DUE DATE: NOV. 4, 2016

1. Compute these matrix multiplications:

(a) $\begin{bmatrix} 2 & -1 \\ 5 & 4 \\ 7 & -4 \end{bmatrix} \begin{bmatrix} 2 & -1 & -2 \\ 3 & 5 & 1 \end{bmatrix}$	(b) $\begin{bmatrix} 2 & -1 & -2 \\ 3 & 5 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 5 & 4 \\ 7 & -4 \end{bmatrix}$
(c) $\begin{bmatrix} -3 & 1 \\ 6 & 5 \end{bmatrix} \begin{bmatrix} 4 & -3 \\ 1 & -1 \end{bmatrix}$	(d) $\begin{bmatrix} 3 & 1 & 2 \\ -2 & -1 & 3 \\ 7 & 2 & 5 \end{bmatrix} \begin{bmatrix} 1 & 2 & 4 \\ 8 & 3 & 8 \\ 2 & 1 & 0 \end{bmatrix}$

2. There are identities among sin and cos concerning angle addition (you may have seen them before). That is, if α and θ are two angles, there is a way to write $\sin(\alpha + \theta)$ in terms of sin's and cos's of α and θ , and the same thing for $\cos(\alpha + \theta)$. There are purely geometric proofs of these identies using triangles, but here's a linear algebra proof:

Let T_{α} be the linear transformation from \mathbb{R}^2 to \mathbb{R}^2 which is rotation counterclockwise by α , and T_{θ} the counterclockwise rotation by θ .

- (a) Write down the standard matrices for T_{α} and T_{θ} , explaining your reasoning for T_{α} .
- (b) Explain what the linear transformation $T_{\alpha} \circ T_{\theta}$ does to \mathbb{R}^2 .
- (c) Compute the matrix for $T_{\alpha} \circ T_{\theta}$ by multiplying the matrices for T_{α} and T_{θ} .
- (d) On the other hand, from the description in part (b), you can directly write down the matrix for $T_{\alpha} \circ T_{\theta}$. What is that matrix?
- (e) Since the matrices from parts (c) and (d) are describe the same linear transformation, they must be equal. What identities among sin and cos must therefore be true?
- (f) Using a similar idea, find formulas for $\sin(3\theta)$ and $\cos(3\theta)$ in terms of $\sin(\theta)$ and $\cos(\theta)$.

3. Suppose we have two linear transformations $T_1 : \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ and $T_2 : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ given by these formulas:

 $T_1(x, y, z) = (7x + 3z, 2x + y + 8z)$ and $T_2(u, v) = (4u + v, 2u + 3v, -u + 5v)$.

- (a) Give the formulas for the composite function $T_3 = T_2 \circ T_1$.
- (b) Using these formulas, find the standard matrix C for T_3 .
- (c) Find the standard matrix A for T_1 and B for T_2 .
- (d) Compute the matrix product BA showing the details of how you computed the entries. (You should, of course, get matrix C as an answer.)

4. Suppose that $T : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is an invertible linear transformation (i.e., T is a bijection). This means that it's possible to define the inverse function T^{-1} , a function from \mathbb{R}^n to \mathbb{R}^n , by

 $T^{-1}(\vec{w})$ = the unique vector \vec{v} in \mathbb{R}^n with $T(\vec{v}) = \vec{w}$.

That certainly defines a *function* from \mathbb{R}^n to \mathbb{R}^n , but we need to check that this function is also a linear transformation. So: Prove that T^{-1} is a linear transformation, using the fact that T is.

Note: For question 4, it might help to first write down (to make you think about it consciously), what the ingredients are for this argument. You know (1) that T is a linear transformation, (2) that T is bijective (and hence injective and surjective), and (3) that T^{-1} is the inverse function for T (and so you know the definition of T^{-1} in terms of T).

This are the only things you know about T, and every step you make will probably involve using one of those properties.

As a perhaps puzzling hint, which you're free to ignore, if you're ever trying to prove that two vectors \vec{u}_1 and \vec{u}_2 are equal, it's enough to apply T to both sides and check that $T(\vec{u}_1) = T(\vec{u}_2)$, since T is injective.