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A B S T R A C T

Wastewater has emerged as a crucial tool for infectious disease surveillance, offering a valuable means to bridge 
the equity gap between underserved communities and larger urban municipalities. However, using wastewater 
surveillance in a predictive manner remains a challenge. In this study, we tested if detecting SARS-CoV-2 in 
wastewater can forecast outbreaks in rural communities.

Under the CDC National Wastewater Surveillance program, we monitored the SARS-CoV-2 in the wastewater 
of five rural communities and a small city in Idaho (USA). We then used a particle filter method coupled with a 
stochastic susceptible-exposed-infectious-recovered (SEIR) model to infer active case numbers using quantities of 
SARS-CoV-2 in wastewater.

Our findings revealed that while high daily variations in wastewater viral load made real-time interpretation 
difficult, the SEIR model successfully factored out this noise, enabling accurate forecasts of the Omicron outbreak 
in five of the six towns shortly after initial increases in SARS-CoV-2 concentrations were detected in wastewater. 
The model predicted outbreaks with a lead time of 0 to 11 days (average of 6 days +/- 4) before the surge in 
reported clinical cases.

This study not only underscores the viability of wastewater-based epidemiology (WBE) in rural 
communities—a demographic often overlooked in WBE research—but also demonstrates the potential of 
advanced epidemiological modeling to enhance the predictive power of wastewater data. Our work paves the 
way for more reliable and timely public health guidance, addressing a critical gap in the surveillance of infectious 
diseases in rural populations.

1. Introduction

Wastewater-based epidemiology (WBE) has rapidly emerged as a 
powerful tool for broad-scale surveillance of infectious diseases and 
antimicrobial resistance within communities. This approach is particu-
larly effective because many pathogens, including SARS-CoV-2, polio-
virus, RSV, and influenza are shed through body waste (Arts et al., 2023; 

Jeong et al., 2020; Parasa et al., 2020), and can be detected in waste-
water (Corpuz et al., 2020; Shah et al., 2022). Unlike traditional sur-
veillance methods, WBE can capture data from both symptomatic and 
asymptomatic individuals, thereby providing a more comprehensive 
picture of disease circulation. Importantly, WBE can improve and 
accelerate the early detection of infectious disease outbreaks, giving 
public health authorities critical time to respond. There have been 
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successful instances where wastewater detection has triggered action-
able public health responses such as the recent detection of poliovirus in 
the Gaza Strip (World Health Organization, n.d.). Despite such suc-
cesses, significant barriers remain in translating wastewater data into 
actionable public health interventions, particularly in using this data 
predictively rather than retrospectively.

A modeling-based approach to WBE can overcome some of these 
barriers by providing a framework to interpret the spread and burden of 
infectious diseases. Such models can estimate key epidemiological pa-
rameters, including incidence (McManus et al., 2023), prevalence 
(Layton et al., 2022), and effective reproductive number (Huisman et al., 
2022). Models, such as those based on machine learning or epidemio-
logical models of the SEIR type, can forecast cases using wastewater data 
(Kanchan et al., 2024; McMahan et al., 2021). One of the primary ad-
vantages of mechanistic models is that they rely on a deep under-
standing of biological systems (Baker et al., 2018; Metzcar et al., 2024). 
Among previously published SEIR or SEIR-like models, various meth-
odologies have been used to fit the data (Fazli et al., 2021; McMahan 
et al., 2021; Nourbakhsh et al., 2022; Pájaro et al., 2022; Phan et al., 
2023; Polcz et al., 2023; Proverbio et al., 2022). Despite these advances, 
the application of WBE in small populations such as rural 
communities—a setting with distinct epidemiological and logistical 
challenges—remains underexplored.

Rural communities are particularly vulnerable to infectious diseases 
due to a combination of demographic factors (e.g., age), healthcare 
challenges (e.g., higher rates of obesity and smoking), limited resources 
(Cromartie et al., 2020; Cuadros et al., 2021; Kaufman et al., 2020; 
Lakhani et al., 2020), or reduced risk perception (Ridenhour et al., 
2022). Additionally, reduced access to clinical testing in those areas can 
hinder timely disease detection and response. WBE offers a unique op-
portunity to support public health in rural areas, where traditional 
surveillance methods may be less effective. However, the vast majority 
of WBE studies have focused on urban areas and larger cities, leaving a 
critical gap in our understanding of how WBE can be applied to smaller, 
rural communities (Conway et al., 2023; D’Aoust et al., 2021; Holm 
et al., 2023; Jarvie et al., 2023; Toledo et al., 2022). By addressing this 
gap, WBE can serve as a tool for promoting health equity, ensuring that 
all communities – regardless of size – benefit from the latest advances in 
public health surveillance (Holm et al., 2023; Medina et al., 2022)

Importantly, while epidemiologists can examine wastewater data 
side-by-side with clinical testing to help understand what is happening, 
many infectious diseases are not reportable, or in the case of COVID-19, 
at-home self-testing replaced clinical testing (Park et al., 2023). For 
example, influenza and COVID-19 are not reportable diseases in Idaho 
(USA). Thus, epidemiologists are left with few tools to help them char-
acterize epidemiological trends and forecasts; ultimately only waste-
water data may be available to provide insight into disease burden in 
rural areas.

The COVID-19 pandemic has highlighted the value of WBE, partic-
ularly as a way to compensate for reduced clinical testing due to the rise 
of at-home tests and a general decline in clinical reporting (Fontenele 
et al., 2023). Trends of SARS-CoV-2 in wastewater have been shown to 
correlate with the number of COVID-19 cases and can even precede 
surveillance systems based on clinical samples (Fernandez-Cassi et al., 
2021; Peccia et al., 2020; Wurtzer et al., 2020). This makes 
wastewater-based surveillance a promising early warning system for 
outbreaks (Bivins et al., 2020; Li et al., 2022; Shah et al., 2022; Weidhaas 
et al., 2021; Wu et al., 2021). These correlations, mostly done retro-
spectively, relied often on correlation coefficients (typically Pearson, 
Spearman, Kendall) and do not predict future trends. When it comes to 
real-time monitoring, a significant challenge is the inherent variability 
and uncertainty in wastewater data which hinders public health appli-
cations (Diamond et al., 2022; McClary-Gutierrez et al., 2021). This is 
particularly true for rural areas where data can be noisier.

To address these challenges, we introduce a new application of the 
SEIR model to wastewater data in small, underserved populations. Our 

study specifically focuses on the novel application of this model to 
predict the onset of SARS-CoV-2 outbreaks in rural communities. By 
testing the hypothesis that SARS-CoV-2 levels in wastewater can forecast 
the start of an outbreak, our research aims to provide a predictive 
framework that enhances the utility of WBE for rural communities, ul-
timately bridging the gap between wastewater surveillance and 
actionable public health guidance.

2. Material and methods

2.1. Sites and sample collection

Wastewater samples were collected from wastewater treatment fa-
cilities (WWTFs) located in five rural communities serving approxi-
mately 1000 or less inhabitants and a small city in a rural county in 
Idaho, USA (Table 1). These rural communities are defined as "rural" 
according to the 2020 U.S. Census Bureau. The county itself falls under 
the category of a "rural" or "nonmetropolitan" county, as classified by the 
U.S. Office of Management and Budget. Rural cities are abbreviated RC1 
to RC5 and the small city SC. All WWTFs primarily treat domestic 
wastewater; the SC WWTF also receives effluent from a regional 
hospital.

Samples were collected three times a week from October 2021 to 
March 2022. Rural WWTF samples were time-composite samples 
collected using Teledyne ISCO 3700 Full Size Portable Sampler (Tele-
dyne ISCO, Lincoln, NE, USA) autosamplers or homemade autosamplers 
constituted of a Sci-Q 323 peristaltic pump (Watson-Marlow, Falmouth, 
UK) controlled by an Omron H3CR timer (Omron Corporation, Kyoto, 
Japan) and housed in a cooler box. Sampling frequencies were 
comprised between 10 and 30 min for 24 h Approximately 3 L of 
wastewater was collected, and subsamples were collected at the end of 
the 24 h sampling period and transported within 6 h to the laboratory, 
where samples were kept at 4 ◦C until further processing. Samples from 
the SC WWTF were collected using a Teledyne ISCO model 3700 auto-
sampler (Teledyne ISCO, Lincoln, NE, USA), with samples collected 
paced with influent flow. Sampling failed (e.g., samples were not 
collected because of tube failure, clogging, or not enough wastewater in 
the sewer pipes) for <10 % of the total samples sampled. Samples were 
kept at 4 ◦C until further processed, at most 3 days later.

Confirmed COVID-19 case counts per zip code were obtained from 
the Idaho Public Health District 2 website (https://idahopublichealth. 
com/district-2/novel-coronavirus).

2.2. Sample processing for SARS-CoV-2 detection and quantification

The detailed protocols presented below are publicly available on 
protocol.io (Narum et al., 2022). In brief, before concentrating the viral 
fraction of two replicate wastewater fractions through electronegative 
membrane filtration, each sample was spiked with the Bovilis® Coro-
navirus (BCoV) (Merck, Kenilworth, NJ, USA) as a process internal 
control. Subsequently, filters were inserted together with the DNA/RNA 
Shield™ (Zymo Research, Irvine, CA, USA) into the Lysis Bead tubes 
from the AllPrep® PowerViral® DNA/RNA Kit (QIAGEN, Inc., Ger-
mantown, MD, USA). Lysis was performed on a FastPrep™ (MP Bio-
medicals, Santa Ana, CA, USA) for 4 cycles of 20 s each at 4.5 m s-1 and 
the RNA was then extracted as per the kit manufacturer’s protocol on a 
QIAcube Connect automated extraction instrument (QIAGEN, Inc., 
Germantown, MD, USA).

SARS-CoV-2 was quantified by dPCR using the QIAcuity Digital PCR 
System (QIAGEN, Inc., Germantown, MD, USA) using the GT-Digital 
SARS-CoV-2 Wastewater Surveillance Assay For QIAcuity® (GT Molec-
ular, Fort Collins, CO, USA). Each 40 µl reaction contained 1x of the 
Qiagen QIAcuity One-Step Viral RT-PCR Kit (QIAGEN, Inc., German-
town, MD, USA), 1x of the GT Molecular N1-N2-BCoV Assay Solution, 
and 20 µl RNA template. RNA extraction blanks, dPCR non-template 
controls and positive controls were included in each dPCR run.
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2.3. Data processing and analysis

Fluorescent thresholds were manually set based on the fluorescent 
level of the positive controls. Then we excluded data from samples for 
which (i) the recovery rate of the internal processing control BCoV was 
lower than 1 %, or (ii) the RNA extraction process control or dPCR 
negative control were positive and >10 % of the measured sample 
concentration.

The date of an outbreak’s start was determined with a piecewise 
regression model using either the cumulative sum of the copies per day 
of the N1 target or the cumulative sum of COVID-19 clinically confirmed 
cases to estimate the breakpoint in a linear dataset. For each city, we 
subsampled the linear data around the inflection points corresponding 
to the dates of the main surge of N1 copies or COVID-19 reported cases 
in early 2022. Then we fitted a linear regression model in R using the 
“lm” function with cumulative copies of cases as the response (Y) and 
the date as the predictor (X). Finally, we fitted the piecewise regression 
model to the original model, estimating a breakpoint around the in-
flection of the line, using the segmented() function from the segmented 
package in R (Muggeo et al., 2014).

2.4. SARS-CoV-2 epidemiological model

We constructed a compartmental model to approximate the dy-
namics of the epidemic in each city. Due to the small size of populations 
in the rural areas, we expected stochastic effects to be important, and 
opted to use a discrete-time discrete-state Markov process to approxi-
mate the spread of the disease. In this model, individuals in the popu-
lation can be in one of four states: susceptible (S), exposed (E), infectious 
(I), and removed (R). Importantly, in this model exposed individuals 
have contracted the disease and shed the virus but are not yet infectious. 
The changes in the compartments are assumed to be binomially 

distributed: Xt ∼ Bin
(

S(t), βI(t)
N(t)

)

is the number of newly exposed in-

dividuals on day t, Yt ∼ Bin
(

E(t), 1
τ

)

is the number of newly infectious 

individuals on day t, and Zt ∼ Bin
(

I(t), 1
δ

)

is the number of newly 

recovered individuals on day t. The parameter β is the transmission rate, 
τ is the mean incubation period, and δ is the mean infectious period, and 
N(t) = S(t) + E(t) + I(t) + R(t) is the total population at time t. The 
discrete-time Markov process is given by: 

ΔS(t) = − Xt , (1a) 

ΔE(t) = Xt − Yt , (1b) 

ΔI(t) = Yt − Zt , (1c) 

ΔR(t) = Zt . (1d) 

The number of virus particles shed by exposed individuals was 
assumed to be log-normally distributed (Miura et al., 2021). However, 
the log-normal distribution is difficult to work with mathematically, so 

we approximated the log-normal distribution using the Gamma distri-
bution by matching the first two moments. For simplicity, we assumed 
that only the individuals in the exposed class E(t) shed virus in the stools. 
This assumption is reasonable since it has been shown that the amount of 
virus shed by a single individual is time-varying, with a peak occurring 
around symptoms onset (Puhach et al., 2023; Wu et al., 2022). If there 
are E(t) exposed individuals, the amount of virus in the wastewater is a 
random variable V(t) with probability density function: 

Φ(V; k, θ, E) = γ(V; Ek, θ), (2) 

where γ(V; k, θ) is the probability density function for the gamma dis-
tribution with rate k =

E2
v

Vv 
and scale θ = Vv

Ev
. See Table 2 for parameter 

values.
We used a sequential Monte Carlo (particle filter) method to fit the 

collected wastewater data to the stochastic model to the collected 
wastewater data (Fig. 1). In simulations, 50,000 particles (initial con-
ditions) were sampled, using the normalized likelihood distribution for 
the initial concentrations of virus measured in the wastewater to 
determine the number of exposed individuals (Fig. 1 top row). The 
initial states of the other classes were sampled uniformly from the 
remaining population.

Each time step, every particle evolved according to the Markov 
process in Eq. (1) (Fig. 1 bottom left). On days that we have collected 
wastewater data, the particles were weighted according to their likeli-
hood (Fig. 1 bottom center) and resampled using a systematic sampling 
method to filter out the least likely particles and reinforce the most likely 
particles (Fig. 1 bottom right).

3. Results

3.1. Dynamics of SARS-CoV-2 in rural wastewater vs. clinically 
confirmed cases

For the period investigated, clinically reported cases revealed that 
the cities experienced one or two COVID-19 outbreaks, as shown in 
Fig. 2. The first outbreak occurred in late October 2021, but it was not 

Table 1 
Site characteristics and outbreak detection from the wastewater data and clinically confirmed cases. Start of outbreaks was measured using a Piecewise regression 
model.

City City census* ZIP Code population* Outbreak Start WW Outbreak Start Cases Δ Outbreak Start (Day) Fold change in SARS-CoV-2

SC 25,435 26,739 2022–01–04 2022–01–11 7 7.4
R1 1030 1701 2022–01–06 2022–01–13 7 15.2
R2 763+196† 2115 2022–01–01 2022–01–11 10 53.9
R3 890 2015 2022–01–14 2022–01–16 2 21.7
R4 624 1167 2022–01–05 2022–01–09 4 42.5
R5 288 985 2022–01–12 2022–01–12 0 81.2

* Data from the 2020 Decennial Census obtained from https://data.census.gov/.
† Wastewater treatment facility collects effluents from a second city.

Table 2 
Parameters used in model fitting.

Parameter Description Value Reference

Ev Mean virus copies shed by a 
single individual

4.49×107 

gc/l Phan et al. (2023)

Vv Variance of virus shed by 
individuals

2 × 107 (gc/ 
l)2 Wölfel et al. (2020)

τ Incubation period 3 days
Phan et al. (2023)

δ Infectious period 8 days
Phan et al. (2023)

β Force of infection Fit from data 
Q Flow rate of sewershed Various Individual 

treatment plants
 Average faeces produced per 

day
128 g Rose et al. (2015)
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detected in all cities and was relatively small compared to the second 
outbreak experienced by all cities in early January 2022. This second 
surge was driven by the Omicron variant, which emerged in the United 
States in early December 2021 (CDC COVID-19 Response Team, 2021).

Examining the collected wastewater data, 293 samples were retained 
following data processing, with each WWTF yielding 44–58 measure-
ments over a five-month period. The daily load of SARS-CoV-2 present in 
wastewater varied greatly day-to-day, making interpretation of the real- 
time spread of COVID-19 challenging. Interestingly, the variability in 
the order of magnitude tended to be larger as the city population 
decreased, indicating a greater level of randomness (as shown in Fig. 3). 
Additionally, the difference in variance of daily SARS-CoV-2 quantities 
between cities was significant, as confirmed statistically using Brown- 
Forsythe, Levene, Barlett, and Kligner-Killeen tests (test results pro-
vided in the Supplementary Material). These results suggest that the 
fluctuations in daily SARS-CoV-2 measurements in smaller cities are 
more stochastic than in larger cities.

Despite this stochasticity, the Omicron outbreaks resulted in a sharp 
increase of quantities of the virus collected at the WWTFs above the 
background levels (Fig. 2) by 7- to 81-fold. After estimating the date of 
the outbreak start (vertical dashed line in Fig. 2), we estimated that the 
SARS-CoV-2 wastewater signal tends to lead the clinically confirmed 
COVID-19 cases by 0 to 10 days. This supports other retrospective ob-
servations, mostly performed in larger cities, that wastewater surveil-
lance could improve and even accelerate the early detection of infectious 
diseases in rural communities (Feng et al., 2021; Graham et al., 2021; 
Wu et al., 2022). However, the lead times were variable, and in one case, 
the wastewater signal was not inferred to precede the clinically reported 
case data. Other studies have also observed cases where wastewater 
signal was not preceding clinical testing (Feng et al., 2021; Xiao et al., 
2022).

3.2. Epidemiological model to forecast a COVID-19 outbreak from 
wastewater detection of SARS-CoV-2

We used an SEIR-based model (Fig. 4A) to investigate whether 
wastewater-based surveillance of SARS-CoV-2 could enhance the pre-
diction of a COVID-19 outbreak. To test the model’s ability to forecast 
upcoming trend of cases, we determined if the model could have pre-
dicted the Omicron outbreak using exclusively wastewater data. Spe-
cifically, we fit the predicted cases using the wastewater measurements 
up to the onset of the outbreak. This corresponded to the first mea-
surement performed two days after the inflection point defining the start 
of the outbreak using wastewater data. Then we let the model forecast 
the upcoming trend in active cases (Fig. 4B). When comparing the 
forecasted COVID-19 cases with the clinically confirmed cases we found 
that the model successfully captured the clinically active cases in five of 
the six cities. For the rural cities, the forecasts were within the 95 % 
confidence interval at least up to eight days ahead; corresponding to R4 
(Fig. 4). While the number of predicted cases tended to be lower than the 
number of the clinically confirmed cases reported, they were following 
them closely in two rural cities and in the small city. For those two rural 
cities (sites R1 and R2), the model accurately predicted the number of 
active cases >14 days ahead. In city SC, the model was able to forecast 
the number of active cases accurately more than eight days ahead. These 
results show that in the majority of sewersheds surveyed the model 
would have confidently predicted the outbreaks even before the COVID- 
19 reported cases started to increase. Anticipation of the model on the 
COVID-19 reported cases ranged from 0 days for R5 to 11 days for R2 
(see blue dashed line on Fig. 4).

Although our primary objective was not to predict the peak of the 
outbreak, we also evaluated the model’s ability to make such pre-
dictions. To do so, we used the same approach outlined above and 
allowed the model to forecast active cases two days after we recorded 
the highest SARS-CoV-2 level in the wastewater. However, instead of 
predicting a decrease in cases, the model continued to forecast a sus-
tained increase of active cases. This was in contrast to both the waste-
water data and the trend observed in clinically confirmed cases (as 
shown in Fig. S1). Therefore, while this model may be useful during the 
early stages of an outbreak in rural areas, it may not be reliable for later 
phases.

Since our objective was primarily to test if a SEIR model could pre-
dict an outbreak occurring in rural communities, we then focused on the 
capacity of the model to predict an increase in the trend of active cases. 
To that end, we used a simulated wastewater dataset to count the 
number of times the model predicted upward or downward trends in 
cases correctly (i.e., true positive rate) or incorrectly (i.e., false positive 
rate). We varied the threshold used to accept predictions to create 
receiver operating characteristic (ROC) curves (Fig. 5). Measured area 
under the curve (AUC) values presented in Fig. 6 reflect the sensitivity 
and specificity of the forecast for a range of forecasted days. The model 
tends to predict trends better as the forecast range increases. The ROC 
curves for predictions made less than a week in advance were signifi-
cantly lower than those made over nine days (p-values presented in 
Supplementary Material). After nine days, the AUC medians were above 
0.7, and increased to 0.75 at 15 days. These results suggest epidemiol-
ogists could rely on these 9 to 15-day forecasts.

4. Discussion

Wastewater-based detection of SARS-CoV-2 has predominantly 
focused on large urban and metropolitan areas, leaving a significant gap 
in our understanding of the dynamics of viral spread in rural towns. Our 
study aimed to address this gap by conducting a surveillance effort of 
SARS-CoV-2 in the wastewater of several rural cities of the state of Idaho 
(USA). This effort represents one of the first comprehensive studies 
applying SEIR modeling to forecast COVID-19 trends in rural settings, 
where, as we described below, the challenges of WBE are particularly 

Fig. 1. Diagram showing steps of the particle filter method we use to determine 
the number of active cases from the wastewater titers of SARS-CoV-2. The 
particle filter is initialized using the first measurement of virus concentration in 
the wastewater. We generate a distribution of the possible number of infections 
in the community and sample many (50,000) values from this distribution. 
These values are used as the possible number of exposed individuals (E) on day 
1 (top right graph). Each of these values also gets a potential number of Sus-
ceptible (S), Infected (I), and Recovered (R) individuals. Each set of values (S,E, 
I,R) is called a particle. The darker dots in the diagram signify a higher number 
of particles with that value of E. We apply one step of the stochastic SEIR model 
to each particle to predict the number of infections on the next day (bottom left 
graph). The measurement of the virus in the wastewater on the next mea-
surement is used to determine which particles are more likely than others. Less 
likely particles are filtered out using a systematic resampling procedure and 
replaced with more likely particles (bottom right graph).
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pronounced.

4.1. Novelty and key contributions

Our study introduces a new application of the SEIR model for WBE. 
We demonstrate that our SEIR model approach can reliably forecast 
COVID-19 outbreaks when SARS-CoV-2 loads arriving at WWTF are 
trending upwards in rural communities. Sensitivity and specificity as-
sessments of the model in predicting the start of the outbreak revealed 
that these forecasts were more reliable when looking at forecasted 

trends beyond a week, with the best forecast obtained with data from a 
period of nine to 15 days. Similar ranges of short-term forecasts of seven 
to nine days to predict upcoming cases based on wastewater detection of 
SARS-CoV-2 were reported for larger cities using SEIR or SEIR-like ap-
proaches (Pájaro et al., 2022; Phan et al., 2023; Proverbio et al., 2022). 
The fact that the model was not performing well under nine days may in 
part be attributed to the noise of the SARS-CoV-2 quantities in the 
wastewater of small rural communities, which creates a sawtooth 
pattern in the trend (i.e., while the overall trend over a week goes up, 
some of the points between go down). This led us to hypothesize that the 

Fig. 2. Trend in SARS-CoV-2 in wastewater mirrors the dynamic of the COVID-19 outbreak in rural areas. Each panel represents a city. In each panel, the bar graph 
shows the time series of the COVID-19 clinically confirmed cases at the specimen collection dates and the second graph shows the measured concentration of SARS- 
CoV-2 (green dots) with the 7-day moving average (red line). Vertical dash lines represent the estimated start of the outbreak using either the cumulative sum of the 
copies per day of the N1 target or the cumulative sum of COVID-19 clinically confirmed cases, determined by the Piecewise regression model. Delta shows the 
difference of days between predicted dates from wastewater-based detection of SARS-CoV-2 and clinically confirmed COVID-19 cases. Cities are ordered by pop-
ulation size (largest on the top left and smallest on the bottom right).
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noise in the wastewater data may have made short-term trend pre-
dictions less accurate.

4.2. Addressing variability and noise of wastewater-based detection in a 
rural context

High daily variability in viral loads arriving in rural WWTFs was a 
significant challenge, making the interpretation of the data in real-time 
and the determination of outbreak onset in rural areas even more 
complicated for public health. As we observed, the variability in the 
order of magnitude tended to be larger as the rural sewershed size 
decreased (Schill et al., 2023). Indeed, larger sewersheds tend to have a 
more consistent activity throughout the day, reducing the variation in 
wastewater arriving at the WWTF (Tchobanoglous et al., 2014). In 
contrast, in small watersheds, each individual contributes to a higher 
proportion of the overall SARS-CoV-2 load at the WWTF, meaning that 

variations due to individual shedding differences or different stages of 
the infection disproportionally affect the viral signal measured (de 
Araújo et al., 2023; Wade et al., 2022). Similarly, missing an individual 
shedding SARS-CoV-2 can have significant impacts on the data. Missing 
individuals in rural cities can be attributed to several factors, such as 
mobility (e.g., commuting) and the presence of individual septic sys-
tems, which are common in rural areas. The sampling effect is also more 
pronounced in smaller populations, where the chance of missing a toilet 
flush in a smaller sewershed is higher. This increased noise in the data 
makes wastewater surveillance in rural communities particularly chal-
lenging, limiting its effectiveness as a standalone tool and positioning it 
primarily as a complementary resource to clinical surveillance. Never-
theless, as we showed in our study, our model factored out this noise, 
enabling accurate forecasts of the Omicron outbreak.

4.3. Enhancing model robustness

Even though our SEIR model has shown promise, incorporating 
additional strategies could further enhance its robustness and reliability. 
For instance, increasing sampling frequency could smooth out daily 
fluctuations, offering a more continuous data stream that better captures 
underlying trends (Ahmed et al., 2020). Similarly, extending the dura-
tion of composite sampling (e.g., from 24-hour to 48-hour or 72-hour 
composites) could reduce the impact of short-term variations, leading 
to more accurate trend detection. Data smoothing techniques could also 
help filter out noise from data (Rauch et al., 2022). Furthermore, 
normalizing viral concentrations not just by flow rate but also by pop-
ulation markers (e.g., human fecal indicators) could correct for varia-
tions in population dynamics affecting the measured viral load. Finally, 
knowing the fate and transport of targeted viruses in the sewer networks 
would help better understand virus decay and other unexplained fluc-
tuations in pathogen detection at WWTF. Future research should explore 
the integration of these approaches to optimize model predictions.

4.4. Model limitations and future directions

While our SEIR model functions well to provide advanced warning of 
a COVID-19 outbreak, it was less successful in predicting the outbreak 
peak (Fig. S1) and in estimating the number of cases accurately. Pre-
dicted cases tended to be lower than reported clinical cases for the area, 
contrasting with other studies on larger sewersheds that have shown 
that SEIR models typically estimate more COVID-19 cases than the re-
ported number (Eikenberry et al., 2020; Phan et al., 2023; Wu et al., 
2020). This limitation may be attributed, in part, to differences between 
the population of the city sampled and the zip code used (Table 1); the 
latter corresponds to the clinically recorded cases. When comparing city 
with zip code census, 39 to 71 % of the residents of rural zip codes were 
not connected to the sewer system of the cities. In rural areas, zip codes 
often cover a larger geographical area beyond the city limits, which 
means that comparisons between wastewater data and reported cases in 
the context of rural cities should be approached with caution.

Concerning the outbreak peak predictions, several parameters may 
explain why we could forecast them accurately. One important factor in 
disease modeling is the force of infection, which essentially determines 
the probability of a susceptible individual encountering an infected in-
dividual and then the likelihood of a new infection occurring from this 
encounter. This infection force is driven by factors such as the age of 
individuals, the stage of infection, and their behavior (e.g., wearing 
masks, practicing social distancing, etc.). Current models have limita-
tions in accurately capturing these factors due to a lack of data and the 
complexity of individual behaviors, which by themselves evolved during 
the pandemic. However, our model represents a simple first step toward 
creating a sufficient model. Notably, our model is able to predict peak 
timing (if not as accurately as desired), whereas data-driven models (i.e., 
machine learning) cannot in the true sense of a disease peak.

Moreover, despite the successful application of SEIR models to 

Fig. 3. Daily quantities of SARS-CoV-2 tend to be more spread as the city 
population get smaller. Panel A) shows the distribution of the copies per day of 
the SARS-CoV-2 on the log scale over the sampling period at each site ordered 
by city size, detailed in panel B. Note: bin width = 1/30. Dots on the x axis show 
the samples where N1 was under the detection limit (SC: n = 0, R1: n = 8, R2: n 
= 8, R3: n = 4, R4: n = 6, R5: n = 7). Panels B) shows the population size of the 
cities sampled, and C) shows the log scale sample variance measured for each 
city calculated using the log10 of copies per day of the SARS-CoV-2. This 
essentially shows that the magnitude of the estimate is less consistent as pop-
ulation size gets smaller (i.e., more stochasticity).
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wastewater surveillance of the SARS-CoV-2, there are some un-
certainties on how to connect the model with wastewater data. Some 
authors have included the cumulative virus titer in the sewershed as a 
dynamic variable (Phan et al., 2023) or as a linear combination of other 
dynamic variables (Nourbakhsh et al., 2022). However, this approach 
can be problematic when measurements are sparse or there are gaps 
between collection periods – which would be very common in rural 
WWTFs. Most authors directly connect wastewater measurements to the 
incidence rate, or prevalence, similar to what we have done herein.

In addition, the connection between the disease compartments (the 
exposed ‘E’ and infected ‘I’ compartments) in the SEIR model and 
wastewater measurements is not well established. Contribution to viral 

load in wastewater can tie to the individuals in the ‘I’ compartment 
(McMahan et al., 2021; Nourbakhsh et al., 2022; Phan et al., 2023) or to 
the ‘E’ compartment; the SEIR model in this study resulted in better 
predictions than when connected to ‘I’. This difference could be attrib-
uted to the fact that peak virus shedding in stool may occur for a few 
days around the onset of symptoms (Puhach et al., 2023; Wu et al., 
2022). This means that individuals contributing to the load of 
SARS-CoV-2 measured in wastewater may be at the transition between 
’E’ and ’I’ compartments in the SEIR model. Some researchers have 
incorporated the results from wastewater measurement in both ‘E’ and 
‘I’ (Fazli et al., 2021) while others created a new compartment structure 
to account for viral shedding dynamic in wastewater (Polcz et al., 2023; 

Fig. 4. Susceptible-exposed-infectious-recovered model can forecast cases in the early stage of a COVID-19 outbreak. A) SEIR model framework depicting a pop-
ulation in green with infected people in red. The SARS-CoV-2 shed by a fraction of the exposed population is measured in the wastewater collected at the WWTF. This 
titer is integrated into a Susceptible (S), Exposed (E), Infected (I), and Recovered (R) model to estimate the number of exposed individuals E. B) Left white side 
contains known data at the time of the forecast where the blue lines show the fitted predicted active cases from wastewater up to the beginning of the outbreak, and 
the blue shade shows the data not yet observed at the time of forecast whereas the red lines are active cases forecasted. Vertical dashed lines represent the estimated 
start of the outbreak based on clinically confirmed COVID-19 cases. Using the wastewater data, the model forecasted the start of the outbreak between 0 and 11 days 
earlier than the onset of the increase in clinical confirmed cases. 95 % confidence intervals are shown by the gray bars. Dots show the active cases determined as the 
11-day moving sum of the clinically confirmed cases. Since the mean infectious period from fitting data was 10.88 days, we determined the actual active cases as the 
11-day moving sum of new clinically confirmed cases. Breakpoints between fitted and forecast values were chosen to be two days after the start of the outbreak, 
determined by the Piecewise regression model. Cities are ordered by population size (largest on the top left and smallest on the bottom right).
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Proverbio et al., 2022). Disentangling how the different groups E, I, R 
(recovered ‘R’ individuals can still shed virus in their stool (Natarajan 
et al., 2022)) contribute to the wastewater is a challenging task that 
remains to be explored. Since the numbers of infectious and exposed 
individuals are not independent of one another, we would need to know 
the joint distribution in order to infer the relative contributions of the 
virus to the wastewater. Others have pointed out how viral shedding at 
different stages can indeed lead to issues with model fitting (Phan et al., 
2023).

Finally, as discussed above the noise in wastewater data presents 
challenges in fitting the SEIR model accurately, especially in small, rural 

populations where the impact of individual variations is magnified. 
While our model was generally successful in forecasting upcoming cases, 
it failed in one city, indicating that the disease dynamics did not always 
align with the model assumptions. This discrepancy could be due to 
factors described above such as commuting patterns, which are more 
prevalent in rural areas where residents often have to commute to work 
in other towns. In the rural cities surveyed, between 79.4 and 94.5 % of 
residents work outside their place of residence, versus 27.3 % in the 
small city surveyed (data from U.S. Census Bureau Topic: Commuting – 
Survey: American Community Survey – 2021, ACS 5-Year Estimates 
Subject Tables).

4.5. Conclusion

In conclusion, our study advances the field by employing a SEIR 
mechanistic modeling approach to forecast COVID-19 case trends in 
rural communities. We demonstrate that even though SARS-CoV-2 data 
from rural wastewater have its own challenges, our model can reliably 
forecast case trends, allowing public health officials to respond more 
proactively. Our model can be deployed in any rural city as long as the 
city population census and wastewater flow data are available or can be 
estimated. It’s important to note that inflow measurements are not al-
ways available for WWTF in small rural cities, as the influent flow does 
not factor into compliance with effluent water quality in the U.S. or 
certain European countries. Nevertheless, the predictive capability of 
such a SEIR model is especially crucial given the challenges in identi-
fying outbreak onset in real-time, a problem that is exacerbated in small 
rural populations.
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Fig. 5. Receiver operating characteristic (ROC) curves for a synthetic data set. 
A plot showing the number of true increases against false increases for pre-
dicted case counts 1,3,5,7,9,11,13, and 15 days beyond the current measure-
ments. A true increase is counted when there was an increase in cases and the 
model predicted a greater than α probability of an increase. A false increase is 
counted when there was no increase in cases but the model predicted a greater 
than α probability of increase.

Fig. 6. Evaluating SEIR model predictability for an emerging COVID-19 
outbreak. Box plot showing the distribution of measured area under the 
curve (AUC) when computing 50 receiver operating characteristic (ROC) curves 
when true positive rate is plotted as function of the false positive rate for 
prediction forecasted from one to 15 days. A random classifier, which repre-
sents the outcome if the model randomly picks predictions, has an AUC of 0.5. 
The further away the curve is from the one of the random classifiers, the higher 
the AUC and the better it illustrates the ability of the model to forecast a trend, 
with the 1 representing the highest accuracy corresponding to 100 % positive 
rate and 0 % false negatives. In general, for a diagnostic test to be able to 
discriminate patients with and without a disease, the AUC must be above 0.5. 
Values between 0.7 and 0.8 are considered to be ‘fair’ or acceptable 
(Mandrekar, 2010; Nahm, 2022).
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