the Dirichlet \((\alpha_1, \ldots, \alpha_m) \) pdf is given by

\[
q(x^n) = \int_{\Theta} p_\theta(x^n) f_{\alpha_1, \ldots, \alpha_m}(\theta) \, d\theta = \prod_{i=1}^{m} \prod_{j=1}^{n} \frac{n(i|x^n) + \alpha_i - j}{n + \sum_{i=1}^{m} \alpha_i - j}
\]

where \(\prod_{j=1}^{n} (n(i|x^n) + \alpha_i - j) = 1 \) if \(n(i|x^n) = 0 \).

We will consider two special cases: \(\alpha_i = 1, \ i = 1, \ldots, m, \) and \(\alpha_i = 1/2, \ i = 1, \ldots, m. \)
Dirichlet (1, ..., 1) mixture

Setting \(\alpha_i = 1, \ i = 1, \ldots, m \) in

\[
\int_{\Theta} p_\theta(x^n) f_{\alpha_1, \ldots, \alpha_m}(\theta) \, d\theta = \frac{\prod_{i=1}^m \prod_{j=1}^n (n(i|x^n) + \alpha_i - j)}{\prod_{j=1}^n (n + \sum_{i=1}^m \alpha_i - j)}
\]

we obtain

\[
\hat{q}(x^n) = \frac{\prod_{i=1}^m n(i|x^n)!}{\prod_{j=1}^n (n + m - j)}
\]

Note that \(f_{\alpha_1, \ldots, \alpha_m}(\theta) = \prod_{i=1}^m \frac{\Gamma(\sum_{j=1}^m \alpha_i)}{\prod_{j=1}^m \Gamma(\alpha_i)} \prod_{j=1}^m p_i^{\alpha_i - 1} \) becomes

\[
f_{1, \ldots, 1}(\theta) = \frac{\Gamma(m)}{\prod_{i=1}^m \Gamma(1)} \prod_{i=1}^m p_i^0 = (m-1)!, \quad \theta \in \Theta
\]

Thus \(\hat{q} \) is the uniform mixture of i.i.d. sources.

\[\text{Data Compression and Source Coding II: Lossless Data Compression}\]

Dirichlet (1/2, ..., 1/2) mixture

Setting \(\alpha_i = 1/2, \ i = 1, \ldots, m \) in

\[
\int_{\Theta} p_\theta(x^n) f_{\alpha_1, \ldots, \alpha_m}(\theta) \, d\theta = \frac{\prod_{i=1}^m \prod_{j=1}^n (n(i|x^n) + \alpha_i - j)}{\prod_{j=1}^n (n + \sum_{i=1}^m \alpha_i - j)}
\]

we obtain the so-called Krichevsky-Trofimov (KT) coding distribution:

\[
q(x^n) = \frac{\prod_{i=1}^m \prod_{j=1}^n (n(i|x^n) + 1/2 - j)}{\prod_{j=1}^n (n + m/2 - j)}
\]

This will turn out to be the best choice!

\[\text{Data Compression and Source Coding II: Lossless Data Compression}\]

We have

\[
\frac{1}{\hat{q}(x^n)} = \prod_{j=1}^n (n + m - j)
\]

\[
= \prod_{i=1}^m n(i|x^n)!
\]

\[
= \frac{(n + m - 1)(n + m - 2) \cdots m}{n!} \cdot \frac{n!}{n(1|x^n)! \cdots n(m|x^n)!}
\]

\[
= \frac{(n + m - 1)!}{n(1|x^n)! \cdots n(m|x^n)!}
\]

Thus the codeword length function derived from \(\hat{q}(x^n) \) is

\[
\log \frac{1}{\hat{q}(x^n)} = \log |\mathcal{P}_n| + \log |T(P_{x^n})|
\]

This is (up to 2 bits) the codeword length of the enumerative code!

\[\text{Data Compression and Source Coding II: Lossless Data Compression}\]

Krichevsky and Trofimov (KT) coding distribution

The following lemma is of great practical importance.

\[\text{Lemma 8}\]

For all \(1 \leq t \leq n \) define

\[
q(i|x^{t-1}) = \frac{n(i|x^{t-1}) + 1/2}{t - 1 + m/2}
\]

Then

(i) \(q(i|x^{t-1}) \) is a conditional pmf on \(X \) given \(x^{t-1} \).

(ii) \(\prod_{i=1}^n q(x_{1:t}|x^{t-1}) = \prod_{j=1}^m \frac{n(i|x^n) + 1/2 - j}{n + m/2 - j} = q(x^n) \)

The conditional probabilities \(q(x_{1:t}|x^{t-1}) \) can be fed to an arithmetic coder \(\implies \) practical implementation!
Remarks:

- The conditional probability
 \[q(i|x^{n-1}) = \frac{n(i|x^{n-1}) + 1/2}{n - 1 + m/2} \]
 is a biased estimate (because of the term 1/2) of the probability of letter \(i \) occurring next based on \(x^{n-1} \).
- The natural unbiased estimate
 \[\hat{q}(i|x^{n-1}) = \frac{n(i|x^{n-1})}{n - 1} \]
 does not work because a coding distribution must satisfy \(q(x^n) > 0 \) for all \(x^n \).
- It is not clear at this point (but can be proved) that the optimal bias term is indeed 1/2.

Example:

For \(\mathcal{X} = \{0, 1\} \) we have

\[q(0|x^{n-1}) = \frac{n(0|x^{n-1}) + 1/2}{n}, \quad q(1|x^{n-1}) = \frac{n(1|x^{n-1}) + 1/2}{n} \]

where \(n(0|x^{n-1}) \) is the number of zeroes in the binary string \(x^{n-1} = x_1 x_2 \ldots x_{n-1} \).

If \(n = 5 \) and \(x^5 = 01100 \) the KT probability is

\[q(01100) = \prod_{t=1}^{5} q(x_t|x^{t-1}) = \frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{2} \cdot \frac{3}{8} \cdot \frac{1}{2} = \frac{3}{256} \]

Theorem 9

Let \(q^n \) be the KT coding distribution on \(\mathcal{X}^{n} \), where \(|\mathcal{X}| = m \). There exists a constant \(K_0 \) such that for any pmf \(p(x) \) on \(\mathcal{X} \) and i.i.d. source distribution \(p^n(x^n) = \prod_{i=1}^{n} p(x_i) \),

\[D(p^n||q^n) \leq \frac{m - 1}{2} \log n + K_0, \quad \text{for all } n \geq 1 \]

The theorem and the divergence bound on the redundancy imply:

Corollary 10

Let \(\mathcal{P} \) denote the class of i.i.d. sources on \(\mathcal{X} \). If \(C_n \) is the arithmetic code for the KT distribution on \(\mathcal{X}^{n} \), then its redundancy satisfies

\[\max_{p \in \mathcal{P}} R(C_n, p) \leq \frac{(m - 1) \log n}{2n} + O\left(\frac{1}{n}\right) \]

It can be proved that the upper bound in the corollary cannot be improved by using any other coding distribution \(\implies \) the KT coding distribution is minimax optimal (up to the \(O(1/n) \) term).

Remarks:

- The bounds can be proved using Stirling’s approximation or a purely combinatorial argument.
- The conditional probabilities \(q(x_t|x^{t-1}) \) are easy to calculate and when used with arithmetic coding yield a nearly-optimal sequential universal code for i.i.d. sources.
- Appropriately modified versions of the KT coding distribution is optimal for Markov sources of a given order \(\implies \) Universal codes for Markov sources.
Lempel-Ziv coding

- A family of lossless coding algorithms based on the seminal work of J. Ziv and A. Lempel.
- The algorithms are based on dictionaries and string matching; no explicit probability modeling is needed.
- Simple, elegant, and universal for the class of stationary and ergodic sources.
- Variants widely used in practice.
- We follow the treatment of Lempel-Ziv coding in Cover&Thomas.

Notation:

\[x_i^k = x_i x_{i+1} \cdots x_k, \quad x_i^k = x_i x_{i+1} \cdots x_k \]

Example:

- Let \(\mathcal{X} = \{a, b, c, \ldots, z\} \) and \(w = 6 \).
- The source string

 \[a a b a a b a a c a b \]

 is parsed by LZ77 as follows (substrings between two commas are the phrases):

 \[a, a, b, a a b a a, c, a b, \]

 and the corresponding pointers are

 \((0, a) (1, 1, 1) (0, b) (1, 3, 5) (0, c) (1, 5, 2) \)

- Note that the matched phrase starting in the window can extend beyond the window.
- Decoding is obvious.

LZ77: sliding window Lempel-Ziv algorithm

- Set the positive integer **window length** \(w \). A string \(x^n = x_1 x_2 \cdots x_n \) from the finite alphabet \(\mathcal{X} \) is to be encoded.
- Assume \(x_1 \cdots x_{i-1} \) has been encoded. Find largest \(k \) such that for some \(j \) in the range \(1 \leq j \leq w \),

 \[x_{i-j+k-1} = x_{i+k-1} \]

 i.e., the longest match of a string of \(k \) not yet encoded symbols (phrase) with a string starting in the window (search buffer) consisting of the last \(w \) symbols \(x_{i-w} = x_{i-w} x_{i-w+1} \cdots x_{i-1} \).
- Represent the phrase \(x_{i+k-1} \) with the pair \((j, k)\), i.e., the location where the match starts in the window and the length of the match.
- If no match is found, send \(x_i \) uncompressed.
- The encoded phrase is represented by the pointer \((F, j, k)\) or \((F, x_i)\) where \(F = 1 \) if a match is found and \(F = 0 \) if there is no match.

- The dictionary maintained by LZ77 consists of all substrings of the string in the window, a portion of the previously encoded sequence.
- The window length \(w \) is quite large in practice (say \(w = 2^{12} \)).
- If the maximum length of the matched phrase is restricted by \(L \) (as is always the case in practice), then the pointers can be encoded with a binary code of fixed length

 \[\lceil \log w \rceil + \lceil \log L \rceil \]

- The pointers can further be compressed using a variable-length binary codes.
- Practical versions used in the compression packages PKZIP, ZIP, gzip, etc., and in PNG.
Optimality of LZ77

- The proof of the practical (finite-window) version is involved.
- We assume an idealized setup: the window contains the entire infinite past \(\ldots, X_{-2}, X_{-1}, X_0, \) of the source.
- To encode the block \(X^n = X^n_1 = (X_1, \ldots, X_n) \), find the last time \(X^n \) appeared in the past
 \[
 R_n(X^n) = \min\{ j \geq 0 : X^{-j-n-1} = X^n \}
 \]
- The decoder is also assumed to have access to the entire past, so having received \(R_n \) can produce \(X^n \).
- To encode \(R_n \) losslessly we need an efficient prefix code on the set of positive integers \(\mathbb{N} \).

The lemma states that there is a prefix code that can encode \(R_n \) using \(l_n = \log R_n + 2 \log \log R_n + O(1) \) bits.

Theorem 12

Assume \(\{X_i\} = \ldots, X_{-1}, X_0, X_1, \ldots \) is a stationary and ergodic source having entropy rate \(\bar{H}(X) \). Then the expected codeword length of the simplified version of the LZ77 algorithm satisfies

\[
\lim_{n \to \infty} \frac{1}{n} E l_n(X^n) = \bar{H}(X)
\]

The theorem will follow from the fact that given \(X^n = x^n \), the expected length of the time we have to wait to see the pattern \(x^n \) again is \(1/p(x^n) \).

Lemma 11

There is a prefix code \(C : \mathbb{N} \to \{0,1\}^* \) with codeword length satisfying

\[
|C(k)| = \log k + 2 \log \log k + O(1)
\]

Proof: Define first a code \(C_1 : \mathbb{N} \to \{0,1\}^* \) as follows: For \(k \in \mathbb{N} \) let \(l_k = \lfloor \log k \rfloor \) and

\[
C_1(k) = 0 \cdots 0 b_1 \cdots b_{l_k}
\]

Then \(C_1 \) is clearly a prefix code such that \(|C_1(k)| \leq 2 \lfloor \log k \rfloor + 1 \). Now define \(C \) by

\[
C(k) = C_1(\lfloor \log k \rfloor) b_1 \cdots b_{l_k}
\]

Then \(C \) is a prefix code with code length

\[
|C(k)| = |C_1(\lfloor \log k \rfloor)| + \lfloor \log k \rfloor
\]

\[
= 2 \lfloor \log \log k \rfloor + 1 + \lfloor \log k \rfloor
\]

\[
= \log k + 2 \log \log k + O(1)
\]

Let us define a new source alphabet \(\mathcal{U} = X^n \) and source \(\{U_i\} \) by setting

\[
U_i = X^{i+n-1}_i, \quad i = 0, \pm 1, \pm 2, \ldots
\]

Clearly, the new process \(\{U_i\} \) is also stationary, i.e., \((U_1, \ldots, U_k) \) and \((U_j, \ldots, U_{j+k-1}) \) have the same distribution for all \(k = 1, 2, \ldots \) and \(j = 0, \pm 1, \pm 2, \ldots \).

For simplicity, in the next lemma we assume that \(\{X_i\} \) is an i.i.d. process, but the lemma holds for all stationary and ergodic \(\{X_i\} \).

Lemma 13 (Kac)

For any \(u \in \mathcal{U} \) such that \(P(U_1 = u) > 0 \) let for \(i = 1, 2, \ldots \)

\[
Q_u(i) = P(U_{i+1} = u, U_j \neq u \text{ for } -i + 1 < j < 1|U_1 = u)
\]

Then

\[
E[R_1(U_i)|U_1 = u] = \sum_{i=1}^\infty iQ_u(i) = \frac{1}{P(U_1 = u)}
\]
Remark: It follows from the definition of \(\{U_i\} \) that
\[
R_1(U_1) = R_n(X^n)
\]

Proof of lemma: Define the events \(A_{jk} \) for \(j = 0, 1, 2, \ldots \) and \(k = 1, 2, \ldots \) by
\[
A_{jk} = \{U_{j-1} = u, U_{i} \neq u \text{ for } j < l < k, U_{k} = u\}
\]
Then
\[
\bigcup_{j,k} A_{jk}
\]
is the event that the letter \(u \) occurs at least once both in the sequence \(\ldots, U_{-2}, U_{-1}, U_{0}, \text{ and in the sequence } U_{1}, U_{2}, U_{3}, \ldots \)

Using the fact that \(\{U_{jn}\}_{n=1}^{\infty} \) is an i.i.d. process, it is easy to show (homework) that
\[
P\left(\bigcup_{j,k} A_{jk} \right) = 1
\]

Proof of theorem: One can show that
\[
\frac{1}{n} El_n(X^n) \geq \bar{H}(X)
\]
(this does not immediately follow from the entropy lower bound since the code is “random” in that it depends on the past of the source).

Recall that \(l_n = \log R_n + 2 \log \log R_n + O(1) \). Using the concavity of the logarithm and Jensen’s inequality
\[
E \log R_n(X^n) = \sum_{x^n} P(X^n = x^n) E[\log R_n(X^n)|X^n = x^n]
\]
\[
\leq \sum_{x^n} P(X^n = x^n) \log E[R_n(X^n)|X^n = x^n]
\]
\[
= \sum_{x^n} P(X^n = x^n) \log \frac{1}{P(X^n = x^n)} \quad (\text{Kac’s lemma})
\]
\[
= H(X^n)
\]

Proof of theorem cont’d: A very similar application of Jensen’s inequality shows that
\[
E \log \log R_n(X^n) \leq \log H(X^n)
\]
Since
\[
\log H(X^n) \leq \log \log |X|^n = \log n + \log \log |X|
\]
the expected codeword length is bounded as
\[
\bar{H}(X) \leq \frac{1}{n} El_n(X^n) \leq \frac{1}{n} H(X^n) + \frac{2 \log n}{n} + O\left(\frac{1}{n}\right)
\]
The upper bound converges to \(\bar{H}(X) \) as \(n \to \infty \) and we get
\[
\lim_{n \to \infty} \frac{1}{n} El_n(X^n) = \bar{H}(X)
\]
LZ78: Tree-structured Lempel-Ziv compression

- Builds explicit dictionary by incrementally parsing the input sequence into shortest phrases that have not been seen so far.
- The prefix consisting of all but the last symbol of a new phrase must have appeared before.
- Each phrase is represented by a pair \((i, s)\) where \(i\) is the index of this prefix in the current dictionary (0 if the phrase is a symbol not in the dictionary yet) and \(s\) is the last symbol (uncoded).
- For example, \(abb\ a a cbb\ a a cba\ a\) is parsed by LZ78 as
 \[a, b, ba, aa, c, bb, aac, baa\]
 and the corresponding representation is
 \[(0, a) (0, b) (2, a) (1, a) (0, c) (2, b) (4, c) (3, a)\]
- Decoding is obvious as the decoder can build the same dictionary.
- The dictionary has a natural tree structure where the nodes of the tree are the phrases seen so far.
- Let \(c(x^n)\) denote the number of phrases in the dictionary obtained by parsing \(x^n\).
- Each location pointer requires about \(\lfloor \log c(x^n) \rfloor\) bits to encode, a phrase requires \(\lfloor \log c(x^n) \rfloor + \lfloor \log |\mathcal{X}| \rfloor\) bits, so the codeword length for the string \(x^n\) is
 \[l_n(x^n) = c(x^n)(\log c(x^n) + O(1))\]
- An ingenious proof by Wyner and Ziv shows that for any stationary and ergodic source having entropy rate \(\bar{H}(X)\),
 \[\lim_{n \to \infty} \frac{\frac{1}{n} E[l_n(X^n)]}{n} = \bar{H}(X)\]

Theorem 14

The LZ78 algorithm is universal in the class of all stationary and ergodic sources on alphabet \(\mathcal{X}\), i.e.,

\[\lim_{n \to \infty} \frac{1}{n} E[l_n(X^n)] = \bar{H}(X)\]

for any stationary and ergodic source \(X_1, X_2, \ldots\) with entropy rate \(\bar{H}(X)\).

Remarks:

- There are mathematically stronger versions of the above theorem as well as rate of convergence results.
- Practical versions of LZ78 are widely used, e.g., in Unix compress, GIF, and TIFF.