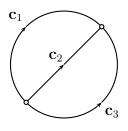
- 1. Which of the following sets are path connected? Which are simply connected?
 - (a) \mathbb{R}^2 with the circle $x^2 + y^2 = 1$ removed.
 - (b) $\mathbb{R}^3 \setminus \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = 1, z = 0\}.$ (That is, remove the circle $x^2 + y^2 = 1$ in the *xy*-plane from \mathbb{R}^3 .)
 - (c) The set $\{(x, y) \mid 1 < x^2 + y^2 < 2\}$ in \mathbb{R}^2 .
 - (d) \mathbb{R}^3 with the helix $(\cos(t), \sin(t), t), t \in [0, \pi]$ removed.
 - (e) The set $\{(x, y) \mid x^2 y^2 < 0\}$ in \mathbb{R}^2 .
- 2. Here are three curves connecting the point (1,0,0) to the point (-1,0,0) in \mathbb{R}^3 : **c**₁: The half-circle $(\cos(t), \sin(t), 0), t \in [0, \pi]$. **c**₂: The segment $(-t, t^2 - 1, 1 - t^2)$ of a parabola, $t \in [-1, 1]$. **c**₃: The straight line $(-t, 0, 0), t \in [-1, 1]$.
 - (a) For $\mathbf{F} = (-y, x, z)$, compute $\int_{\mathbf{c}_1} \mathbf{F} \cdot ds$, $\int_{\mathbf{c}_2} \mathbf{F} \cdot ds$, and $\int_{\mathbf{c}_3} \mathbf{F} \cdot ds$.
 - (b) For $\mathbf{G} = (e^{yz}, xz e^{yz}, xy e^{yz})$, compute $\int_{\mathbf{c}_1} \mathbf{G} \cdot ds$, $\int_{\mathbf{c}_2} \mathbf{G} \cdot ds$, and $\int_{\mathbf{c}_3} \mathbf{G} \cdot ds$.
 - (c) Is \mathbf{F} a conservative vector field? Is \mathbf{G} ?
- 3. Let \mathbf{F} be the vector field

$$\mathbf{F}(x,y) = \left(\frac{y}{x^2 + y^2}, \frac{-x}{x^2 + y^2}\right)$$

and \mathbf{c} the unit circle, oriented counterclockwise. Let U be the domain of \mathbf{F} .

- (a) What is the domain of definition of the vector field \mathbf{F} ? Is it simply connected?
- (b) Compute $\operatorname{Curl}(\mathbf{F})$ (the " \mathbb{R}^2 " curl, which is a scalar function, and not a vector field).
- (c) Compute $\int_{\mathbf{c}} \mathbf{F} \cdot ds$.

- (d) If **G** is a vector field, and $\mathbf{G} = \nabla g$ for some function $g: U \longrightarrow \mathbb{R}$, what would $\int_{\mathbf{c}} \mathbf{G} \cdot ds$ have to be? (HINT: Think of **c** as a curve whose ending point is the same as its starting point).
- (e) Explain how you know that **F** cannot be the gradient of any function, even though by a local calculation (the curl) it looks like it might be.
- 4. Let f be the function $f(x, y) = x^2 y$, and \mathbf{c}_1 : The half circle $(\sqrt{2}\cos(t), -\sqrt{2}\sin(t)), t \in [3\pi/4, 7\pi/4];$ \mathbf{c}_2 : The straight line $(t, t) \ t \in [-1, 1];$ \mathbf{c}_3 : The half circle $(\sqrt{2}\cos(t), \sqrt{2}\sin(t)), t \in [-3\pi/4, \pi/4].$



All three curves connect the point (-1, -1) to the point (1, 1).

- (a) compute f(1,1) f(-1,-1)
- (b) Let $\mathbf{F} = \nabla f$. Compute \mathbf{F} .
- (c) Compute the following integrals $\int_{\mathbf{c}_1} \mathbf{F} \cdot ds$, $\int_{\mathbf{c}_2} \mathbf{F} \cdot ds$, and $\int_{\mathbf{c}_3} \mathbf{F} \cdot ds$ by using the parameterizations above.
- (d) Explain the connection between (a) and (c).