1. Let $\mathbf{F}(x, y) : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ be the function $\mathbf{F}(x, y) = (e^{x^2}, y \sin(\pi x), xy)$, and $\mathbf{G} : \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ be the function $\mathbf{G}(u, v, w) = (\cos(uv), w - u^2)$.

- (a) Compute $\mathbf{F}(1,1)$, and let q be this point in \mathbb{R}^3 .
- (b) Write out the composite function $\mathbf{G} \circ \mathbf{F}$, and compute directly $\mathbf{D}(\mathbf{G} \circ \mathbf{F})(1, 1)$.
- (c) Compute $\mathbf{DF}(1, 1)$ and $\mathbf{DG}(q)$.
- (d) Compute the product DG(q)DF(1,1) and verify the chain rule in this case.

2. Let $\mathbf{F} \colon \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be the function $\mathbf{F}(r, \theta) = (r \cos(\theta), r \sin(\theta))$. Note that $\mathbf{F}(2, \frac{5\pi}{6}) = (-\sqrt{3}, 1)$.

(a) Compute $\mathbf{DF}(2, \frac{5\pi}{6})$.

Suppose that $\mathbf{G} \colon \mathbb{R}^2 \longrightarrow \mathbb{R}$ is a differentiable function, and define a new function \mathbf{H} by $\mathbf{H} = \mathbf{G} \circ \mathbf{F}$.

- (b) What formula does the chain rule give for computing $\mathbf{DH}(2, \frac{5\pi}{6})$ in terms of \mathbf{DG} and \mathbf{DF} ?
- (c) Suppose we know that $\frac{\partial \mathbf{H}}{\partial r}(2, \frac{5\pi}{6}) = 2$ and $\frac{\partial \mathbf{H}}{\partial \theta}(2, \frac{5\pi}{6}) = 3$. Use your answer from (b) to find $\frac{\partial \mathbf{G}}{\partial x}(-\sqrt{3}, 1)$ and $\frac{\partial \mathbf{G}}{\partial y}(-\sqrt{3}, 1)$. (This will involve inverting a matrix.)
- (d) Suppose we are at the point $(-\sqrt{3}, 1)$. In what direction \vec{v} should we go so that the instantaneous rate of change of **G** through $(-\sqrt{3}, 1)$ in the direction \vec{v} is zero?
- 3. Define the function $\mathbf{F} \colon \mathbb{R}^2 \longrightarrow \mathbb{R}$ by

$$\mathbf{F}(x,y) = \begin{cases} \frac{\cos(3x+2y)-1}{3x+2y} & \text{if } 3x+2y \neq 0\\ 0 & \text{if } 3x+2y = 0 \end{cases}$$

Arguments similar to that of H1 Q5(b) show that F is a continuous function on \mathbb{R}^2 . In this problem we will show that F is a differentiable function, and compute DF at the point (2, -3). To start with, we define the function $\mathbf{G} \colon \mathbb{R} \longrightarrow \mathbb{R}$ by

$$\mathbf{G}(u) = \begin{cases} \frac{\cos(u)-1}{u} & \text{if } u \neq 0\\ 0 & \text{if } u = 0 \end{cases}$$

- (a) The derivative in one variable is defined by a limit. Set up the limit which computes the derivative of **G** at u = 0.
- (b) Evaluate the limit in part (a). (You may use L'Hôpital's rule if you wish.)
- (c) Find a function $\mathbf{H} \colon \mathbb{R}^2 \longrightarrow \mathbb{R}$ such that $\mathbf{F} = \mathbf{G} \circ \mathbf{H}$.
- (d) By applying the chain rule, establish that \mathbf{F} is a differentiable function on \mathbb{R}^2 .
- (e) Use the chain rule to calculate $\mathbf{DF}(2, -3)$.

4.

- (a) Describe and sketch the graph $z = \frac{1}{x^2 + y^2}$. (Over $\mathbb{R}^2 \setminus \{(0,0)\}$.)
- (b) Show that the parameterization $(x(t), y(t), z(t)) = (e^t \cos(t), e^t \sin(t), e^{-2t})$. lies on the graph from part (a).
- (c) Describe what this curve does, and sketch it on the graph from part (a).