DUE DATE: FEB. 17, 2017

1. Suppose that $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ is given (in the standard coordinates) by the matrix

$$A = \left[\begin{array}{rrr} 2 & 1 & 5 \\ 1 & 1 & 3 \end{array} \right].$$

Let \mathcal{B} be the basis $\mathcal{B} = [(1,1,1), (2,0,1), (3,2,1)]$ of \mathbb{R}^3 , and let \mathcal{A} be the basis $\mathcal{A} = [(3,5), (1,2)]$ of \mathbb{R}^2 , find the matrix for T with respect to the new basis on both sides.

2. Let $\vec{v}_1 = (1, 2), \ \vec{v}_2 = (2, -1)$, and let \mathcal{B} be the basis $\mathcal{B} = [\vec{v}_1, \vec{v}_2]$ of \mathbb{R}^2 .

Let T be the linear transformation from \mathbb{R}^2 to \mathbb{R}^2 given by $T(\vec{v}_1) = \vec{v}_1$ and $T(\vec{v}_2) = \vec{0}$.

- (a) Write down the matrix for T in the new basis \mathcal{B} . (You should be able to do this directly from the definition of T and the definition of "writing the matrix of a linear transformation with respect to a basis").
- (b) Use this to write down the matrix for T in the standard basis.

You might want to compare the answer for (b) with the answer for H6 3(a), with m = 2. Can you see why these are the same?

NOTE: In part (b) you need to go from the matrix in \mathcal{B} -basis form to the matrix in standard basis form, which is the reverse of what we did in class, so think for a bit to figure out which way the change of basis matrices should go.

3. We'll check in class that the determinant of a square matrix doesn't change when we change basis. The purpose of this question is to show that the *trace* of a matrix also doesn't change when we change basis.

For an $n \times n$ matrix A, the *trace* of A, tr(A) is the sum of the numbers on the diagonal. For instance, if

$$A = \left[\begin{array}{rrrr} 1 & 3 & 5 \\ 2 & 7 & 9 \\ 6 & 0 & 4 \end{array} \right]$$

then tr(A) = 1 + 7 + 4 = 12.

In the a_{ij} notation for the entries of a matrix, $tr(A) = a_{11} + a_{22} + a_{33} + \cdots + a_{nn}$.

(a) If A and B are $n \times n$ matrices, prove that tr(AB) = tr(BA) (the formula in the book for *ij*-th entry for a product of matrices may help).

- (b) Suppose that A is an $n \times m$ matrix and B an $m \times n$ matrix. Then both products AB (an $n \times n$ matrix) and BA (an $m \times m$ matrix) are square matrices, so we can take their traces. PROVE OR DISPROVE: tr(AB) = tr(BA) in this case.
- (c) If C is an $n \times n$ matrix, and M an invertible $n \times n$ matrix, prove that

$$\operatorname{tr}(C) = \operatorname{tr}(M^{-1}CM).$$

SUGGESTION: If you make the right choice of matrices A and B, part (c) will follow from part (a) with very little work.

4. Suppose that x_1, x_2, \ldots, x_n are numbers. The $n \times n$ matrix

$$A = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ x_1 & x_2 & x_3 & \cdots & x_n \\ x_1^2 & x_2^2 & x_3^2 & \cdots & x_n^2 \\ x_1^3 & x_2^3 & x_3^3 & \cdots & x_n^3 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_1^{n-1} & x_2^{n-1} & x_3^{n-1} & \cdots & x_n^{n-1} \end{bmatrix}$$

is called the *Vandermonde matrix*, and is surprisingly useful to know a few basic facts about it. Let's establish one of them now.

If any of the two x_i 's are equal to each other, then of course det(A) = 0 since we will have two repeated columns. What we'd like to show is that if all of the x_i 's are different, then $det(A) \neq 0$, i.e., that A is an invertible matrix.

- (a) Explain why showing that $det(A) \neq 0$ is the same as showing that $det(A^t) \neq 0$, where A^t means the transpose of A. [This is a very short answer].
- (b) Suppose that A^t is invertible. Explain why this means that $\text{Ker}(A^t) = \{\vec{0}\}.$
- (c) Conversely, suppose that $\text{Ker}(A^t) = \{\overline{0}\}$. Explain why this means that A^t is invertible. (SUGGESTION: The rank-nullity theorem may help at one point.)
- (d) Explain why showing that $det(A^t) \neq 0$ is the same as showing that the only vector in $Ker(A^t)$ is the zero vector.
- (e) If $\vec{v} = (c_0, c_1, \ldots, c_{n-1})$ is a vector in the kernel of A^t , and \vec{v} is not the zero vector, explain how this would give you a polynomial of degree $\leq n-1$ with more than n-1 roots, which would be a contradiction. [HINT: write out what $A^t\vec{v} = \vec{0}$ means.] Make sure that you answer carefully, for instance, in your explanation why is it important that all the x_i 's be different?