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A B S T R A C T

One mode by which infection-derived immunity fails is when recovery leads to a reduced but nonzero risk of
reinfection. This type of partial protection is called leaky immunity with the degree of leakiness quantified
by the relative probability a previously infected individual will get infected upon exposure compared to a
naively susceptible individual. Previous authors have defined the reinfection threshold, which occurs when
the basic reproduction number equals the inverse of the leakiness, however, there has been some debate
about whether or not this is a real threshold. Here we show how the reinfection threshold relates to two
important occurrences: (1) the point at which the endemic equilibrium changes from being a stable spiral to
a stable node, and (2) the point at which the rate of change of the prevalence increases the most relative
to leakiness. When the recovery period is short relative to the average lifetime then both occurrences are
close to the reinfection threshold. We show how these results are related to the reinfection threshold found
in other models of imperfect immunity. To further demonstrate the significance of this threshold in modeling,
we conducted a simulation study to evaluate some of the consequences the reinfection threshold might have
in parameter estimation and modeling. Using specific parameter values chosen to reflect an acute infection,
we found that the basic reproduction number values larger than that of the reinfection threshold value were
less identifiable than those below the threshold.
1. Introduction

The emergence and reemergence of infectious diseases such as Zika,
COVID-19, monkeypox, and polio has led to growing interest in the
different types of natural immunity that develop following an infec-
tion. For some diseases like measles [1] and smallpox [2], infection-
derived immunity is assumed to be perfect and lifelong, allowing the
dynamics to be modeled using the classical Susceptible–Infectious–
Recovered/Removed (SIR) model. For other diseases like gonorrhea
and meningitis [3], immunity is assumed to be nonexistent, and these
systems can be modeled using the Susceptible–Infectious–Susceptible
(SIS) model. Between the SIR and SIS models are many different modes
by which natural immunity can provide imperfect protection, with each
mode having a continuum of degrees of protectiveness [4]. Here we
take a closer look at leaky partial protection quantified by a constant
ratio (called the ‘‘leakiness’’ and denoted by 𝜖) for the probability a
previously infected individual will get infected upon exposure relative
to a naively susceptible individual. We always assume that 𝜖 is between
zero and one, with 𝜖 = 0 corresponding to the SIR model and 𝜖 = 1
corresponding to the SIS model.

A key concept in mathematical epidemiology is the basic reproduc-
tion number 𝑅0 and its role as a threshold quantity. It is well-known
that for a general family of compartmental disease models when 𝑅0 > 1
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we can expect a disease outbreak to occur [5,6]. For such models, this
is a transcritical bifurcation point at which stability switches from the
disease-free equilibrium to the endemic equilibrium. Gomes et al. [7]
introduced a new threshold condition for a SIR model modified to
have leaky immunity. They named this the reinfection threshold which
occurs when the basic reproduction number is equal to 𝑅0,𝜖 =

1
𝜖 . They

found that if vaccination generates the same level of leaky immunity
as natural infection then the disease is controllable (by vaccinating the
whole population) when 𝑅0 < 𝑅0,𝜖 . In this case 𝑅0 = 𝑅0,𝜖 is associated
with a transcritical bifurcation point. For the case with no vaccination,
Gomes et al. [7] pointed out that the disease prevalence at the endemic
equilibrium increases rapidly past the reinfection threshold. However,
in this case, there is no bifurcation point, which led to a response letter
by Breban and Blower [8] arguing against the proposed reinfection
threshold. This response pointed out that the endemic equilibrium is
globally stable if 𝑅0 > 1 so that the only threshold phenomenon
(which they define as the existence of a critical value at which there
is a qualitative change in the dynamics of a system) that occurs is a
transition from stable node to a stable spiral, and this transition point
does not coincide with 𝑅0,𝜖 . In response, Gomes et al. [9] clarified
that while the bifurcation at the proposed threshold only occurs for
the model with full vaccination, in the model without vaccination the
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level of prevalence increases by orders of magnitude upon crossing the
threshold, at least for their chosen parameter values.

The significance of the reinfection threshold in other models has
also been further established. Stollenwerk et al. [10] considered a
stochastic spatial disease model and showed that the reinfection thresh-
old is associated with a critical threshold in the disease spread behavior
(from annular to compact growth) in the limit when waning tends to
zero. Martins et al. [11] extended the reinfection threshold to define
the maximum curvature reinfection threshold which applies to systems
with both leaky and waning immunity but no births or deaths. They
showed that in the limit with no waning, this maximum curvature
reinfection threshold coincides with the original reinfection threshold.
Finally, Pagliara et al. [12] showed that the reinfection threshold is
associated with a real dynamical regime change in the case with no
waning and no births or deaths. We discuss the results of these papers
further in Section 5.

The paper is organized as follows: In Section 2 we revisit the rein-
fection threshold from the original leaky model with no vaccination.
In Section 3 we show that for all degrees of leakiness 𝜖 ∈ [0, 1], the
endemic equilibrium starts off as a stable node after crossing 𝑅0 = 1.
In the case of the SIS model (𝜖 = 1) the equilibrium remains a stable
node for all values of 𝑅0 > 1. In the case of the SIR model (𝜖 = 0) the
equilibrium becomes a stable spiral for an interval of 𝑅0 values before
returning to a stable node. For a leaky model with fixed 𝜖 ∈ (0, 1), we
also show that the behavior is similar to the SIR model with a smaller
interval over which the equilibrium is a spiral. We present a way to
compute the point at which the endemic equilibrium changes back from
a stable spiral to a stable node, and show that this can be approximated
by the reinfection threshold when the recovery period from the disease
is short relative to the lifetime of individuals in the population. On the
other hand, in Section 4, we show that, again under the condition that
the recovery period is short relative to lifetimes, the maximum rate
of change in the prevalence of the disease relative to leakiness occurs
close to the reinfection threshold. In Section 5 the connections between
these analytic results and those of Stollenwerk et al. [10] and Martins
et al. [11] are discussed. In Section 6 we considered a stochastic version
of the leaky model (details available in uploaded code) and performed
a simulation study to explore consequences of the reinfection threshold
in practice. We show that using our default parameter values, the basic
reproduction number values can be estimated more precisely when
their values are lower than the value associated with the reinfection
threshold.

2. The leaky model

Here we begin with a review of a simple SIR model with leaky
infection-derived immunity. Some of the discussion and results are
presented in the supplementary material. The numbering of sections
and lemmas from the supplementary material are prefixed by an S.

We consider a modified compartmental SIR model with leaky
infection-derived immunity given by the following system of equations,
𝑑𝑆
𝑑𝑡

= 𝜇 − 𝛽𝑆𝐼 − 𝜇𝑆, (1)
𝑑𝐼
𝑑𝑡

= 𝛽𝑆𝐼 + 𝜖𝛽𝑅𝐼 − 𝛾𝐼 − 𝜇𝐼, (2)
𝑑𝑅
𝑑𝑡

= 𝛾𝐼 − 𝜖𝛽𝑅𝐼 − 𝜇𝑅. (3)

Here 𝑆, 𝐼 and 𝑅 are the proportions of the population that are naively
susceptible, infectious and recovered from the disease respectively. The
parameter 𝜇 is the per capita birth and death rate, 𝛽 is the transmission
rate, 𝛾 is the recovery rate from the disease and 𝜖 is the leakiness
parameter. If 𝜖 = 1 we obtain the SIS model (nonexistent immunity)
and if 𝜖 = 0 we obtain the SIR model (perfect and lifelong immunity).
The model parameters as well as their default values used for plots are

given in Table 1. The model is illustrated in Fig. 1. B

2

Fig. 1. The leaky model.

Table 1
Model parameters.

Symbol Description Range Default value

𝜇 Birth and death rate (0,∞) 1
70

yr−1

𝛾 Recovery rate (0,∞) 365
8

yr−1

𝛽 Transmission rate (0,∞) Varies
𝜖 Leakiness [0, 1] 0.25

Table 2
Non-dimensional quantities obtained from model parameters.

Symbol Description Formula Range

𝑅0 Basic reproduction number 𝛽
𝛾+𝜇

(0,∞)
𝑞 Probability of recovery 𝛾

𝛾+𝜇
(0, 1)

The set  = {(𝑆, 𝐼, 𝑅) ∶ 𝑆+𝐼+𝑅 = 1, 𝑆 ≥ 0, 𝐼 ≥ 0, 𝑅 ≥ 0} is invariant
ith respect to (1)–(3). When constrained to this set, the system of
quations can be simplified using 𝑅 = 1 − 𝑆 − 𝐼 to,

𝑑𝑆
𝑑𝑡

= 𝜇 − 𝛽𝑆𝐼 − 𝜇𝑆, (4)
𝑑𝐼
𝑑𝑡

= 𝛽(𝑆 + 𝜖(1 − 𝑆 − 𝐼))𝐼 − 𝛾𝐼 − 𝜇𝐼. (5)

This can be transformed to the modified SIR system studied in [7] by
scaling by the infectious period (see Section S1).

The basic reproduction number associated with the leaky model,
computed using the next-generation matrix method [5,13], is 𝑅0 =

𝛽
𝛾+𝜇 .

This is the same as the reproduction number for the SIR and SIS models,
and is unaffected by the leakiness parameter 𝜖. Following [4], we also
define the probability of recovery 𝑞 = 𝛾

𝛾+𝜇 . These non-dimensional
arameters are listed in Table 2. It is convenient to use 𝑅0 and 𝑞 in
lace of 𝛽 and 𝛾 for many of the longer expressions that we derive for
his model. In this paper we assume that 𝜇 > 0 is fixed and consider
arious dynamics of the model for 𝑞 ∈ (0, 1), 𝜖 ∈ [0, 1] and 𝑅0 > 0, with
focus on 𝑅0 > 1.

The system (4)–(5) has two equilibria: a disease-free equilibrium,
𝑆, 𝐼) = (1, 0), and an endemic equilibrium, (𝑆∗, 𝐼∗) =

(

𝜇
𝜇+𝜆∗ ,

𝜆∗

𝛽

)

where
𝜆∗ is the endemic equilibrium value of the force of infection 𝜆 = 𝛽𝐼 and
is given (in terms of 𝜇, 𝑞, 𝜖 and 𝑅0) by,

𝜆∗ =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜇(𝑅0 − 1), if 𝜖 = 0,

𝜇
𝜖(𝑅0 + 𝑞 − 1) − 1 +

√

(𝜖(𝑅0 + 𝑞 − 1) − 1)2 + 4(1 − 𝑞)𝜖(𝑅0 − 1)
2(1 − 𝑞)𝜖

, if 𝜖 ∈ (0, 1),
𝜇(𝑅0−1)
1−𝑞

, if 𝜖 = 1.

(6)

his expression for 𝜆∗ is continuous in 𝜖 on the closed interval [0, 1]. It
oincides with the disease-free equilibrium at 𝑅0 = 1 and is biologically
easible with 𝐼∗ > 0 if 𝑅0 > 1.

Next, we present the definition of the reinfection threshold which
e revisit in this paper. This threshold was first introduced by Gomes
t al. [7], and was the subject of back-and-forth discussion between
reban and Blower [8] and Gomes et al. [9]. Since we vary both 𝑅 and
0
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Fig. 2. The infected class component of equilibria versus the basic reproduction number 𝑅0. In (a), stable equilibria are denoted by solid lines and unstable are denoted by dashed
lines.
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𝜖 in this paper, we specifically define both the reinfection threshold ba-
sic reproduction number value and the reinfection threshold leakiness
value.

Definition 2.1 (Reinfection Threshold). As defined by Gomes et al. [7],
he reinfection threshold of a leaky model occurs when 𝑅0 = 1

𝜖 . If the
leakiness 𝜖 ∈ (0, 1] is fixed then the reinfection threshold basic repro-
duction number value is denoted by 𝑅0,𝜖 =

1
𝜖 . If the basic reproduction

umber value 𝑅0 > 1 is fixed then the reinfection threshold leakiness
alue is 1

𝑅0
.

. Spiral to node transition

It is easy to show that if 0 < 𝑅0 < 1 the disease-free equilibrium
s globally asymptotically stable for initial conditions in . If 𝑅0 > 1
he disease-free equilibrium is unstable and the endemic equilibrium
s globally asymptotically stable for initial conditions in  with 𝐼 > 0
refer to Section S2 in the supplementary file). Bifurcation diagrams
or different values of leakiness are shown in Fig. 2. The transcriti-
al bifurcation where the disease-free and endemic equilibria change
tability is a feature of standard extensions of the SIR models. We are
nterested in qualitative changes in the dynamics of a leaky model past
0 = 1. In Fig. 2(b) we see the behavior indicated by Gomes et al. [7]
here the endemic equilibrium increases by orders of magnitude as 𝑅0

s increased past its reinfection threshold value of 𝑅0,𝜖 =
1
𝜖 .

From (6), we see that the endemic equilibrium values of the force of
nfection and individual compartments vary with leakiness. However,
s in [14], we can define an effective susceptible population given by
eff = 𝑆 + 𝜖𝑅 = 𝑆 + 𝜖(1 − 𝑆 − 𝐼). This takes into account the fact that

individuals in the 𝑅 class are still partially susceptible to infection. We
see that 𝑆∗

eff, the endemic equilibrium value of 𝑆eff, is conserved for
different values of 𝜖. This is useful later on when we try to determine
the dynamical behavior of solutions close to endemic equilibrium.

Theorem 3.1. For any 𝜖 ∈ [0, 1], at the endemic equilibrium (𝑆∗, 𝐼∗),

𝑆∗
eff = 𝑆∗ + 𝜖(1 − 𝑆∗ − 𝐼∗) = 1

𝑅0
.

roof. Using (𝑆, 𝐼, 𝑅) = (𝑆∗, 𝐼∗, 𝑅∗) in (2) in the original system, we
erive 𝛽𝑆∗𝐼∗ + 𝜖𝛽𝑅∗𝐼∗ − 𝛾𝐼∗ −𝜇𝐼∗ = 0. For 𝐼∗ ≠ 0, solving for 𝑆∗ + 𝜖𝑅∗

yields 𝑆∗ = 𝑆∗ + 𝜖𝑅∗ = 𝛾+𝜇 = 1 . □
eff 𝛽 𝑅0

3

While the equilibrium value of 𝑆eff is the same for all values of 𝜖,
the way this equilibrium value is approached varies depending on the
eigenvalues of its Jacobian evaluated at the equilibrium [15,16]. For
𝑅0 > 1, as we already discussed, the endemic equilibrium is stable
o both eigenvalues must have negative real parts. If the eigenvalues
orm a complex conjugate pair with a negative real part among the
igenvalues then the equilibrium is a spiral and solutions approach
he equilibrium via damped oscillations. Otherwise, both eigenvalues
ust be negative real numbers and the equilibrium is a stable node.

n Fig. 3(a), we see that for 𝑅0 = 3 the leaky model with 𝜖 =
0.25 approaches equilibrium via decaying oscillations, similar to the
corresponding SIR model. In Fig. 3(b) we see that for 𝑅0 = 5 the
eaky model with 𝜖 = 0.25 approaches equilibrium without oscillations,
imilar to the corresponding SIS model. Figs. 3(a) and 3(b) compare
he dynamics of the leaky model with 𝜖 = 0.25 before and after its
einfection threshold of 𝑅0,0.25 = 4.

In Fig. 4, we compare the real and imaginary parts of the eigenval-
es of the two-dimensional Jacobian matrix of (4)–(5) at the endemic
quilibrium of the leaky model with 𝜖 = 0.25 to the SIR and SIS models.
he SIS model always has a pair of two negative real eigenvalues. For
he range of 𝑅0 values used in Fig. 4, the SIR model has a complex
onjugate pair of eigenvalues. The form of the eigenvalues of the leaky
odel also depends on the value of 𝑅0. After crossing 𝑅0 = 1 both of its

eigenvalues are real and negative, but soon enough these eigenvalues
form a complex conjugate pair. The imaginary parts disappear for later
values of 𝑅0. We observe that the point at which the imaginary parts
disappear is very close to the reinfection threshold of 𝑅0,𝜖 = 1

𝜖 but,
as noted by Breban and Blower [8], is not the same as the reinfection
threshold.

The next results involve characterizing the dynamics of the models
for all values of 𝑅0 > 1. This involves Definition 3.2 and Theorem 3.3.
n all of our results, we assume a fixed value of the birth/death rate
> 0 while we consider changing 𝑅0, 𝑞 and 𝜖.

Definition 3.2. We define the following cubic polynomial in 𝜆,

𝑞,𝜖(𝜆) = (1 − 𝑞)
(

(1 − 𝜖)𝜆 + 𝜇
)2(𝜖𝜆 + 𝜇) − 4(1 − 𝜖)𝜇𝜆((1 − 𝑞)𝜖𝜆 + 𝜇). (7)

f 𝜖 ∈ (0, 1), by Lemma S5.2 this function has three distinct real roots
0(𝑞, 𝜖), 𝜆1(𝑞, 𝜖) and 𝜆2(𝑞, 𝜖) that continuously depend on 𝑞 ∈ (0, 1) and

𝜖 ∈ (0, 1) with the property that 𝜆0(𝑞, 𝜖) < 0 < 𝜆1(𝑞, 𝜖) < 𝜆2(𝑞, 𝜖). By
Lemma S2.1, we can also define  and  ∈ 𝐶((0, 1)2, (1,∞)) given by
1 2
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Fig. 3. Effective susceptible population versus time using initial conditions 𝑆(0) = 0.9, 𝐼(0) = 0.1 and 𝑅(0) = 0. For 𝑅0 > 1, the effective susceptible population has the same
ndemic equilibrium value of 1

𝑅0
regardless of the value of 𝜖. The transient dynamics depend on the values of 𝑅0 and 𝜖.
Fig. 4. The real part of the eigenvalues is always negative for 𝑅0 > 1. The imaginary part is zero for the 𝜖 = 1 (SIS) case. Whether the eigenvalues are purely real or form a
complex conjugate pair depends on the parameter values (refer to Theorem 3.3).
𝑗 (𝑞, 𝜖) = 𝑞,𝜖(𝜆𝑗 (𝑞, 𝜖)) for 𝑗 = 1, 2, where 𝑞,𝜖 ∈ 𝐶([0,∞), [1,∞)) is the
increasing function given by,

𝑞,𝜖(𝜆) =
(𝜆 + 𝜇)((1 − 𝑞)𝜖𝜆 + 𝜇)

𝜇(𝜖𝜆 + 𝜇)
. (8)

An exact formula for the three real roots of 𝑍𝑞,𝜖(𝜆) is provided in
Lemma S5.3. In practice, it is easier to use a numerical root-solver to
find these roots than to apply the formula. The exact formula however
becomes useful when we look for the limits as 𝑞 approaches one, which
we will see in a later theorem. The next theorem shows that 𝑗 (𝑞, 𝜖) for
𝑗 = 1, 2 provide the endpoints of the interval over which a leaky model
with 𝜖 ∈ (0, 1) is a stable spiral.

Theorem 3.3. The following statements hold:

1. The endemic equilibrium of the SIS model (𝜖 = 1) is a stable node
for all 𝑅0 > 1;

2. The endemic equilibrium of the SIR model (𝜖 = 0) is a stable spiral
for 𝑅0 ∈

(

2
1+

√

𝑞
, 2
1−

√

𝑞

)

⊂ (1,∞). It is a stable node for all other
values of 𝑅0 > 1;

3. The endemic equilibrium of the leaky model with 𝜖 ∈ (0, 1) is a stable
spiral for 𝑅 ∈ ( (𝑞, 𝜖), (𝑞, 𝜖)) ⊂ (1,∞) where  and  are
0 1 2 1 2

4

the functions given in Definition 3.2. It is a stable node for all other
values of 𝑅0 > 1.

To prove Theorem 3.3 we first find the Jacobian matrix associated
with (4)–(5) evaluated at the endemic equilibrium (𝑆∗, 𝐼∗),

𝐽 (𝑆∗, 𝐼∗) =

[

−𝜆∗ − 𝜇 − 𝜇2𝑅0
(1−𝑞)(𝜆∗+𝜇)

(1 − 𝜖)𝜆∗ −𝜖𝜆∗

]

. (9)

This can be derived using Theorem 3.1. Refer to Section S3 in the
supplementary file for details. We already know that the eigenvalues of
the Jacobian all have negative real parts for 𝑅0 > 1 [5,6]. Here we are
just looking for when the eigenvalues form a complex conjugate pair.

Proof of 1. Setting 𝜖 = 1 and 𝜆∗ = 𝜇(𝑅0−1)
1−𝑞 simplifies the Jacobian so

that it is easy to see that the eigenvalues are − 𝜇(𝑅0−𝑞)
1−𝑞 and − 𝜇(𝑅0−1)

1−𝑞 . This
shows that for all 𝑅0 > 1 the endemic equilibrium is a stable node. □

Proof of 2. Setting 𝜖 = 0 and 𝜆∗ = 𝜇(𝑅0 − 1) in (9) and solving for the
discriminant 𝛥 = Tr(𝐽 )2 − 4Det(𝐽 ) yields,

𝛥 = 𝜇2
(

𝑅2 −
4(𝑅0 − 1)

)

. (10)
0 1 − 𝑞
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The graph of 𝛥 as a function of 𝑅0 is a concave up parabola with roots
t 𝑅0 =

2
1±

√

𝑞
. Thus, the endemic equilibrium of the SIR model is stable

ode everywhere except for the interval over which this parabola is
egative which is given by

(

2
1+

√

𝑞
, 2
1−

√

𝑞

)

. On this interval, it is a stable
piral. □

roof of 3. In this case, it is convenient to find the discriminant 𝛥 in
terms of 𝜆∗ instead of 𝑅0. From Lemma S2.1 we can set 𝑅0 = 𝑞,𝜖(𝜆∗) in
(9). Solving for the discriminant 𝛥 = Tr(𝐽 )2 − 4Det(𝐽 ) and simplifying,
yields 𝛥 =

(

(1 − 𝜖)𝜆∗ + 𝜇
)2 − 4(1−𝜖)𝜇𝜆∗((1−𝑞)𝜖𝜆∗+𝜇)

(1−𝑞)(𝜖𝜆∗+𝜇) . This has the same sign

as 𝑍𝑞,𝜖(𝜆∗) for all 𝜆∗ > 0 (refer to Section S4 for details). In particular,
𝑞,𝜖(𝜆∗) and 𝛥 have the same signs for all 𝜆∗ ≥ 0.

From Definition 3.2, we know that there are three distinct roots of
𝑞,𝜖(𝜆), given by 𝜆 = 𝜆𝑖(𝑞, 𝜖), 𝑖 = 0, 1, 2, where 𝜆0(𝑞, 𝜖) < 0 < 𝜆1(𝑞, 𝜖) <

𝜆2(𝑞, 𝜖). Since 𝑍𝑞,𝜖(𝜆) has a positive leading order term, for non-negative
values of 𝜆, 𝑍𝑞,𝜖(𝜆) is only negative in the interval (𝜆1(𝑞, 𝜖), 𝜆2(𝑞, 𝜖)). This
interval maps to (1(𝑞, 𝜖),2(𝑞, 𝜖)) using the function 𝑞,𝜖(𝜆). □

Remark 3.4. For the SIR model, we can see that when 𝑞 is close to
one, the left endpoint is very close to 𝑅0 = 1 while the right endpoint is
very large. In this case, for most reasonable 𝑅0 > 1 values the endemic
equilibrium of the SIR model is a stable spiral and that of the SIS model
is a stable node. Thus, for 𝑞 close to one, when the value of 𝑅0 crosses
the reinfection threshold we can think of the behavior of the dynamics
transitioning suddenly from SIR-like to SIS-like behavior.

Definition 3.2 and Theorem 3.3 allow us to compute the exact
interval over which the complex conjugate pair of eigenvalues to
the Jacobian exist for a leaky model with 𝜖 ∈ (0, 1). The next two
theorems provide some intuition on the interval and how it relates
to the reinfection threshold. In Theorem 3.5 we provide some bounds
on the endpoints of the interval. In Theorem 3.6 we show that the
left endpoint approaches one and the right endpoint approaches the
reinfection threshold reproduction number value when the recovery
rate from the disease is assumed to be much faster than the expected
individual lifetime.

Theorem 3.5. Let 𝑞 ∈ (0, 1) and 𝜖 ∈ (0, 1). Then 1(𝑞, 𝜖), the left endpoint
of the 𝑅0-interval over which the leaky model is a spiral, has the following
bounds,

𝑞,𝜖

(

𝜇(1 − 𝑞)
4(1 − 𝜖)

)

< 1(𝑞, 𝜖) < 𝑞,𝜖

(

𝜇(1 − 𝑞)(6 − 5𝜖 − 𝑞(2 − 𝜖))
16(1 − 𝜖)2

)

. (11)

Proof. This follows from Lemma S5.2 and Lemma S2.1. □

The next theorem shows that in the limit when 𝑞 → 1−, 1(𝑞, 𝜖)
approaches one and 2(𝑞, 𝜖) approaches the 𝑅0,𝜖 = 1

𝜖 , the reinfection
hreshold value of the basic reproduction number (see also Fig. 5).

heorem 3.6. Let 𝜖 ∈ (0, 1). The following statements hold:

1. lim𝑞→1− 1(𝑞, 𝜖) = 1;
2. lim𝑞→1− 2(𝑞, 𝜖) =

1
𝜖 .

Proof of Part 1. This follows from Theorem 3.5 part 1, the continuity
of 𝑞,𝜖(𝜆) and the squeeze theorem on the limit as 𝑞 → 1−. □

Proof of Part 2. From Lemma S5.3 we have that for 𝑞 close enough
to 1 (from below),

𝜆2(𝑞, 𝜖) = 𝓁0(𝑞, 𝜖) =
1

3𝜖(1 − 𝜖)

[

2
( 𝜌
1 − 𝑞

)1∕3
cos

( 𝜃
3

)

+ 3𝜖 − 1
]

𝜇, (12)

here 𝜌(𝑞, 𝜖) = |𝜁 (𝑞, 𝜖)|, 𝜃(𝑞, 𝜖) = atan2(Im(𝜁 (𝑞, 𝜖)),Re(𝜁 (𝑞, 𝜖))),

𝜁 (𝑞, 𝜖) = 18𝑞𝜖(1 − 𝜖)(3𝜖 − 1) + 𝑞 − 1 − 6𝜖
√

𝛼(𝑞, 𝜖)𝑖, where 𝑖 =
√

−1,
5

𝛼(𝑞, 𝜖) = 3𝑞(1 − 𝜖)
[ 16𝜖(1 − 𝜖)2

1 − 𝑞
+ (1 − 𝜖)(5𝜖2 − 14𝜖 + 1)

− (1 − 𝑞)𝜖(11𝜖2 − 13𝜖 + 1)
]

.

We note that 𝛼 ∈ 𝑂((1 − 𝑞)−1) which means 𝜁 ∈ 𝑂((1 − 𝑞)−1∕2), 𝜌 ∈
((1 − 𝑞)−1∕2) and 𝜆2 ∈ 𝑂((1 − 𝑞)−1∕2). From (8),

lim
→1−

2(𝑞, 𝜖) = lim
𝑞→1−

𝑞,𝜖(𝜆2(𝑞, 𝜖))

= lim
𝑞→1−

(𝜆2(𝑞, 𝜖) + 𝜇)((1 − 𝑞)𝜖𝜆2(𝑞, 𝜖) + 𝜇)
𝜇(𝜖𝜆2(𝑞, 𝜖) + 𝜇)

,

= lim
𝑞→1−

(

1 + 𝜇
𝜆2(𝑞,𝜖)

)

((1 − 𝑞)𝜖𝜆2(𝑞, 𝜖) + 𝜇)

𝜇
(

𝜖 + 𝜇
𝜆2(𝑞,𝜖)

) . (13)

Since 𝜆2 ∈ 𝑂((1−𝑞)−1∕2), we have that lim𝑞→1−
𝜇

𝜆2(𝑞,𝜖)
= 0 and lim𝑞→1− (1−

)𝜖𝜆2(𝑞, 𝜖) = 0. Using this in (13) yields lim𝑞→1− 2(𝑞, 𝜖) =
(1+0)(0+𝜇)
𝜇(𝜖+0) = 1

𝜖
as required. □

4. Maximum rate of change of prevalence with respect to leaki-
ness

Gomes et al. [9] highlighted that the endemic equilibrium value of
the infectious compartment increases rapidly upon crossing the reinfec-
tion threshold. In Fig. 6, we show that the rapid change in the endemic
equilibrium value of the force of infection (which is proportional to
prevalence) does occur when 𝑞 is close to one, however, the change is
ess dramatic when 𝑞 is not as close to one. The point at which the force
f infection is changing most rapidly with respect to 𝜖 is the inflection
oint in the graph of Fig. 6(a).

efinition 4.1. By Lemma S6.1, for any 𝑅0 > 1 and 𝑞 ∈ (0, 1) we can
efine the following 𝐶1([𝜇(𝑅0 − 1), 𝜇(𝑅0−1)

1−𝑞

]

, [0, 1]
)

function given by,

𝑞,𝑅0
(𝜆) =

𝜇(𝜆 + 𝜇) − 𝜇2𝑅0
𝜇𝜆𝑅0 − (1 − 𝑞)𝜆(𝜆 + 𝜇)

(14)

Lemma S6.1 also states that we can define the following 𝐶((0, 1) ×
(1,∞),

[

𝜇(𝑅0 − 1), 𝜇(𝑅0−1)
1−𝑞

]

) function,

�̃�(𝑞, 𝜖) = argmin
𝜆∈
[

𝜇(𝑅0−1),
𝜇(𝑅0−1)

1−𝑞

]

𝑑𝑞,𝑅0
(𝜆)

𝑑𝜆
, (15)

nd the following 𝐶((0, 1) × (1,∞),
[

0, 1
]

) function,

̃(𝑞, 𝑅0) = 𝑞,𝑅0
(�̃�(𝑞, 𝑅0)). (16)

By the definition of �̃�(𝑞, 𝜖), ̃(𝑞, 𝑅0) and the inverse function the-
rem, ̃(𝑞, 𝑅0) is the value of leakiness that corresponds to the largest
ate of increase of the endemic equilibrium force of infection 𝜆∗. This is
llustrated in Fig. 6(a). A plot of ̃(𝑞, 𝑅0) as a function of the probability
f recovery 𝑞 is shown in Fig. 6(b). In the next theorem we prove that
s 𝑞 → 1−, ̃(𝑞, 𝑅0) approaches the reinfection threshold leakiness value
f 1

𝑅0
.

Theorem 4.2. For 𝑞 ∈ (0, 1) and 𝑅0 > 1,

̃(𝑞, 𝜖) =

⎧

⎪

⎨

⎪

⎩

𝜇(𝑅0 − 1), if 𝑞 ∈
[

0, 𝑅0−1
2𝑅0−1

]

,

(𝑥2 − 𝑥𝑦 + 𝑦2)𝑦𝜇, if 𝑞 ∈
(

𝑅0−1
2𝑅0−1

, 1
]

,
(17)

and

̃(𝑞, 𝜖) =
⎧

⎪

⎨

⎪

⎩

0, if 𝑞 ∈
[

0, 𝑅0−1
2𝑅0−1

]

,

𝑞,𝑅0
((𝑥2 − 𝑥𝑦 + 𝑦2)𝑦𝜇), if 𝑞 ∈

(

𝑅0−1
2𝑅0−1

, 1
]

,
(18)

where 𝑥 =
(

𝑅0𝑞
)1∕3

and 𝑦 = (𝑅 − 1)1∕3.
1−𝑞 0
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Fig. 5. Plots of 1(𝑞, 𝜖) and 2(𝑞, 𝜖) over 𝜖 ∈ (0, 1) for different values of 𝑞. We note that lim𝜖→0+ 1(𝑞, 𝜖) =
2

1+
√

𝑞
, lim𝜖→1− 1(𝑞, 𝜖) = ∞, lim𝜖→0+ 2(𝑞, 𝜖) =

2
1−

√

𝑞
, lim𝜖→1− 2(𝑞, 𝜖) = ∞,

onsistent with the properties of the SIR and SIS models given in Theorem 3.3. The reinfection threshold 𝑅0,𝜖 from [7] is also plotted in (b).
Fig. 6. (a) The force of infection of the leaky model at the endemic equilibrium for fixed 𝑅0 = 5 and varying 𝜖. From (6), at 𝜖 = 0 all values are equal to 𝜇(𝑅0 − 1) while at 𝜖 = 1
he values are equal to 𝜇(𝑅0−1)

1−𝑞
. (b) A plot of ̃(𝑞, 𝑅0) versus the probability of reinfection 𝑞. This approaches 1

𝑅0
as 𝑞 → 1−.
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Proof. This follows from the results of Lemma S6.2 and the definition
of 𝑞,𝑅0

(𝜆) in Definition 4.1. □

heorem 4.3. For 𝑅0 > 1,

lim
→1−

̃(𝑞, 𝑅0) =
1
𝑅0

. (19)

Proof. By Theorem 4.2, for 𝑞 close to 1 we have �̃�(𝑞, 𝜖) = (𝑥2−𝑥𝑦+𝑦2)𝑦𝜇,
where 𝑥 =

(

𝑅0𝑞
1−𝑞

)1∕3
and 𝑦 = (𝑅0 − 1)1∕3. Since 𝑥 ∈ 𝑂((1 − 𝑞)−1∕3) then

�̃�(𝑞, 𝜖) ∈ 𝑂((1 − 𝑞)−2∕3) and (1 − 𝑞)(�̃�(𝑞, 𝜖) + 𝜇) ∈ 𝑂((1 − 𝑞)1∕3). Thus,

lim
𝑞→1−

̃(𝑞, 𝑅0) = lim
𝑞→1−

𝑞,𝑅0
(�̃�(𝑞, 𝜖))

= lim
𝑞→1−

𝜇(�̃�(𝑞, 𝜖) + 𝜇) − 𝜇2𝑅0

𝜇�̃�(𝑞, 𝜖)𝑅0 − (1 − 𝑞)�̃�(𝑞, 𝜖)(�̃�(𝑞, 𝜖) + 𝜇)

= lim
𝑞→1−

𝜇(1 + 𝜇
�̃�(𝑞,𝜖) ) −

𝜇2𝑅0
�̃�(𝑞,𝜖)

𝜇𝑅0 − (1 − 𝑞)(�̃�(𝑞, 𝜖) + 𝜇)

= lim
𝜇(1 + 0) − 0
𝑞→1− 𝜇𝑅0 − 0 v

6

= 1
𝑅0

. □

The last theorem shows that the rapid change in the endemic
equilibrium value of the force of infection occurs near the reinfection
threshold when 𝑞 is close to 1. Since 𝑞 = 𝛾

𝛾+𝜇 , the condition that 𝑞 is

lose to one is easily satisfied when modeling acute infections where
he recovery period from the disease is much shorter than the average
ifetime.

. Reinfection threshold in other models

In this section, we discuss how our results are connected to other
esults on the reinfection threshold, which were applied to different
ransmission models with leaky infection-derived immunity. Stollen-
erk et al. [10] demonstrated that a phase transition in the growth
f the epidemic is associated with the reinfection threshold value in a
patial, stochastic model of disease spread with no births and deaths. To
ain some insight into the effect of this threshold in a mean field model,
hey incorporated the waning of immunity by allowing recovered indi-
iduals to move to the susceptible class. In this section we compare our
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Fig. 7. Thirty sample simulations (out of a total of 300 sample simulations used) for each true value of 𝑅0. The values of 𝜖, 𝜇 and 𝛾 used in the simulation are given in Table 1.
Reporting probability was assumed to be 20%. The transmission rate was assumed to have multiplicative gamma white noise with intensity 0.05. The total population was assumed
to be 100,000 with 0.1% infected at the initial time and everyone else susceptible.
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results in that specific mean field model used by Stollenwerk et al. [10],
which was also used by Martins et al. [11], to generalize the reinfection
threshold concept. For clarity of exposition, we begin by setting up a
general model with both leaky and waning immunity given by,
𝑑𝑆
𝑑𝑡

= 𝜇 + 𝛼𝑅 − 𝛽𝑆𝐼 − 𝜇𝑆, (20)
𝑑𝐼
𝑑𝑡

= 𝛽𝑆𝐼 + 𝜖𝛽𝑅𝐼 − 𝛾𝐼 − 𝜇𝐼, (21)
𝑑𝑅
𝑑𝑡

= 𝛾𝐼 − 𝜖𝛽𝑅𝐼 − 𝛼𝑅 − 𝜇𝑅. (22)

Our original leaky model (1)–(3) can be derived from this model
by setting 𝛼 = 0. The mean-field model with reintroduced susceptibles
discussed in [10,11] that we consider is (20)–(22) with 𝛼 > 0 and 𝜇 = 0.
tollenwerk et al. [10] found that a sharp transition in the endemic
quilibrium value of the infected class as a function of 𝑅0 occurs as
→ 0+. Martins et al. [11] considered the same model and derived a
ore general quantity, the maximum curvature reinfection threshold,
hich is the 𝑅0 value for which the endemic equilibrium value of

he infected class attains its maximum curvature. Martins et al. [11]
howed that this coincides with the reinfection threshold when 𝛼 → 0+.

In particular, at this limit, there is a sharp transition as the curvature
diverges to infinity.

The results on maximum curvature have similarities with the results
we proved in Section 4. These results both imply that for 𝑞 close to
one the disease prevalence increases rapidly when 𝑅0 goes beyond the
reinfection threshold. However, in our case, we set 𝜇 > 0, 𝛼 = 0 and
consider the maximum rate of change of the endemic equilibrium value
of the infected class relative to leakiness 𝜖 instead of 𝑅0, and we found
that this point coincides with the reinfection threshold value of 𝜖 as
𝑞 = 𝛾

𝛾+𝜇 → 1−. We note that 𝑞 is close to one when 𝛾 becomes large
elative to 𝜇, which can be interpreted as an acute infection where the
 o

7

Table 3
Estimation of 𝑅0 in the simulation study. For each true value of 𝑅0 we generated 300
imulations, and for each simulation, we derived a maximum likelihood estimate (MLE)
f 𝑅0 and a 95% confidence interval (CI) using profile likelihood. The table shows
he mean and standard deviation of the MLE distributions as well as the coverage of
rue value and CI mean length. Note that to limit computational cost, the confidence
ntervals are limited to be between 𝑅0 = 1.5 to 8.
True 𝑅0 𝑅0 MLE mean 𝑅0 MLE S.D. Coverage CI length mean

3.00 3.10 0.51 0.95 2.04
3.50 3.61 0.66 0.95 2.66
4.50 4.68 0.95 0.95 3.61
5.00 5.21 1.14 0.93 3.76

recovery period is much shorter than the average lifetime of individuals
in the population. However, to connect our results with [10,11], we can
also instead think of 𝑞 → 1− occurring when we let 𝜇 → 0+. Thus the
results we proved in this paper can be thought of as applying to the
case 𝛼 = 0 and 𝜇 → 0+. On the other hand, the results we discussed
bove from [10,11] yield the reinfection threshold when setting 𝜇 = 0

and 𝛼 → 0+.

The special case with 𝛼 = 0 and 𝜇 = 0 connects [10,11] and
ur work. The properties of this specific case of (20)–(22) have been
stablished in Pagliara et al. [12]. While in our work we restricted
∈ [0, 1], Pagliara et al. [12] considered a model wherein 𝜖 ∈

0,∞), which allows for ‘‘compromised immunity’’ (wherein recovered
ndividuals are more likely to get infected than naively susceptible
ndividuals). Since there is no reintroduction of susceptibles via either
irth or waning immunity, the susceptible population decays to zero
s 𝑡 → ∞ for any initialization with a nonzero infectious population.
nstead of two distinct isolated equilibria, this case has a continuum
f disease-free equilibria, {(𝑆, 𝐼) = (𝑆, 0) ∶ 𝑆 ∈ [0, 1]}, and one
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Fig. 8. Profiles over the basic reproduction number for the corresponding highlighted sample simulations Fig. 7. The black vertical lines indicate the ML estimate and the shaded
reas show the 95% confidence intervals computed using profile likelihood. The true value of 𝑅0 used in each simulation is indicated by the red vertical line.
ndemic equilibrium, (𝑆, 𝐼) = (0, 1 − 1
𝜖𝑅0

). Pagliara et al. [12] found
four dynamically different parameter regimes for trajectories initialized
with 𝑆(0) ∈ [0, 1) and 𝐼(0) ∈ (0, 1]:

1. If 𝑅0 < 1 and 𝜖𝑅0 < 1 then trajectories approach a disease-free
equilibrium via a monotonic decay in infections.

2. If 𝑅0 > 1 and 𝜖𝑅0 > 1 then trajectories approach the endemic
equilibrium.

3. If 𝑅0 > 1 and 𝜖𝑅0 ≤ 1 then trajectories approach a disease-
free equilibrium. Depending on initial conditions, this occurs via
monotonic decay in infections or after a single epidemic.

4. If 𝑅0 ≤ 1 and 𝜖𝑅0 > 1 then trajectories either approach a
disease-free equilibrium or the endemic equilibrium depending
on initializations.

Case 4, the case with bistable disease-free and endemic asymptotic
dynamics is not possible under our assumption in this paper that 𝜖 ∈
[0, 1]. However, it is important to note that the boundary case 𝜖𝑅0 = 1
separating some of these dynamically different regimes corresponds
to the reinfection threshold. The sharp transitions we observe near
the reinfection threshold at the limits considered in [10,11] and this
paper, including the spiral to node transition, are related to the regime
transitions in the special case of the model discussed in [12].

6. Parameter identifiability

In this section, we consider whether the reinfection threshold has
an effect on parameter identifiability. To do this, we converted the
leaky model to a discrete-state, continuous-time Markov chain with the
same mean transition rates as those given in (1)–(3). We also used
incorporated a multiplicative gamma white noise term (with mean
8

one and intensity 0.05) to the transmission rate, assumed Poisson
distributed births into the susceptible class, and set all other transitions
to be implemented using Euler multinomial draws over time intervals
of length equal to 0.1 days. The model was implemented using the
Partially Observed Markov Process (pomp) R package [17,18]. The 𝑆, 𝐼
and 𝑅 compartments of the model, as well as the true number of weekly
recoveries from the disease (computed as the number of transitions
from 𝐼 to 𝑅) comprised the unobserved states of the model. The only
observed state was the number of weekly reported cases of the disease.
For the reporting model, we assume that the true number of cases that
can be reported each week is approximated by the number of recoveries
that week, similar to the reporting models used for acute infections in
other studies [19]. This comes from the assumption that individuals
need to experience some symptoms first before they get tested for a
disease and that testing takes time, with the time from the start of the
infection to the recording of the case being similar to the infectious
period (which we fixed to be 8 days as in Table 1). We also assume each
case independently has a 20% probability of being recorded, resulting
in a binomial reporting model with a 20% reporting probability. All
code and simulated datasets used for this simulation study is available
online at https://doi.org/10.5061/dryad.cc2fqz6c3.

We fixed the values of 𝜇, 𝛾 and 𝜖 to their default values in Table 1
with corresponding reinfection threshold basic reproduction number
value of 𝑅0,0.25 = 4. We considered four 𝛽 values corresponding to
four 𝑅0 values, two of which are smaller than 𝑅0,0.25 and two that
are larger (refer to Table 3). For each true value of 𝑅0, we generated
300 simulated time series of reported cases over one year (52 weekly
reports) and profiled over 𝑅0 for each simulation.

The profiles over 𝑅0 we generated using the following procedure:
The values of 𝜇 and 𝛾 were fixed to their true values. We set up

https://doi.org/10.5061/dryad.cc2fqz6c3
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n array of 150 values of 𝑅0 equally spaced from 𝑅0 = 1.5 to 8.
or each simulation and for each value of 𝑅0 we searched for the
aximum likelihood (ML) estimate of 𝜖 using the maximization via

terated filtering algorithm (mif2) in pomp [17] with 6000 particles,
0 iterations, initial random walk of 0.1 for the 𝜖 parameter (in the logit
cale) and a final cooling fraction of 0.1. The likelihood associated with
he algorithm’s ML estimate for 𝜖 for each fixed 𝑅0 was then computed
sing the particle filter (pfilter) in pomp [17] with 12,000 particles
nd 10 repetitions. For each simulation, we generated a smoothed curve
or profiles of likelihood versus 𝑅0 using loess in R with 𝛼 = 0.2.
he ML estimate for 𝑅0 and its 95% confidence intervals were then
omputed using profile likelihood and loess curve fitting. As a result,
or each simulation, we had a maximum likelihood estimate for 𝑅0
nd a 95% confidence interval (limited to be between 𝑅0 = 1.5 and
). A few sample simulations are plotted in Fig. 7 and sample profiles
ver 𝑅0 corresponding to each highlighted simulation are shown in
ig. 8. The sample plots of the profiles suggest good convergence of
oth the maximization via iterated filtering and the particle filter for
he settings used for both algorithms, and a good fit of the loess
urve. The plots also show the maximum likelihood estimate (MLE)
or 𝑅0 (indicated by vertical black lines), the true value (indicated by
ertical red lines) and the 95% confidence intervals shaded in gray.
n both sample plots shown, the true value lies inside the confidence
nterval. This was true for the majority of the simulations, but not all.

e computed the coverage, the proportion of simulations for which the
rue value of 𝑅0 lies in the 95% confidence intervals, and the results
or both the before and after threshold cases were found to be close to
.95 as shown in Table 3.

The collection of MLEs is plotted in Fig. 9 while the lengths of the
onfidence intervals associated with the ML estimates are plotted in
ig. 10. Although the coverage for the cases when 𝑅 is before and after
0

9

he reinfection threshold were found to be comparable, we see that the
engths of the confidence interval have different distributions with 𝑅0
alues larger than the threshold having on average larger confidence
ntervals (Table 3). One possibility is that the narrower confidence
ntervals of the two smaller 𝑅0 values are related to the oscillatory
ignal in the solutions in this case due to the complex eigenvalues of
he endemic equilibrium Jacobian. The period of oscillations can be
ensitive to parameter values [20] and this could improve identifiability
f 𝑅0 by preventing possible trade offs with reporting probability when
itting to data near endemic equilibrium (where reported prevalence
evels can be computed from the equilibrium equations and the re-
orting probability) or trade off with other epidemiological parameters
hat affect transmission [21]. However, the period of the expected
scillations about the endemic equilibrium for parameter values chosen
n Fig. 7(a)–(b) spans multiple years in both cases and is not easily
bserved in the one-year datasets that we generated. Thus, oscillations
re probably not the reason for the smaller confidence intervals when
orking with relatively fast epidemics over short time periods. Rather,
e see more clearly in Fig. 7(c)–(d) the sharp transition to larger
revalence of infections for 𝑅0 values larger than the reinfection thresh-
ld, consistent with the results in Section 4. These higher prevalence
alues have visibly larger stochastic fluctuations in the simulations
f reported cases. In addition, since larger 𝑅0 values lead to larger
ransmission rates (𝛽) which are multiplied by gamma-distributed white
oise terms (with mean one and fixed intensity), the product yields a
arger magnitude stochastic term that may be the reason for the wider
onfidence intervals that we measured. We also note that since all
rofiles were only computed from 𝑅0 = 1.5 to 𝑅0 = 8, the confidence
ntervals for some simulations may be artificially shortened in our
easurements. This was more likely to happen in simulations with
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Fig. 10. Lengths of the 95% confidence intervals using profile likelihood for simulations generated with reproduction number values 𝑅0 < 1
𝜖

for (a)–(b) and 𝑅0 > 1
𝜖

for (c)–(d).
The mean value of each distribution is denoted by vertical black lines. We see that the case 𝑅0 >

1
𝜖

has larger confidence intervals.
t
m

t
o

arger 𝑅0 values, and thus the true confidence interval length may
ctually be even larger for the larger 𝑅0 values.

. Conclusions and future work

One way the SIR and SIS models can be connected is via a con-
inuous scale of leaky infection-derived immunity. Previous authors
ave noted differences in model behavior when parameter values are
hosen on either side of a so-called reinfection threshold, which occurs
hen the basic reproduction number equals the inverse of the leakiness.
hile it has previously been shown that this threshold has some

mportant implications regarding controllability when vaccination has
he same leaky level of partial protection, a technical description of
he qualitative change that occurs near the reinfection threshold for the
odel without vaccination was more difficult to derive. In this paper,
e revisited the reinfection threshold and showed that it is related to

wo important events: First, for a fixed value of leakiness, the basic
eproduction number value at which the endemic equilibrium changes
rom being a stable spiral (as in the SIR system for commonly used
easonable parameter values as discussed in Remark 3.4) back to a
table node (as in the SIS system) converges to the value given by the
einfection threshold in the limit as 𝑞 approaches one. Second, for a
ixed basic reproduction number value, the leakiness value at which
he maximum rate of change of the prevalence occurs approaches its
einfection threshold value as 𝑞 approaches one. For acute diseases
herein the recovery period is much shorter than the lifetime of an

ndividual, it follows that the value of 𝑞 is close to one. Thus our
esults are applicable to a wide range of diseases that we might want
o model. We also showed how these conditions and results are related
10
o previous work by Stollenwerk et al. [10] and Martins et al. [11] on
odels with both leaky and waning infection-derived immunity.

Using a simulation study on a stochastic version of the model and
he default parameter values in Table 1, we also found that estimates
f 𝑅0 are more precise when the true value of 𝑅0 the value of 𝑅0 used

to generate the simulations is before the reinfection threshold. While
this could be related to the oscillatory behavior of solutions before the
threshold (as in Fig. 3(a)), this oscillatory behavior is not evident in the
simulations of reported cases for 𝑅0 values lower than the threshold
(as shown in Fig. 7). Instead, we clearly see sharply higher prevalence
values associated with 𝑅0 values larger than its reinfection threshold
value yielding noisier simulations of disease reporting data. It would
be interesting to conduct further simulation studies to try to disentangle
the effect of the reinfection threshold from that of simply larger 𝑅0
values on parameter identifiability.

Our focus has been on the reinfection threshold associated with
a simple disease transmission model with leaky infection-derived im-
munity. The same threshold value has been found to be important
in other models [10–12]. It would be interesting to see if this same
threshold concept applies to more complex models of immunity and
what consequences of the threshold are maintained in those cases.
Rapidly growing interest in the analysis and inference of disease mod-
els, spurred by the COVID-19 pandemic, suggests that further study of
this phenomenon is warranted.
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Appendix A. Supplementary data

Supplementary material related to this article can be found online at
https://doi.org/10.1016/j.mbs.2023.109045. Datasets and code used
to generate the figures in Sections 6 are available at: https://doi.org/
10.5061/dryad.cc2fqz6c3.
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