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a b s t r a c t

We introduce a model of the growth of a single microorganism in a self-cycling
fermentor in which an arbitrary number of resources are limiting, and impulses are
triggered when the concentration of one specific substrate reaches a predetermined
level. The model is in the form of a system of impulsive differential equations.
We consider the operation of the reactor to be successful if it cycles indefinitely
without human intervention and derive conditions for this to occur. In this case,
the system of impulsive differential equations has a periodic solution. We show that
success is equivalent to the convergence of solutions to this periodic solution. We
provide conditions that ensure that a periodic solution exists. When it exists, it is
unique and attracting. However, we also show that whether a solution converges
to this periodic solution, and hence whether the model predicts that the reactor
operates successfully, is initial condition dependent. The analysis is illustrated with
numerical examples.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

The self-cycling fermentation (SCF) process can be described as a sequential batch process and is an
example of a hybrid system. In SCF, a tank is filled with a liquid medium that contains nutrients and
microorganisms that use these nutrients to grow. The liquid medium is mixed to keep the concentrations
uniform while the microorganisms feed on the nutrients and grow. If a predetermined decanting criterion
is met, the tank is partially drained and subsequently refilled with fresh medium. Many different decanting
criteria can be used to initiate the emptying/refilling sequence, such as elapsed time, a specific nutrient con-
centration, or a specific biomass concentration. For example, in [1], a specific dissolved oxygen concentration
was used as the decanting criterion. The goal was to choose the decanting criterion so that the fermentor
would run indefinitely without operator input.

Self-cycling fermentors and sequential batch reactors are often used to improve the efficiency of
wastewater-treatment facilities [2,3], to cultivate microorganisms [4], to produce some biologically derived
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compounds [5,6], and as a method of producing bacteriophages for use in phage therapy [7]. In particular,
the self-cycling fermentation process has been suggested as an addition to the sidestream partial nitration
process in order to reduce the competition pressure on the beneficial Anammox bacteria [8,9].

Traditionally, the nitrification process is done in multiple stages; Ammonium (NH+
4 ) is converted to nitrite

(NO−
2 ) by ammonium oxidizing bacteria (AOB), nitrite is converted to nitrate (NO−

3 ) by nitrite oxidizing
bacteria (NOB), and nitrate is converted to dinitrogen gas (N2) by denitrifying bacteria. Anammox bacteria
offer a shortcut in which ammonium and nitrite are converted directly to dinitrogen gas. Each stage occurs in
a continuous flow reactor. Unfortunately, Anammox is limited by both ammonium and nitrite and its growth
is slow, allowing NOB to easily outcompete Anammox for nitrite. Self-cycling fermentation (in combination
with biofilm cultivation) has been suggested as one way to tilt the competition in Anammox’s favor [9].

The decanting criterion can have a profound effect on the successful operation of the reactor. If the
decanting criterion is too strict (e.g., complete removal of a resource), it may never be reached, and if it
is too lenient (e.g., a small increase in biomass concentration), it may be reached too often. Many studies
have modelled the growth of a single species with a single limiting resource with different decanting criteria,
such as: threshold biomass concentrations [10]; threshold nutrient concentrations [11,12]; or after a certain
time elapsed that depends on the nutrient concentrations after the previous decanting stage [13]. Under the
assumption that the emptying/refilling process occurs on a much faster time scale than the other processes
in the system, the system can be modelled using a system of impulsive differential equations. For a discussion
on the qualitative theory of impulsive differential equations see [14,15].

A more recent paper by Hsu et al. [16] investigated the dynamics of a model with two essential limiting
nutrients in which the decanting criterion required both nutrient concentrations to reach or be below a
prescribed threshold. When modelling with multiple resources, two resources are said to be essential if the
microorganism cannot grow without both resources. Conversely, two resources are said to be substitutable
if the presence of either resource is enough to promote growth. The different ways in which a species may
respond to multiple limiting nutrients exist on a spectrum that was described in the book by Tilman [17].
In particular, essential nutrients may be further refined into perfectly-essential nutrients and interactive-
essential nutrients based on their respective growth isoclines. The growth iscolines of two perfectly-essential
nutrients meet at a right angle, indicating that one resource may not be substituted for the other. The
growth isoclines of interactive-essential nutrients have a curved corner, indicating that there is a small range
of nutrient concentrations for which partial substitution is possible.

In [16], nutrient uptake of two essential resources was modelled using Liebig’s law of the minimum [18],
where the growth is limited by the nutrient concentration that results in the slowest individual growth
rate. Many more modern engineering papers do not use Liebig’s law and instead model nutrient uptake
for essential nutrients using the product of individual uptake functions [19]. This may be problematic in the
case when a large number of resources are growth limiting; the product of many uptake functions may predict
much lower growth than what is actually observed if each uptake function is a small number. However, the
product of uptake functions is advantageous because it is differentiable, whereas the minimum of uptake
functions given by Liebig’s law of the minimum is only Lipschitz continuous.

Implementation of a self-cycling fermentor can be difficult. Online measurements can be expensive, and
measuring quantities of interest may be impractical. Operators of these reactors will often choose to make
easier measurements that act as a proxy for the quantities of true interest. For example, in [1], the authors
measured the dissolved oxygen concentration, since it was known to reach a minimum at the same time as
the limiting substrate was exhausted. In [9], the ammonium concentration was used as a threshold, even
though both ammonium and nitrite were growth limiting. Alternatively, operators may not be aware that
some nutrient concentrations are lower than required in the input medium, and, as a result, unanticipated
resources may become limiting.

In this paper, we investigate the growth of a single microorganism with an arbitrary number of essential
nutrients in a self-cycling fermentor. The decanting criterion is met when one specific tracked nutrient
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concentration falls below a prescribed threshold value. We model nutrient uptake using a general class of
functions that includes both the product of uptake functions used in much of the engineering literature and
the minimum of uptake functions preferred by biologists. In the case with a single limiting resource, this
model reduces to that given in [12]. In the case with two essential limiting resources and nutrient uptake
modelled using Liebig’s law of the minimum, this model is the same as the one in [16] where one threshold
concentration is arbitrarily large.

The paper is organized as follows. In Section 2, we introduce the model and show that it is mathematically
and biologically well-posed. In Section 3, we provide conditions for the system to have a unique periodic
solution and find the basin of attraction for the periodic solution. We show that if the initial conditions
lie outside of the basin of attraction, then the population of microorganisms will eventually die out, and
the reactor will fail. In Section 4, we summarize what we have learned, compare with similar models and
discuss what implications this may have for operators of self-cycling reactors. Our analysis is supplemented
by several examples with parameters chosen to illustrate specific results.

2. The model

We model the self cycling fermentor using the system of impulsive differential equations

ṡi(t) = − 1
yi

F (s(t))x(t), i = 1, . . . , n

ẋ(t) = (−D + F (s(t)))x(t)

⎫⎬⎭ s(t−
k ) /∈ Γ−, (1a)

s(t+
k ) = rsin + (1 − r)s(t−

k )
x(t+

k ) = (1 − r)x(t−
k )

}
s(t−

k ) ∈ Γ−, (1b)

where s(t) = (s1(t), . . . , sn(t))T . Here, si(t) denotes the concentration of the ith nutrient and x(t) denotes
the concentration of the biomass in the tank at time t.

The set Γ− is called the impulsive set, and it represents the condition on s that triggers the empty-
ing/refilling process. We consider the case where only one of the nutrients is tracked by the operator and
the tank is reset when the concentration of this nutrient reaches a prescribed threshold. Without loss of
generality, we label this nutrient s1 and denote the prescribed threshold by s1. Therefore, we define the
impulsive set

Γ− = {s ∈ Rn
+ : s1 = s1}. (2)

This is an (n − 1)-dimensional hyperplane restricted to the positive cone, Rn
+ = {z ∈ Rn : zi > 0 for i =

1, . . . , n}. For simplicity, we assume that s1(0) > s1. The impulse times are then the times {tk} such that
s(t−

k ) ∈ Γ−, where s(t−
k ) = lim

t→t−
k

s(t).
The parameter D is the decay rate (or maintenance coefficient) for the microorganism x, sin =

(sin
1 , . . . , sin

n )T , where sin
i is the concentration of the ith nutrient in the fresh medium, r ∈ (0, 1) is the fraction

of the tank that is decanted and subsequently refilled, and yi > 0, i = 1, . . . , n, are the yield coefficients for
each nutrient.

We assume F : Rn
+ → R+ is a Lipschitz-continuous function satisfying F (s) = 0 if si = 0 for any

i = 1, . . . , n, F (s) > 0 if every si > 0, and increasing in each of its arguments (i.e., F (s + εei) > F (s) for
any ε > 0, where ei is the ith positive unit vector in Rn).

This class of functions includes Liebig’s minimum function,

F (s) = min{fi(si) : i = 1, . . . , n}, (3)

as well as the product of functions

F (s) =
n∏

i=1
fi(si), (4)
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Fig. 1. (a) Level sets of two perfectly-essential nutrients, as described by Eq. (3). (b) Level sets of two interactive-essential nutrients,
as described by Eq. (4). In both cases, f1 = s1

1+s1
and f2 = s2

1+s2
.

where each fi(si) denotes the rate at which the microorganism uptakes the ith nutrient and are assumed
to be increasing, Lipschitz continuous functions. In Tilman’s classification of resource types [17], Liebig’s
minimum function (3) describes perfectly-essential nutrients (level sets are shown in Fig. 1a), and the product
of functions (4) describes interactive-essential nutrients (level sets are shown in Fig. 1b). In the engineering
literature, it is common to use the Monod growth function, fi(si) = µisi

ki+si
to describe the uptake of the ith

nutrient.
For s /∈ Γ− the system is governed by the system of ordinary differential equations,

ṡi(t) = − 1
yi

F (s(t))x(t), i = 1, . . . , n, (5a)

ẋ(t) = (−D + F (s(t)))x(t). (5b)

Lemma 2.1. Solutions of Eq. (9) with initial conditions (s1(0), . . . , sn(0), x(0)) ∈ Rn+1
+ are bounded and

satisfy s(t) ∈ Rn
+ for all t ≥ 0. Furthermore, x(t) → 0 as t → ∞.

Proof. Noting that F (s) = 0 if si = 0 for any i = 1, . . . , n, the faces of Rn+1
+ are invariant, i.e., if si(t) = 0,

then ṡi(t) = 0 and if x(t), then ẋ(t) = 0. Since the vector field in (5) is Lipschitz, solutions to initial value
problems are unique by the Picard–Lindelöf theorem. Therefore, any solution with initial conditions in the
interior of Rn+1

+ is confined to the interior of Rn+1
+ , otherwise it would intersect the faces of Rn+1

+ . The right
hand side of each nutrient equation is non-positive, and so the nutrient concentrations are nonincreasing,
which implies that F (s(t)) is a nonincreasing function of t.

If x(0) > 0, then there exists t∗ ≥ 0 such that F (s(t)) < D for all t ≥ t∗. If not, then F (s(t)) ≥ D for all
t, and therefore

x′(t) = (F (s(t)) − D)x(t) ≥ 0.

Since x(t) is nondecreasing, it follows that x(t) ≥ x(0) for all t. Therefore,

s′
i(t) ≤ − 1

yi
Dx(0).

This implies that si(t) ≤ si(0) − 1
yi

Dx(0)t for all t ≥ 0, and hence si(t) → −∞ as t → ∞, a contradiction.
Therefore, there exists t∗ ≥ 0 such that F (s(t∗)) < D for all t ≥ t∗. This implies that

x′(t) ≤ (F (s(t∗)) − D)x(t) < 0,

for all t ≥ t∗. Integrating gives
x(t) ≤ x(t∗)e(F (s(t∗))−D)(t−t∗).

Therefore, x(t) → 0 as t → ∞. □
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Dividing the other nutrient equations in (5a) by the equation for s1(t) (i.e., considering ṡi/ṡ1, i = 2, . . . , n)
and integrating, it follows that the nutrient concentrations are linear functions of s1(t). In vector form,

s(t) = s0 − y1(s0
1 − s1(t))Y, (6)

where Y = (1/y1, . . . , 1/yn)T and s0 = (s1(0), . . . , sn(0))T . Note that the equation for s1 in this form
is trivial. For positive initial conditions, s1(t) is strictly decreasing as a function of time, and so s1(t) is
invertible, allowing us to write t(s1). This means that there is a one-to-one correspondence between the
time t and s1. In a sense this allows us to use the nutrient concentration s1 to measure time. With this in
mind, we can write

s(s1) = s0 − y1(s0
1 − s1)Y, (7a)

x(s1) = x0 − y1

∫ s1

s0
1

(
1 − D

F (s(τ))

)
dτ, (7b)

where x0 is the initial biomass concentration and (7b) follows by dividing (5a) by the s1 version of (5b) and
integrating with respect to s1. Note that the notation is consistent since x(s0

1) = x0. If there exists t1 such
that s1(t−

1 ) = s1, then we can reparameterize (7) using the percentage of s1 consumed up to that point. Let
ν(s1) = (s0

1 − s1)/(s0
1 − s1). Substituting ν ∈ [0, 1] into (7) gives

s(ν) = s0 − νy1(s0
1 − s1)Y,

x(ν) = x0 + y1(s0
1 − s1)

∫ ν

0

(
1 − D

F (s(τ))

)
dτ.

After the first impulse, s1 ∈ [s1, s1
+], where s1

+ = rsin
1 + (1 − r)s1 is the image of s1 under the impulsive

map. In general, for each k ≥ 1 for which there exists t−
k such that s1(t−

k ) = s1, we write

φν(sk) = sk − νy1(sk
1 − s1)Y, (8)

uν(sk, xk) = xk + y1(sk
1 − s1)

∫ ν

0

(
1 − D

F (φτ (sk))

)
dτ, (9)

with the understanding that sk
1 = s1

+. In this notation,

φ0(sk) = sk = s(t+
k ) and φ1(sk) = s(t−

k+1).

u0(sk, xk) = xk = x(t+
k ) and u1(sk, xk) = x(t−

k+1).

First we prove that if there are an infinite number of impulses, then the reactor cycles indefinitely with
finite cycle time. I.e., the phenomenon of beating is not possible for system (1).

Lemma 2.2. Assume that (s1(t), . . . , sn(t), x(t)) ∈ Rn+1
+ is a solution to (1) with an infinite number of

impulse times {tk}∞
k=1. Then limk→∞ tk = ∞.

Proof. Since the si are strictly decreasing, if x(t) > 0, we can solve the s1 equation in Eq. (1) for the time
between impulses (i.e., consider dt/ds1 and again use the substitution ν(s1) = (s0

1 − s1)/(s0
1 − s1)). After

the first impulse, the time between impulses is given by

tk+1 − tk = y1(s1
+ − s1)

∫ 1

0

1
F (φν(sk))uν(sk, xk)dν.

In order to show that the sequence {tk}∞
k=1 has no accumulation point, it is enough to show that there exists

M > 0, independent of k, such that F (φν(sk))uν(sk, xk) < M . For ν ∈ [0, 1], each component of φν(sk) is
decreasing in ν; i.e.,

(φν)i(sk) ≤ (φ0)i(sk) = sk
i
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for ν ∈ [0, 1], where (φν)i is the ith component of φν , i > 1. By the relationship, sk
i = rsin

i +(1−r)(φ1)i(sk−1),
for i > 1, we obtain

sk+1
i ≤ rsin

i + (1 − r)sk
i .

Let {qk
i }∞

k=0 be the sequence defined by q0
i = s0

i , qk+1
i = rsin

i + (1 − r)qk
i . Then,

lim sup
t→∞

si(t) ≤ lim
k→∞

sup
ν∈[0,1]

(φν)i(sk) ≤ lim
k→∞

qk
i = sin

i , (10)

and thus each si(t) is bounded above. It remains to show that x(t) is bounded. By Eq. (9), there exists
M0 > 0 such that

uν(sk, xk) ≤ xk + M0, for all ν ∈ [0, 1].

Using the relations u1(sk, xk) = x(t−
k+1) and xk = (1 − r)x(t−

k ), it follows that

1
1 − r

xk+1 = x(t−
k+1) = u1(sk, xk) ≤ xk + M0 (11)

and hence
xk+1 ≤ (1 − r)(xk + M0). (12)

Consider the sequence {yk}∞
k=0, defined by y(0) = x0 and yk+1 = (1 − r)(yk + M0), for k = 1, 2, . . . . Then

lim sup
t→∞

x(t) ≤ lim
k→∞

sup
ν∈[0,1]

uν(sk, xk) ≤ lim
k→∞

yk = (1 − r)M0

r
. □

Corollary 2.3. Let (s1(t), . . . , sn(t), x(t)) ∈ Rn+1
+ be a solution of (1). Then, for all t ≥ 0, the solution is

bounded, si(t) > 0, i = 1, 2, . . . , n, and x(t) > 0.

Proof. That solutions to system (1) are bounded was part of the proof of Lemma 2.2. It is also clear that
the impulse map leaves solutions positive. □

3. The periodic solution

Define the component-wise Lyapunov-like function by

Vi(s) = (sin
1 − s1)y1 − (sin

i − si)yi, i = 1, . . . , n. (13)

Each component, Vi(s), can be seen as the signed distance from s to the line through sin in the direction of
Y when both are projected onto the s1–si plane. If Vi(s) > 0, then s lies above the line through sin in the
s1–si plane, and if Vi(s) < 0, then s lies below the line through sin in the s1–si plane. Note that V1(s) ≡ 0
and if n = 2, then V2(s) is the same Lyapunov-type function used in [16].

While each Vi(s) is useful to determine the location of the projection of s in the s1–si plane, they are not
convex functions, and therefore V(s) does not truly constitute a vector-Lyapunov function. On the other
hand, the supremum norm,

∥V(s)∥∞ = max{|Vi(s)| : i = 1, . . . , n}, (14)

is convex and is therefore a candidate Lyapunov function (see Fig. 2).

Lemma 3.1. Assume that (s1(t), . . . , sn(t), x(t)) ∈ Rn+1
+ is a solution of (1). Let t0 = 0 and tk be the kth

impulse time, if it exists. Otherwise, set tk = ∞. Then, for each i = 2, . . . , n,

1. d
dt Vi(s(t)) = 0 for t ∈ (tk, tk+1).

2. Vi(s(t+
k )) = (1 − r)Vi(s(t−

k )).
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Fig. 2. For any s0, Vi(s0) is the length of the perpendicular line segment connecting s0 to the solution segment through sin in the
s1–si plane. For each i, Vi is the distance from ∂Ω1 to sin in the s1–si plane.

Proof. For each component of V,

d

dt
Vi(s(t)) = d

dt
y1(sin

1 − s1(t)) − d

dt
yi(sin

i − si(t)),

= −F (s(t))x(t) + F (s(t))x(t),
= 0,

and so d
dt max{|Vi(s(t))| : i = 1, . . . , n} = 0.

When t = t+
k , using Eq. (1b),

Vi(s(t+
k )) = y1(sin

1 − s1(t+
k )) − yi(sin

i − si(t+
k )),

= y1(sin
1 − rsin

1 − (1 − r)s1(t−
k )) − yi(sin

i − rsin
i − (1 − r)si(t−

k )),
= (1 − r)Vi(s(t−

k )). □

Corollary 3.2. If (s1(t), . . . , sn(t), x(t)) ∈ Rn+1
+ is a solution to Eq. (1) with an infinite number of impulses,

then V(s(t)) → V(sin) = 0 as t → ∞.

Proof. From Lemma 3.1, it follows that Vi(s(t+
k )) = (1 − r)kV (s(t0)). Since (1 − r) < 1, (1 − r)k → 0 as

k → ∞, and thus each component of V(s) converges to 0 as t → ∞. □

We can use the components of V(s) to partition Rn into two complementary pieces. Define

Vi = y1(sin
1 − s1) − yis

in
i ,

(i.e., Vi(s) when s1 = s1 and si = 0), and

Ω1 = {s ∈ Rn
+ : s1 ≥ s1, Vi(s) > Vi, for all i = 2, . . . , n},

Ω0 = {s ∈ Rn
+ : s1 ≥ s1, Vi(s) < Vi, for at least one i = 2, . . . , n}.

Lemma 3.3. If (s1(t), . . . , sn(t), x(t)) ∈ Rn+1
+ is a solution of (1) with s(0) ∈ Ω0, then there are no impulses.
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Proof. Without loss of generality, assume that V2(s0) < V 2. Suppose that the first impulse occurs at t = t1;
i.e., s1(t−

1 ) = s1. By the first property of Lemma 3.1,

y1(sin
1 − s1) − y2(sin

2 − s2(t−
1 )) = V2(s(t−

1 )) = V2(s0) < V 2 = y1(sin
1 − s1) − y2sin

2 .

This implies s2(t−
1 ) < 0, contradicting Corollary 2.3, and so there are no impulses. □

Lemma 3.4. If sin ∈ Ω0, then there are at most a finite number of impulses and limt→∞ x(t) = 0.

Proof. Suppose not. Then there exists an infinite sequence of impulse times {tk}∞
k=1. Since sin ∈ Ω0,

it follows that Vi(sin) = 0 < Vi for at least one i = 2, . . . , n. By Corollary 3.2, there exists k ≥ 0 such
that Vi(φ0(sk)) < Vi. Therefore, φ0(sk) ∈ Ω0, and by Lemma 3.3, no more impulses can occur. Thus, the
remaining dynamics are governed by Eq. (9). By Lemma 2.1, x(t) → 0 as t → ∞. □

Remark 3.5. Neither Ω1 nor Ω0 are closed sets in the subspace topology on {s ∈ Rn
+ : s1 ≥ s1}, which

is the subset of Rn reachable by solutions. These sets are complementary in the sense that Ω0 ∪ Ω1 = {s ∈
Rn

+ : s1 ≥ s1}, and Ω0 ∩ Ω1 = ∅. We are therefore missing the marginal case on their shared boundary,

∂Ω1 = {s ∈ Rn
+ : s1 ≥ s1, Vi(s) ≥ Vi, for all i = 2, . . . , n,

and Vi(s) = Vi for at least one i = 2, . . . , n}.

While not covered here, it can be seen that if s0 ∈ ∂Ω1, then there are no impulses. If sin ∈ ∂Ω1 and s0 ∈ Ω1,
then either finitely many impulses occur or there are infinitely many impulses but the time between impulses
tends to infinity.

In order to visualize solutions, we project them onto the s1–sj plane, where j is such that Vj = max{Vi :
i = 2, . . . , n}. This allows us to see clearly whether sin ∈ Ω0 or sin ∈ Ω1, since if sin ∈ Ω0, then at least one
Vi > 0.

Example 3.6. Consider (1) with n = 3,

F (s) = min
{

0.4s1

0.25 + s1
,

1.3s2

0.3 + s2
,

0.5s3

0.5 + s3

}
,

r = 0.7, Y = (1.00, 0.83, 1.25)T , s1 = 0.4, D = 0.05 and sin = (1, 1, 0.6)T . Using its definition, we compute
V = (0, −0.20, 0.52)T . Since V3 = max{Vi : i = 2, 3}, we project solutions onto the s1–s3 plane and easily
see that sin ∈ Ω0. The initial conditions, s0 = (0.6, 0.7, 0.8)T , x0 = 0.5 satisfy s0 ∈ Ω1, yet the conditions
for Lemma 3.3 are satisfied, and so, as predicted, in Fig. 3, we see that x(t) → 0 as t → ∞.

If sin ∈ Ω1, then each component of φ1(sin) is positive. We define ŝ+ to be the point on φν(sin) with
s1 = s1

+, i.e., for fixed r ∈ (0, 1)

ŝ+ := ŝ+(r) = sin − (1 − r)y1(sin
1 − s1)Y = φ(1−r)(sin),

and define
µ(r) = y1(s1

+ − s1)
∫ 1

0

(
1 − D

F (φν(ŝ+))

)
dν (15)

to be the change in x as s changes from ŝ+ to ŝ = φ1(ŝ+). Note that since ŝ+ = φ(1−r)(sin), ŝ+ and sin lie
on the same solution segment. Thus, by Lemma 3.1, Vi(ŝ+) = Vi(sin) = 0 for all i = 1, . . . , n and for all
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Fig. 3. The dynamics of Example 3.6 illustrated by projecting orbits onto s1–s3 space, with the line through sin shown in dotted
red on the left. Solutions of s3 and x as functions of time are shown on the right. As predicted by Lemma 3.3, only finitely many
impulses occur and x(t) → 0 as t → ∞.

r ∈ (0, 1). Since s1
+ = rsin

1 + (1 − r)s1, an equivalent representation of (15) is

µ(r) = ry1(sin
1 − s1)

∫ 1

0

(
1 − D

F (φν(ŝ+))

)
dν. (16)

Theorem 3.7. Assume sin ∈ Ω1. If r ∈ (0, 1) and µ(r) > 0, then system (1) has a unique periodic solution
that has one impulse per period. On a periodic solution, x(t+

k ) = (1−r)
r µ(r) and x(t−

k ) = 1
r µ(r) for all k ∈ N.

If µ(r) ≤ 0, then system (1) has no periodic solutions.

Proof. First we show that if Eq. (1) has a periodic solution, then it is unique.
Assume that Eq. (1) has a periodic solution. From Corollary 3.2, the projection of the periodic solution

onto the resource hyperplane has to lie on φν(ŝ+). Since system (5) has no cycles, there is at least one
impulse, and, by periodicity, there are an infinite number of impulses. Denote by K the number of impulses
in each period. Then uν(sK+k, xK+k) = uν(sk, xk) for every ν ∈ [0, 1], k ∈ N. By (1b) and combining (9)
with (15),

u1(sk, xk) = u0(sk, xk) + µ(r), xk+1 = (1 − r)u1(sk, xk),

and therefore, using the relation u0(sk, xk) = xk,

xk+1 = (1 − r)(xk + µ(r)).

If xk+1 > xk, then we can show inductively that {xk}∞
k=0 is a strictly increasing sequence. Similarly, if

xk+1 < xk we can show that {xk}∞
k=0 is a strictly decreasing sequence. Therefore, if there is a periodic orbit,

it is unique up to time translation and satisfies K = 1, u0(sk, xk) = xk = 1−r
r µ(r), and u1(sk, xk) = 1

r µ(r)
for all k ∈ N.

If sin ∈ Ω1 and µ(r) > 0, then the solution with (s0, x0) = (ŝ+, 1−r
r µ(r)) is periodic, since φ1(ŝ+) = ŝ

and u1
(
ŝ+, 1−r

r µ(r)
)

= 1
r µ(r).

If µ(r) ≤ 0, then by the uniqueness of periodic solutions and Corollary 2.3, Eq. (1) has no periodic
solutions. □

Proposition 3.8. If µ(1) > 0, then there exists a unique r∗ ∈ [0, 1) such that µ(r) > 0 for all r ∈ (r∗, 1]
and µ(r) ≤ 0 for all r ∈ [0, r∗].

Proof. Let
r∗ = max{r ∈ [0, 1] : µ(τ) ≤ 0 for all τ ∈ [0, r]}. (17)

Note that r∗ is well defined, since µ(0) = 0 and µ is a continuous function of r. Since µ(1) > 0, it follows
that r∗ ∈ [0, 1). By definition of r∗, there exists ε > 0 such that

µ(r) > µ(r∗) = 0



10 T. Meadows and G.S.K. Wolkowicz / Nonlinear Analysis: Real World Applications 56 (2020) 103157

for all r ∈ (r∗, r∗ + ε). If not, then r∗ could be increased, violating the definition of r∗. For each ν ∈ [0, 1],
F (φν(ŝ+(r))) is a nondecreasing function of r, since

φν(ŝ+(r)) = ŝ+(r) − νy1(s1
+ − s1)Y,

= sin − y1(sin
1 − s1)Y + r(1 − ν)y1(sin

1 − s1)Y,

which follows from ŝ+
1 = s1

+ = rsin
1 + (1 − r)s1. It follows that µ(r) > µ(r∗) for all r ∈ (r∗, 1]. □

Proposition 3.9. Assume sin ∈ Ω1 and let (s1(t), . . . , sn(t), x(t)) be a solution to (1) with positive initial
conditions.

(i) If µ(r) < 0, then there are finitely many impulses.
(ii) If µ(r) = 0, then either finitely many impulses occur or the time between impulses tends to infinity.

Proof. Suppose the solution has infinitely many impulses. By Corollary 3.2, sk → ŝ+ as k → ∞, and by
Corollary 2.3, xk ≥ 0 for all k ≥ 0.

(i) If µ(r) < 0, then

xk+1 − xk ≤ xk+1 − (1 − r)xk = (1 − r)y1(s1
+ − s1)

∫ 1

0

(
1 − D

F (φν(sk))

)
dν.

Note that, since F is Lipschitz continuous, there exists K > 0 such that

sup
ν∈[0,1]

⏐⏐⏐⏐ D

F (φν(sk)) − D

F (φν(ŝ+))

⏐⏐⏐⏐ ≤ DK sup
ν∈[0,1]

⏐⏐⏐⏐ φν(sk) − φν(ŝ+)
F (φν(sk))F (φν(ŝ+))

⏐⏐⏐⏐ ,
which, since sk → ŝ+, converges to zero. Thus, the integrand converges uniformly as k → ∞ and

(1 − r)y1(s1
+ − s1)

∫ 1

0

(
1 − D

F (φν(sk))

)
dν → (1 − r)µ(r) < 0

as k → ∞. Thus, there exists M > 0 such that xk+1 − xk < 1−r
2 µ(r) < 0 for all k > M , and therefore

xk → −∞ as k → ∞, contradicting Corollary 2.3.
(ii) If µ(r) = 0, then

lim
k→∞

xk+1 − (1 − r)xk = 0,

implying that xk → 0 as k → ∞. Using the relation xk+1 = (1 − r)u1(sk, xk), it follows that u1(sk, xk) → 0
as k → ∞. Therefore, uν(sk, xk) converges to the heteroclinic orbit of (5) that connects (ŝ+, 0) to (ŝ, 0) as
k → ∞. This implies that tk+1 − tk → ∞. □

Example 3.10. Consider (1) with n = 3,

F (s) = 0.4s1

0.25 + s1
· 1.3s2

0.3 + s2
· 0.5s3

0.5 + s3
,

r = 0.7, Y = (1.00, 0.83, 1.25), s1 = 0.4, D = 0.1 and sIn = (1, 1, 1). By definition V 2 = −0.6 and
V 3 = −0.2. Since V 3 = max{V2, V3}, we project solutions onto the s1–s3 plane, and see that sin ∈ Ω1.
Since µ(r) ≈ −0.2924 < 0, by Proposition 3.9, there are a finite number of impulses and x(t) → 0 as t → ∞.
This is illustrated in Fig. 4.
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Fig. 4. The dynamics of Example 3.10, in which µ(r) < 0, illustrated by projecting orbits onto s1–s3 space, with the line through sin

shown in dotted red on the left. Solutions of s3 and x as functions of time are shown on the right. As predicted by Proposition 3.9,
only finitely many impulses occur and x(t) → 0 as t → ∞.

3.1. Stability of the periodic solution

In this section, we assume that sin ∈ Ω1 and µ(1) > 0. We fix r ∈ (r∗, 1), where r∗ is given in
Proposition 3.8, so that µ(r) > 0 and system (1) has a unique periodic solution.

For any s0 ∈ Ω1, we define the net change in x over the time until the first impulse by

I(s0) = y1(s0
1 − s1)

∫ 1

0

(
1 − D

F (φν(s0))

)
dν. (18)

Since s0 ∈ Ω1, I(s0) is finite and an impulse occurs as long as x0 is large enough. Note that I(ŝ+) = µ(r).
Define

Γ+ = {s ∈ Rn
+ : s1 = s1

+} (19)

and
G+ = {s ∈ Γ+ ∩ Ω1 : I(s) > 0}, (20)

the subset of Γ+ with positive growth before the first impulse. Also define

G− = {φ1(s) ∈ Γ− : s ∈ G+} (21)

the image of G+ under φ1 in Γ−. Let g : Γ− → Γ+ be the impulse map acting on s. I.e., for s ∈ Γ−,

g(s) = rsin + (1 − r)s.

The composition (g ◦ φ1)(s0) = s1, and more generally (g ◦ φ1)(sk) = sk+1 for k = 0, 1, . . . .

Lemma 3.11. Assume that sin ∈ Ω1 and µ(r) > 0. Then there exists ρ > 0 such that Γ+
ρ := {s ∈ Γ+ :

Vi(s) > −ρ for all i = 2, . . . , n} is a subset of G+.

Proof. Let s̃(z) = ŝ+ − (0, z/y2, . . . , z/yn)T . Then, by Lemma 3.1,

Vi(s̃(z)) = y1

(
sin

1 − s1
+
)

− yi

(
sin

i −
(

ŝi
+ − z

yi

))
= Vi(ŝ+) − z = −z

for i = 2, . . . , n. Since sin ∈ Ω1, Vi < 0 for all i = 2, . . . , n. Let σ = min{−Vi : i = 2, . . . , n} > 0. Then
s̃(σ) ∈ ∂Ω1, and thus, by Lemma 3.1, φν(s̃(σ)) is in ∂Ω1 ⊂ Rn

+ for all ν ∈ [0, 1) and, by the definition
of Vi, φν(s̃(σ)) intersects the boundary of Rn

+ when ν = 1. Thus, F (φν(s̃(σ))) > 0 for all ν ∈ [0, 1) and
F (φ1(s̃(σ))) = 0. Since F (φν(s)) is Lipschitz continuous and decreasing in ν, there exists K > 0 such that

F (φν(s)) − F (φ1(s)) ≤ K(1 − ν),
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for all ν ∈ [0, 1]. Since F is increasing in each of its components, F (φ1(s̃(σ − δ))) > F (φ1(s̃(σ))) = 0 for all
δ > 0. By continuity, there exists δ > 0 sufficiently small such that 0 < F (φ1(s̃(σ − δ))) ≤ Ke− K

D . Thus

I(s̃(σ − δ)) = y1(s1
+ − s1)

∫ 1

0

(
1 − D

F (φν(s̃(σ − δ)))

)
dν

= y1(s1
+ − s1)

∫ 1

0

(
1 − D

F (φν(s̃(σ − δ))) − F (φ1(s̃(σ − δ))) + F (φ1(s̃(σ − δ)))

)
dν

≤ y1(s1
+ − s1)

∫ 1

0

(
1 − D

K(1 − ν) + Ke− K
D

)
dν

= −y1(s1
+ − s1) D

K
log
(

1 + e− K
D

)
< 0.

For z < σ, s̃(z) ∈ Ω1 and I(s̃(z)) is a continuous function of z. Since I(s̃(0)) = I(ŝ+) = µ(r) > 0, by the
intermediate-value theorem there exists z ∈ (0, σ) such that I(s̃(z)) = 0. Let ρ = sup{z ∈ (0, σ) : I(s̃(z)) >

0}. Thus, the set Γ+
ρ is well defined, and all that is left is to show that Γ+

ρ ⊂ G+.
Let s ∈ Γ+

ρ . Then there exists ε > 0 such that Vi(s) > −ρ + ε = Vi(s̃(ρ − ε)) for each i = 2, . . . , n. This
implies that si > ŝi

+ − (ρ − ε)/yi = s̃i(ρ − ε), i.e., that each component of s is larger than the corresponding
component of s̃(ρ − ε). By the definition of ρ, we have I(s̃(ρ − ε)) > 0. Since F (s) is nondecreasing in each
of the si,

I(s) ≥ I(s̃(ρ − ε)) > 0. □

If n = 2, then Lemma 3.11 implies that there exists s♭
2 > 0 such that G− = {s1} × (s♭

2, ∞). This is the
result of Lemma 4.9 in [16]. If n > 2, then we are unable to find such an explicit formulation of G−.

We use the set G− to define
ΩG = {s0 ∈ Ω1 : φ1(s0) ∈ G−}, (22)

the set of points in Ω1 that will flow through G− for some value of x0. Using (13) and Lemma 3.11, we define

Γ−
ρ = {s ∈ Γ− : Vi(s) > −ρ, i = 2, . . . , n}
Ωρ = {s ∈ Ω1 : Vi(s) > −ρ, i = 2, . . . , n},

where ρ is given in Lemma 3.11. It is clear that Γ−
ρ ⊂ G− and Ωρ ⊆ ΩG.

Remark 3.12. The set Γ+
ρ is convex since if p ∈ Γ+

ρ and q ∈ Γ+
ρ , then

Vi(τp + (1 − τ)q) = y1(sin
1 − s1

+) − yi(sin
i − τpi − (1 − τ)qi),

= τy1(sin
1 − s1

+) − τyi(sin
i − pi) + (1 − τ)y1(sin

1 − s1
+) − (1 − τ)yi(sin

i − qi),
= τVi(p) + (1 − τ)Vi(q),
> −τρ − (1 − τ)ρ = −ρ,

for all τ ∈ [0, 1]. In particular, if sk ∈ Γ+
ρ , then

sk+1 = rsin + (1 − r)φ1(sk),
= rsin − (1 − r)y1(rsin

1 − rs1)Y + (1 − r)sk,

= rŝ+ + (1 − r)sk.

Thus, sk+1 is a convex combination of two points in Γ+
ρ , and therefore an element of Γ+

ρ itself. This also
implies that if s ∈ Γ−

ρ , then g(s) ∈ Γ+
ρ .

In general, the set G+ might not be convex unless we impose further restrictions on F , and so it may not
be true for all functions F that if s ∈ G−, then g(s) ∈ G+.
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Lemma 3.13. Assume that sin ∈ Ω1 and µ(r) > 0. Let (s1(t), . . . , sn(t), x(t)) be a solution of system (1)
with x0 > 0 and s0 ∈ Ωρ.

1. If x0 ≤ −I(s0), then there are no impulses.
2. As t → ∞, (s1(t), . . . , sn(t), x(t)) converges to the unique periodic orbit given by Theorem 3.7 if and

only if x0 > −I(s0).

Proof. Suppose x0 ≤ −I(s0) and there is at least one impulse. By Eq. (9) and the definition of I(s0),

u1(s0, x0) = x0 + I(s0) ≤ 0.

This implies that x(t) = 0 for some finite value of t, contradicting the uniqueness of initial values problems
to ODEs.

If x0 > −I(s0), then by Eq. (9) and the definition of I(s0), at least one impulse occurs. Let t = t−
1

be the time of the first impulse. Since s0 ∈ Ωρ, we have s(t−
1 ) = φ1(s0) ∈ Γ−

ρ . It follows that s1 =
rsin+(1−r)φ1(s0) ∈ Γ+

ρ and thus that I(s1) > 0. Therefore, there is a second impulse at t = t−
2 . Inductively,

it follows that impulses occur indefinitely. By Corollary 3.2, limk→∞ ∥V(φν(sk))∥∞ = 0 for all ν ∈ [0, 1],
and therefore sk → ŝ+ as t → ∞. By (9) and the relationship I(ŝ+) = µ(r),

lim
k→∞

(u1(sk, xk) − u0(sk, xk)) = µ(r).

On the other hand, the impulse map in Eq. (1b) gives

lim
k→∞

(u0(sk+1, xk+1) − (1 − r)u1(sk, xk)) = 0.

Combining these, and using the fact that u0(sk, xk) = xk, leads to

lim
k→∞

(xk+1 − (1 − r)xk) = (1 − r)µ(r). (23)

This implies that limk→∞ xk = 1−r
r µ(r) and limk→∞ u1(sk, uk) = 1

r µ(r). □

Corollary 3.14. If sin ∈ Ω1 and µ(r) > 0, then all solutions to (1) with x0 > 0 and s0 = sin converge to
the periodic orbit given in Theorem 3.7.

Proof. Since s0 = sin, I(s0) > µ(r) > 0, and so x0 > 0 > −I(s0). □

For each s0 ∈ Ω1 let N0 = N0(s0) be the smallest positive integer such that sN0 ∈ G+. Clearly, if s0 ∈ ΩG,
we have N0(s0) = 1.

In general, we are unable to get an exact characterization of ΩG in terms of V(s0). However, we can
approximate N0 using Ωρ. Let Nρ be the smallest positive integer such that sNρ ∈ Ωρ. By applying
Lemma 3.1 repeatedly,

Vi(sk) = (1 − r)kVi(s0). (24)
The condition that s0 ∈ Ω1 \ Ωρ is equivalent to Vi(s0) ≤ −ρ for at least one of i = 2, . . . , n. By applying
this to Eq. (24) and solving for k,

Nρ = max
{⌈

ln(Vi(s0)/ − ρ)
− ln(1 − r)

⌉
: Vi(s0) ≤ −ρ

}
, (25)

where ⌈x⌉ is least integer greater than x. By Lemma 3.1 and since Ωρ ⊂ ΩG, N0 ≤ Nρ. From (25), we see
that Nρ has the upper bound

N = max
{⌈

ln(V i/ − ρ)
− ln(1 − r)

⌉
: i = 2, . . . , n

}
,

and so N0 ≤ N ; i.e., every trajectory enters ΩG after finitely many impulses, or the reactor fails before
then.
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For any solution to (1) with x0 > 0 and s0 ∈ Ω1, if there exists t−
1 with s1(t−

1 ) = s1,

x(t−
1 ) = u1(s0, x0) = x0 + I(s0),

and, for any k = 2, 3, . . ., the value of x(t−
k ) is given by

x(t−
k ) = xk + I(sk).

Inductively,

x(t−
k ) = (1 − r)k−1x0 +

k∑
j=1

(1 − r)k−jI((g ◦ φ1)j−1(s0)),

and therefore, x(t−
k ) > 0 is equivalent to

x0 > −
k∑

j=1
(1 − r)1−jI((g ◦ φ1)j−1(s0)).

We define X(s0) to be the minimum value of x0 required for s(t−
∗ ) ∈ Γ−

ρ for some t−
∗ ,

X(s0) = − min
1≤k≤Nρ

⎛⎝ k∑
j=1

(1 − r)1−jI((g ◦ φ1)j−1(s0))

⎞⎠ . (26)

In particular, if s0 ∈ Ωρ, then X(s0) = −I(s0), since Nρ = 1.

Proposition 3.15. Assume sin ∈ Ω1 and µ(r) > 0. Let (s1(t), . . . , sn(t), x(t)) be a solution of (2) with
s0 ∈ Ω1 and x0 > 0.

(i) If x0 ≤ X(s0), then there are at most Nρ − 1 impulses.
(ii) If x0 > X(s0), then the solutions converge to the periodic orbit given in Theorem 3.7.

Proof. (i) Suppose x0 ≤ X(s0) and there are at least Nρ impulses. Denote the first Nρ impulse times by
t1 < t2 < · · · < tNρ . By Eq. (9) and the definition of X(s0),

x(t−
k ) = u1(sk−1, xk−1) = (1 − r)k−1(x0 − X(s0)) ≤ 0,

for some k < Nρ, which contradicts Corollary 2.3.
(ii) If x0 > X(s0), then the solution has at least Nρ impulses. Then sNρ = (g ◦ φ1)Nρ(s0) ∈ Ωρ. Since

sNρ ∈ Γ+
ρ , we have I(sNρ) > 0, and the result follows from Lemma 3.13. □

Example 3.16. Consider (1) with n = 3,

F (s) = min
{

0.5s1

1 + s1
,

0.7s2

0.4 + s2
,

s3

1 + s3

}
,

and r = 0.3, Y = (2.0, 0.2, 1.0)T , s1 = 0.25, D = 0.1 and sin = (0.5, 0.1, 0.5).
By definition, V2 = −0.375, and V3 = −0.375. Therefore, V2 = V3 = max{V2, V3}. We are free to

project solutions onto either the s1–s2 plane, or the s1–s3. Notice sin ∈ Ω1 and µ(r) ≈ 0.0037 > 0.
By Theorem 3.7 there exists a periodic solution. With the initial conditions s0 = (0.3, 0.01, 1)T , we have
V (s0) = (0, −0.35, 0.6)T , and so s0 ∈ Ω1. We calculate the sum in (26) for n = 1, . . . , N0 where N0 is the
first integer such that (1 − r)1−nI(sn−1) > 0. The approximate values are as follows:
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Fig. 5. The dynamics of Example 3.16 illustrated by projecting orbits onto s1–s2 space, with the line through sin shown in dotted
red on the left. Solutions of s2 and x as functions of time are shown on the right. On the top, x0 < X(s0) and so x(t) → 0 as t → ∞
after at most N0 = 4 impulses. On the bottom x0 > X(s0) and so solutions converge to the periodic solution.

n 1 2 3 4 5 6
(1 − r)1−nI(sn−1) −0.1766 −0.0575 −0.330 −0.206 −0.0104 0.0007

We therefore calculate X(s0) ≈ 0.1766 + 0.0575 + 0.330 + 0.206 + 0.0104 = 0.2981. In Fig. 5 (top) the initial
biomass concentration is x0 = 0.29 < X(s0) and so by Proposition 3.15, x(t) → 0 after at most 4 impulses.
In Fig. 5 (bottom) the initial biomass concentration is x0 = 0.31 > X(s0), and so by Proposition 3.15, the
solution converges to the periodic solution as t → ∞.

The following theorem summarizes the results.

Theorem 3.17. Let (s1(t), . . . , sn(t), x(t)) be a solution of (1) with positive initial conditions.

(i) If sin ∈ Ω0, then (s1(t), . . . , sn(t), x(t)) has only finitely many impulses, and x(t) → 0 as t → ∞.
(ii) If sin ∈ Ω1 and µ(r) ≤ 0, then (s1(t), . . . , sn(t), x(t)) either has only finitely many impulses and x(t) → 0

as t → ∞ or the time between impulses tends to infinity and lim inft→∞ x(t) = 0.
(iii) If sin ∈ Ω1 and µ(r) > 0, then there is a unique periodic orbit. Either (s1(t), . . . , sn(t), x(t)) has

infinitely many impulses and converges to the periodic orbit or (s1(t), . . . , sn(t), x(t)) has only finitely
many impulses and x(t) → 0 as t → ∞. The case with infinitely many impulses occurs if and only if

s0 ∈ Ω1, and x0 > X(s0).

Proof. The results follow from Lemmas 3.3 and 3.4, Theorem 3.7, and Propositions 3.9 and 3.15. □

4. Conclusions

We have modelled the self-cycling-fermentation process assuming that there are an arbitrary number
of essential resources, s ∈ Rn, that are growth limiting for a population of microorganisms, x, using a
system of impulsive differential equations. We assume that the criterion for decanting the reactor occurs
when the concentration of the first nutrient reaches a threshold, s1. The process is considered successful if,
once initiated, it proceeds indefinitely without intervention.

By solving the associated system of ODEs in terms of the first nutrient, s1, we have shown that the
solutions, when projected onto the nutrient hyperplane, are lines in the direction of (1/y1, . . . , 1/yn)T , where
yi is the yield coefficient of the ith nutrient. Using a vector Lyapunov function, we divide the nutrient
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hyperplane into two regions, Ω0 and Ω1. The model predicts that if the initial nutrient concentrations lie in
Ω0 then solutions will approach the faces of Rn

+ before s1 reaches s1, and the reactor will fail. If the initial
nutrient concentrations lie in Ω1, then the concentration of s1 may reach s1, but successful operation of the
reactor may still be limited by other factors.

In reality, we expect that the initial nutrient concentrations are equal to the nutrient concentrations in
the input; i.e. s(0) = sin. If, for any solution with initial nutrient concentration sin and positive initial
biomass concentration (x(0) > 0), the threshold concentration of s1 is reached with net positive growth of
the biomass, then we can pick a fraction of medium to remove, r, so that the reactor will cycle indefinitely.
In this case, the solutions converge to a periodic solution, with period equal to the length of one cycle.

If the model has a periodic solution, the nutrient components of the periodic solution lie along the line
through sin in the direction of (1/y1, . . . , 1/yn)T . The net change in biomass along the periodic orbit, denoted
µ(r), must be positive. For other initial nutrient concentrations in Ω1, the solutions may converge to the
periodic solution. However, there is a minimum concentration of biomass, X, that is dependent on the
initial nutrient concentrations, required for the successful operation of the reactor. If the initial biomass
concentration is higher than X, then the reactor will cycle indefinitely and solutions will approach the
periodic solution. If the initial biomass concentrations are less than X, then the reactor will fail after a
finite number of cycles. If the model does not have a periodic solution, then the reactor will either fail after
a finite number of cycles or it will cycle indefinitely, but the time each cycle takes will grow larger and larger,
approaching infinity.

The model presented here can be thought of as an extension of the single resource model developed in
Smith and Wolkowicz [12]. In that model, it was shown that, when a periodic orbit exists, the reactor will
either cycle indefinitely or the reactor will fail without reaching the threshold concentration of s1. We have
shown that if there are more essential limiting nutrients but only one is used for the decanting criteria, then
the reactor may fail after many cycles, even if the system has a periodic solution. An example of failure after
4 cycles is shown in Fig. 5. This may offer an explanation for failure of the reactor when the analysis of the
single resource model suggests the reactor should operate successfully.
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